
HAL Id: hal-01171846
https://hal.science/hal-01171846v1

Submitted on 5 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining Existential Rules and Transitivity: Next
Steps

Jean-François Baget, Meghyn Bienvenu, Marie-Laure Mugnier, Swan Rocher

To cite this version:
Jean-François Baget, Meghyn Bienvenu, Marie-Laure Mugnier, Swan Rocher. Combining Existential
Rules and Transitivity: Next Steps. IJCAI: International Joint Conference on Artificial Intelligence,
Jul 2015, Buenos Aires, Argentina. pp.2720-2726. �hal-01171846�

https://hal.science/hal-01171846v1
https://hal.archives-ouvertes.fr

Combining Existential Rules and Transitivity: Next Steps

Jean-François Baget
Inria, CNRS,

Univ. Montpellier
Montpellier, France

Meghyn Bienvenu
CNRS,

Univ. Paris-Sud
Orsay, France

Marie-Laure Mugnier
Univ. Montpellier,

Inria, CNRS
Montpellier, France

Swan Rocher
Univ. Montpellier,

Inria, CNRS
Montpellier, France

Abstract

We consider existential rules (aka Datalog±) as
a formalism for specifying ontologies. In recent
years, many classes of existential rules have been
exhibited for which conjunctive query (CQ) entail-
ment is decidable. However, most of these classes
cannot express transitivity of binary relations, a fre-
quently used modelling construct. In this paper,
we address the issue of whether transitivity can be
safely combined with decidable classes of existen-
tial rules. First, we prove that transitivity is incom-
patible with one of the simplest decidable classes,
namely aGRD (acyclic graph of rule dependen-
cies), which clarifies the landscape of ‘finite expan-
sion sets’ of rules. Second, we show that transitiv-
ity can be safely added to linear rules (a subclass
of guarded rules, which generalizes the description
logic DL-LiteR) in the case of atomic CQs, and also
for general CQs if we place a minor syntactic re-
striction on the rule set. This is shown by means
of a novel query rewriting algorithm that is spe-
cially tailored to handle transitivity rules. Third, for
the identified decidable cases, we pinpoint the com-
bined and data complexities of query entailment.

1 Introduction
Ontology-based data access (OBDA) is a new paradigm in
data management, which exploits the semantic information
provided by ontologies when querying data. Briefly, the
notion of a database is replaced by that of a knowledge
base (KB), composed of a dataset and an ontology. Exis-
tential rules, aka Datalog±, have been proposed to repre-
sent ontological knowledge in this context [Calı̀ et al., 2009;
Baget et al., 2009; 2011b; Krötzsch and Rudolph, 2011].
These rules are an extension of function-free first-order Horn
rules (aka Datalog), that allows for existentially quantified
variables in rule heads. The addition of existential quan-
tification allows one to assert the existence of yet unknown
entities and to reason about them, an essential feature of
ontological languages, which is also at the core of descrip-
tion logics (DLs). Existential rules generalize the DLs
most often considered in the OBDA setting, like the DL-

Lite and EL families [Calvanese et al., 2007; Baader, 2003;
Lutz et al., 2009] and Horn DLs [Krötzsch et al., 2007].

The fundamental decision problem related to OBDA is the
following: is a Boolean conjunctive query (CQ) entailed from
a KB? This problem has long been known to be undecidable
for general existential rules (this follows e.g., from [Beeri and
Vardi, 1981]). Consequently, a significant amount of research
has been devoted to the issue of finding decidable subclasses
with a good expressivity / tractability tradeoff. It has been
observed that most exhibited decidable classes fulfill one of
the three following properties [Baget et al., 2011a]: finite-
ness of a forward chaining mechanism known as the chase,
which allows inferences to be materialized in the data (we call
such rule sets finite expansion sets, fes); finiteness of query
rewriting into a union of CQs, which allows to the rules to
be compiled into the query (finite unification sets, fus); tree-
like shape of the possibly infinite chase, which allows one to
finitely encode the result (bounded-treewidth sets, bts). The
class of guarded rules [Calı̀ et al., 2008] is a well-known
class satisfying the latter property.

Known decidable classes are able to express many use-
ful properties of binary relations (e.g., inverses / symmetry)
but most of them lack the ability to define a frequently re-
quired property, namely transitivity. This limits their appli-
cability in key application areas like biology and medicine,
for which transitivity of binary relations (especially the ubiq-
uitous ‘part of’ relation) is an essential modelling con-
struct. The importance of transitivity has long been acknowl-
edged in the DL community [Horrocks and Sattler, 1999;
Sattler, 2000], and many DLs support transitive binary re-
lations. While adding transitivity to a DL often does not
increase the complexity of CQ entailment (see [Eiter et al.,
2009] for some exceptions), it is known to complicate the
design of query answering procedures [Glimm et al., 2008;
Eiter et al., 2012], due to the fact that it destroys the tree
structure of the chase upon which DL reasoning algorithms
typically rely. In contrast to the extensive literature on transi-
tivity in DLs, rather little is known about the compatibility of
transitivity with decidable classes of existential rules. A no-
table exception is the recent result of [Gottlob et al., 2013] on
the incompatibility of transitivity with guarded rules, which
holds even under strong syntactic restrictions (see Section 3).

