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A Scalable Learning Algorithm for Kernel

Probabilistic Classifier

Mathieu Serrurier and Henri Prade

IRIT - 118 route de Narbonne 31062, Toulouse Cedex 9, France
{serrurie,prade}@irit.fr

Abstract. In this paper we propose a probabilistic classification algo-
rithm that learns a set of kernel functions that associate a probability
distribution over classes to an input vector. This model is obtained by
maximizing a measure over the probability distributions through a lo-
cal optimization process. This measure focuses on the faithfulness of
the whole probability distribution induced rather than only consider-
ing the probabilities of the classes separately. We show that, thanks to
a pre-processing computation, the complexity of the evaluation of this
measure with respect to a model is no longer dependent on the size of
the training set. This makes the local optimization of the whole set of
kernel functions tractable, even for large databases. We experiment our
method on five benchmark datasets and the KDD Cup 2012 dataset.

1 Introduction

It is well known that machine learning algorithms are constrained by some learn-
ing bias (language bias, hypothesis bias, algorithm bias, etc.). In that respect,
learning a precise model may be illusionary. Moreover, in case where security
issues are critical for instance, predicting one class only, without describing the
uncertainty about this prediction, may be unsatisfactory. Probabilistic classifi-
cation aims at learning models that associate to an input vector a probability
distribution over classes rather than a single class. K-nearest-neighbor meth-
ods [1] compute this distribution by considering the neighborhood of the input
vector. Probabilities are then computed from the frequency of the classes. The
quality of the distribution highly depends on the density of the data. Some
other types of algorithms such as naive Bayes classifiers [7] and Gaussian pro-
cesses [9,10,15] are based on Bayesian inference. Gaussian processes assume that
the attribute values follow a Gaussian distribution, it uses kernels for describing
the co-variance between such variables. Thus, these approaches suppose strong
assumptions (high density data, independent attributes, priors about the type
of the probability distribution that underlies the data , ...). Logistic regression
has been also proposed as a probabilistic classifier [2,5] since it can be used for
a direct estimation of the probability of the classes. This approach has been
extended for the non linear case by the use of kernels logistic functions (KLR
[4]) or kernel functions [16]. These last methods are based on minimization of
the squared distance between the value of the class (0 or 1) and the predicted



value (between 0 and 1). Functions are learn independently for each class and a
normalization post processing is needed. Moreover, these approaches are based
on a costly optimization processes and are not tractable for large databases.
Sugiyama [13] proposes an alternative reformulation of the calculus (still based
on the minimization of squared distance) that partially overcomes this cost issue
and skips the normalization step. Even if these methods are consistent with the
maximum likelihood principle, there are based on the evaluation of the ability
of the predicted distribution to identify the most probable class, but not on
an evaluation of the faithfulness of the complete probability distribution with
respect to the data.

In this paper we propose to learn a set of kernel functions as in this other ker-
nel approaches. However, our method differs from them by many points. First,
we constrain the parameters of the kernels in order to have the sum of the prob-
abilities equal to 1. Second, the model is obtained through a local optimization
process (we propose an implementation for two algorithms: the Nelder-Mead
algorithm [8] and the particle swarm meta-heuristics [6]) by fixing the support
vectors and maximizing a quality measure that estimates the faithfulness of a
probability distribution with respect to a set of data. The kernel function are
learned all together (rather than independently in classical kernel approaches).
In this scope we have extended the loss function used in KLR to the whole
distribution. Then, this measure relies on the squared distance between the op-
timal distribution (1 for the class, 0 for the other classes) and the proposed
one. Moreover, we reformulate the computation of this measure for our set of
kernel functions and make that the complexity of this computation no longer
depend on the size of the dataset thanks to a pre-computation step. This allows
us to handle very large databases, even when using costly meta-heuristics such
as particle swarm.

The paper is structured as follows. Section 2 provides some definitions about
probabilistic loss functions and a precise description of the proposed measure.
In Section 3, we describe the model that we learn and we show how the measure
can be reformulated in order to maximize performances. Section 4 is devoted to
the description of the optimization process and the tuning of the parameters.
Last, we validate our approach by experimentation on 5 benchmark datasets and
on the KDD Cup 2012 dataset.

