Bifurcation points of non-tame polynomial functions and perverse sheaves

Mihai Tibar, Kiyoshi Takeuchi

To cite this version:

Mihai Tibar, Kiyoshi Takeuchi. Bifurcation points of non-tame polynomial functions and perverse sheaves. 2014. hal-01171626

HAL Id: hal-01171626

https://hal.science/hal-01171626

Preprint submitted on 17 Jul 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Bifurcation points of non-tame polynomial functions and perverse sheaves *

Kiyoshi TAKEUCHI ${ }^{\dagger}$ and Mihai TIBĂR ${ }^{\ddagger}$

Abstract

We characterize bifurcation points of non-tame polynomial functions by using the theory of perverse sheaves and their vanishing cycles. In particular, by introducing a method to compute the jumps of the Euler characteristics with compact support of their fibers, we confirm the conjecture of Némethi-Zaharia [19] in some cases.

1 Introduction

For a polynomial function $f: \mathbb{C}^{n} \longrightarrow \mathbb{C}$ it is well-known that there exists a finite subset $B \subset \mathbb{C}$ such that the restriction

$$
\begin{equation*}
\mathbb{C}^{n} \backslash f^{-1}(B) \longrightarrow \mathbb{C} \backslash B \tag{1.1}
\end{equation*}
$$

of f is a C^{∞} locally trivial fibration. We denote by B_{f} the smallest subset $B \subset \mathbb{C}$ satisfying this condition. Let $\operatorname{Sing} f \subset \mathbb{C}^{n}$ be the set of the critical points of $f: \mathbb{C}^{n} \longrightarrow \mathbb{C}$. Then by the definition of B_{f}, obviously we have $f(\operatorname{Sing} f) \subset B_{f}$. The elements of B_{f} are called bifurcation points of f. The bifurcation set $B_{f} \subset \mathbb{C}$ was studied by many mathematicians and from several viewpoints, e.g. [1], [2], [7], [8, [19], [20], [24], [28] and [30]. Here we study B_{f} via the Newton polyhedron of f. We denote by $\Gamma_{\infty}(f)$ the convex hull of the Newton polytope $N P(f)$ of f and the origin in \mathbb{R}^{n}. We call $\Gamma_{\infty}(f)$ the Newton polyhedron at infinity of f. Throughout this paper we assume that f is non-degenerate at infinity (for the definition see Section 3) and $\operatorname{dim} \Gamma_{\infty}(f)=n$.

Definition 1.1. ([26]) We say that a face $\gamma \prec \Gamma_{\infty}(f)$ is atypical if $0 \in \gamma, \operatorname{dim} \gamma \geq 1$ and the cone $\sigma(\gamma) \subset \mathbb{R}^{n}$ which corresponds it in the dual fan of $\Gamma_{\infty}(f)$ (for the definition see Section (2) is not contained in the first quadrant \mathbb{R}_{+}^{n} of \mathbb{R}^{n}.

Let $\gamma_{1}, \ldots, \gamma_{m}$ be the atypical faces of $\Gamma_{\infty}(f)$. For $1 \leq i \leq m$ let $K_{i} \subset \mathbb{C}$ be the set of the critical values of the γ_{i}-part

$$
\begin{equation*}
f_{\gamma_{i}}: T=\left(\mathbb{C}^{*}\right)^{n} \longrightarrow \mathbb{C} \tag{1.2}
\end{equation*}
$$

[^0]of f. Let us set
\[

$$
\begin{equation*}
K_{f}=f(\operatorname{Sing} f) \cup\{f(0)\} \cup\left(\cup_{i=1}^{m} K_{i}\right) \tag{1.3}
\end{equation*}
$$

\]

Then Némethi-Zaharia [19] proved the following remarkable result.
Theorem 1.2. (Némethi-Zaharia [19]) In the situation as above, we have $B_{f} \subset K_{f}$.
Moreover they proved the equality $B_{f}=K_{f}$ for $n=2$ and conjectured its validity in higher dimensions. Later Zaharia [30] proved it for any $n \geq 2$ under some supplementary assumptions. In this paper, we refine his approach to this conjecture by using the more sophisticated machinary of vanishing cycle functors for constructible sheaves to obtain a formula which describes the jump of the function $\chi_{c}: \mathbb{C} \longrightarrow \mathbb{Z}$ defined by

