Zeineb Graja
email: zeineb.graja@irit.fr

Frédéric Migeon
email: frederic.migeon@irit.fr

Christine Maurel
email: christine.maurel@irit.fr

Marie-Pierre Gleizes
email: marie-pierre.gleizes@irit.fr

Linas Laibinis
email: linas.laibinis@abo.fi

Amira Regayeg

Ahmed Hadj Kacem
email: ahmed.hadjkacem@fsegs.rnu.tn

A Pattern based Modelling for Self-Organizing Multi-Agent Systems with Event-B

Keywords: Self-organizing MAS, Formal verification, Design patterns, Refinement, Event-B

Self-Organizing Multi-Agent Systems (SO-MAS) are defined as a set of autonomous entities called agents interacting together in order to achieve a given task. Generally, the development process of these systems is based on the bottom-up approach which focuses on the design of the entities individual behavior. The main question arising when developping SO-MAS is how to insure that the designed entities, when interacting together, will give rise to the desired behavior?. Our proposition to deal with this question is to use formal methods. We propose a correct by construction method for systematic design of SO-MAS based on the use of design patterns and formal stepwise refinements. Our work gives guidelines to assist the designer when developing the individual behavior of the entities and prove its correctness at the early stages of the design process. The method is illustrated with the foraging ants case study.

INTRODUCTION

With the growing complexity of today's applications, Self-Organizing Multi-Agent Systems (SO-MAS) are becoming more and more popular in the software engineering domain. The main characteristic properties of these systems are decentralised control, robustness and adaptability. Such qualities are very relevant when designing complex applications since they allow the system to overcome from perturbations and continue its execution autonomously and without any external control. Self-Organizing Multi-Agent Systems (SO-MAS) are defined as a set of autonomous entities called agents, having a local knowledge about their environment and interacting together in order to achieve a given task. The global behavior of the overall system emerges from the interactions between the entities and their interaction with the environment [START_REF] Marzo Serugendo | Self-organization in multi-agent systems[END_REF]). We can dsitinguich two levels in a SO-MAS; the micro level corresponding to the local behavior of agents and the macro level referring to the global behavior of the system. Generally, the development of SO-MAS is based on the bottom-up approch which focuses on the design of the individual behaviour of the entities composing the system. In order to validate the designed local behavior; i.e. insure that the local behavior of entities will give rise to the desired system behavior, designers make use of simulation techniques. Our proposition to deal with SO-MAS validation is to take advantage of formal techniques. We define a correct by construction approach for systematic design of SO-MAS based on the use of design patterns specified with the Event-B formal language. The aim is to give guarantees and proofs about the individual behavior correctness at the early stages of the design process. More precisely, we define three patterns: AGP 0 , GBP 0 and SOP 0 . The first one gives a sequence of refinement steps allowing the design of the individual behavior of the agents and insuring its correctness. The two other patterns are devoted to prove the reachability of the desired global behavior (GBP 0) and the ability of the system to self-adapt (SOP 0). While the AGP 0 can be expressed by Event-B and its correctness proved directly by means of the Rodin platform, it was necessary to move to the Linear Temporal Logic (LT L) in order to specify the desired global properties of the system. In order to carry on the proofs of the tempo-ral properties, we are based on the work of Hoang and Abrial described in [START_REF] Hoang | Reasoning about liveness properties in event-b[END_REF]. This paper is organised as follows. Section 2 describes a background on the Event-B language, design patterns and LT L. Section 3, presents an overview of the proposed methodology for the development of SO-MAS and gives a detailed description of the design patterns used. Section 4 illustrates our work with the foraging ants example. Section 5 presents a summary of related works. Section 6 concludes the paper and draws futur perspectives.