In this paper, we investigate the issue of whether transi-
tivity can be safely added to some well-known rule classes

and provide three main contributions. First, we show that
adding transitivity to one of the simplest fes and fus classes
(namely aGRD) makes atomic CQ entailment undecidable,
which clarifies the issue for fes classes (Theorem 1). Sec-
ond, we investigate the impact of adding transitivity to linear
rules, a natural subclass of guarded rules which generalizes
the well-known description logic DL-LiteR. We introduce a
query rewriting procedure that is sound and complete for all
rule sets consisting of linear and transitivity rules (Theorem
2), and which is guaranteed to terminate for atomic CQs, and
for arbitrary CQs if the rule set contains only unary and bi-
nary predicates or satisfies a certain safety condition, yielding
decidability for these cases (Theorem 3). Third, based on a
careful analysis of our algorithm, we establish tight bounds
on the combined and data complexities of query entailment
for the identified decidable cases. The obtained complexities
are the lowest that could be expected, namely, NL in data
complexity and PSPACE in combined.

Detailed proofs can be found in the accompanying techni-
cal report [Baget et al., 2015].

2 Preliminaries
A term is a variable or a constant. An atom is of the form
p(t1, . . . , tk) where p is a predicate of arity k, and the ti are
terms. We consider (unions of) Boolean conjunctive queries
((U)CQs), which are (disjunctions of) existentially closed
conjunctions of atoms. Note however that all results can be
extended to non-Boolean queries. A CQ is often viewed as
the set of atoms. An atomic CQ is a CQ consisting of a single
atom. A fact is an atom without variables. A fact base is a
finite set of facts.

An existential rule (hereafter abbreviated to rule) R is a
formula ∀~x∀~y(B[~x, ~y] → ∃~z H[~x, ~z]) where B and H are
conjunctions of atoms, resp. called the body and the head of
R. The variables ~z (resp. ~x), which occur only in H (resp.
in B and in H) are called existential variables (resp. frontier
variables). Hereafter, we omit quantifiers in rules and simply
denote a rule by B → H . For example, p(x, y) → p(x, z)
stands for ∀x∀y(p(x, y) → ∃z(p(x, z))). A knowledge base
(KB) K = (F ,R) consists of a fact base F and a finite set
of rules R. The (atomic) CQ entailment problem consists in
deciding whether K |= Q, where K is a KB viewed as a first-
order theory, Q is an (atomic) CQ, and |= denotes standard
logical entailment.

Query rewriting relies on a unification operation between
the query and a rule head. Care must be taken when handling
existential variables: when a term t of the query is unified
with an existential variable in a rule head, all atoms in which
t occurs must also be part of the unification, otherwise the
result is unsound. Thus, instead of unifying one query atom
at a time, we have to unify subsets (“pieces”) of the query,
hence the notion of a piece-unifier defined next. A partition
P of a set of terms is said to be admissible if no class of
P contains two constants; a substitution σ can be obtained
from P by selecting an element ei in each class Ci of P ,
with priority given to constants, and setting σ(t) = ei for all
t ∈ Ci. A piece-unifier of a CQ Q with a rule R = B → H
is a triple µ = (Q′, H ′, Pµ), where Q′ ⊆ Q, H ′ ⊆ H and Pµ

is an admissible partition on the terms of Q′ ∪H ′ such that:

1. σ(H ′) = σ(Q′), where σ is any substitution obtained
from Pµ;

2. if a class Ci in Pµ contains an existential variable, then
the other terms in Ci are variables from Q′ that do not
occur in (Q \Q′).

We say that Q′ is a piece (and µ is a single-piece unifier) if
there is no non-empty subsetQ′′ ofQ′ such that Pµ restricted
to Q′′ satisfies Condition 2. From now on, we consider only
single-piece unifiers, which we simply call unifiers. The (di-
rect) rewriting of Q with R w.r.t. µ is σ(Q \ Q′) ∪ σ(B)
where σ is a substitution obtained from Pµ. A rewriting of
Q w.r.t. a set of rules R is a CQ obtained by a sequence
Q = Q0, . . . , Qn (n ≥ 0) where for all i > 0, Qi is a di-
rect rewriting of Qi−1 with a rule from R. For any fact base
F , we have that F ,R |= Q iff there is a rewriting Qn of Q
w.r.t.R such that F |= Qn [König et al., 2013].

Example 1 Consider the rule R = h(x) → p(x, y) and CQ
Q = q(u) ∧ p(u, v) ∧ p(w, v) ∧ r(w). If p(u, v) is unified
with p(x, y), then v is unified with the existential variable y,
hence p(w, v) has to be part of the unifier. The triple µ =
({p(u, v), p(w, v)}, {p(x, y)}, {{x, u, w}{v, y}} is a unifier.
The direct rewriting ofQ associated with the substitution σ =
{x 7→ u,w 7→ u, y 7→ v} is h(u) ∧ q(u) ∧ r(u).

We now define some important kinds of rule sets (see e.g.,
[Mugnier, 2011] for an overview). A model M of a KB K
is called universal if for any CQ Q, M is a model of Q iff
K |= Q. A rule set R is a finite expansion set (fes) if any KB
(F ,R) has a finite universal model. It is a bounded-treewidth
set (bts) if any KB (F ,R) has a (possibly infinite) universal
model of bounded treewidth. It is a finite unification set (fus)
if, for any CQ Q, there is a finite set S of rewritings of Q
w.r.t.R such that for any fact base F , we have F ,R |= Q iff
there is Q′ ∈ S such that F |= Q′.

A Datalog rule has no existential variables, hence Datalog
rule sets are fes. Other kinds of fes rules are considered in the
next section. A rule B → H is guarded if there is an atom
in B that contains all the variables occurring in B. Guarded
rules are bts. A linear rule has a body composed of a sin-
gle atom and does not contain any constant. Linear rules are
guarded, hence bts, moreover they are fus.

