
HAL Id: hal-01172102
https://hal.science/hal-01172102v1

Submitted on 16 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Crash Reproduction via Test Case Mutation: Let
Existing Test Cases Help

Jifeng Xuan, Xiaoyuan Xie, Martin Monperrus

To cite this version:
Jifeng Xuan, Xiaoyuan Xie, Martin Monperrus. Crash Reproduction via Test Case Mutation: Let Ex-
isting Test Cases Help. ESEC/FSE 2015 - 10th Joint Meeting on Foundations of Software Engineering,
NIER Track, Aug 2015, Bergamo, Italy. pp.910-913, �10.1145/2786805.2803206�. �hal-01172102�

https://hal.science/hal-01172102v1
https://hal.archives-ouvertes.fr


Crash Reproduction via Test Case Mutation

Let Existing Test Cases Help

Jifeng Xuan†, Xiaoyuan Xie†, Martin Monperrus*

†State Key Lab of Software Engineering, School of Computer, Wuhan University, China
*University of Lille & INRIA, France

{jxuan, xxie}@whu.edu.cn, martin.monperrus@univ-lille1.fr

ABSTRACT
Developers reproduce crashes to understand root causes dur-
ing software debugging. To reduce the manual effort by de-
velopers, automatic methods of crash reproduction generate
new test cases for triggering crashes. However, due to the
complex program structures, it is challenging to generate a
test case to cover a specific program path. In this paper,
we propose an approach to automatic crash reproduction
via test case mutation, which updates existing test cases
to trigger crashes rather than creating new test cases from
scratch. This approach leverages major structures and ob-
jects in existing test cases and increases the chance of execut-
ing the specific path. Our preliminary result on 12 crashes
in Apache Commons Collections shows that 7 crashes are
reproduced by our approach of test case mutation.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids

Keywords
Crash reproduction, test case mutation, stack trace

1. INTRODUCTION
Reproducing a crash is inevitable to software debugging.

Once software goes wrong, crash information (usually stack
traces) is recorded to assist future reproducing the crash
scenario. For instance, in Java programs, a crash mainly
contains a stack trace of runtime exceptions and crashed
positions in source files. In practice, crash reproduction is
manually conducted via designing a test case to trigger the
crash by developers. Based on such reproduction, developers
can further understand the root cause of crashes and fix the
bug behind crashes.

Automatic methods of crash reproduction are proposed to
reduce the manual effort by developers, such as ReCore by
Rößler et al. [5], BugRedux by Jin & Orso [3], and Star by

Chen & Kim [1]. These methods generate new test cases
to execute the program paths, which can trigger the target
crash. The criterion of a successfully reproduced crash is
that a test case can produce the same stack trace as in the
target crash.

In this paper, we propose an approach to automatic crash
reproduction via test case mutation, called MuCrash, which
updates existing test cases to trigger crashes rather than
creating new test cases from scratch. Our approach lever-
ages major structures and objects in existing test cases and
increases the chance of executing a specific path that repro-
duces the crash. The idea of test case mutation is motivated
by program mutation, which is used to identify the strength
of test cases in mutation testing [2]. Note that test case mu-
tation in our work aims to update an existing test case and
to generate its mutants while mutation testing aims to up-
date the program under test to examine whether test cases
can catch the updates.

To reproduce a crash, our approach MuCrash, takes the
stack trace in the crash, the source code, and existing test
cases as input; the output is a set of test cases after mutation
that can reproduce the crash. An existing test case denotes
a unit test case, which is released together with the program
under test and is not able to trigger the crash. The process
of MuCrash consists of three major steps. First, given a
stack trace, MuCrash executes all the existing test cases on
the program and selects test cases that cover the classes in
the stack trace. Second, MuCrash eliminates program asser-
tions in these selected test cases and maintains the program
behavior inside assertions. Third, given a set of pre-defined
mutation operators (e.g., an operator of setting one variable
in a method call to null or adding a target method call),
each selected test case produces a set of test case mutants.
These resulting test cases are executed on the program and
the ones that can reproduce crashes are extracted and sent
to developers for manually verifying.

Our preliminary result on 12 crashes in Apache Commons
Collections shows that 7 crashes are reproduced by our ap-
proach of test case mutation. One reproduced crash of ACC-
331 by MuCrash is the first time of successful reproduction
by automatic methods. This crash was not reproduced by
the state-of-the-art method, Star [1].

This paper makes the following contributions.
1. Test case mutation. This method generates new

test cases by updating existing test cases and keeps object-
oriented features in test cases.