2 Probabilistic Loss Functions

Probabilistic loss functions are used for evaluating the adequateness of a prob-
ability distribution with respect to data. In this paper, we only consider the
case of classification. A classification database is a set of n pairs (−→x i, ci), 1 ≤
i ≤ n, where −→x i is a vector of input variables in the feature space X and
ci ∈ {C1, . . . , Cq} is the class variable. We note

1j(
−→x i) =

{

1 if ci = Cj

0 otherwise.



Given a probability distribution p on the discrete space Ω = {C1, . . . , Cq}, we
denote p1, . . . , pq the probability of being an element of Ω, i.e. p(ci = Cj) =
pi. The values p1, . . . , pq entirely define p. The log-likelihood is a natural loss
function for probability distributions. Formally the likelihood coincides with a
probability value. The logarithmic-based likelihood is defined as follows (under
the strict constraint

∑q

j pj = 1):

Losslog(p|
−→x i) = −

q
∑

j=1

1j(
−→x i)log(pj).

However, as a probabilistic loss function, the likelihood has some limitations.
First, Losslog is not defined when pj = 0 and 1j = 1. Second, it gives a very
high weight to the error when probability is very low. These two issues are a
strong limitation when the parameters are obtained through a local optimization
process of a classifier. Indeed, avoiding the possibility to have pj = 0 can be
difficult when considering complex models. Moreover, exponential costs of error
on low probability classes may have a too high effect on the whole model.

One common approach to overcome this problem is to turn the classification
problem into a regression problem. The goal of kernel logistic regression and
kernel regression is to minimize the least square between the value of the class (0
and 1) and the predicted probability. To this end, both methods independently
learn a function (resp. kernel logistic function of kernel fj for each class Cj).
Then, for each xi, fj minimizes

LeastSquare(−→x i, fj) = (1j(
−→x i)− fj(

−→x i))
2.

It has been shown that minimizing this distance leads to an faithful estimation of
the probability of being in the class Cj . However, since the function are obtained
independently, the distribution encoded by the fn’ s does not necessarily satisfy
∑q

j=1 fj(
−→x i) = 1 for all −→x i. Thus, the predicted values have to be normalized

in order to have a probability distribution and then, the faithfulness of the
probability of being in the class Cj may be altered.

In this paper, we propose a method that learns the distribution directly. In
order to achieve this goal we extend the previous expression in order to take into
account the whole probability distribution p. Thus, we obtain:

LeastSquare(−→x i, p) =

q
∑

j=1

(1j(
−→x i)− pj)

2

= 1 +

q
∑

j=1

p2j − 2 ∗

q
∑

j=1

1j(
−→x i) ∗ pj .

We build our loss function by removing the constant and normalizing the previ-
ous calculus. Then we have :

Losssurf (p|
−→x i) =

∑q

j=1 1j(
−→x i) ∗ pj −

1
2 ∗

∑q

i=1 p
2
i

n
. (1)



This loss function has been used in [11,12] for describing similar loss functions for
possibility distributions and use it into regression process. We name it Losssurf
since maximizing this function is equivalent to minimize the square of the dis-
tance between p and the optimal probability distribution p∗ (here we have for
a given −→x i, p

∗
j = 1j(

−→x i). Then, contrarily to (LeastSquare(−→x i, fj), Losssurf
takes into account the whole distribution directly, and not the probability values
independently.

3 Surface Probabilistic Kernel Classifier Learning

3.1 Definitions

We recall that a classification database is a set of n pairs, or examples, (−→x i, ci),
1 ≤ i ≤ n, where −→x i is a vector of input variables in the feature space X and
ci ∈ {C1, . . . , Cq} is the class variable. A Surface Kernel probabilistic Classifier
(Skc) associates a probability distribution over the classes to a vector of X . A
Skc is a set of q kernel functions (Skc = {f1, . . . , fq}). A function fj is a kernel
function over r support vectors −→s 1, . . . ,

−→s r (a support vector is a point in the
feature space X )), the same for all the functions, that encodes the probability
of the example −→x i pertaining to class Cj . Then we have:

fj(
−→x ) =

r
∑

l=1

(αj
l ∗K(−→x ,−→s l)) + αj

r+1 (2)

where the αj
l ’s and αj

r+1 are the parameters of the function and K(., .) is a kernel
function. The probability of the example of pertaining to class Ci is then:

pj(
−→x i) = p(ci = Cj) = fj(

−→x i). (3)

We also have the following constraints:

1. ∀j ∈ 1, . . . , q, ∀l ∈ 1, . . . , r,
∑q

j=1 α
i
k = 0

2.
∑q

j=1 α
j
r+1 = 1.

