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Abstract: Self-Organizing Multi-Agent Systems (SO-MAS) are defined as a set of autonomous entities called agents
interacting together in order to achieve a given task. Generally, the development process of these systems
is based on the bottom-up approach which focuses on the design of the entities individual behavior. The
main question arising when developping SO-MAS is how to insure that the designed entities, when interacting
together, will give rise to the desired behavior?. Our proposition to deal with this question is to use formal
methods. We propose a correct by construction method for systematic design of SO-MAS based on the use
of design patterns and formal stepwise refinements. Our work gives guidelines to assist the designer when
developing the individual behavior of the entities and prove its correctness at the early stages of the design
process. The method is illustrated with the foraging ants case study.

1 INTRODUCTION

With the growing complexity of today’s appli-
cations, Self-Organizing Multi-Agent Systems (SO-
MAS) are becoming more and more popular in the
software engineering domain. The main characteris-
tic properties of these systems are decentralised con-
trol, robustness and adaptability. Such qualities are
very relevant when designing complex applications
since they allow the system to overcome from pertur-
bations and continue its execution autonomously and
without any external control. Self-Organizing Multi-
Agent Systems (SO-MAS) are defined as a set of au-
tonomous entities called agents, having a local knowl-
edge about their environment and interacting together
in order to achieve a given task. The global behavior
of the overall system emerges from the interactions
between the entities and their interaction with the en-
vironment ((Di Marzo Serugendo et al., 2005)). We
can dsitinguich two levels in a SO-MAS; the micro
level corresponding to the local behavior of agents
and the macro level referring to the global behavior
of the system.
Generally, the development of SO-MAS is based on
the bottom-up approch which focuses on the design

of the individual behaviour of the entities composing
the system. In order to validate the designed local be-
havior; i.e. insure that the local behavior of entities
will give rise to the desired system behavior, design-
ers make use of simulation techniques. Our proposi-
tion to deal with SO-MAS validation is to take advan-
tage of formal techniques. We define a correct by con-
struction approach for systematic design of SO-MAS
based on the use of design patterns specified with the
Event-B formal language. The aim is to give guaran-
tees and proofs about the individual behavior correct-
ness at the early stages of the design process. More
precisely, we define three patterns: AGP0, GBP0 and
SOP0. The first one gives a sequence of refinement
steps allowing the design of the individual behavior
of the agents and insuring its correctness. The two
other patterns are devoted to prove the reachability of
the desired global behavior (GBP0) and the ability of
the system to self-adapt (SOP0). While the AGP0 can
be expressed by Event-B and its correctness proved
directly by means of the Rodin platform, it was nec-
essary to move to the Linear Temporal Logic (LT L)
in order to specify the desired global properties of the
system. In order to carry on the proofs of the tempo-



ral properties, we are based on the work of Hoang and
Abrial described in (Hoang and Abrial, 2011).
This paper is organised as follows. Section 2 de-
scribes a background on the Event-B language, design
patterns and LT L. Section 3, presents an overview
of the proposed methodology for the development of
SO-MAS and gives a detailed description of the de-
sign patterns used. Section 4 illustrates our work with
the foraging ants example. Section 5 presents a sum-
mary of related works. Section 6 concludes the paper
and draws futur perspectives.

2 BACKGROUND

2.1 The Event-B formalism

The Event-B formalism was proposed by J.R. Abrial
(Abrial, 2010) as an evolution of the B language. The
concept used to make a formal development is that of
a model. A model can be a machine or a context.
A context is the static part. A machine is the dy-
namic part of the model and allows to describe the
behavior of the designed system. A machine is com-
posed by a collection of variables v and a set of events
evi. The variables are constrained by conditions called
invariants. The execution of the events must preserve
these invariants. An event is described as follows.

ei =̂ any p where Gi(p,v) then Ai(p,v,v′) end

An event is defined by a set of parameters p, the
guard which gives the necessary conditions for the
activation of the event G evi(p,v) and the action
A evi(p,v,v′) which describes how variables v are
substituted in terms of their old values and the pa-
rameters values. The action may consist in sev-
eral assignements which can be either deterministic
or non-detreministic. A deterministic assignement,
having the form x := E(p,v) replace values of vari-
ables x with the result obtained from the expression
E(p,v). A non-detreministic assignement can be of
two forms: 1) x :∈ E(p,v) which arbitrarily chooses
a value from the set E(p,v) to assign to x and 2)
x : |Q(p,v,x′) which arbitrarily chooses to assign to
x a value that satisfies the predicate Q. Q is called
a be f ore− a f ter predicate and expresses a relation
between the previous values v (before the event ex-
ecution) and the new ones v′ (after the event execu-
tion). Each event in the machine can be described as
a before after predicate predicate A(p,v,v′) obtained
by the conjonction of all before-after predicates cor-
responding to its actions.
The variables are constrained by conditions called
invariants.