BACKGROUND

The Event-B formalism

The Event-B formalism was proposed by J.R. Abrial [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF] as an evolution of the B language. The concept used to make a formal development is that of a model. A model can be a machine or a context. A context is the static part. A machine is the dynamic part of the model and allows to describe the behavior of the designed system. A machine is composed by a collection of variables v and a set of events ev i . The variables are constrained by conditions called invariants. The execution of the events must preserve these invariants. An event is described as follows.

e i = any p where G i (p, v) then A i (p, v, v) end
An event is defined by a set of parameters p, the guard which gives the necessary conditions for the activation of the event G evi(p, v) and the action A evi(p, v, v) which describes how variables v are substituted in terms of their old values and the parameters values. The action may consist in several assignements which can be either deterministic or non-detreministic. A deterministic assignement, having the form x := E(p, v) replace values of variables x with the result obtained from the expression E(p, v). A non-detreministic assignement can be of two forms: 1) x :∈ E(p, v) which arbitrarily chooses a value from the set E(p, v) to assign to x and 2) x : |Q(p, v, x) which arbitrarily chooses to assign to x a value that satisfies the predicate Q. Q is called a be f orea f ter predicate and expresses a relation between the previous values v (before the event execution) and the new ones v (after the event execution). Each event in the machine can be described as a before after predicate predicate A(p, v, v) obtained by the conjonction of all before-after predicates corresponding to its actions. The variables are constrained by conditions called invariants.

Proof obligations Proof Obligations (PO) are associated to Event-B machines in order to prove that they satisfy certain properties. As an example, we mention the Preservation Invariant INV and the Feasibility FIS proof obligations. INV PO is necessary to prove that invariants hold after the execution of each event. Proving FIS PO means that when an event guard holds, every action can be executed. Refinement The development of models in Event-B is based on the principle of refinement. This technique, allowing a correct by construction design, consists in adding details gradually while preserving the original properties of the system. The refinement relates two machines, an abstract machine and a concrete one. Data refinement consists in replacing the abstract variables by the concrete ones. The refinement relation is defined by a particular invariant called gluing invariant. The refinement of an abstract event is performed by strengthening its guard and reducing non determinism in its action. The abstract parameters can also be refined. In this case, we need to use witnesses describing the relation between the abstract and the concrete parameters. An abstract event can be refined by more than one event. In this case, we say that the concrete event is split. In the refinement process, new events can be introduced. In order to preserve the correctness of the model, we must prove that these new introduced events are convergent. This is ensured by the means of a variant -an expression or a non empty finite set-that should be decreased by each execution of the convergent events. B-event is supported by the Rodin platform1 which provides considerable assistance to developers by automating the generation and verification of all the necessary POs. Design Patterns In [START_REF] Abrial | Using design patterns in formal methods: An event-b approach[END_REF], Abrial defines an Event-B design pattern as "a small model (with constants, variables, invariants, and events) devoted to formalise a typical well known sub-problem". A design pattern is seen as a template of a solution for a given problem that can be reused. Reusability involves not only the model itself, but also the proofs and the refinement associated with it [START_REF] Hoang | Event-b patterns and their tool support[END_REF]. The pattern reuse requires essentially two steps which are 1) the matching of the pattern specification with the problem and 2) the incorporation of the refinement of the pattern to create a refinement of the problem [START_REF] Hoang | Event-b patterns and their tool support[END_REF].

Linear Temporal Logic

We give a brief description of the Linear Temporal Logic (LTL) as described by [START_REF] Manna | Adequate proof principles for invariance and liveness properties of concurrent programs[END_REF]. This logic was proposed for expressing temporal properties of concurrent systems. It extends propositional logic based on the Boolean operators: ¬, ∨, ∧, ⇒ by temporal operators: always (), eventually (♦) and Until (U). An LTL formula can describe the system state evolution through the time. We denote by φ an LTL formula and by σ a non empty sequence of states s 0 , s 1 , We denote by σ k the sequence of states s k , s k+1 , . . . and by σ |= φ that φ is true on σ. The semantic of temporal operators is as follows.