$$
\begin{equation*}
\chi_{c}(a)=\sum_{j \in \mathbb{Z}}(-1)^{j} \operatorname{dim} H_{c}^{j}\left(f^{-1}(a) ; \mathbb{C}\right) \quad(a \in \mathbb{C}) \tag{1.4}
\end{equation*}
$$

at each point $b \in K_{f} \backslash[f(\operatorname{Sing} f) \cup\{f(0)\}] \subset \cup_{i=1}^{m} K_{i}$. Let us fix such a point $b \in$ $K_{f} \backslash[f($ Sing $f) \cup\{f(0)\}]$ and set

$$
\begin{equation*}
E_{f}(b)=(-1)^{n-1}\left\{\chi_{c}(b+\varepsilon)-\chi_{c}(b)\right\} \in \mathbb{Z} \tag{1.5}
\end{equation*}
$$

by taking sufficiently small $\varepsilon>0$. For $1 \leq i \leq m$ let $L_{\gamma_{i}} \simeq \mathbb{R}^{\operatorname{dim} \gamma_{i}}$ be the linear subspace of \mathbb{R}^{n} spanned by γ_{i} and set $T_{i}=\operatorname{Spec}\left(\mathbb{C}\left[L_{\gamma_{i}} \cap \mathbb{Z}^{n}\right]\right) \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \gamma_{i}}$. We regard $f_{\gamma_{i}}$ as a regular function on T_{i}.
Definition 1.3. We say that f has isolated singularities at infinity over $b \in K_{f} \backslash$ $[f(\operatorname{Sing} f) \cup\{f(0)\}]$ if for any $1 \leq i \leq m$ the hypersurface $f_{\gamma_{i}}^{-1}(b) \subset T_{i} \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \gamma_{i}}$ in T_{i} has only isolated singular points.

Definition 1.4. We say that a face $\gamma \prec \Gamma_{\infty}(f)$ is relatively simple if the cone $\sigma(\gamma) \subset \mathbb{R}^{n}$ which corresponds to it in the dual fan of $\Gamma_{\infty}(f)$ is simplicial or satisfies the condition $\operatorname{dim} \sigma(\gamma) \leq 3$.

Recall that for a polytope Δ in \mathbb{R}^{n} its relative interior rel.int (Δ) is the interior of Δ in its affine span $\operatorname{Aff}(\Delta) \simeq \mathbb{R}^{\operatorname{dim} \Delta}$ in \mathbb{R}^{n}.

Theorem 1.5. Assume that f has isolated singularities at infinity over $b \in K_{f} \backslash$ $[f(\operatorname{Sing} f) \cup\{f(0)\}]$ and for any $1 \leq i \leq m$ such that $b \in K_{i}$ the relative interior rel.int $\left(\gamma_{i}\right)$ of $\gamma_{i} \prec \Gamma_{\infty}(f)$ is contained in $\operatorname{Int}\left(\mathbb{R}_{+}^{n}\right)$. Assume also that there exists $1 \leq i \leq m$ such that $b \in K_{i}$ and $\gamma_{i} \prec \Gamma_{\infty}(f)$ is relatively simple. Then we have $E_{f}(b)>0$ and hence $b \in B_{f}$.

Note that if $\operatorname{dim} \gamma_{i} \geq n-3$ the atypical face $\gamma_{i} \prec \Gamma_{\infty}(f)$ is relatively simple. In particular, if $n \leq 4$ this condition is always satisfied. Hence Theorem 1.5 extends the result of Zaharia [30]. Indeed he assumed the much stronger condition that for any $1 \leq i \leq m$ such that $b \in K_{i}$ we have $\operatorname{dim} \gamma_{i}=n-1$ (which implies rel.int $\left(\gamma_{i}\right) \subset$ $\operatorname{Int}\left(\mathbb{R}_{+}^{n}\right)$). His assumption means that on smooth toric compactifications of \mathbb{C}^{n} compatible with $\Gamma_{\infty}(f)$ the function f has isolated singular points only on T-orbits at infinity of dimension $n-1$ over the point $b \in K_{f} \backslash[f(\operatorname{Sing} f) \cup\{f(0)\}]$. However under our weaker assumption, in the proof of Theorem 1.5 we encounter non-isolated singular points of f on such compactifications. We overcome this difficulty by reducing the problem to the case of isolated singular points by a standard property of vanishing cycle functors. Moreover in the case $n=3$ we have the following stronger result.