2. MuCrash, an approach to crash reproduction
with existing test cases. This approach employs test case



mutations as a lightweight technique to reproduce crashes
by exploring potential execution paths, compared with sym-
bolic execution techniques in BugRedux and Star.

2. MOTIVATION AND NEW IDEA
We use a real-world bug in Apache Commons Collections

to illustrate the motivation and the new idea of our work.
Apache Commons Collections is a widely-used Java library
of enhanced usage of collections, such as lists, maps, or sets.

Bug report 331 of Collections (ACC-331 for short) de-
scribes a null pointer exception in a class CollatingItera-

tor in Version 3.2 or before. According to the document,
a feature of CollatingIterator is to accept a null compara-
tor as input and to load a default comparator to perform
the comparison between two ordered list (note that this fea-
ture is discarded in its subsequent version since 4.0, due to
complexity). Figure 1 shows code snippets and related test
cases, which are written by developers and generated by our
technique of test case mutation.1

As shown in Figure 1a, the buggy source code did not call
a default comparator when a user inputs a null comparator.
The bug will trigger a crash shown in Figure 1b. This crash
records the stack trace of calling methods in Class Collatin-

gIterator. However, it is hard to reproduce the scenario
where the program crashes. During the process of debug-
ging, a developer wrote a test case testNullComparator() to
trigger the crash, in Figure 1c (triggered at Line 7). This
test case will help developers to understand the root cause
behind the crash.

Writing a test case in Figure 1c is not easy. On one hand,
a human developer needs to fully understand the function-
ality of the constructor of CollatingIterator (Line 5) and to
initialize two lists (Lines 2-3) for calling the method next()

(Line 7). On the other hand, an automatic method of test
case generation must handle a constructor with three vari-
ables (Line 5), especially with two variables of complex it-
erators; meanwhile, automatically creating a method call
sequence like hasNext() and next() (Lines 6-7) is also chal-
lenging. In the state-of-the-art method, Star, the authors
claim that they fail to reproduce the crash of ACC-331 [1].

Our new idea of crash reproduction is to leverage ex-
isting test cases, instead of creating new test cases from
scratch. As shown in Figure 1d, in the test suite (which is
released together with the buggy source code), a unit test
case testIterateEvenOdd() is provided to test the general
functionality of CollatingIterator. In this test case, two
lists, evens and odds, are already provided. Once we change
the comparator at Line 8 into null, a resulting test case will
trigger the target crash. This resulting test case is shown
in Figure 1e. Without changing the lists of evens and odds,
code at Line 6 in Figure 1e will lead to the target stack trace
in Figure 1b. Note that due to the change at Lines 2-3, orig-
inal assertions may be incorrect and are replaced by Lines
5, 6, and 8.

The change from Line 8 in Figure 1d to Line 3 in Figure
1e is to set one variable in the method call to null. In
this paper, such a change in a test case is called test case
mutation, which is motivated by the concept of “mutation
operators for programs” in mutation testing. Section 3.2.3
will present more useful mutation operators for test cases.
1
Bug report of ACC-331, http://issues.apache.org/jira/browse/

COLLECTIONS-331; its manually-written test case by developers
for reproducing the crash, http://issues.apache.org/jira/secure/
attachment/12411653/CollatingIteratorTest.java.

private int least() {
Object curObject = values.get(i);
− if (comparator.compare(curObject,leastObject) < 0) {
+ Comparator comp = comparator == null ?

ComparableComparator.getInstance() : comparator;
+ if (comp.compare(curObject,leastObject) < 0) {

leastObject = curObject;
...

(a) Buggy code snippet (-) with its patch (+) in the program

java.lang.NullPointerException:
[...].iterators.CollatingIterator.least (CollatingIterator.java:333)
[...].iterators.CollatingIterator.next (CollatingIterator.java:229)
...