• σ |= φ iff for all k = 0, 1, ..., we have

σ k |= φ • σ |= ♦ φ iff for some k = 0, 1, ..., we have σ k |= φ • σ |= φ 1 U φ 2 iff for some k = 0, 1, ..., we have σ k |= φ 2 and σ 0 |= φ 1 , ..., σ k-1 |= φ 1

Proving temporal properties with

Event-B

In this subsection, we give a summary of the work of [START_REF] Hoang | Reasoning about liveness properties in event-b[END_REF]) related to reasoning about liveness properties with Event-B.

The trace σ of machine M is a sequence of states s 0 , s 1 , ... where s 0 is the initial state defined by the initial variables values and for every two successive states s i , s i+1 , there is an event enabled when the machine is in state s i leading the machine to state s when executed. We denote by T (M) the set of all the possible traces of machine M. A machine satisfay a property φ, denoted by M |= φ, if all its traces satisfy φ. [START_REF] Hoang | Reasoning about liveness properties in event-b[END_REF] In the following, we give the three different classes of liveness properties considered in [START_REF] Hoang | Reasoning about liveness properties in event-b[END_REF] and the necessary proof rules allowing to demonstrate them on an Event-B machine. These proof rules constitutes the basis of our proofs in section 3.

-The existence property states that a property P will always eventually be true (♦ P). To prove that a machine M satisfies an existence property requires to prove that M is convergent in ¬P, i.e. every event execution in M decreases the defined variant when M is on a ¬P state and deadlock-free in ¬P i.e. when M is in a ¬P state, at least one event of M is enabled.

The necessary assumptions for proving the existence property are given by the rule

LIVE ♦ 2 . M ↓ ¬ P M ¬ P LIVE ♦ M ♦ P
-The progress property states that a property P2 must eventually be true if some condition P1 becomes true

((P1 ⇒ ♦ P2)).
Proving that a machine M fulfils a progress property is insured by the use of the rule LIVE progress .

M (P1 ∧ ¬P2 ⇒ P2) M (P3 ⇒ (P3 U P2)) LIVE progress (P1 ⇒ ♦ P2)
The first premise should be declared as an invariant in the machine M. The second premise includes the until temporal operator and states that P3 is true until P2 holds. This assumption is proved by the use of the Until rule.

M ((P3 ∧ ¬P2) (P3 ∨ P2)) M ♦(¬P3 ∨ P2) Until M (P3 ⇒ (P3 U P2))
The first condition in the Until rule means that every event in the machine M leads from P3 ∧ ¬P2 to P3 ∨ P2. An event leads from P1 to P2 if starting from any P1 state, the execution of this event results in P2 state. The Leads f rom operator () is expressed directly with the first-order logic as shown below.

P1 P2 = P1(v) ∧ G(x, v) ∧ A(x, v, v) ⇒ P2(v) -
The persistence property states that eventually a property P will be always true (♦ P). The proof rule LIVE ♦ gives the necessary conditions guaranteeing that a machine M satisfies a persistence property. A machine M satisfies a persistence property ♦ P if it is divergent in P; i.e. any infinite trace of M ends with an infinite sequence of states satisfying P and deadlock-free in ¬P. Proving that a machine M is divergent in P needs to prove that every execution of an event in M decreases the defined variant when M is on a ¬P state and does not increase the variant when M is on P state.

M P M ¬ P LIVE ♦ M ♦ P 3 TOWARDS A FORMAL DESIGN PROCESS FOR SO-MAS 3.

Overview of the design process

The aim of the proposed method is to construct the adequate local behavior leading to the desired global properties by stepwise refinement and the use of design patterns. We describe the formal design process in terms of three phases as depicted in figure 1. In order to guide the designer through the refinement process, a design pattern is assigned to each phase giving the necessary refinements and proof obligations to attain the correct model at the end of each step. The first phase allows modelisation of the agents local behavior based on the pattern AGP 0 . It is composed by several refinement steps as it will be shown in the next subsection. This phase can be performed for several times if the system is composed by many types of agents. The next two phases are devoted to prove convergence and adaptivity properties by using the patterns GBP 0 and SOP 0 respectively. These two patterns can be reused in the case where convergence can take many aspects and adaptivity is needed in many situations.