As a special case of Datalog rules, we have transitivity
rules, of the form p(x, y) ∧ p(y, z) → p(x, z), which are
not fus. A predicate is called transitive if it appears in a tran-
sitivity rule. If C is a class of rule sets, C+trans denotes the
class obtained by adding transitivity rules to rule sets from C.

3 Combining fes / fus and Transitivity
A large hierarchy of fes classes is known (see e.g.,
[Cuenca Grau et al., 2013] for an overview). Beside Data-
log, the simplest classes are weakly-acyclic (wa) sets, which
prevent cyclic propagation of existential variables along pred-
icate positions, and aGRD (acyclic Graph of Rule Dependen-
cies) sets, which prevent cyclic dependencies between rules.
Datalog is generalized by wa, while wa and aGRD are incom-
parable. Some classes generalize wa by a finer analysis of

variable propagation (up to super-weakly acyclic (swa) sets).
Most other fes classes generalize both wa and aGRD.

We show that aGRD+trans is undecidable even for atomic
CQs. Since aGRD is both fes and fus, this negative result also
transfers to fes+trans and fus+trans.

Theorem 1 Atomic CQ entailment over aGRD+trans KBs is
undecidable, even with a single transitivity rule.

Proof: The proof is by reduction from atomic CQ entailment
with general existential rules (which is known to be undecid-
able). Let R be a set of rules. We first translate R into an
aGRD set of rulesRa. We consider the following new predi-
cates: p (which will be the transitive predicate) and, for each
rule Ri ∈ R, predicates ai and bi. Each rule Ri = Bi → Hi

is translated into the two following rules:

• R1
i = Bi → ai(~x, z1) ∧ p(z1, z2) ∧ p(z2, z3) ∧ bi(z3)

• R2
i = ai(~x, z1) ∧ p(z1, z2) ∧ bi(z2)→ Hi

where z1,z2 and z3 are existential variables and ~x are the vari-
ables in Bi.

Let Ra = {R1
i , R

2
i | Ri ∈ R}, and let GRD(Ra) be the

graph of rule dependencies of Ra, defined as follows: the
nodes of GRD(Ra) are in bijection withRa, and there is an
edge from a node R1 to a node R2 if the rule R2 depends on
the rule R1, i.e., if there is a piece-unifier of the body of R2

(seen as a CQ) with the head of R1.
We check that for any Ri ∈ R, R1

i has no outgoing edge
and R2

i has no incoming edge (indeed the zj are existential
variables). Hence, in GRD(Ra) all (directed) paths are of
length less or equal to one. It follows that GRD(Ra) has no
cycle, i.e.,Ra is aGRD.

Let Rt be the rule stating that p is transitive. Let R′ =
Ra ∪ {Rt}. The idea is that Rt allows to “connect” rules
in Ra that correspond to the same rule in R. For any fact
base F (on the original vocabulary), for any sequence of rule
applications from F using rules in R, one can build a se-
quence of rule applications from F using rules from R′, and
reciprocally, such that both sequences produce the same fact
base (restricted to atoms on the original vocabulary). Hence,
for any F and Q (on the original vocabulary), we have that
F ,R |= Q iff F ,R′ |= Q. 2

Corollary 1 Atomic CQ entailment over fus+trans or
fes+trans KBs is undecidable.

Most known fes classes that do not generalize aGRD range
between Datalog and swa (inclusive). It can be easily checked
that any swa set of rules remains swa when transitivity rules
are added (and this is actually true for all known classes be-
tween Datalog and swa).

Proposition 1 The classes swa and swa+trans coincide.
Hence, swa+trans is decidable.

Proof: It suffices to note that the addition of transitivity rules
does not create new edges in the ‘SWA position graph’ from
[Cuenca Grau et al., 2013]. 2

It follows that the effect of transitivity on the currently
known fes landscape is now quite clear, which is not the case
for fus classes. In the following, we focus on a well-known
fus class, namely linear rules. We show by means of a query

rewriting procedure that query entailment over linear+trans
KBs is decidable in the case of atomic CQs, as well as for
general CQs if we place a minor safety condition on the rule
set. Such an outcome was not obvious in the light of existing
results. Indeed, atomic CQ entailment over guarded+trans
rules was recently shown undecidable, even when restricted
to rule sets that belong to the two-variable fragment, use only
unary and binary predicates, and contain only two transitive
predicates [Gottlob et al., 2013]. Moreover, inclusion depen-
dencies (a subclass of linear rules) and functional dependen-
cies (a kind of rule known to destroy tree structures, as do
transitivity rules) are known to be incompatible [Chandra and
Vardi, 1985].

4 Linear Rules and Transitivity
To obtain finite representations of sets of rewritings involv-
ing transitive predicates, we define a framework based on the
notion of pattern.

4.1 Framework
To each transitive predicate we assign a pattern name. Each
pattern name has an associated pattern definition P :=
a1| . . . |ak, where each ai is an atom that contains the spe-
cial variables #1 and #2. A pattern is either a standard pat-
tern P [t1, t2] or a repeatable pattern P+[t1, t2], where P is a
pattern name and t1 and t2 are terms. A union of patterned
conjunctive queries (UPCQ) is a pair (Q,P), where Q is a
disjunction of conjunctions of atoms and patterns, and P is a
set of pattern definitions that gives a unique definition to each
pattern name occurring in Q. A patterned conjunctive query
(PCQ)Q is a UPCQ without disjunction. For the sake of sim-
plicity, we will often denote a (U)PCQ by its first component
Q, leaving the pattern definitions implicit.