(b) Stack trace during software crashing

1 public void testNullComparator() {
2 List<Integer> l1 = Arrays.asList(1, 3, 5);
3 List<Integer> l2 = Arrays.asList(2, 4, 6);
4 CollatingIterator collatingIterator = new
5 CollatingIterator(null, l1.iterator(), l2.iterator());
6 for (int i = 0; collatingIterator.hasNext(); i++ )
7 Integer n = (Integer) collatingIterator.next();
8 ...
9 }

(c) Manually-written test case by developers for reproduction

1 private ArrayList evens = null;
2 private ArrayList odds = null;
3 public void setUp() throws Exception {
4 //Initialize evens and odds with 20 elements (before each test case)
5 }
6 public void testIterateEvenOdd() { // Existing unit test case
7 CollatingIterator iter = new
8 CollatingIterator(comparator, evens.iterator(), odds.iterator());
9 for(int i=0; i<20; i++) {

10 assertTrue(iter.hasNext());
11 assertEquals(new Integer(i), iter.next());
12 }
13 assertTrue(! iter.hasNext());
14 }

(d) Existing unit test case that is released with the buggy program

1 public void testIterateEvenOdd MUTATION() {
2 CollatingIterator iter = new
3 CollatingIterator(null, evens.iterator(), odds.iterator());
4 for(int i=0; i<20; i++) {
5 Object obj1 = iter.hasNext();
6 Object obj2 = iter.next();
7 }
8 Object obj3 = ! iter.hasNext();
9 }

(e) Test case that is generated via test case mutation: by setting
one variable to null

Figure 1: Real-world example of Bug ACC-331 in Class Col-

latingIterator. To reproduce the crash in Figure 1b, devel-
opers write a test case in Figure 1c; our method of test
case mutation generates a test case in Figure 1e based on
an existing test case in Figure 1d. Differences between the
existing test case (in green) and the mutated test case (in
red) are marked with boxes.

3. APPROACH: TEST CASE MUTATION
We present our approach to automatic crash reproduction

via test case mutation, MuCrash. The goal of our approach
is to trigger a specific execution path by updating existing
test cases. The technique of test case mutation bridges ex-
isting test cases and target test cases, which are expected to
reproduce crashes.

http://issues.apache.org/jira/browse/COLLECTIONS-331
http://issues.apache.org/jira/browse/COLLECTIONS-331
http://issues.apache.org/jira/secure/attachment/12411653/CollatingIteratorTest.java
http://issues.apache.org/jira/secure/attachment/12411653/CollatingIteratorTest.java


Bug report Program codeExisting test cases

Crash 
(stack trace)

Test case 
mutation

Test case 
mutation operators

Existing test case selection

Assertion elimination

Test case updating
Test case that 

reproduces 
a crash

Together released in the software version that has the crash

Figure 2: Overview of crash reproduction via test case mu-
tation, MuCrash.

3.1 Overview
Figure 2 illustrates the overview of our proposed approach

to crash reproduction via test case mutation. As an input,
crash information in a bug report is usually expressed as
stack traces, which record runtime exceptions and crashed
positions in source code files; the other inputs are program
source code as well as its related unit test cases that are
not able to trigger the target crash. In modern software de-
velopment, unit test cases are released together with source
code to validate the software configuration.

Our proposed approach consists of three major steps: ex-
isting test case selection, assertion elimination, and test case
updating. After applying a set of pre-defined mutation op-
erators, an existing test case will be updated to a set of
new test cases, each of which may provide different stack
traces from the trace by the existing test case. These new
test cases are executed on the buggy program; test cases
that are successful in crash reproduction are extracted as
output.

3.2 Test Case Mutation

3.2.1 Existing Test Case Selection
Our approach updates existing test cases to reproduce

crashes. To reduce the number of considered existing test
cases, we select a subset of existing test cases for subsequent
steps. Given a stack trace, we extract classes in the trace,
e.g., Class CollatingIterator in Figure 1b. Then, all exist-
ing test cases are executed; test cases that cover the classes
in the trace are selected. Such selection discards irrelevant
test cases and narrows down the range of potential existing
test cases. We conduct this selection under an assumption
that the selected test cases may relate to methods in the
crash since these test cases have contributed to the testing
of classes in the stack trace.

3.2.2 Assertion Elimination
In a test case, developers write assertions to ensure that

software meets the expected behavior. For instance, code
at Line 11 in Figure 1d ensures iter.next() equals to i. In
our approach, the goal of test case mutation is to modify
existing test cases to trigger new traces. Once a statement
in a test case is changed, assertions are no longer applicable.