Design patterns for SO-MAS

In this section, we define in details the design patterns AGP 0 , GBP 0 and SOP 0 . For each pattern, we give an informal description plus a formel specification with Event-B. We also mention how it can be refined and what proof obligations must be discharged.

Agents pattern:AGP 0

The Agents pattern gives a very abstract modelisation of the designed system as a set of agents in interaction within an environment. Each agent perceives its local environment, takes a decision about its next action and finally performs the decided action. We refer to these execution steps as a perceivedecideact cycle. We assume that the system has the following properties: 1) an agent can either be active or inactive, 2) every active agent is initialized in the perceive step, 3) the system execution is considered as an alternation of an agents execution and an environment activation; that is when every agent finishes one perceivedecideact cycle, the environment is activated and 4) an active agent can either be in the pause mode; waiting for beginning a new cycle or in the work mode; executing its cycle. The pattern AGP 0 is thus an Event-B machine describing the system state by means of the set of active agents, the mode of each active agent (pause or work) and the actual cycle step for each active agent. In the following, the set of the variables used and their corresponding invariants are given3 . The dynamic of the system is modelled by means of four events. The ActEnv event is triggered when it is the turn of the environment to be activated. At this level of abstraction, the only action that this event does is to reset the active agents in the system at the step of perception. Events Perceive, Decide and Act model the execution of any agent according to the perceivedecideact cycle. As an example, we give the Perceive and the ActEnv events 4 . Proof obligations generated for this pattern insures essentially invariants preservation and feasibility of the non deterministic action of the ActEnv event.

The AGP 0 pattern will be subject to a three steps refinement sequence to obtain a more concrete agents behavior. In the first step, the Act event is split into the different actions that an agent can perform. Every event resulting from the refinment of Act event can have the following template. In the second refinement step, agents's actuators are introduced. The agent's actuators should be disabled when the agent move to the state pause. This property is insured by adding the gluing invariant:

∀ag. ag ∈ ActiveAgents ∧ agMode(ag) = pause ⇒ actuAction i(ag) = disabled
In addition, Decide events are split in turn. When an agent takes a decision, it activates the suitable actuator in order to perform the desired action. To link the agent action with the made decision, we use a witness. So that, the events modelling the action need also to be refined according to the refinement of the event Act Action i from AGP 0 pattern. At this refinement step, we should insure that once an agent made a decision, it should execute an action and avoid to be deadlocked in the action step. This property is specified by the following theorem. G Act Action i (ag, p, v) denotes the guard of an action event for the agent ag.

∀ag.ag ∈ ActiveAgents ∧ agStep(ag) = act ⇒ (i (∃p.G Act Action i (ag, p, v)))
In the last refinement step , the agents's sensors are introduced and the event Perceive is refined.

For each agent, it is necessary that its sensors are active when it is in the perceive step. This constraint is captured by the gluing invariant:

∀ag. ag ∈ ActiveAgents ∧ agStep(ag) = perceive ⇔ sensor i(ag) = activate.
Moreover, the action in the event ActEnv is refined by activating the sensors of each active agent. At this refinement phase, we should insure that the updated perceptions, should allow the agent to make a decision and thus to avoid to be deadlocked in the perception step. This property is specified by the following theorem. G Dec Action i (ag, p, v) denotes the guard of a decision event for the agent ag.

Global Behavior pattern:GBP 0

The Global Behavior pattern allows to reason about the behavior that emerges from the interactions between agents. It is used to prove convergence of the system, which means reachability of the desired global behavior. Convergence of the system can be captured formally by means of the Reach temporal property: Reach = ♦ taskAchieved = T RUE taskAchieved describes the state of the system when it succeed to achieve its task. The modelisation of this property with Event-B can be done according to the pattern GBP 0 .