Proof obligations Proof Obligations (PO) are associ-
ated to Event-B machines in order to prove that they
satisfy certain properties. As an example, we men-
tion the Preservation Invariant INV and the Feasibil-
ity FIS proof obligations. INV PO is necessary to
prove that invariants hold after the execution of each
event. Proving FIS PO means that when an event
guard holds, every action can be executed.
Refinement The development of models in Event-B is
based on the principle of refinement. This technique,
allowing a correct by construction design, consists in
adding details gradually while preserving the origi-
nal properties of the system. The refinement relates
two machines, an abstract machine and a concrete
one. Data refinement consists in replacing the abstract
variables by the concrete ones. The refinement rela-
tion is defined by a particular invariant called gluing
invariant. The refinement of an abstract event is per-
formed by strengthening its guard and reducing non
determinism in its action. The abstract parameters can
also be refined. In this case, we need to use witnesses
describing the relation between the abstract and the
concrete parameters. An abstract event can be refined
by more than one event. In this case, we say that the
concrete event is split. In the refinement process, new
events can be introduced. In order to preserve the cor-
rectness of the model, we must prove that these new
introduced events are convergent. This is ensured by
the means of a variant -an expression or a non empty
finite set- that should be decreased by each execution
of the convergent events. B-event is supported by the
Rodin platform 1 which provides considerable assis-
tance to developers by automating the generation and
verification of all the necessary POs.
Design Patterns In (Abrial and Hoang, 2008), Abrial
defines an Event-B design pattern as ”a small model
(with constants, variables, invariants, and events) de-
voted to formalise a typical well known sub-problem”.
A design pattern is seen as a template of a solution
for a given problem that can be reused. Reusabil-
ity involves not only the model itself, but also the
proofs and the refinement associated with it (Hoang
et al., 2013). The pattern reuse requires essentially
two steps which are 1) the matching of the pattern
specification with the problem and 2) the incorpora-
tion of the refinement of the pattern to create a refine-
ment of the problem (Hoang et al., 2013).

2.2 Linear Temporal Logic

We give a brief description of the Linear Tempo-
ral Logic (LTL) as described by Manna and Pnueli
(Manna and Pnueli, 1984). This logic was proposed

1http://www.event-b.org/



for expressing temporal properties of concurrent sys-
tems. It extends propositional logic based on the
Boolean operators: ¬, ∨, ∧, ⇒ by temporal opera-
tors: always (�), eventually (♦) and Until (U). An
LTL formula can describe the system state evolution
through the time. We denote by φ an LTL formula
and by σ a non empty sequence of states s0, s1, . . ..
We denote by σk the sequence of states sk, sk+1, . . .
and by σ |= φ that φ is true on σ. The semantic of
temporal operators is as follows.
• σ |= � φ iff for all k = 0,1, ..., we have σk |= φ

• σ |= ♦ φ iff for some k = 0,1, ..., we have σk |= φ

• σ |= φ1U φ2 iff for some k = 0,1, ..., we have
σk |= φ2 and σ0 |= φ1, ..., σk−1 |= φ1

2.3 Proving temporal properties with
Event-B

In this subsection, we give a summary of the work of
Hoang and Abrial ((Hoang and Abrial, 2011)) related
to reasoning about liveness properties with Event-B.
The trace σ of machine M is a sequence of states
s0, s1, ... where s0 is the initial state defined by the
initial variables values and for every two successive
states si, si+1, there is an event enabled when the
machine is in state si leading the machine to the state
si+1 when executed. We denote by T (M) the set
of all the possible traces of machine M. A machine
satisfay a property φ, denoted by M |= φ, if all its
traces satisfy φ. (Hoang and Abrial, 2011)
In the following, we give the three different classes
of liveness properties considered in (Hoang and
Abrial, 2011) and the necessary proof rules allowing
to demonstrate them on an Event-B machine. These
proof rules constitutes the basis of our proofs in
section 3.
- The existence property states that a property P will
always eventually be true (� ♦ P). To prove that a
machine M satisfies an existence property requires to
prove that M is convergent in ¬P, i.e. every event
execution in M decreases the defined variant when M
is on a ¬P state and deadlock-free in ¬P i.e. when
M is in a ¬P state, at least one event of M is enabled.
The necessary assumptions for proving the existence
property are given by the rule LIVE�♦

2.