An instantiation T of a UPCQ (Q,P) is a node-labelled
tree that satisfies the following conditions:

• the root of T is labelled by Q ∈ Q;

• the children of the root are labelled by the patterns and
atoms occurring in Q;

• each node that is labelled by a repeatable pattern
P+[t1, t2] may be expanded into k ≥ 1 children labelled
respectively by P [t1, x1], P [x1, x2], . . ., P [xk−1, t2],
where the xi are fresh variables;

• each node labelled by a standard pattern P [t1, t2] may
be expanded into a single child whose label is obtained
from an atom a in the pattern definition of P in P by
substituting #1 (resp. #2) by t1 (resp. t2), and freshly
renaming the other variables.

For brevity, we will often refer to nodes in an instantiation
using their labels.

The instance associated with an instantiation is the PCQ
obtained by taking the conjunction of the labels of its leaves.
An instance of a UPCQ is an instance associated with one
of its instantiations. An instance is called full if it does not
contain any pattern, and we denote by full(Q,P) the set of
full instances of (Q,P).

Q

P+
1 [a, z] P+

2 [z, b] s1(a, b)

P1[a, z] P2[z, x1] P2[x1, b]

s2(a, y0, z) s2(x1, y1, z) p2(x1, b)

Figure 1: Instantiations of a PCQ

Example 2 Let (Q,P) be a PCQ, where Q = P+
1 [a, z] ∧

P+
2 [z, b] ∧ s1(a, b) and P contains the pattern definitions:
P1 := p1(#1,#2)|s2(#1, y,#2) and P2 := p2(#1,#2)|
s2(#2, y,#1).

Two instantiations of Q are displayed in Figure 1. The
smaller instantiation (within the dotted lines) gives rise to the
(non-full) instance Q1 = P1[a, z] ∧ P2[z, x1] ∧ P2[x1, b] ∧
s1(a, b). By expanding the three nodes labelled by patterns
according to the definitions in P, we may obtain the larger in-
stantation (occupying the entire figure), whose associated in-
stanceQ2 = s2(a, y0, z)∧s2(x1, y1, z)∧p2(x1, b)∧s1(a, b)
is a full instance for (Q,P).

A UPCQ (Q,P) can be translated into a set of Data-
log rules ΠP and a UCQ QQ as follows. For each defi-
nition P := a1(~t1)| . . . |ak(~tk) in P, we create the transi-
tivity rule p+(x, y) ∧ p+(y, z) → p+(x, z) and the rules
ai(~ti) → p+(#1,#2) (1 ≤ i ≤ k). The UCQ QQ is ob-
tained from Q by replacing each repeatable pattern P+[t1, t2]
by the atom p+(t1, t2). Observe that ΠP is non-recursive ex-
cept for the transitivity rules. The next proposition states that
(ΠP, QQ) can be seen as a finite representation of the set of
full instances of (Q,P).

Proposition 2 Let F be a fact base and (Q,P) be a UPCQ.
Then F ,ΠP |= QQ iff F |= Q for some Q ∈ full(Q,P).

A unifier µ = (Q′, H, Pu) of a PCQ is a unifier of one
of its (possibly non-full) instances such that Q′ is a set of
(usual) atoms. We distinguish two types of unifiers (internal
and external), defined next.

Let T be an instantiation, Q be its associated instance, and
µ = (Q′, H, Pu) be a unifier of Q. Assume T contains a
repeatable pattern P+[t1, t2] that is expanded into P [u0, u1],
. . . , P [uk, uk+1], where u0 = t1 and uk+1 = t2. We call
P [ui, ui+1] relevant for µ if it is expanded into an atom from
Q′. Because we consider only single-piece unifiers (cf. Sec.
2), it follows that if such relevant patterns exist, they form a
sequence P [ui, ui+1],P [ui+1, ui+2],. . . , P [uj−1, uj]. Terms
ui and uj are called external to P+[t1, t2] w.r.t. µ; the other
terms occurring in the sequence are called internal. The uni-
fier µ is said to be internal if all atoms from Q′ are expanded
from a single repeatable pattern, and no external terms are
unified together or with an existential variable; otherwise µ is
called external.

Example 3 Consider Q2 from Example 2 and the rules
R1 = s1(x′, y′) → p2(x′, y′) and R2 = s1(x′, y′) →
s2(x′, y′, z′). The unifier of Q2 with R1 that unifies p2(x1, b)

with p2(x′, y′) is internal. The unifier ofQ2 withR2 that uni-
fies {s2(a, y0, z), s2(x1, y1, z)} with s2(x′, y′, z′) is external
because it involves two repeatable patterns.

4.2 Overview of the Algorithm
Our query rewriting algorithm takes as input a CQQ and a set
of rulesR = RL∪RT , withRL a set of linear rules andRT
a set of transitivity rules, and produces a finite set of Datalog
rules and a (possibly infinite) set of CQs. The main steps of
the algorithm are outlined below.
Step 1 For each predicate p that appears in RT , create a pat-
tern definition P := p(#1,#2), where P is a fresh pattern
name. Call the resulting set of definitions P0.
Step 2 LetR+

L be the result of considering all of the rule bod-
ies inRL and replacing every body atom p(t1, t2) such that p
is a transitive predicate by the repeatable pattern P+[t1, t2].
Step 3 (Internal rewriting) Initialize P to P0 and repeat the
following operation until fixpoint: select a pattern definition
P ∈ P and a rule R ∈ R+