3. ∀j ∈ 1, . . . , q, ∀l ∈ 1, . . . , r + 1,−1 ≤ αj
l ≤ 1

Constraints 1 and 2 guarantee that the probability distribution predicted for a
vector −→x is normalized, i.e.:

∀−→x ∈ X ,

q
∑

j=1

fj(
−→x ) = 1.

However, these constraints do not ensure that the distribution obtained is a
genuine probability distribution. Indeed, we may have fj(

−→x ) < 0 or fj(
−→x ) >

1. This can be partially overcome with constraint 3, but it is not sufficient
in general. This issue will be solved in the optimization process, as it will be
explained in the following.



Once the probabilistic kernel functions defined, the goal is to find the Skc
function that associate a probability distribution over classes that is as faithful
as possible to each input vector of the training set. In the most favorable case,
we will obtain a distribution that gives the probability value 1 to the right class.
According to the previous definitions, the goal for learning Skc is to find the
Skc that maximizes the surface loss function with respect to each example in
the training set. This is formulated as follows: Find the αj

l parameters of a Skc
that maximizes the following expression:

Losssurf (Skc) =

n
∑

i=1

Losssurf (Skc(
−→x i)|

−→x i). (4)

The maximization of Losssurf has several advantages:

• Losssurf is defined even when the probability is equal to 0 and if the prob-
ability distribution is not normalized. Losssurf is also defined for negative
values or values greater than 1. Even if these values are not acceptable for
probability prediction, it allows local optimizer to explore the whole feature
space. Contrarily to the log-likelihood, it makes also the evaluation of the
model possible when it performs well for a majority of examples and have
aberrant values only for few examples. Moreover,Losssurf always favors gen-
uine probability functions. Thus, even if the definition of Skc permits such
kind of abnormal distribution, this case never appears after the learning of
a model in the experiments.

• Losssurf evaluates the faithfulness of the probability distribution predicted
and not only its ability to identify the most probable class. Moreover, even
when only one example is considered, all the values of the probability distri-
bution are taken into account (contrarily to log-likelihood) as it can be seen
in Equation 1.

Then, this approach has some advantages with respect to the other Kernel ap-
proaches. First, the kernel functions have to be learned simultaneously and not
one by one as it is done in Kernels approach (even for the binary case). Second,
the combination of constraints and properties of the Losssurf makes that the
probability distribution predicted has not to be normalized. Finally, Losssurf
evaluates the faithfulness of the probability distribution without normalization
when kernel approaches focus on maximizing the probability associated to the
considered class (regardless of the values of the other classes). Even if these
two approaches are acceptable in terms of accuracy maximization, the proposed
approach seems best suited in terms of quality of the probability distributions
learned. But on the contrary to other kernel approaches, finding the Skc func-
tion that maximizes Losssurf (Skc) given a training set is a hard problem which
has no simple analytical solution. Section 4 shows how this issue can be handled
by local optimization algorithms. However, the computation time performance
of these algorithms depends highly on the complexity cost of the evaluation of
Losssurf (Skc).



3.2 Complexity Evaluation and Reformulation of Losssurf

Given n examples, q classes, r support vectors and a Skc function, we have:

Losssurf (Skc) =
n
∑

i=1

(

q
∑

j=1

(1j(
−→x i) ∗ fj(

−→x i)−
1

2
fj(

−→x i)
2))

=

n
∑

i=1

q
∑

j=1

(1j(
−→x i) ∗

r
∑

l=1

(αj
l ∗K(−→x i,

−→s l)) + αj
r+1)

−
1

2

n
∑

i=1

q
∑

j=1

(

r
∑

l=1

(αj
l ∗K(−→x i,

−→s l)) + αj
r+1)

2.