M ` ↓ ¬ P
M ` 	 ¬ P LIVE�♦
M ` � ♦ P

- The progress property states that a property P2 must
eventually be true if some condition P1 becomes true

2The upper part of the proof rule describes the premises
under which the conclusion mentioned in the lower part is
true. The rule’s name is given at the right.

(� (P1 ⇒ ♦ P2)). Proving that a machine M fulfils
a progress property is insured by the use of the rule
LIVEprogress.

M ` �(P1∧¬P2⇒ P2)
M ` �(P3⇒ (P3 U P2)) LIVEprogress
� (P1 ⇒ ♦ P2)

The first premise should be declared as an in-
variant in the machine M. The second premise
includes the until temporal operator and states that
P3 is true until P2 holds. This assumption is proved
by the use of the Until rule.

M ` �((P3∧¬P2)y (P3 ∨ P2))
M ` �♦(¬P3∨P2) Until
M ` �(P3⇒ (P3 U P2))

The first condition in the Until rule means that
every event in the machine M leads from P3∧¬P2
to P3 ∨ P2. An event leads from P1 to P2 if
starting from any P1 state, the execution of this event
results in P2 state. The Leads f rom operator (y) is
expressed directly with the first-order logic as shown
below.
P1 y P2 =̂ P1(v) ∧ G(x,v) ∧ A(x,v,v′) ⇒ P2(v′)
- The persistence property states that eventually a
property P will be always true (♦�P). The proof rule
LIVE♦� gives the necessary conditions guaranteeing
that a machine M satisfies a persistence property. A
machine M satisfies a persistence property ♦�P if
it is divergent in P; i.e. any infinite trace of M ends
with an infinite sequence of states satisfying P and
deadlock-free in ¬P. Proving that a machine M is
divergent in P needs to prove that every execution
of an event in M decreases the defined variant when
M is on a ¬P state and does not increase the variant
when M is on P state.

M ` ↗ P
M ` 	 ¬ P LIVE♦�
M ` ♦ � P

3 TOWARDS A FORMAL DESIGN
PROCESS FOR SO-MAS

3.1 Overview of the design process

The aim of the proposed method is to construct the
adequate local behavior leading to the desired global
properties by stepwise refinement and the use of de-
sign patterns. We describe the formal design process
in terms of three phases as depicted in figure 1. In or-
der to guide the designer through the refinement pro-
cess, a design pattern is assigned to each phase giv-
ing the necessary refinements and proof obligations
to attain the correct model at the end of each step.



Figure 1: Stepwise refinement for formal development of
SO-MAS.

The first phase allows modelisation of the agents lo-
cal behavior based on the pattern AGP0. It is com-
posed by several refinement steps as it will be shown
in the next subsection. This phase can be performed
for several times if the system is composed by many
types of agents. The next two phases are devoted to
prove convergence and adaptivity properties by us-
ing the patterns GBP0 and SOP0 respectively. These
two patterns can be reused in the case where conver-
gence can take many aspects and adaptivity is needed
in many situations.

3.2 Design patterns for SO-MAS

In this section, we define in details the design patterns
AGP0, GBP0 and SOP0. For each pattern, we give an
informal description plus a formel specification with
Event-B. We also mention how it can be refined and
what proof obligations must be discharged.