To remove the judgment of assertions, we conduct “asser-
tion elimination” for all assertions in the selected test cases.
Assertion elimination keeps the behavior of variables inside
an assertion and removes the statement of assertions. For in-

Table 1: Test case mutation operators in our approach
Index Mutation operator Operator description

1 Variable null Set a variable in a method call to null

2 Variable renewing Set a variable in a method call to a
newly-created object

3 Numeric variable re-
placement

Replace a numeric variable with de-
fault values (e.g., 0 or 1) and with ex-
isting values in the same test case

4 Method call addition Add a call of a method that appears in
the stack trace

5 Overloading method
call addition

Add a call of an overloading method
that appears in the stack trace

stance, assertEquals(new Integer(i), iter.next()) at Line
11 in Figure 1d is changed into Object obj2 = iter.next(),
as shown at Line 6 in Figure 1e. Such changes in assertion
elimination will not add or reduce the program behavior
to test cases, except the judgment by assertions. The kept
program behavior can facilitate the crash reproduction. For
instance, the crash in Figure 1e is triggered at Line 6.

3.2.3 Test Case Updating
In test case updating, we modify selected test cases (after

assertion elimination) to produce new traces. We leverage
the concept of “mutation operators for programs” from mu-
tation testing. A mutation operator is a pre-defined trans-
formation rule that generates new program from an original
program [2].

In this paper, we use test case mutation operators to up-
date test cases. To facilitate crash reproduction, we focus
on mutation operators with object-oriented features. Table
1 lists five types of test case mutation operators in our work.
The first three mutation operators are related to update a
variable in a method call while the other two are related to
adding a method call that exists in the stack trace.

In contrast to general operators in mutation testing, test
case mutation operators in our work could be guided by the
stack trace. For instance, adding one method call in the
trace to an existing test case (i.e., operator 4 in Table 1)
may increase the opportunity of successful reproduction. In
this work, we exhaustively apply all the mutation operators
without any selection.

Note that applying one mutation operator to one test case
will lead to more than one new test cases. For example,
applying the first operator (Variable null) to code at Line 8
in Figure 1d will lead to three test cases with a null variable
in a method call.

3.3 Novelty of Proposed Approach
In test case generation, to our knowledge, this is the first

work of mutating test cases (in a style of program muta-
tion). Previous work has explored generating new test cases
from existing ones. The most related work is test case re-
generation by Yoo & Harman [9] and test suite augmenta-
tion by Xu et al. [7]. However, their work treats existing test
cases as seeds of new test case generation while our work of
test case mutation directly updates existing test cases with
mutation operators. Another related work is data muta-
tion in modeling languages by Shan & Zhu [6]. Their work
updates model diagrams to test a modeling tool while our
work directly manipulates test cases for crash reproduction.
In summary, test case mutation reuses object-oriented fea-
tures inside existing test cases to avoid the complexity of
creating new ones from scratch.



Table 2: Bug IDs of reproduced crashes among 12 bugs
Method Bug IDs of reproduced crashes Useless

reproduction
#Reproduced

crash
#Useful

reproduction

Star 4, 28, 35, 48, 104, 411, 53, 77 77 8 7
MuCrash 4, 28, 35, 48, 104, 411, 331 - 7 7

The most related work by authors is test case purification
for fault localization [8]. Both the technique and the goal
are different from those in test case mutation: previous work
[8] splits failing test cases into small parts to improve the
effectiveness of fault localization.

4. PRELIMINARY RESULT

4.1 Dataset and Implementation
In the state-of-the-art method of crash reproduction, Star

[1], bug reports from three open-source Java projects are
used for evaluation.2 In our preliminary experiment, we use
all the 12 bugs from one of their projects, Apache Commons
Collections. Collections contains 26 KLoC of source code
and 29 KLoC of test code (the latest version under evalua-
tion).

Our prototype of MuCrash is implemented on the top of
Spoon. Spoon [4] is a static library for Java program analysis
and transformation.

4.2 Result of Reproducing 12 Crashes
Table 2 shows a preliminary result of crashes of 12 bug

reports in Collections. We compare the proposed MuCrash

with the state-of-the-art method, Star [1]. As defined in [1],
a reproduced crash denotes that the generated test case trig-
gers the same stack trace while a useful reproduction means
that the crash reproduction is helpful to fix the bug. We
manually check whether a reproduced crash is useful or not.

As shown in Table 2, MuCrash reproduces 7 out of 12
crashes while Star reproduces 8 out of 12 crashes. MuCrash

is able to reproduce ACC-331 while MuCrash fails to repro-
duce ACC-53 and ACC-77. The major reason for this failure
is that test cases for both crashes require frequent method
calls, which cannot be directly performed by mutation op-
erators.

Based on our manual check, all 7 reproduced crashes by
MuCrash are useful to fix the bug while as reported by Chen
& Kim [1], the reproduction of ACC-77 by Star is useless.
Hence, both MuCrash and Star can reproduce 7 useful ones
among 12 crashes.