Under this form, the complexity of the calculus is O(m ∗ q ∗ r). This can be
problematic since local optimization algorithms require to evaluate the target
function frequently. In this case, the optimization process will rapidly become
too costly when the size of the training set increases. Fortunately, it can be
reformulated in order to lead to a more tractable computation. For the sake of
readability, we split Losssurf (Skc) into two parts, namely

Losssurf (Skc) = Part1−
1

2
Part2

such that:

Part1 =

n
∑

i=1

(

q
∑

j=1

(1j(
−→x i) ∗ fj(

−→x i))

and

Part2 =

n
∑

i=1

q
∑

j=1

fj(
−→x i)

2.

Part1 can be reformulated as follows:

Part1 =

n
∑

i=1

q
∑

j=1

(1j(
−→x i) ∗

r
∑

l=1

(αj
l ∗K(−→x i,

−→s l)) + αj
r+1)

=

n
∑

i=1

q
∑

j=1

(1j(
−→x i) ∗ α

j
r+1 +

r
∑

l=1

(1j(
−→x i) ∗ α

j
l ∗K(−→x i,

−→s l))

=

q
∑

j=1

αj
r+1 ∗

n
∑

i=1

1j(
−→x i) +

q
∑

j=1

r
∑

l=1

(αj
l ∗

n
∑

i=1

(1j(
−→x i) ∗K(−→x i,

−→s l)))

=

q
∑

j=1

(αj
r+1 ∗NBj) +

q
∑

j=1

r
∑

l=1

(αj
l ∗K

l
j)

withK l
j =

∑n

i=1(1j(
−→x i)∗K(−→x i,

−→s l)) andNBj =
∑n

i=1 1j(
−→x i). It is interesting

to remark that K l
j and NBj do not depend on the αj

l ’s. Then, these values can



be computed before the optimization process. During the optimization process,
the complexity of the computation of Part1 goes down to O(q ∗ r) which is
independent from the size of the training set. In the same way, Part2 can be
reformulated as follows:

Part2 =

n
∑

i=1

q
∑

j=1

(

r
∑

l=1

(αj
l ∗K(−→x i,

−→s l)) + αj
r+1)

2

=

n
∑

i=1

q
∑

j=1

(

r
∑

l=1

(αj
l ∗K(−→x i

−→s l)))
2

+
n
∑

i=1

q
∑

j=1

((αj
r+1)

2 + 2 ∗ αj
r+1 ∗ (

r
∑

l=1

(αj
l ∗K(−→x i,

−→s l)))

=

n
∑

i=1

q
∑

j=1

r
∑

l=1

r
∑

t=1

(αj
l ∗ α

j
t ∗K(−→x i

−→s l) ∗K(−→x i,
−→s t))

+ n ∗

q
∑

j=1

(αj
r+1)

2 + 2 ∗

q
∑

j=1

(αj
r+1 ∗

r
∑

l=1

(αj
l ∗

n
∑

i=1

K(−→x i,
−→s l)))

=

q
∑

j=1

r
∑

l=1

r
∑

t=1

(αj
l ∗ α

j
t ∗Ks,l) + n ∗

q
∑

j=1

(αj
r+1)

2 + 2 ∗

q
∑

j=1

(αj
r+1 ∗

r
∑

l=1

(αj
l ∗Kl))

where Ks,l =
∑n

i=1(K(−→x i,
−→s l) ∗ K(−→x i, vst)) and Kl =

∑n

i=1 K(−→x i,
−→s l). As

previously,Ks,l are independent from the αj
l ’s. Then if we pre-compute the values

Ks,l, the complexity of the computation of Part2 goes down to O(q ∗ r2). We
obtain a complexity of O(q ∗ r2) for the calculus of Losssurf (Skc) if we compute
the values K l

j , NBj , Ks,l and Kl before the optimization process. Then, we
can perform an optimization process that is independent from the size of the
database.

4 Optimization Process

As pointed out in the previous section, the fact learning fj functions has to be
done simultaneously makes that there is no simple analytical solution. Thanks
to the offline computation of the values that depends on the size of the database,
the evaluation of the target function of a model is not costly. In this context, the
use of local optimization algorithm is possible. However, it requires to previously
choose the number of support vectors and their values. The number of support
vectors is a parameter of the algorithm. The vectors are then obtained with the
k-means clustering algorithm. We use two different optimization algorithms. The
first one is the Nelder-Mead algorithm [8] which is very fast but converges to
local optimum. The second one is the particle swarm meta-heuristics [6] which
is more costly but has better optimization performances.