L and compute the direct rewriting
of P w.r.t. P and R.
Step 4 Replace in Q all atoms p(t1, t2) such that p is a transi-
tive predicate by the repeatable pattern P+[t1, t2], and denote
the result by Q+.
Step 5 (External rewriting) Initialize Q to {Q+} and repeat
the following operation until fixpoint: choose Qi ∈ Q, com-
pute a direct rewriting of Qi w.r.t. P and a rule from R+

L ,
and add the result to Q (except if it is isomorphic to some
Qj ∈ Q).
Step 6 Let ΠP be the Datalog translation of P, and let QQ be
the (possibly infinite) set of CQs obtained by replacing each
repeatable pattern P+[t1, t2] in Q by p+(t1, t2).
The rewriting process in Step 3 is always guaranteed to ter-
minate, and in Section 6, we propose a modification to Step
5 that ensures termination and formulate sufficient conditions
that preserve completeness. When QQ is finite (i.e., it is a
UCQ), it can be evaluated over the fact base saturated by ΠP,
or alternatively, translated into a set of Datalog rules, which
can be combined with ΠP and passed to a Datalog engine
for evaluation. Observe that the construction of ΠP is query-
independent and can be executed as a preprocessing step.

5 Rewriting Steps in Detail
A PCQ that contains a repeatable pattern has an infinite num-
ber of instances. Instead of considering all instances of a
PCQ, we consider a finite set of ‘instances of interest’ for
a given rule. Such instances will be used for both the internal
and external rewriting steps.
Instances of interest Consider a PCQ (Q,P) and a rule
R ∈ R+

L with head predicate p. The instantiations of interest
of (Q,P) w.r.t. R are constructed as follows. For each re-
peatable pattern P+

i [t1, t2] in Q, let ai1, . . . , a
i
ni

be the atoms
in the definition of Pi with predicate p. If ni > 0, then ex-
pand P+

i [t1, t2] into k standard patterns, where 0 < k ≤
min(arity(p), ni) + 2, and expand each of these standard
patterns in turn into some ai`. An instance of interest is the
instance associated with an instantiation of interest.

Example 4 Reconsider Q, Q2 and R2 from Examples 2 and
3. Q2 is not an instance of interest of Q w.r.t. R2 since
P2[x1, b] is expanded into p(#1,#2) whereas the head pred-
icate of R2 is s2. If we expand P2[x1, b] with s2(#2, y,#1)
instead, we obtain the instance of interestQ3 = s2(a, y0, z)∧
s2(x1, y1, z) ∧ s2(b, y2, x1) ∧ s1(a, b).

We next show that the set of unifiers computed on the in-
stances of interest of a PCQ ‘captures’ the set of unifiers com-
puted on all of its instances.

Proposition 3 Let (Q,P) be a PCQ and R ∈ R+
L . For every

instance Q of (Q,P) and unifier µ of Q with R, there exist an
instance of interest Q′ of (Q,P) w.r.t. R and a unifier µ′ of
Q′ with R such that µ′ is more general 1 than µ.

5.1 Internal Rewriting
Rewriting w.r.t. internal unifiers is performed ‘inside’ a re-
peatable pattern, independently of the other patterns and
atoms in the query. We will therefore handle this kind of
rewriting in a query-independent manner by updating the pat-
tern definitions.

To find all internal unifiers between instances under a re-
peatable pattern P+[t1, t2] and a rule head H = p(. . .), one
may think that it is sufficient to consider each atom ai in P ’s
definition and check if there is an internal unifier of ai with
H . Indeed, this suffices when predicates are binary: in an
internal unifier, t1 and t2 are unified with distinct variables,
which cannot be existential; thus, the terms in H are frontier
variables, and a piece must consist of a single atom. If the
arity of p is greater than 2, the other variables can be existen-
tial, so it may be possible to unify a path of atoms from P ’s
definition, but not a single such atom (see next example).

Example 5 Let R = s(x, y) → r(z1, x, z2, y) and P :=
r(#2,#1, x0, x1)| r(#1, x2,#2, x3)| r(x4, x5,#1,#2).
There is no internal unifier of an atom in P ’s definition with
H = r(z1, x, z2, y). However, if we expand P+[t1, t2] into
a path P [t1, y0]P [y0, y1]P [y1, t2], then expand the ith pat-
tern of this path into the ith atom in P ’s definition, the re-
sulting instance can be unified with H by an internal unifier
(with the partition {{z1, y0, x4}, {x, t1, x2, x5}, {z2, x0, y1},
{y, x1, x3, t2}}).

Fortunately, we can bound the length of paths to be consid-
ered using both the arity of p and the number of atoms with
predicate p in P ’s definition, allowing us to use instances of
interest introduced earlier.

A direct rewriting P′ of a set of pattern definitions P w.r.t.
a pattern name P and a rule R = B → H ∈ R+

L is the set
of pattern definitions obtained from P by updating P ’s defi-
nition as follows. We consider the PCQ (Q = P+[x, y],P).
We select an instance of interest Q of Q w.r.t. R, an internal
unifier µ of Q with H , and a substitution σ associated with
µ that preserves the external terms. Let B′ be obtained from

1Consider unifiers µ = (Q,H,Pµ) and µ′ = (Q′, H, Pµ′), and
let σ (resp. σ′) be a substitution associated with Pµ (resp. Pµ′). We
say that µ′ is more general than µ if there is a substitution h from
σ′(Q′) to σ(Q) such that h(σ′(Q′)) ⊆ σ(Q) (i.e., h is a homomor-
phism from σ′(Q′) to σ(Q)), and for all terms x and y in Q′ ∪H ,
if σ′(x) = σ′(y) then σ(h(x)) = σ(h(y)).