The reproduced crash, ACC-331 (see Figure 1 for de-
tails), by MuCrash, shows the strength of test case muta-
tion in crash reproduction. Comparing with techniques of
symbolic execution and precondition analysis in Star, test
case mutation in MuCrash is lightweight: it will add no
runtime overhead of computing resources, except executing
test cases; meanwhile, test case mutation maintains object-
oriented features in existing test cases, which are updated
to trigger new crashes.

To further understand the role of test case mutation in
crash reproduction, Table 3 shows which mutation opera-
tor works for the reproduced crashes. Among seven repro-
duced crashes by MuCrash, test cases in four crashes are
mutated by updating variables while test cases in the other
three crashes are mutated by adding method calls from stack
traces. ACC-331, the newly reproduced crash by MuCrash,

2
Star Project, http://sites.google.com/site/starcrashstack/.

Table 3: Mutation operators that reproduce crashes
Bug ID Buggy version Mutation operator (see Table 1)

ACC-4 Collections 2.0 1 - Variable null
ACC-28 Collections 2.0 1 - Variable null or 2 - Variable renewing
ACC-35 Collections 2.1 4 - Method call addition
ACC-48 Collections 3.1 4 - Method call addition
ACC-104 Collections 3.1 5 - Overloading method call addition
ACC-331 Collections 3.2 1 - Variable null
ACC-411 Commit, r-1351903 3 - Numeric variable replacement

is based on a simple mutation operator, i.e., to set a variable
to null.

4.3 Discussion
Crash reproduction via test case mutation relies on the

quality of existing test cases. The ability of reproducing
crashes will be limited if the existing test cases are not well-
designed for the software under test. We intend to mainly
apply our method to projects with high-quality test suites,
such as Apache Commons in this paper.

In our method, we exhaustively update test cases with
all mutation operators; no selection of mutation operators
is employed. This may lead to a large number of unneces-
sary test cases, which are helpless to crash reproduction. A
potential solution to reduce the helpless ones is to prioritize
mutation operators for successful reproduction.

5. CONCLUSIONS
This paper proposes a new approach to crash reproduc-

tion via test case mutation. This approach updates existing
test cases to form new test cases for triggering crashes. In
our preliminary study, 7 out of 12 crashes are reproduced
and useful to bug fixing; this result achieves the same num-
ber of useful crashes by the state-of-the-art method, Star.
Moreover, one crash ACC-331 is newly reproduced, which
was reported non-reproduced previously.

Remained research questions. We plan to further un-
derstand the ability of test case mutation via an empirical
study of more crashes. This study will explore the different
power of test case mutation and symbolic-execution based
test case generation. We plan to investigate the prioritiza-
tion of applying mutation operators for crash reproduction.

6. REFERENCES
[1] N. Chen and S. Kim. STAR: stack trace based automatic crash

reproduction via symbolic execution. IEEE Trans. Software
Eng., 41(2):198–220, 2015.

[2] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. IEEE Trans. Software Eng.,
37(5):649–678, 2011.

[3] W. Jin and A. Orso. Bugredux: Reproducing field failures for
in-house debugging. In ICSE 2012, pages 474–484, 2012.

[4] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and
L. Seinturier. Spoon: A Library for Implementing Analysis and
Transformations of Java Source Code. Software: Practice and
Experience, 2015.

[5] J. Rößler, A. Zeller, G. Fraser, C. Zamfir, and G. Candea.
Reconstructing core dumps. In ICST, pages 114–123, 2013.

[6] L. Shan and H. Zhu. Testing software modelling tools using data
mutation. In AST 2006, pages 43–49. ACM, 2006.

[7] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen.
Directed test suite augmentation: techniques and tradeoffs. In
FSE 2010, pages 257–266. ACM, 2010.

[8] J. Xuan and M. Monperrus. Test case purification for improving
fault localization. In FSE 2014, pages 52–63. ACM, 2014.

[9] S. Yoo and M. Harman. Test data regeneration: generating new
test data from existing test data. Softw. Test., Verif. Reliab.,
22(3):171–201, 2012.

http://sites.google.com/site/starcrashstack/

	Introduction
	Motivation and New Idea
	Approach: Test Case Mutation
	Overview
	Test Case Mutation
	Existing Test Case Selection
	Assertion Elimination
	Test Case Updating

	Novelty of Proposed Approach

	Preliminary Result
	Dataset and Implementation
	Result of Reproducing 12 Crashes
	Discussion

	Conclusions
	References