4.1 Nelder-Mead Implementation

The Nelder-Mead algorithm is a heuristics for maximizing of a function F in a N
dimensions space. It is based on the deformation of a simplex until it converges
to a local optima (Algorithm 1). The algorithm stops after a fixed number of
loops without increasing F (e1). In addition to its efficiency, the Nelder-Mead al-
gorithm is very simple and does not require to derive the function F . However, it
can be easily trapped into local optima and it depends on the starting configura-
tion. Results can be improved by restarting the algorithm with different starting
configurations. In our case a state e corresponds to the vectors that describe the
parameters αj

l of a Skc function given a kernel and a set of r support vectors.
Then the dimension of the state space is N = q ∗ (r + 1). Losssurf (Skc) corre-
sponds to the function F . The starting configurations are chosen randomly and
have to respect the constraint described in section 3.1. The operations on the
space states ensure that the constraints are not violated during the algorithm.

Algorithm 1. Nelder-Mead

Choose N + 1 points e1, . . . , eN+1

Order the points with respect to F

Compute e0 the center of gravity of e1, . . . , eN
er = 2 ∗ e0 − eN+1

if F (er) > F (eN) then
et = e0 + 2 ∗ (e0 − eN+1)
if F (et) > F (er) then

eN+1 = et
else

eN+1 = er
end if

else
ec = eN+1 +

1

2
∗ (e0 − eN+1)

if F (ec) ≥ F (en) then
eN+1 = ec

else
forall i ≥ 2 ei = e1 +

1

2
∗ (ei − e1)

end if
end if
return to step 2

4.2 Particle Swarm Implementation

In order to overcome the problem of local optima, we propose to use the particle
swarm optimization algorithm. One of the advantages of the particle swarm
optimization with respect to the other meta-heuristics is that it is particularly
suitable for continuous problems. Particle swarm works in the same settings
than Nelder-Mead algorithm. Particle swarm with N particles (N is no longer
the dimension of the state space) is described in Algorithm 2.



Algorithm 2. Particle Swarm Optimization

Choose randomly N particles e1, . . . , eN
for all i bei = ei
eg = argmaxei(F (ei) (best know position)
choose randomly N velocity vectors v1, . . . , vN
repeat

for i = 1, . . . , N do
choose randomly rp and rg in [0, 1]
vi = ω ∗ vi + φp ∗ rp ∗ (bei − ei) + φg ∗ rg ∗ (eg − ei)
ei = ei + vi
if F (ei) > F (bei) then

bei = ei
if F (bei) > F (eg) then

eg = bei
end if

end if
end for

until a chosen number of times

Here, one particle represents the parameters of Skc function (αj
l ). At each step

of the algorithm, each particle is moved along its velocity vector (randomly fixed
at the beginning). The velocity vectors are updated at each step by considering
the current vectors, the vector from the current particle position to particle
best known position and the vector from the current particle position to global
swarm’s best known position. In order to maintain the constraint 1 and 2 over the
parameters αj

l the values vjl of the velocity vector have to satisfy the following
constraints:

• ∀j ∈ 1, . . . , q, ∀l ∈ 1, . . . , r + 1,
∑q

j=1 v
i
k = 0

• ∀j ∈ 1, . . . , q, ∀l ∈ 1, . . . , r + 1,−1 ≤ vjl ≤ 1

If we have −1 > αj
l (resp. αj

l > 1) after the application of the velocity vector,

we fix αj
l = −1 (resp. αj

l = 1).
The particle swarm algorithm is easy to tune. The three parameters for the

updating of the velocity ω, φp and φg correspond respectively to the coefficient
for the current velocity, the coefficient for the velocity to the particle best known
position and the coefficient for the velocity to the global swarm’s best known
position. Based on [14], we use generic values that perform well in most of the
cases (ω = 0.72, φp = 1.494, φg = 1.494 and 16 particles).

5 Experimentation

In this section, we compare our algorithms with naive Bayes classifier (NBC)
and the kernel approaches (SVM) based on least square minimization described
in [16] and implement in the java version of LibSVM. We note SkcNM for the
maximization of Losssurf with the Nelder-Mead algorithm and SkcPSO for the



maximization of Losssurf with the particle swarm optimization algorithm. We
compare the results with respect to the accuracy, Losslog (mind that here the
lower the value, the better) and Losssurf . We also report time performance of
SVM, SkcNM and SkcPSO. In the first experiments, we make 100000 steps of
particle swarm movement and 5 restarts of Nelder-Mead algorithm. We empiri-
cally choose the number of support vectors with the formulas r = 1+10log(n/3)
where n is the number of examples. We use Gaussian kernels. All the experi-
ments are done on a 3Ghz computer and all the algorithms are implemented
with the JAVA language.