3.2.1 Agents pattern:AGP0

The Agents pattern gives a very abstract modelisation
of the designed system as a set of agents in interac-
tion within an environment. Each agent perceives its
local environment, takes a decision about its next ac-
tion and finally performs the decided action. We refer
to these execution steps as a perceive− decide− act
cycle. We assume that the system has the follow-
ing properties: 1) an agent can either be active or
inactive, 2) every active agent is initialized in the
perceive step, 3) the system execution is considered
as an alternation of an agents execution and an envi-
ronment activation; that is when every agent finishes
one perceive− decide− act cycle, the environment
is activated and 4) an active agent can either be in
the pause mode; waiting for beginning a new cycle
or in the work mode; executing its cycle. The pat-
tern AGP0 is thus an Event-B machine describing the

system state by means of the set of active agents, the
mode of each active agent (pause or work) and the ac-
tual cycle step for each active agent. In the following,
the set of the variables used and their corresponding
invariants are given 3.

VARIABLES
agStep
agMode
ActiveAgents

INVARIANTS
inv1 : ActiveAgents⊆ Agents
inv2 : agMode ∈ ActiveAgents→{work, pause}
inv3 : agStep ∈ ActiveAgents→{perceive,decide,act}

The dynamic of the system is modelled by means of
four events. The ActEnv event is triggered when it is
the turn of the environment to be activated. At this
level of abstraction, the only action that this event
does is to reset the active agents in the system at the
step of perception. Events Perceive, Decide and Act
model the execution of any agent according to the
perceive− decide− act cycle. As an example, we
give the Perceive and the ActEnv events 4.

EVENT Perceive

ANY
ag

WHERE
grd1 : ag ∈ ActiveAgents
grd2 : agMode(ag) =

work
grd3 : agStep(ag) =

perceive
THEN

act1 : agStep(ag) :=
decide

END

EVENT ActEnv

WHERE
grd1 :
∀ag·ag ∈ ActiveAgents
⇒agMode(ag) = pause
THEN
act1 :
ActiveAgents,agMode,agStep : |
ActiveAgents′ ∈ P(Agents)∧
ActiveAgents′ 6=∅∧
(∀ag·ag ∈ ActiveAgents′⇒
agMode′(ag) = work∧
agStep′(ag) = perceive)
END

Proof obligations generated for this pattern insures es-
sentially invariants preservation and feasibility of the
non deterministic action of the ActEnv event.
The AGP0 pattern will be subject to a three steps re-
finement sequence to obtain a more concrete agents
behavior. In the first step, the Act event is split into
the different actions that an agent can perform. Every
event resulting from the refinment of Act event can
have the following template.

3S→ T denotes a total function from S to T , i.e. a rela-
tion that maps every element in S to an element in T .

4The symbol P denotes the power set.



EVENT Act Action i

REFINES Act
ANY

ag
decideAct

WHERE
grd1 : ag ∈ ActiveAgents∧agMode(ag) = work∧
agStep(ag) = act
grd2 : decideAct=Action i

THEN
act1 : agMode(ag) := pause

END

In the second refinement step, agents’s actuators are
introduced. The agent’s actuators should be dis-
abled when the agent move to the state pause. This
property is insured by adding the gluing invariant:
∀ag. ag ∈ ActiveAgents∧agMode(ag) = pause⇒
actuAction i(ag) = disabled

In addition, Decide events are split in turn. When an
agent takes a decision, it activates the suitable actu-
ator in order to perform the desired action. To link
the agent action with the made decision, we use a wit-
ness. So that, the events modelling the action need
also to be refined according to the refinement of the
event Act Action i from AGP0 pattern.

EVENT Dec Action i

REFINES Decide
ANY

ag
decideAct

WHERE
grd1 : ag ∈

ActiveAgents
grd2 : agMode(ag) =

work
grd3 : agStep(ag) =

decide
grd4 : decideAct=

Action i
THEN

act1 : actuAction i(ag)
:= activate

END

EVENT Act Action i

REFINES Act Action i
ANY

ag
WHERE

grd1 : ag ∈ ActiveAgents
∧agMode(ag) = work
∧agStep(ag) = act
grd2:actuAction i(ag)

=activate
WITNESSES

decideAct :decideAct=
Action i

⇔actuAction i(ag)=activate
THEN

act1 : agMode(ag) := pause
act2 : actuAction i(ag)

:= disabled
END

At this refinement step, we should insure that once
an agent made a decision, it should execute an ac-
tion and avoid to be deadlocked in the action step.
This property is specified by the following theorem.
GAct Action i(ag, p,v) denotes the guard of an action
event for the agent ag.

∀ag.ag ∈ ActiveAgents∧agStep(ag) = act⇒
(
∨
i
(∃p.GAct Action i(ag, p,v)))

In the last refinement step , the agents’s sensors
are introduced and the event Perceive is refined.