GBP 0 VARIABLES taskAchieved SysStates INVARIANTS SysStates ⊂ SY S STAT ES taskAchieved ∈ BOOL VARIANTS V EVENT NotYetSuccess STATUS convergent ANY ag WHERE grd1 : taskAchieved = FALSE grd2 : V / ∈ ∅ grd3 : ag ∈ Agents THEN act1 : SysStates :∈ V < V END EVENT ObserveSuccess WHERE grd1 : taskAchieved = T RUE THEN SKIP END
Variable SysStates denotes the system state space. Variable taskAchieved, when is TRUE, indicates that the global task is achieved and allows to activate ObserveSuccess. This event plays the role of an external observer (like in [START_REF] Hoang | Developing topology discovery in event-b[END_REF])and does not change the system state. In fact, its action is SKIP which does nothing. The event NotYetSuccess is activated when the task is not yet achieved, but must contribute to the fulfilment of the global task by decreasing at each execution the variant V . According to the rule LIVE ♦ , to prove the Reach property, we need to prove the convergence of event NotYetSuccess. This is guaranteed by discharging the VAR proof obligation. Moreover, we should prove that the event ObservSuccess does not increase the variant and that the machine is deadlock free for all the states where the task is still not fulfilled. The first statement is guaranteed since the action of the event ObservSuccess is SKIP. The second statement is ensured by proving the following theorem stating that from an intermediate state, the machine can evolve either to another intermediate state or to the success state.

taskAchieved = FALSE ⇒ ((∃ag,V.ag ∈ ActiveAgents∧ V / ∈ ∅) ∨ taskAchieved = T RUE)
The incorporation of this pattern in the design process allows to refine AG k (Figure 1) with GB n. It is performed by two actions: 1)introducing event ObserveSuccess and 2)refining each Act event (an event describing an agent action) with the NotYetSuccess event. At this level, we should prove convergence of all the Act events and the deadlock freeness of GB n in a non desirable state. Since Event-B allows to use only one variant per machine, GB n could be refined in many steps. each step, the convergence of one event (or a group of events which decrease the same variant) is proved. The events which are not considered by the proof at a given step, must be anticipated, this means that proving their convergence is postponed for further refinement steps. Choosing the suitable variant to prove convergence is not always trivial with SO-MAS. In fact, the evolution of the agents can not always be described as a progression twoards fulfillment of their goals. An agent can change its goal according to the actions of the other agents. In this work, we don't address this problem of proving convergence. But this is still an ongoing work.

Self-Organisation pattern:SOP 0

The Self-Organisation pattern allows to reason about the ability of the system to self-adapt in order to overcome perturbations in its environment.

A rigorous analyzis of self-organisation can be captured by the use of the Adaptivity temporal formula stating that if a perturbation occurs, the system will eventually be able to carry on its execution thanks to its self-organization mechanisms.

Adaptivity = (perturbation = T RUE ⇒ ♦SuccessSO = T RUE)
The pattern SOP 0 (given below)5 allows to reason about this property by applying LIVE progress rule and proving the following two theorems. Theorem1.

(perturbation = T RUE ∧ SuccessSO = FALSE ⇒ (∃ag. ag ∈ ActiveAgents ∧V / ∈ ∅))
Theorem2.

(∃ag. ag ∈ ActiveAgents ∧V / ∈ ∅ ⇒ ((∃ag. ag ∈ ActiveAgents ∧V / ∈ ∅)U SuccessSO=TRUE))
According to Until rule, the demonstration of Theo-rem2 needs to prove the following two theorems.

Theorem2.1.

∃ag. ag ∈ ActiveAgents ∧V / ∈ ∅ ∧ SuccessSO = FALSE ⇒ ((∃ag. ag ∈ ActiveAgents ∧V / ∈ ∅) ∨ SuccessSO = T RUE) Theorem2.2. ♦((∀ag.ag ∈ ActiveAgents ∧V ∈ ∅) ∨ SuccessSO = T RUE)
By applying the rule LIVE ♦ , the proof of The-orem2.2 necessitates 1) to prove the convergence of the event ApplySO and 2) to prove deadlockfreedom in a state satisfying the property ∃ag. ag ∈ ActiveAgents ∧V / ∈ ∅ ∧ SuccessSO = FALSE. The incorporation of this pattern in the design process allows to refine GB m (Figure 1) with SO p. It is performed by three actions: 1) introducing the event PerturbationOccurs performed when a perturbation takes place in the environment, 2) adding the ObserveSO Success event describing the success of a self organization operation and 3) refining the agent actions by the event ApplySO which modelises the self-organizing mechanism.