Table 1. Comparison of algorithms on 6 UCI dataset (10-cross validation)

db. Alg. Acc. Losslog Losssurf

Diab. NBC 75.7[5.1] 0.57[0.15] 0.32[0.04]
SVM 74.9[7.9] 0.52[0.09] 0.32[0.04]

SkcNM 76.2[8.1] 0.51[0.13] 0.33[0.04]
SkcPSO 76.3[7.6] 0.49[0.1] 0.33[0.03]

Breast. NBC 95.7[2.1] 0.26[0.13] 0.45[0.02]
SVM 95.1[2.4] 0.13[0.06] 0.46[0.01]

SkcNM 95.9[1.9] 0.12[0.04] 0.46[0.01]
SkcPSO 95.9[1.8] 0.11[0.05] 0.46[0.01]

Iono. NBC 84.8[6.1] 0.7[0.34] 0.36[0.05]
SVM 88.3[5.7] 0.29[0.06] 0.41[0.02]

SkcNM 90.8[2.7] 0.22[0.06] 0.42[0.01]
SkcPSO 93.4[2.7] 0.2[0.06] 0.42[0.01]

Mag. Tel. NBC 72.7[0.8] 0.98[0.03] 0.26[0.0]
SVM 87.6[0.8] 0.3[0.01] 0.4[0.0]

SkcNM 84.4[0.7] 0.38[0.01] 0.38[0.0]
SkcPSO 85.5[0.8] 0.38[0.01] 0.38[0.0]

Glass NBC 50.3[15.4] 1.24[0.4] 0.22[0.05]
SVM 72.8[9.5] 0.81[0.18] 0.29[0.05]

SkcNM 66.7[9.2] 0.86[0.19] 0.23[0.04]
SkcPSO 71.5[9.4] 0.79[0.13] 0.28[0.04]

5.1 Benchmark Dataset

In order to check the effectiveness of the algorithms, we used 5 benchmarks from
UCI1. All the datasets have numerical attributes only. The Diabetes database de-
scribes 2 classes with 768 examples. The Breast cancer database contains 699 ex-
amples that describes 2 classes. The Ionosphere database describes 2 classes with
351 examples. The Magic telescope database contains 19020 examples that de-
scribes 2 classes. The Glass database describes 7 classes with 224 examples. The
results presented in Table 1 are for 10-cross validation. Bold results correspond
to the highest values. It shows that the Sks approaches outperform clearly NBC

1 http://www.ics.uci.edu/~mlearn/MLRepository.html



Table 2. Computation time for the Skc algorithms on 6 UCI datasets

database time
SVM SkcNM SkcPSO

Diabetes 0.2s 0.4s 7.9s

Breast c 0.1s. 0.2s 8s

Iono. 0.1s 1s 8s

Mag. Tel. 57s 1.9s 9.3s

Glass 0.1s 8s 23s

on all the databases (with a statistically significant difference for 3 databases)
both for the accuracy and the Losssurf . SkcPSO outperforms SVM on 3 of the
5 databases (with a statistically significant difference for 1 database) and is out-
performed on the two remaining ones (with a statistically significant difference
for 1 database). This shows that our approaches compete with SVM probabilistic
approach in terms of classification and have good performances for describing
faithful probability distributions (even if we consider the log-likelihood). SkcNM
and SkcPSO have close performances except when the number of classes in-
creases. We can suppose that in this case SkcNM is more easily trapped in local
optima.

Table 2 gives the time in seconds for performing the optimization of Skc. As
expected SkcNM is around 10 times more efficient than SkcPSO. Even if these
times are larger than the SVM ones, they remain very low, and are not much
sensitive to the size of the dataset (times for Ionosphere and Magic Telescope
are closed for instance). The size of the database only matters for computing
the support vectors and the pre-computed values (the number of support vector
also increases slightly when the size increases). When the size of the database
increases, as for magic telescope, our approaches become much faster than SVM
approach.