Theorem 1.6. Assume that $n=3$ and f has isolated singularities at infinity over $b \in$ $K_{f} \backslash[f(\operatorname{Sing} f) \cup\{f(0)\}]$. Then we have $E_{f}(b)>0$ and hence $b \in B_{f}$.

We thus confirm the conjecture of [19] for $n=3$ in the generic case. On the other hand, in the two-dimensional case $n=2$ Hà-Lê 77 proved that $b \in B_{f} \backslash[f(\operatorname{Sing} f) \cup\{f(0)\}]$ implies $E_{f}(b) \neq 0$ (for its generalization to polynomial maps see Hà-Nguyen [8]). So, our Theorem 1.6 can be considered as a three-dimensional analogue of their result. For the proofs of Theorems 1.5 and 1.6 we will use the theory of constructible (perverse) sheaves and their vanishing cycles. In particular, our argument relies on the fact that the constant sheaf of an orbifold is perverse (up to some shift).

2 Preliminary notions and results

In this section, we recall basic notions and results which will be used in this paper. In this paper, we essentially follow the terminology of [3], [9] and [10]. For example, for a topological space X we denote by $\mathbf{D}^{b}(X)$ the derived category whose objects are bounded complexes of sheaves of \mathbb{C}_{X}-modules on X. Denote by $\mathbf{D}_{c}^{b}(X)$ the full subcategory of $\mathbf{D}^{b}(X)$ consisting of constructible objects. Let $f(x)=\sum_{v \in \mathbb{Z}_{+}^{n}} a_{v} x^{v}$ be a polynomial on \mathbb{C}^{n} $\left(a_{v} \in \mathbb{C}\right)$.
Definition 2.1. 1. We call the convex hull of $\operatorname{supp}(f):=\left\{v \in \mathbb{Z}_{+}^{n} \mid a_{v} \neq 0\right\} \subset \mathbb{Z}_{+}^{n} \subset$ \mathbb{R}_{+}^{n} in \mathbb{R}^{n} the Newton polytope of f and denote it by $N P(f)$.
2. (see [13] etc.) We call the convex hull of $\{0\} \cup N P(f)$ in \mathbb{R}^{n} the Newton polyhedron at infinity of f and denote it by $\Gamma_{\infty}(f)$.
For an element $u \in \mathbb{R}^{n}$ of (the dual vector space of) \mathbb{R}^{n} define the supporting face $\gamma_{u} \prec \Gamma_{\infty}(f)$ of u in $\Gamma_{\infty}(f)$ by

$$
\begin{equation*}
\gamma_{u}=\left\{v \in \Gamma_{\infty}(f) \mid\langle u, v\rangle=\min _{w \in \Gamma_{\infty}(f)}\langle u, w\rangle\right\} . \tag{2.1}
\end{equation*}
$$

Then we introduce an equivalence relation \sim on (the dual vector space of) \mathbb{R}^{n} by $u \sim$ $u^{\prime} \Longleftrightarrow \gamma_{u}=\gamma_{u^{\prime}}$. We can easily see that for any face $\gamma \prec \Gamma_{\infty}(f)$ of $\Gamma_{\infty}(f)$ the closure of the equivalence class associated to γ in \mathbb{R}^{n} is an $(n-\operatorname{dim} \gamma)$-dimensional rational convex polyhedral cone $\sigma(\gamma)$ in \mathbb{R}^{n}. Moreover the family $\left\{\sigma(\gamma) \mid \gamma \prec \Gamma_{\infty}(f)\right\}$ of cones in \mathbb{R}^{n} thus obtained is a subdivision of \mathbb{R}^{n}. We call it the dual subdivision of \mathbb{R}^{n} by $\Gamma_{\infty}(f)$. If $\operatorname{dim} \Gamma_{\infty}(f)=n$ it satisfies the axiom of fans (see [6] and [21] etc.). We call it the dual fan of $\Gamma_{\infty}(f)$.