For each agent, it is necessary that its sensors
are active when it is in the perceive step. This
constraint is captured by the gluing invariant:
∀ag. ag ∈ ActiveAgents∧agStep(ag) = perceive⇔
sensor i(ag) = activate.

Moreover, the action in the event ActEnv is refined
by activating the sensors of each active agent. At
this refinement phase, we should insure that the
updated perceptions, should allow the agent to make
a decision and thus to avoid to be deadlocked in the
perception step. This property is specified by the
following theorem. GDec Action i(ag, p,v) denotes the
guard of a decision event for the agent ag.

∀ag.ag ∈ ActiveAgents∧agStep = decide⇒
(
∨
i
(∃p.GDec Action i(ag, p,v)))

3.2.2 Global Behavior pattern:GBP0

The Global Behavior pattern allows to reason about
the behavior that emerges from the interactions be-
tween agents. It is used to prove convergence of
the system, which means reachability of the desired
global behavior. Convergence of the system can be
captured formally by means of the Reach temporal

property: Reach =̂ ♦ � taskAchieved = T RUE

taskAchieved describes the state of the system when it
succeed to achieve its task. The modelisation of this
property with Event-B can be done according to the
pattern GBP0.

GBP0

VARIABLES
taskAchieved
SysStates

INVARIANTS
SysStates⊂ SY S STAT ES
taskAchieved ∈ BOOL

VARIANTS
V

EVENT NotYetSuccess

STATUS convergent
ANY ag WHERE

grd1 : taskAchieved
= FALSE

grd2 : V /∈∅
grd3 : ag ∈ Agents

THEN
act1 : SysStates :∈V ′ <V

END

EVENT ObserveSuccess

WHERE
grd1 : taskAchieved = T RUE

THEN SKIP
END

Variable SysStates denotes the system state space.
Variable taskAchieved, when is TRUE, indicates that
the global task is achieved and allows to activate
ObserveSuccess. This event plays the role of an
external observer (like in (Hoang et al., 2009))and
does not change the system state. In fact, its action is
SKIP which does nothing. The event NotYetSuccess



is activated when the task is not yet achieved, but
must contribute to the fulfilment of the global task by
decreasing at each execution the variant V .
According to the rule LIVE♦�, to prove the Reach
property, we need to prove the convergence of
event NotYetSuccess. This is guaranteed by dis-
charging the VAR proof obligation. Moreover, we
should prove that the event ObservSuccess does
not increase the variant and that the machine is
deadlock free for all the states where the task is
still not fulfilled. The first statement is guaranteed
since the action of the event ObservSuccess is
SKIP. The second statement is ensured by proving
the following theorem stating that from an inter-
mediate state, the machine can evolve either to
another intermediate state or to the success state.

taskAchieved = FALSE⇒ ((∃ag,V.ag ∈ ActiveAgents∧
V /∈∅)∨ taskAchieved = T RUE)

The incorporation of this pattern in the design process
allows to refine AG k (Figure 1) with GB n. It is
performed by two actions: 1)introducing event
ObserveSuccess and 2)refining each Act event
(an event describing an agent action) with the
NotYetSuccess event. At this level, we should prove
convergence of all the Act events and the deadlock
freeness of GB n in a non desirable state. Since
Event-B allows to use only one variant per machine,
GB n could be refined in many steps. In each step,
the convergence of one event (or a group of events
which decrease the same variant) is proved. The
events which are not considered by the proof at a
given step, must be anticipated, this means that
proving their convergence is postponed for further re-
finement steps. Choosing the suitable variant to prove
convergence is not always trivial with SO-MAS. In
fact, the evolution of the agents can not always be
described as a progression twoards fulfillment of
their goals. An agent can change its goal according
to the actions of the other agents. In this work, we
don’t address this problem of proving convergence.
But this is still an ongoing work.

3.2.3 Self-Organisation pattern:SOP0

The Self-Organisation pattern allows to reason
about the ability of the system to self-adapt in
order to overcome perturbations in its environment.
A rigorous analyzis of self-organisation can be
captured by the use of the Adaptivity temporal
formula stating that if a perturbation occurs, the
system will eventually be able to carry on its exe-
cution thanks to its self-organization mechanisms.