Theorem1 and Theorem2 should be proved for every action refining the event ApplySO.

SOP 0 VARIABLES SuccessSO SysStates pertturbation INVARIANTS SysStates ⊂ STAT ES SO STAT ES ⊂ STAT ES SuccessSO ∈ BOOL perturbation ∈ BOOL VARIANTS V EVENT ObserveSO Success WHERE grd1 : SuccessSO = T RUE THEN SKIP END EVENT ApplySO STATUS convergent ANY ag WHERE grd1 : SuccessSO = FALSE grd2 : V / ∈ ∅ grd3 : ag ∈ ActiveAgents THEN act1 : SysStates :∈ V < V END EVENT PerturbationOccurs REFINES ActEnv THEN act1 : SysStates ∈ SO STAT ES act2 : perturbation := T RUE END

APPLICATION ON THE FORAGING ANTS

The case study is a formalization of the behavior of a foraging ants colony. The considered system is composed of several ants exploring the environment and looking for food.Each ant begins by exploring the environment being mainly attracted by food or pheromone. If it smell pheromone, it takes the direction in which this smell is stronger. When discovering food on a location, the ant collects a part of it and goes back to the nest by dropping pheromone. The properties we are trying to prove are summarized as follows.

-The correctness of the model of the agents behavior; i.e. Corr 1 : Each ant behaves according to the perceivedecideact cycle, Corr 2 : Deadlock freeness of the ants in any step of its cycle, Corr 3 : The ants must avoid obstacles.

-Reach 1 The ants are able to bring all the food to the nest. This is the main property of the system: the reachability property.

-SO 2 : When a source of food is detected, the ants are able to focus on its exploitation. This property evaluates the ability of the ants to self-organise in order to brought entirely the detected source of food to the nest.

-SO 1 : When a detected source of food is completely exploited, the ants can carry on environment exploration and detect new food. In order to guarantee the correctness of our model we apply the pattern AGP 0 . The Reach 1 property is modelled by applying GBP 0 . Self-organisation properties are modelled by applying twice the pattern SOP 0 . In the remainder of this section, we illustrate the use of the AGP 0 pattern. For the three other properties (Reach 1 , SO 2 and SO 1), we give a formulation of each of them in the temporal logic. Their proofs are an ongoing work. The environment in which the ant interact is formalized as a set of connected locations (Locations) with a particular one called Nest modelling the nest of the colony. Guided by the refinement steps indicated in AGP 0 , we obtain a machine modelling the local behavior of ants. Each ant has a current location in the grid (currentLoc) and can decide about its next location (nextLoc). The ant has information about the environment elements which are inside its perception field, i.e. food (f ood), pheromone (pheromone) and obstacles (obstacles). The definition of these caracteristics in Event-B are given as follows.

inv1 : currentLoc ∈ Ants → P(Locations) inv2 : nextLoc ∈ Ants → P(Locations) inv3 : f ood ∈ Ants → P(Locations) inv4 : pheromone ∈ Ants → P(Locations)

The invariant inv1, for example, is a total function which defines the current location for each ant. Ants is the set of the active Ants. The ants behavior is depicted by the following events: -Perceive: enables to each ant to update its perceptions according to its current location.

-Dec Move Rand: the ant decide to go randomly because it does not perceive any thing, Dec Move Food: decide to follow sensed food, Dec Move Phero: decide to follow sensed pheromone, Dec Drop Back: decide to go back to the nest and drop pheromone along the return path, Dec Back: decide to go back to the nest without dropping pheromone along the return path, Dec Harvest Food: decide to take food, Dec Drop Food: decide to drop the food at the nest.