5.2 KDD Cup 2012 Dataset

In order to check the scalability of our algorithms, we use our approaches on
the KDD Cup 2012 database. This database describes a social network of micro-
blogging. “Users” are people in the social network and “items” are famous people
or objects that the users may follow. Users may be friend with other users. The
task of this challenge is to predict if a user will accept or not to follow an item
proposed by the system.

There are 10 millions of users described by their age, their genre, some key-
words and their friends. There are 50000 items described by keywords and tags.
The database contains 70 millions of propositions to follow an item with a label
that indicates if the user has accepted the proposition or not. The problem is
then a binary classification problem. We define 8 attributes based respectively
on i)the percentage of users of the same genre as the target one, which follow
the item, ii) the percentage of users of the same age category as the target one,



Table 3. Comparison of algorithms on KDD Cup 2012 dataset

database Alg. Acc. Losslog Losssurf time

Size=1K NBC 66.4 0 0.278 -
SVM 70.8 0.580 0.302 0.4
SkcNM r=10 71.0 0.557 0.312 0.2s
SkcNM r=100 71.0 0.57 0.311 12s
SkcPSO r=10 71.4 0.557 0.313 8s
SkcPSO

r=100
71.6 0.572 0.311 56s

Size=10K NBC 68.0 0.663 0.285 -
NBC 71.9 0.57 0.314 37s
SkcNM r=10 71.5 0.559 0.314 0.3s
SkcNM r=100 72.2 0.556 0.313 14s
SkcPSO r=10 71.6 0.56 0.313 8s
SkcPSO

r=100
72.7 0.55 0.320 55s

Size=100K NBC 69.0 0.662 0.292 -
SVM 72 0.55 0.315 3.5 hours
SkcNM r=10 72.2 0.547 0.316 2s
SkcNM r=100 72.2 0.543 0.318 30s
SkcPSO r=10 72.2 0.547 0.316 10s
SkcPSO

r=100
72.7 0.537 0.319 75s

Size=1M NBC 68.3 0.665 0.29 -
SVM - - - -
SkcNM r=10 72.2 0.551 0.315 19s
SkcNM r=100 72.5 0.543 0.318 97s
SkcPSO r=10 72.0 0.551 0.315 27s
SkcPSO

r=100
73 0.534 0.321 119s

which follow the item, iii) the session time, iv) the number of friends of the tar-
get user that follow the item, v) the distance between the items followed by the
user and the target item, vi) the number of users that follow the target items,
vii) the number of items that are followed by the user, and viii) the number of
times the item has been proposed to the user. We build a test dataset of around
1.9 millions of propositions.

Table 3 reports the result with different size of training sets (without any
common tuple with the test dataset) and different number of support vectors.
The results are computed on the test dataset. We can observe that performances
increase when the size of the database increases, even if the dataset is summa-
rized by the pre-computed values in the optimization process. SkcPSO performs
slightly better than SkcNM and SVM approach. Last, time values confirm the
efficiency of the approach and its low sensitivity with respect to the size of the
dataset (less than 2 minutes for the SkcPSO with r = 100 and 1 million exam-
ples in the training set). It shows that our approaches are usable on very large



database while SVM would have difficulties for managing databases with more
than 10000 examples (and is intractable for more than 100000 examples).

6 Conclusion and Future Works

In this paper we have proposed a probabilistic classification method based on
the maximization of a loss probabilistic function that takes into account the
whole probability distribution and not only the probability of the class. We
propose two algorithms that simultaneously learn a set of kernel functions that
encodes a probability distribution over classes without any post-normalization
process. Last, we show that the computation time of the approach is very little
sensitive to the size of the dataset. Our method competes with the other kernel
approaches on the used benchmark datasets. Experiments on the KDD Cup 2012
dataset confirm that the approach is efficient on very large datasets when kernel
methods are not tractable. Moreover, the parameters of the algorithm can be
tuned automatically as it has been done the whole experimentation.

In the future, the way of choosing the number of kernels and computing the
support vectors has to be more deeply investigated and alternatives to clustering
approach have to be explored. We will also study how the approach can be em-
bedded into a gradient boosting process [3] in order to increase the performance
when the number of attributes and classes is large. Lastly, we have to compare
our algorithm more deeply with the other probabilistic approaches.
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