σ(B) by substituting the first (resp. second) external term by
#1 (resp. #2). If B′ is an atom, we add it to P ’s definition.
Otherwise,B′ is a repeatable pattern of the form S+[#1,#2]
or S+[#2,#1]. Let f be a bijection on {#1,#2}: if B′ is of
the form S+[#1,#2], f is the identity, otherwise f permutes
#1 and #2. For all si in the definition of S, we add f(si) to
P ’s definition.

Note that the addition of an atom to a pattern definition is
up to isomorphism (with #1 and #2 treated as distinguished
variables, i.e., #1 and #2 are mapped to themselves).

Example 6 Reconsider R, µ, and the definition of P from
Example 5. Performing a direct rewriting w.r.t. P using R
and µ results in adding the atom s(#1,#2) to P ’s definition.

Proposition 4 Let (Q,P) be a PCQ where P+[t1, t2] occurs
and R ∈ R+

L . For any instance Q of (Q,P), any classical
direct rewriting Q′ of Q with R w.r.t. to a unifier internal to
P+[t1, t2], and any Q′ ∈ full(Q′,P), there exists a direct
rewriting P′ of P w.r.t. P and R such that (Q,P′) has a full
instance that is isomorphic to Q′.

5.2 External Rewriting
Let (Q,P) be a PCQ, R ∈ R+

L , T be an instantiation of in-
terest of (Q,P) w.r.t. R, Q be the instance associated with
T , and µ = (Q′, H, P) be an external unifier of Q with R.
From this, several direct rewritings ofQ w.r.t. P andR can be
built. First, we mark all leaves in T that either have the root
as parent or are labelled by an atom in Q′, and we restrict
T to branches leading to a marked leaf. Then, we consider
each instantiation Ti that can be obtained from Q as follows.
Replace each repeatable pattern P+[t1, t2] that has k > 0
children in T by one of the following:

(i) P+[t1, x1] ∧X[x1, x2] ∧ P+[x2, t2],

(ii) P+[t1, x1] ∧X[x1, t2],

(iii) X[t1, x2] ∧ P+[x2, t2],

(iv) X[t1, t2],

where X[v1, v2] is a sequence P [v1, y1], P [y1, y2], . . . ,
P [yk−1, v2]. Let Qi be the instance associated with Ti.

If P [x′, y′] in T has child a(~t), expand in Ti the corre-
sponding P [x, y] into a(ρ(~t)) where ρ = {x′ 7→ x, y′ 7→ y}.
If µ′ = (ρ(Q′), H, ρ(P)) is still a unifier of Qi with H , we
say that Qi is a minimally-unifiable instance of Q w.r.t. µ. In
this case, Q′i = µ′(Qi) \ µ′(H) ∪ µ′(B) is a direct rewriting
of Q w.r.t. P and R.

Example 7 Reconsider Q3 and R2, and let µ =
({s2(a, y0, z), s2(x1, y1, z)}, H2, {{a, x1, x′}, {y0, y1, y′},
{z, z′}}). First, we consider the instantiation that gener-
ated Q3, and we remove the node labelled P2[x1, b] and its
child s2(b, y2, x1), since the latter atom is not involved in
µ. Next will replace the repeatable pattern P+

1 [a, z] (resp.
P+
2 [z, b]) using one of the four cases detailed above, and

we check whether µ′ (obtained from µ) is still a unifier.
We obtain in this manner the following minimally-unifiable
instances: Q1 = P+

1 [a, x2]∧ s2(x2, y0, z)∧ s2(x1, y1, z)∧
P+
2 [x1, b]∧ s1(a, b), andQ2 = s2(a, y0, z) ∧ s2(x1, y1, z)
∧ P+

2 [x1, b] ∧ s1(a, b). Finally, we rewrite Q1 and Q2

into: Q′1 = P+
1 [a, x′] ∧ s1(x′, y′)∧ P+

2 [x′, b]∧ s1(a, b) and
Q′2 = s1(a, y′)∧ P+

2 [a, b]∧ s1(a, b).

Proposition 5 Let (Q,P) be a PCQ and R ∈ R+
L . For every

Q ∈ full(Q,P) and every classical direct rewriting Q′ of Q
with R w.r.t. an external unifier, there is a direct rewriting Q′
of Q w.r.t. P and R that has an instance isomorphic to Q′.

6 Termination and Correctness
To establish the correctness of the query rewriting algorithm,
we utilize Propositions 2, 4 and 5.

Theorem 2 Let Q be a CQ, (F ,R) be a linear+trans KB,
and (ΠP,QQ) be the (possibly infinite) output of the algorithm.
Then: F ,R |= Q iff F ,ΠP |= Q′ for some Q′ ∈ QQ.

Regarding termination, we observe that Step 3 (internal
rewriting) must halt since every direct rewriting step adds a
new atom (using a predicate fromR+

L) to a pattern definition,
and there are finitely many such atoms, up to isomorphism.