-Act Move Rand,Act Move Food, Act Move Phero, Act Drop Back and Act Back: activated when an ant moves from one location to another.

-Act Harvest Food: the ant takes some food and Ac Drop Food: the ant drop the food on the Nest. As an example, we give the description of the event Act Move Food. The reachability property is defined as follows.

♦((QuantityFood(Nest) = TotalFood(InitDistFood)∧ ∀ loc.loc ∈ Locations\{Nest} ⇒ QuantityFood(loc) = 0)).
where the QuantityO f Food relation specifies for each location the quantity of food in it, TotalFood calculates the sum of quantities of food in the environment and InitDistFood is the initial distribution of food. The SO 1 property is defined by the following temporal formula.

(∀ loc.loc ∈ Locations\{Nest}∧ InitDistFood(loc) = 0 ∧ Detected(loc) ⇒ ♦((QuantityFood(loc) = 0)).
The SO 2 property is defined by the following temporal formula.

(∀ ant, loc. ant ∈ Ants ∧ loc ∈ Locations\{Nest}∧ EntirelyExploited(loc1) ⇒ ♦(∃loc2. loc2 = loc1 ∧ QuantityFood(loc2) = 0 ∧ Detected(loc2)).

RELATED WORK

Developpement methods. In [START_REF] Orfanus | High-level construction of emergent self-organizing behavior in massively distributed embedded systems[END_REF], a design process for the construction of emergent self-organizing behavior in large-scale distributed embedded systems is proposed. This process relies on two models: the model of microscopic layer and the model of macroscopic layer and three steps: simulation, validation and update. The first model should describe the local activities of the entities composing the system as well as the local information trigerring these activities. The second one is described by a set of Macroscopic variables. The simulation step, applied to a given model of microscopic behavior under certain scenario, allows to generate a macroscopic model called Current macro. The current macro if then validated in the next step by comparing the set of the current macroscopic variables with the desired macroscopic ones. The comparison is done thanks to a Match f unction and returns a Deviation which, if needed, will be used in order to update the microscopic layer model. A top-down property driven design for swarm robotic, composed by four phases, was proposed in [START_REF] Brambilla | Property-driven design for swarm robotics[END_REF]. The aim of the first phase is to give a clear and complete formal specification of the desired properties of the system. The second phase consists in defining a macroscopic model of the system and checking whether the desired properties are satisfied. These two activities of modelling and validation can be repeated until generating a model satisfying the desired properties. The phase three is devoted to the implementation of a simulation of the swarm system. This phasee represents a transition from the macroscopic model to the microscopic implementation and is guided by the ingenuity and the expertise of the designer [START_REF] Brambilla | Property-driven design for swarm robotics[END_REF]. In the final phase, the system is deployed on real robots. The authors choose to specify the swarm model by the Deterministic Time Markov Chains (DTMC) and its properties by the Probabilistic Computation Tree Logic* (PCTL*). Moreover, they use the technique of model checking and particularly the PRISM model checker for verification. The Adelfe methodology was proposed for the development of self-organizing systems based on the AMAS (Adaptive MAS) theory ([START_REF] Bernon | Engineering Adaptive Multi-Agent Systems: The ADELFE Methodology[END_REF]). The AMAS theory depends on the ability of the agents to cooperate and thus, the design of the lo-cal behavior of the entities relies on identifying and resolving the non cooperative situations an agent may encounter. In order to guarentee that all non cooperative situations are taken into account, the process of Adelfe is enriched by a simulation step in [START_REF] Bernon | Enhancing self-organising emergent systems design with simulation[END_REF]. Formal modelisation of self-organizing systems. In [START_REF] Gardelli | Exploring the dynamics of self-organising systems with stochastic π-calculus: Detecting abnormal behaviour in mas[END_REF], Gardelli uses stochastic Pi-Calculus for modeling SO-MAS for intrusion detection. This formalization was used to perform simulations using the SPIM tool to assess the impact of the number of agents and frequency of inspections on the system behavior. In [START_REF] Casadei | Using probabilistic model checking and simulation for designing selforganizing systems[END_REF], a hybrid approach has been proposed. This approach uses stochastic simulations to model the system described as Markov chains and the technique of probabilistic model checking for verification. The approach was tested for the problem of collective sorting using the PRISM tool. Konur and colleagues ((Konur et al., 2012)) use also the PRISM tool and probabilistic model checking to verify the behavior of robot swarm, particularly foraging robots. The authors verify properties expressed by PCT L logic for several scenarios. These properties provide information ,in particular, on the probability that the swarm acquires a certain amount of energy for a certain number of agents and in a certain amount of time. Simulations were also used to show the correlation between the density of foraging robots in the arena and the amount of energy gained. An Event-B modeling for fault tolerant MAS was proposed in [START_REF] Pereverzeva | Development of fault tolerant mas with cooperative error recovery by refinement in event-b[END_REF]. The authors propose a refinement strategy that starts by specifying the main purpose of the system, defines the necessary agents to accomplish it, then introduces the various failures of agents and ends by introducing the communication model and error recovery mechanisms. The refinement process ensures a set of properties, mainly 1) reachability of the main purpose of the system, 2) the integrity between agents local information and global information and 3) efficiency of cooperative activities for error recovery. The aim of the works presented above is to insure that the designed individual behavior will give rise to the desired global properties. Some of them make use of simulation, while others employ formal techniques. The majority of these works utilize a bottom-up approach (except [START_REF] Brambilla | Property-driven design for swarm robotics[END_REF] and [START_REF] Pereverzeva | Development of fault tolerant mas with cooperative error recovery by refinement in event-b[END_REF]) which is ideally suited to self-organizing systems. The use of Event-B in [START_REF] Pereverzeva | Development of fault tolerant mas with cooperative error recovery by refinement in event-b[END_REF] is extremely important because of the use of the refinement principle that permits a progressive, guided and correct construction of the desired system, which is not allowed in the other works. In our proposition, we combine a bottom-up approach with the use of refinement and design patterns in order to give more guidance to the designer when designing the individual behavior (AGP 0 pattern) and when doing proofs (GBP 0 and SOP 0 patterns).