Adaptivity =̂
�(perturbation = T RUE⇒ ♦SuccessSO = T RUE)

The pattern SOP0 (given below) 5 allows to reason
about this property by applying LIVEprogress rule and
proving the following two theorems.
Theorem1.

�(perturbation = T RUE ∧SuccessSO = FALSE
⇒ (∃ag. ag ∈ ActiveAgents∧V /∈∅))

Theorem2.
�(∃ag. ag ∈ ActiveAgents∧V /∈∅⇒
((∃ag. ag ∈ ActiveAgents∧V /∈∅)U SuccessSO=TRUE))

According to Until rule, the demonstration of Theo-
rem2 needs to prove the following two theorems.
Theorem2.1.
∃ag. ag ∈ ActiveAgents∧V /∈∅∧SuccessSO = FALSE⇒
((∃ag. ag ∈ ActiveAgents∧V /∈∅)∨SuccessSO = T RUE)

Theorem2.2.
�♦((∀ag.ag ∈ ActiveAgents∧V ∈∅)∨SuccessSO = T RUE)

By applying the rule LIVE�♦, the proof of The-
orem2.2 necessitates 1) to prove the convergence
of the event ApplySO and 2) to prove deadlock-
freedom in a state satisfying the property ∃ag. ag ∈
ActiveAgents∧V /∈∅∧SuccessSO = FALSE.
The incorporation of this pattern in the design process
allows to refine GB m (Figure 1) with SO p. It is
performed by three actions: 1) introducing the event
PerturbationOccurs performed when a perturba-
tion takes place in the environment, 2) adding the
ObserveSO Success event describing the success
of a self organization operation and 3) refining the
agent actions by the event ApplySO which modelises
the self-organizing mechanism. Theorem1 and
Theorem2 should be proved for every action refining
the event ApplySO.

SOP 0
VARIABLES

SuccessSO
SysStates
pertturbation

INVARIANTS
SysStates⊂ STAT ES
SO STAT ES⊂ STAT ES
SuccessSO ∈ BOOL
perturbation ∈ BOOL

VARIANTS
V

EVENT ObserveSO Success

WHERE
grd1 : SuccessSO = T RUE

THEN SKIP
END

EVENT ApplySO

STATUS convergent
ANY ag WHERE

grd1 : SuccessSO =

FALSE
grd2 : V /∈∅
grd3 : ag ∈ ActiveAgents

THEN
act1 : SysStates :∈V ′ <V

END
EVENT PerturbationOccurs

REFINES ActEnv
THEN

act1 : SysStates ∈
SO STAT ES

act2 : perturbation :=
T RUE

END

5SO STAT ES is the set of states where the self-
organization mechanism is needed to overcome the pertur-
bation.



4 APPLICATION ON THE
FORAGING ANTS

The case study is a formalization of the behavior
of a foraging ants colony. The considered system is
composed of several ants exploring the environment
and looking for food.Each ant begins by exploring
the environment being mainly attracted by food or
pheromone. If it smell pheromone, it takes the direc-
tion in which this smell is stronger. When discovering
food on a location, the ant collects a part of it and goes
back to the nest by dropping pheromone.
The properties we are trying to prove are summarized
as follows.
- The correctness of the model of the agents behav-
ior; i.e. Corr1: Each ant behaves according to the
perceive−decide−act cycle, Corr2: Deadlock free-
ness of the ants in any step of its cycle, Corr3: The
ants must avoid obstacles.
- Reach1 The ants are able to bring all the food to
the nest. This is the main property of the system: the
reachability property.
- SO2: When a source of food is detected, the ants are
able to focus on its exploitation. This property eval-
uates the ability of the ants to self-organise in order
to brought entirely the detected source of food to the
nest.
- SO1: When a detected source of food is completely
exploited, the ants can carry on environment explo-
ration and detect new food.
In order to guarantee the correctness of our model we
apply the pattern AGP0. The Reach1 property is mod-
elled by applying GBP0. Self-organisation properties
are modelled by applying twice the pattern SOP0. In
the remainder of this section, we illustrate the use
of the AGP0 pattern. For the three other properties
(Reach1, SO2 and SO1), we give a formulation of each
of them in the temporal logic. Their proofs are an on-
going work.
The environment in which the ant interact is formal-
ized as a set of connected locations (Locations) with
a particular one called Nest modelling the nest of the
colony. Guided by the refinement steps indicated in
AGP0, we obtain a machine modelling the local be-
havior of ants. Each ant has a current location in the
grid (currentLoc) and can decide about its next lo-
cation (nextLoc). The ant has information about the
environment elements which are inside its perception
field, i.e. food ( f ood), pheromone (pheromone) and
obstacles (obstacles). The definition of these carac-
teristics in Event-B are given as follows.