We have the following two classical definitions due to Kouchnirenko:
Definition $2.2\left([11)\right.$. Let $\partial f: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be the map defined by $\partial f(x)=$ $\left(\partial_{1} f(x), \ldots, \partial_{n} f(x)\right)$. Then we say that f is tame at infinity if the restriction $(\partial f)^{-1}(B(0 ; \varepsilon)) \longrightarrow B(0 ; \varepsilon)$ of ∂f to a sufficiently small ball $B(0 ; \varepsilon)$ centered at the origin $0 \in \mathbb{C}^{n}$ is proper.
Definition 2.3 ([1]). We say that the polynomial $f(x)=\sum_{v \in \mathbb{Z}_{+}^{n}} a_{v} x^{v}\left(a_{v} \in \mathbb{C}\right)$ is nondegenerate at infinity if for any face γ of $\Gamma_{\infty}(f)$ such that $0 \notin \gamma$ the complex hypersurface $\left\{x \in\left(\mathbb{C}^{*}\right)^{n} \mid f_{\gamma}(x)=0\right\}$ in $\left(\mathbb{C}^{*}\right)^{n}$ is smooth and reduced, where we defined the γ-part f_{γ} of f by $f_{\gamma}(x)=\sum_{v \in \gamma \cap \mathbb{Z}_{+}^{n}} a_{v} x^{v}$.

Broughton showed in [1] that if f is non-degenerate at infinity and convenient then it is tame at infinity. This implies that the reduced homology of the general fiber of f is concentrated in dimension $n-1$. The concentration result was later extended to polynomial functions with isolated singularities with respect to some fiber-compactifying extension of f by Siersma and Tibăr [24] and by Tibăr [27, Theorem 4.6, Corollary 4.7]. In this paper we mainly consider non-convenient polynomials.

Definition 2.4. ([26]) We say that a face $\gamma \prec \Gamma_{\infty}(f)$ is atypical if $0 \in \gamma, \operatorname{dim} \gamma \geq 1$ and the cone $\sigma(\gamma) \subset \mathbb{R}^{n}$ which corresponds it in the dual subdivision of $\Gamma_{\infty}(f)$ is not contained in the first quadrant \mathbb{R}_{+}^{n} of \mathbb{R}^{n}.

This definition is closely related to that of bad faces of $N P(f-f(0))$ in NémethiZaharia [19]. If $\Delta \prec N P(f-f(0))$ is a bad face of $N P(f-f(0))$, then the convex hull γ of $\{0\} \cup \Delta$ in \mathbb{R}^{n} is an atypical one of $\Gamma_{\infty}(f)$. Conversely, if $\gamma \prec \Gamma_{\infty}(f)$ is an atypical face and $\Delta=\gamma \cap N P(f-f(0)) \prec N P(f-f(0))$ satisfies the condition $\operatorname{dim} \Delta=\operatorname{dim} \gamma$ then Δ is a bad face of $N P(f-f(0))$.
EXAMPLE 2.5. Let $n=3$ and consider a non-convenient polynomial $f(x, y, z)$ on \mathbb{C}^{3} whose Newton polyhedron at infinity $\Gamma_{\infty}(f)$ is the convex hull of the points $(2,0,0),(2,2,0),(2,2,3) \in \mathbb{R}_{+}^{3}$ and the origin $0=(0,0,0) \in \mathbb{R}^{3}$. Then the line segment connecting the point $(2,2,0)$ and the origin $0 \in \mathbb{R}^{3}$ is an atypical face of $\Gamma_{\infty}(f)$. However the triangle whose vertices are the points $(2,0,0),(2,2,0)$ and the origin $0 \in \mathbb{R}^{3}$ is not so.

Next we introduce the notion of constructible functions.
Definition 2.6. Let X be an algebraic variety over \mathbb{C}. Then we say that a \mathbb{Z}-valued function $\psi: X \longrightarrow \mathbb{Z}$ on X is constructible if there exists a stratification $X=\bigsqcup_{\alpha} X_{\alpha}$ of X such that $\left.\psi\right|_{X_{\alpha}}$ is constant for any α. We denote by $F_{\mathbb{Z}}(X)$ the abelian group of constructible functions on X.

Let $\mathcal{F} \in \mathbf{D}_{c}^{b}(X)$ be a constructible sheaf (complex of sheaves) on an algebraic variety X over \mathbb{C}. Then we can naturally associate to it a constructible function $\chi(\mathcal{F}) \in F_{\mathbb{Z}}(X)$ on X defined by

$$
\begin{equation*}
\chi(\mathcal{F})(x)=\sum_{j \in \mathbb{Z}}(-1)^{j} \operatorname{dim} H^{j}(\mathcal{F})_{x} \quad(x \in X) \tag{2.2}
\end{equation*}
$$