CONCLUSION

We have presented in this paper a formal approach for the design of SO-MAS based on design patterns, refinement and Event-B. Three patterns was proposed; AGP 0 gives refinement steps for modelling the local behavior of the agents and guarantees deadlock freeness of any agent, GBP 0 allowing to prove that the modelled local behavior will converge towards the desired global behavior and finally SOP 0 letting the evaluation of the ability of self-organizing mechanisms to encounter the environment perturbations. The main challenges for future work can be summarized in the three following points: -Proving the convergence of the events when applying the patterns GBP 0 and SOP 0 which is not trivial task because of the non determinism in SO-MAS. One possible solution for this is to prove the convergence under fairness assumption like in [START_REF] Méry | Formal Modelling and Verification of Population Protocols[END_REF].

-Automation of the refinement process and the generation of machines according to the design patterns.

-Formal reasoning about the improvement of the system performance. A probabilistic approach coupled with Event-B can be useful in this case.

Figure 1 :

 1 Figure 1: Stepwise refinement for formal development of SO-MAS.

 ∀ag.ag ∈ ActiveAgents∧ agStep = decide ⇒ (i (∃p.G Dec Action i (ag, p, v)))

EVENT

 Act Move Food REFINES Act Move Food ANY ant WHERE grd1 : ant ∈ Ants ∧ agMode(ant) = work ∧ agStep(ant) = act grd2 : paw(ant) = activate grd3 : actMove(ant) = Follow Food THEN act1 : currLoc(ant) := nextLoc(ant) act2 : agMode(ant) := wait END

http://www.event-b.org/

The upper part of the proof rule describes the premises under which the conclusion mentioned in the lower part is true. The rule's name is given at the right.

S → T denotes a total function from S to T , i.e. a relation that maps every element in S to an element in T .

SO STAT ES is the set of states where the selforganization mechanism is needed to overcome the perturbation.