inv1 : currentLoc ∈ Ants→P(Locations)
inv2 : nextLoc ∈ Ants→P(Locations)
inv3 : f ood ∈ Ants→P(Locations)
inv4 : pheromone ∈ Ants→P(Locations)

The invariant inv1, for example, is a total function
which defines the current location for each ant. Ants
is the set of the active Ants. The ants behavior is de-
picted by the following events:
- Perceive: enables to each ant to update its percep-
tions according to its current location.
- Dec Move Rand: the ant decide to go randomly be-
cause it does not perceive any thing, Dec Move Food:
decide to follow sensed food, Dec Move Phero: de-
cide to follow sensed pheromone, Dec Drop Back:
decide to go back to the nest and drop pheromone
along the return path, Dec Back: decide to go back
to the nest without dropping pheromone along the re-
turn path, Dec Harvest Food: decide to take food,
Dec Drop Food: decide to drop the food at the nest.
- Act Move Rand,Act Move Food, Act Move Phero,
Act Drop Back and Act Back: activated when an ant
moves from one location to another.
- Act Harvest Food: the ant takes some food and
Ac Drop Food: the ant drop the food on the Nest.
As an example, we give the description of the event
Act Move Food.

EVENT Act Move Food REFINES Act Move Food
ANY

ant
WHERE

grd1 : ant ∈ Ants∧agMode(ant) = work∧agStep(ant) = act
grd2 : paw(ant) = activate
grd3 : actMove(ant) = Follow Food

THEN
act1 : currLoc(ant) := nextLoc(ant)
act2 : agMode(ant) := wait

END

The reachability property is defined as follows.

♦(�(QuantityFood(Nest) = TotalFood(InitDistFood)∧
∀ loc.loc ∈ Locations\{Nest}⇒ QuantityFood(loc) = 0)).

where the QuantityO f Food relation specifies for each
location the quantity of food in it, TotalFood calcu-
lates the sum of quantities of food in the environment
and InitDistFood is the initial distribution of food.
The SO1 property is defined by the following tempo-
ral formula.

�(∀ loc.loc ∈ Locations\{Nest}∧
InitDistFood(loc) 6= 0∧Detected(loc)⇒
♦((QuantityFood(loc) = 0)).

The SO2 property is defined by the following tempo-
ral formula.



�(∀ ant, loc. ant ∈ Ants∧ loc ∈ Locations\{Nest}∧
EntirelyExploited(loc1)⇒
♦(∃loc2. loc2 6= loc1∧QuantityFood(loc2) 6= 0∧Detected(loc2)).

5 RELATED WORK

Developpement methods. In (Orfanus et al.,
2011), a design process for the construction of
emergent self-organizing behavior in large-scale dis-
tributed embedded systems is proposed. This pro-
cess relies on two models: the model of microscopic
layer and the model of macroscopic layer and three
steps: simulation, validation and update. The first
model should describe the local activities of the en-
tities composing the system as well as the local infor-
mation trigerring these activities. The second one is
described by a set of Macroscopic variables. The sim-
ulation step, applied to a given model of microscopic
behavior under certain scenario, allows to generate a
macroscopic model called Current macro. The cur-
rent macro if then validated in the next step by com-
paring the set of the current macroscopic variables
with the desired macroscopic ones. The compari-
son is done thanks to a Match f unction and returns
a Deviation which, if needed, will be used in order to
update the microscopic layer model.
A top-down property driven design for swarm robotic,
composed by four phases, was proposed in (Bram-
billa et al., 2012). The aim of the first phase is to give
a clear and complete formal specification of the de-
sired properties of the system. The second phase con-
sists in defining a macroscopic model of the system
and checking whether the desired properties are sat-
isfied. These two activities of modelling and valida-
tion can be repeated until generating a model satisfy-
ing the desired properties. The phase three is devoted
to the implementation of a simulation of the swarm
system. This phasee represents a transition from the
macroscopic model to the microscopic implementa-
tion and is guided by the ingenuity and the expertise
of the designer (Brambilla et al., 2012). In the final
phase, the system is deployed on real robots. The au-
thors choose to specify the swarm model by the Deter-
ministic Time Markov Chains (DTMC) and its prop-
erties by the Probabilistic Computation Tree Logic*
(PCTL*). Moreover, they use the technique of model
checking and particularly the PRISM model checker
for verification.
The Adelfe methodology was proposed for the de-
velopment of self-organizing systems based on the
AMAS (Adaptive MAS) theory ((Bernon et al.,
2005)). The AMAS theory depends on the ability of
the agents to cooperate and thus, the design of the lo-