For a constructible function $\psi: X \longrightarrow \mathbb{Z}$, we take a stratification $X=\bigsqcup_{\alpha} X_{\alpha}$ of X such that $\left.\psi\right|_{X_{\alpha}}$ is constant for any α as above. We denote the Euler characteristic of X_{α} by $\chi\left(X_{\alpha}\right)$. Then we set

$$
\begin{equation*}
\int_{X} \psi:=\sum_{\alpha} \chi\left(X_{\alpha}\right) \cdot \psi\left(x_{\alpha}\right) \in \mathbb{Z} \tag{2.3}
\end{equation*}
$$

where x_{α} is a reference point in X_{α}. Then we can easily show that $\int_{X} \psi \in \mathbb{Z}$ does not depend on the choice of the stratification $X=\bigsqcup_{\alpha} X_{\alpha}$ of X. Hence we obtain a homomorphism

$$
\begin{equation*}
\int_{X}: F_{\mathbb{Z}}(X) \longrightarrow \mathbb{Z} \tag{2.4}
\end{equation*}
$$

of abelian groups. For $\psi \in F_{\mathbb{Z}}(X)$, we call $\int_{X} \psi \in \mathbb{Z}$ the topological (Euler) integral of ψ over X. More generally, to a morphism $f: X \longrightarrow Y$ of algebraic varieties over \mathbb{C} we
can associate a homomorphism $\int_{f}: F_{\mathbb{Z}}(X) \longrightarrow F_{\mathbb{Z}}(Y)$ of abelian groups as follows. For $\psi \in F_{\mathbb{Z}}(X)$ we define $\int_{f} \psi \in F_{\mathbb{Z}}(Y)$ by

$$
\begin{equation*}
\left(\int_{f} \psi\right)(y)=\int_{f^{-1}(y)} \psi \in \mathbb{Z} \quad(y \in Y) . \tag{2.5}
\end{equation*}
$$

Then for any constructible sheaf $\mathcal{F} \in \mathbf{D}_{c}^{b}(X)$ on X we have the equality

$$
\begin{equation*}
\int_{f} \chi(\mathcal{F})=\chi\left(R f_{*}(\mathcal{F})\right) \tag{2.6}
\end{equation*}
$$

Now we recall the following well-known property of Deligne's vanishing cycle functors. Let X be an algebraic variety over \mathbb{C} and $f: X \longrightarrow \mathbb{C}$ a non-constant regular function on X and set $X_{0}=\{x \in X \mid f(x)=0\} \subset X$. Then we denote Deligne's vanishing cycle functor associated to f by

$$
\begin{equation*}
\varphi_{f}: \mathbf{D}_{c}^{b}(X) \longrightarrow \mathbf{D}_{c}^{b}\left(X_{0}\right) \tag{2.7}
\end{equation*}
$$

(see [3, Section 4.2] and [10, Section 8.6] etc. for the details).
Proposition 2.7. (cf. [3, Proposition 4.2.11] and [10, Exercise VIII.15] etc.) Let π : $Y \longrightarrow X$ be a proper morphism of algebraic varieties over \mathbb{C} and $f: X \longrightarrow \mathbb{C}$ a nonconstant regular function on X. Set $g=f \circ \pi: Y \longrightarrow \mathbb{C}, X_{0}=\{x \in X \mid f(x)=0\}$ and $Y_{0}=\{y \in Y \mid g(y)=0\}$. Then for any $\mathcal{G} \in \mathbf{D}_{c}^{b}(Y)$ we have an isomorphism

$$
\begin{equation*}
\varphi_{f}\left(R \pi_{*} \mathcal{G}\right) \simeq R\left(\left.\pi\right|_{Y_{0}}\right)_{*} \varphi_{g}(\mathcal{G}), \tag{2.8}
\end{equation*}
$$

where the morphism $\left.\pi\right|_{Y_{0}}: Y_{0} \longrightarrow X_{0}$ is induced by π.
The following lemma will be used in the proofs of our main theorems. Let τ be a strictly convex rational polyhedral cone in \mathbb{R}^{n} and Σ_{τ} the fan in \mathbb{R}^{n} formed by all its faces. Denote by $X_{\Sigma_{\tau}}$ the (n-dimensional) toric variety associated to Σ_{τ} (see [6] and [21] etc.).

Lemma 2.8. In the above situation, assume also that $\operatorname{dim} \tau \leq 3$. Then the constant sheaf $\mathbb{C}_{X_{\Sigma_{\tau}}}$ on $X_{\Sigma_{\tau}}$ is perverse (up to some shift).