By contrast, Step 5 (external rewriting) need not halt, as
the rewritings may grow unboundedly in size. Thus, to ensure
termination, we will modify Step 5 to exclude direct rewrit-
ings that increase rewriting size. Specifically, we identify the
following ‘problematic’ minimally-unifiable instances:
• Q′ is composed of atoms expanded from a single pattern
P+[t1, t2], µ′(t1) = µ′(t2), and P+[t1, t2] is replaced
as in case (i), (ii) or (iii).
• Q′ is obtained from the expansion of repeatable patterns,

a term t ofQ is unified with an existential variable of the
head of the rule, t appears only in repeatable patterns of
form P+

i [ti, t] (resp. P+
i [t, ti]), and all these repeatable

patterns are rewritten as in case (ii) P+
i [ti, t

′
i] ∧X[t′i, t]

(resp. as in case (iii) X[t, t′i] ∧ P
+
i [t′i, ti]).

We will call a direct rewriting excluded if it is based on such
a minimally-unifiable instance; otherwise, it is non-excluded.

Example 8 The rewritingQ′1 from Example 7 is excluded be-
cause it is obtained from the minimally-unifiable instance Q1

in which the repeatable patterns P+
1 [a, z] is expanded as in

case (ii) and P+
2 [z, b] as in case (iii), and z is unified with

the existential variable z′.

Proposition 6 Let (Q,P) be a PCQ and R ∈ R+
L . If Q′ is a

non-excluded direct rewriting of Q with R, then |Q′| ≤ |Q|.
Let us consider the ‘modified query rewriting algorithm’

that is obtained by only performing non-excluded direct
rewritings in Step 5. This modification ensures termination
but may comprise completeness. However, we can show that
the modified algorithm is complete in the following key cases:
when the CQ is atomic, when there is no specialization of a
transitive predicate, or when all predicates have arity at most
two. By further analyzing the latter case, we can formulate a
safety condition, defined next, that guarantees completeness
for a much wider class of rule sets.

Safe rule sets We begin by defining a specialization rela-
tionship between predicates. A predicate q is a direct special-
ization of a binary predicate p on positions {~i,~j} (~i 6= ∅,~j 6=
∅) if there is a rule of the form q(~u) → p(x, y) such that ~i

(resp. ~j) contains those positions of ~u that contain the term x

(resp. y). It is a specialization of p on positions {~i,~j} if (a) it
is a direct specialization of p on positions {~i,~j}, or (b) there
is a rule of the form q(~u) → r(~v) such that r(~v) is a spe-
cialization of p on positions {~k,~l} and the terms occurring in
positions {~k,~l} of ~v occur in positions {~i,~j} of ~u with~i 6= ∅
and ~j 6= ∅. We say that q is a pseudo-transitive predicate if it
is a specialization of at least one transitive predicate.

We call a linear+trans rule set safe if it satisfies the follow-
ing safety condition: for every pseudo-transitive predicate q,
there exists a pair of positions {i, j} with i 6= j such that
for all transitive predicates p of which q is a specialization on
positions {~i,~j}, either i ∈~i and j ∈ ~j, or i ∈ ~j and j ∈~i.

Note that if we consider binary predicates, the safety con-
dition is always fulfilled. Then, specializations correspond
exactly to the subroles considered in DLs.
Example 9 Let R1 = s1(x, x, y) → p1(x, y), R2 =
s2(x, y, z) → p2(x, y), R3 = s1(x, y, z) → s2(z, x, y), and
p1 and p2 be two transitive predicates.

The following specializations have to be considered: s1 is
a direct specialization of p1 on positions {{1, 2}, {3}}, s2
is a direct specialization of p2 on positions {{1}, {2}}, s1
is a specialization of p2 on positions {{3}, {1}}. We then
have two pseudo-transitive predicates: s1 and s2. By choos-
ing the pair {1, 3} for s1 and {1, 2} for s2, we observe that
{R1, R2, R3} satisfies the safety condition.

If we replace R3 by R4 = s1(x, y, z) → s2(x, y, z),
s1 is a specialization of p2 on positions {{1}, {2}}, and
{R1, R2, R4} is not safe.
Theorem 3 The modified query rewriting algorithm halts.
Moreover, Theorem 2 (soundness and completeness) holds for
the modified algorithm if either the input CQ is atomic, or the
input rule set is safe.

7 Complexity
A careful analysis of our query rewriting algorithm allows us
to pinpoint the worst-case complexity of atomic CQ entail-
ment over linear+trans KBs, and general CQ entailment over
safe linear+trans KBs. As usual, we consider two complex-
ity measures: combined complexity (measured in terms of the
size of the whole input), and data complexity (measured in
terms of the size of the fact base). The latter is often consid-
ered more relevant since the fact base is typically significantly
larger than the rest of the input.

With regards to data complexity, we show completeness for
NL (non-deterministic logarithmic space), which is the same
complexity as in the presence of transitivity rules alone.
Theorem 4 Both (i) atomic CQ entailment over linear+trans
KBs and (ii) CQ entailment over safe linear+trans KBs are
NL-complete in data complexity.

Regarding combined complexity, we show that the addition
of transitivity rules does not increase the complexity of query
entailment for the two considered cases.
Theorem 5 Both (i) atomic CQ entailment over linear+trans
KBs and (ii) CQ entailment over safe linear+trans KBs are
PSPACE-complete in combined complexity.

8 Conclusion
In this paper, we made some steps towards a better under-
standing of the interaction between transitivity and decidable
classes of existential rules. We obtained an undecidability re-
sult for aGRD+trans, hence for fes+trans and fus+trans. More
positively, we established decidability (with the lowest pos-
sible complexity) of atomic CQ entailment over linear+trans
KBs and general CQ entailment for safe linear+trans rule sets.
The safety condition was introduced to ensure termination of
the rewriting mechanism when predicates of arity more than
two are considered (rule sets which use only unary and binary
predicates are trivially safe). We believe the condition can be
removed with a much more involved termination proof.