cal behavior of the entities relies on identifying and
resolving the non cooperative situations an agent may
encounter. In order to guarentee that all non coop-
erative situations are taken into account, the process
of Adelfe is enriched by a simulation step in (Bernon
et al., 2006).
Formal modelisation of self-organizing systems. In
(Gardelli et al., 2006), Gardelli uses stochastic Pi-
Calculus for modeling SO-MAS for intrusion detec-
tion. This formalization was used to perform simu-
lations using the SPIM tool to assess the impact of
the number of agents and frequency of inspections on
the system behavior. In (Casadei and Viroli, 2009),
a hybrid approach has been proposed. This approach
uses stochastic simulations to model the system de-
scribed as Markov chains and the technique of proba-
bilistic model checking for verification. The approach
was tested for the problem of collective sorting us-
ing the PRISM tool. Konur and colleagues ((Konur
et al., 2012)) use also the PRISM tool and proba-
bilistic model checking to verify the behavior of robot
swarm, particularly foraging robots. The authors ver-
ify properties expressed by PCT L logic for several
scenarios. These properties provide information ,in
particular, on the probability that the swarm acquires
a certain amount of energy for a certain number of
agents and in a certain amount of time. Simulations
were also used to show the correlation between the
density of foraging robots in the arena and the amount
of energy gained.
An Event-B modeling for fault tolerant MAS was pro-
posed in (Pereverzeva et al., 2012). The authors pro-
pose a refinement strategy that starts by specifying
the main purpose of the system, defines the necessary
agents to accomplish it, then introduces the various
failures of agents and ends by introducing the commu-
nication model and error recovery mechanisms. The
refinement process ensures a set of properties, mainly
1) reachability of the main purpose of the system,
2) the integrity between agents local information and
global information and 3) efficiency of cooperative
activities for error recovery. The aim of the works
presented above is to insure that the designed indi-
vidual behavior will give rise to the desired global
properties. Some of them make use of simulation,
while others employ formal techniques. The major-
ity of these works utilize a bottom-up approach (ex-
cept (Brambilla et al., 2012) and (Pereverzeva et al.,
2012)) which is ideally suited to self-organizing sys-
tems. The use of Event-B in (Pereverzeva et al., 2012)
is extremely important because of the use of the re-
finement principle that permits a progressive, guided
and correct construction of the desired system, which
is not allowed in the other works. In our proposition,



we combine a bottom-up approach with the use of re-
finement and design patterns in order to give more
guidance to the designer when designing the individ-
ual behavior (AGP0 pattern) and when doing proofs
(GBP0 and SOP0 patterns).

6 CONCLUSION

We have presented in this paper a formal approach
for the design of SO-MAS based on design patterns,
refinement and Event-B. Three patterns was proposed;
AGP0 gives refinement steps for modelling the local
behavior of the agents and guarantees deadlock free-
ness of any agent, GBP0 allowing to prove that the
modelled local behavior will converge towards the de-
sired global behavior and finally SOP0 letting the eval-
uation of the ability of self-organizing mechanisms to
encounter the environment perturbations.
The main challenges for future work can be summa-
rized in the three following points:
- Proving the convergence of the events when apply-
ing the patterns GBP0 and SOP0 which is not trivial
task because of the non determinism in SO-MAS. One
possible solution for this is to prove the convergence
under fairness assumption like in (Méry and Popple-
ton, 2013).
- Automation of the refinement process and the gen-
eration of machines according to the design patterns.
- Formal reasoning about the improvement of the sys-
tem performance. A probabilistic approach coupled
with Event-B can be useful in this case.
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