Proof. If $\operatorname{dim} \tau \leq 2$, then $X_{\Sigma_{\tau}}$ is an orbifold (see [6] etc.) and the assertion follows from [9, Proposition 8.2.21]. Assume that $\operatorname{dim} \tau=3$. Let $T_{\tau} \subset X_{\Sigma_{\tau}}$ be the (minimal) T-orbit in $X_{\Sigma_{\tau}}$ associated to $\tau \in \Sigma_{\tau}$ and $i_{\tau}: T_{\tau} \hookrightarrow X_{\Sigma_{\tau}}, j_{\tau}: X_{\Sigma_{\tau}} \backslash T_{\tau} \hookrightarrow X_{\Sigma_{\tau}}$ the inclusion maps. Then by Fiesler [5, Theorems 1.1 and 1.2] we obtain

$$
H^{l} i_{\tau}^{-1} R\left(j_{\tau}\right)_{*} \mathbb{C}_{X_{\Sigma_{\tau}} \backslash T_{\tau}} \simeq\left\{\begin{array}{cl}
\mathbb{C}_{T_{\tau}} & (l=0) \tag{2.9}\\
0 & (l=1)
\end{array}\right.
$$

This implies that we have

$$
\begin{equation*}
H^{l} i_{\tau}^{!} \mathbb{C}_{X_{\Sigma_{\tau}}} \simeq 0 \quad\left(l \leq 3=\operatorname{codim} T_{\tau}\right) \tag{2.10}
\end{equation*}
$$

Then the assertion follows from [9, Proposition 8.1.22].

3 Bifurcation sets of polynomial functions

In this section we study the bifurcation points of polynomial functions. Let $f: \mathbb{C}^{n} \longrightarrow \mathbb{C}$ be a polynomial function. Assume that f is non-degenerate at infinity and $\operatorname{dim} \Gamma_{\infty}(f)=n$. Let Σ_{0} be the dual fan of $\Gamma_{\infty}(f)$. Let $\gamma_{1}, \ldots, \gamma_{m}$ be the atypical faces of $\Gamma_{\infty}(f)$. For $1 \leq i \leq m$ let $K_{i} \subset \mathbb{C}$ be the set of the critical values of the γ_{i}-part

$$
\begin{equation*}
f_{\gamma_{i}}: T=\left(\mathbb{C}^{*}\right)^{n} \longrightarrow \mathbb{C} \tag{3.1}
\end{equation*}
$$

of f. We denote by $\operatorname{Sing} f \subset \mathbb{C}^{n}$ the set of the critical points of $f: \mathbb{C}^{n} \longrightarrow \mathbb{C}$ and set

$$
\begin{equation*}
K_{f}=f(\operatorname{Sing} f) \cup\{f(0)\} \cup\left(\cup_{i=1}^{m} K_{i}\right) \tag{3.2}
\end{equation*}
$$

Then the following result was obtained by Némethi-Zaharia [19].
Theorem 3.1. (Némethi-Zaharia [19]) In the situation above, we have $B_{f} \subset K_{f}$.
Remark 3.2. If for an atypical face γ_{i} of $\Gamma_{\infty}(f)$ the face $\Delta=\gamma_{i} \cap N P(f-f(0)) \prec$ $N P(f-f(0))$ of $N P(f-f(0))$ is not bad in the sense of Némethi-Zaharia [19], then $\operatorname{dim} N P\left(f_{\gamma_{i}}-f(0)\right)=\operatorname{dim} \Delta<\operatorname{dim} \gamma_{i}, f_{\gamma_{i}}-f(0)$ is a positively homogeneous Laurent polynomial on $T=\left(\mathbb{C}^{*}\right)^{n}$ and we have $K_{i}=\{f(0)\}$. Therefore the above inclusion $B_{f} \subset K_{f}$ coincides with the one in [19].

Moreover the authors of [19] proved the equality $B_{f}=K_{f}$ for $n=2$ and conjectured its validity in higher dimensions. Later Zaharia [30] proved it for any $n \geq 2$ but under some supplementary assumptions on f. We can improve his result as follows. For $1 \leq i \leq m$ let $L_{\gamma_{i}} \simeq \mathbb{R}^{\operatorname{dim} \gamma_{i}}$ be the linear subspace of \mathbb{R}^{n} spanned by γ_{i} and set $T_{i}=\operatorname{Spec}\left(\mathbb{C}\left[L_{\gamma_{i}} \cap \mathbb{Z}^{n}\right]\right) \simeq$ $\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \gamma_{i}}$. We regard $f_{\gamma_{i}}$ as a regular function on T_{i}.