In future work, we plan to explore the effect of transitiv-
ity on decidable rule classes that are incomparable with linear
rules, namely frontier-one rules, a bts class that has close con-
nections to Horn DLs, and two fus classes: domain-restricted
and sticky rule sets [Baget et al., 2011a; Calı̀ et al., 2010].

Acknowledgements
This work was supported by ANR project PAGODA (contract
ANR 12 JS02 007 01).

References
[Baader, 2003] F. Baader. Terminological cycles in a de-

scription logic with existential restrictions. In Proc. of IJ-
CAI, pages 325–330, 2003.

[Baget et al., 2009] J.-F. Baget, M. Leclère, M.-L. Mugnier,
and E. Salvat. Extending decidable cases for rules with
existential variables. In Proc. of IJCAI, pages 677–682,
2009.

[Baget et al., 2011a] J.-F. Baget, M. Leclère, M.-L. Mugnier,
and E. Salvat. On rules with existential variables: Walking
the decidability line. Art. Intell. (AIJ), 175(9-10):1620–
1654, 2011.

[Baget et al., 2011b] J.-F. Baget, M.-L. Mugnier,
S. Rudolph, and M. Thomazo. Walking the com-
plexity lines for generalized guarded existential rules. In
Proc. of IJCAI, pages 712–717, 2011.

[Baget et al., 2015] J.-F. Baget, M. Bienvenu, M.-L. Mug-
nier, and S. Rocher. Combining existential rules and tran-
sitivity: Next steps. abs/1504.07443, 2015.

[Beeri and Vardi, 1981] C. Beeri and M. Y. Vardi. The impli-
cation problem for data dependencies. In Proc. of ICALP,
volume 115 of LNCS, pages 73–85. Springer, 1981.

[Calı̀ et al., 2008] A. Calı̀, G. Gottlob, and M. Kifer. Tam-
ing the infinite chase: Query answering under expressive
relational constraints. In Proc. of KR, pages 70–80, 2008.

[Calı̀ et al., 2009] A. Calı̀, G. Gottlob, and T. Lukasiewicz. A
general Datalog-based framework for tractable query an-
swering over ontologies. In Proc. of PODS, pages 77–86,
2009.

[Calı̀ et al., 2010] A. Calı̀, G. Gottlob, and A. Pieris. Query
answering under non-guarded rules in Datalog+/-. In Proc.
of RR, pages 1–17, 2010.

[Calvanese et al., 2007] D. Calvanese, G. De Giacomo,
D. Lembo, M. Lenzerini, and R. Rosati. Tractable rea-
soning and efficient query answering in description log-
ics: The DL-Lite family. J. Autom. Reasoning (JAR),
39(3):385–429, 2007.

[Chandra and Vardi, 1985] A. K. Chandra and M. Y. Vardi.
The implication problem for functional and inclusion de-
pendencies is undecidable. SIAM J. Comput., 14(3):671–
677, 1985.

[Cuenca Grau et al., 2013] B. Cuenca Grau, I. Horrocks,
M. Krötzsch, C. Kupke, D. Magka, B. Motik, and
Z. Wang. Acyclicity notions for existential rules and their
application to query answering in ontologies. J. Art. Intell.
Res. (JAIR), 47:741–808, 2013.

[Eiter et al., 2009] T. Eiter, C. Lutz, M. Ortiz, and
M. Simkus. Query answering in description logics with
transitive roles. In Proc. of IJCAI, pages 759–764, 2009.

[Eiter et al., 2012] T. Eiter, M. Ortiz, M. Simkus, T.-K. Tran,
and G. Xiao. Query rewriting for Horn-SHIQ plus rules.
In Proc. of AAAI, 2012.

[Glimm et al., 2008] B. Glimm, C. Lutz, I. Horrocks, and
U. Sattler. Conjunctive query answering for the descrip-
tion logic SHIQ. J. Artif. Intell. Res. (JAIR), 31:157–204,
2008.

[Gottlob et al., 2013] G. Gottlob, A. Pieris, and L. Ten-
dera. Querying the guarded fragment with transitivity. In
Proc. of ICALP, volume 7966 of LNCS, pages 287–298.
Springer, 2013.

[Horrocks and Sattler, 1999] I. Horrocks and U. Sattler. A
description logic with transitive and inverse roles and role
hierarchies. J. Log. Comput., 9(3):385–410, 1999.

[König et al., 2013] M. König, M. Leclère, M.-L. Mugnier,
and M. Thomazo. On the exploration of the query rewrit-
ing space with existential rules. In Proc. of RR, pages 123–
137, 2013.

[Krötzsch and Rudolph, 2011] M. Krötzsch and S. Rudolph.
Extending decidable existential rules by joining acyclicity
and guardedness. In Proc. of IJCAI, pages 963–968, 2011.

[Krötzsch et al., 2007] M. Krötzsch, S. Rudolph, and P. Hit-
zler. Complexity boundaries for Horn description logics.
In Proc. of AAAI, pages 452–457. AAAI Press, 2007.

[Lutz et al., 2009] C. Lutz, D. Toman, and F. Wolter. Con-
junctive query answering in the description logic EL us-
ing a relational database system. In Proc. of IJCAI, pages
2070–2075, 2009.

[Mugnier, 2011] M.-L. Mugnier. Ontological query answer-
ing with existential rules. In Proc. of RR, pages 2–23,
2011.

[Sattler, 2000] U. Sattler. Description logics for the repre-
sentation of aggregated objects. In Proc. of ECAI, pages
239–243, 2000.