Definition 3.3. We say that f has isolated singularities at infinity over $b \in K_{f} \backslash$ $[f(\operatorname{Sing} f) \cup\{f(0)\}]$ if for any $1 \leq i \leq m$ the hypersurface $f_{\gamma_{i}}^{-1}(b) \subset T_{i} \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \gamma_{i}}$ in T_{i} has only isolated singular points.

Definition 3.4. We say that a face $\gamma \prec \Gamma_{\infty}(f)$ is relatively simple if the cone $\sigma(\gamma) \subset \mathbb{R}^{n}$ which corresponds to it in the dual fan of $\Gamma_{\infty}(f)$ is simplicial or satisfies the condition $\operatorname{dim} \sigma(\gamma) \leq 3$.

Theorem 3.5. Assume that f has isolated singularities at infinity over $b \in K_{f} \backslash$ $[f(\operatorname{Sing} f) \cup\{f(0)\}]$ and for any $1 \leq i \leq m$ such that $b \in K_{i}$ the relative interior rel.int $\left(\gamma_{i}\right)$ of $\gamma_{i} \prec \Gamma_{\infty}(f)$ is contained in $\operatorname{Int}\left(\mathbb{R}_{+}^{n}\right)$. Assume also that there exists $1 \leq i \leq m$ such that $b \in K_{i}$ and $\gamma_{i} \prec \Gamma_{\infty}(f)$ is relatively simple. Then we have $E_{f}(b)>0$ and hence $b \in B_{f}$.

Proof. By our assumption, for any $1 \leq i \leq m$ the hypersurface $f_{\gamma_{i}}^{-1}(b) \subset T_{i} \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \gamma_{i}}$ in T_{i} has only isolated singular points at $p_{i, 1}, \ldots, p_{i, n_{i}}$. Here some n_{i} can be zero. Obviously we have $n_{i}>0$ if and only if $b \in K_{i}$. First we recall the construction of a smooth toric compactification of \mathbb{C}^{n} in [30]. Let Σ be a smooth fan obtained by subdividing Σ_{0} such that $\mathbb{R}_{+}^{n} \in \Sigma$. Then the toric variety X_{Σ} associated to it is a smooth compactification of \mathbb{C}^{n}. Recall that the algebraic torus $T=\left(\mathbb{C}^{*}\right)^{n}$ acts on X_{Σ} and its orbits are parametrized by the cones in Σ. For a cone $\sigma \in \Sigma$ let $T_{\sigma} \simeq\left(\mathbb{C}^{*}\right)^{n-\operatorname{dim} \sigma} \subset X_{\Sigma}$ be the T-orbit in X_{Σ} which corresponds to it. Moreover we denote by $\gamma_{\sigma} \prec \Gamma_{\infty}(f)$ the face of $\Gamma_{\infty}(f)$ which
corresponds to the minimal cone in Σ_{0} containing σ. Then we say that a cone $\sigma \in \Sigma$ is at infinity if $0 \notin \gamma_{\sigma}$. Let $\operatorname{Cone}_{\infty}(f) \subset \mathbb{R}_{v}^{n}$ be the cone generated by $\Gamma_{\infty}(f)$. We define its dual cone $C \subset \mathbb{R}_{u}^{n}$ by

$$
\begin{equation*}
C=\left\{u \in \mathbb{R}^{n} \mid\langle u, v\rangle \geq 0 \text { for any } v \in \operatorname{Cone}_{\infty}(f)\right\} . \tag{3.3}
\end{equation*}
$$

Then $\sigma \in \Sigma$ is at infinity if and only if it is not contained in C. Let $\rho_{1}, \ldots, \rho_{r} \in \Sigma$ be the one-dimensional cones at infinity in Σ. Then f extends to a meromorphic function on X_{Σ} whose poles are contained in the normal crossing divisor $D=\cup_{i=1}^{r} \overline{T_{\rho_{i}}} \subset X_{\Sigma}$. By the nondegeneracy at infinity of f the closure $\overline{f^{-1}(0)}$ of $f^{-1}(0)$ in X_{Σ} intersects $\overline{T_{\rho_{i}}}$ transversally for any $1 \leq i \leq r$. We can easily see that the meromorphic extension of f to X_{Σ} has points of indeterminacy in the subvariety $D \cap \overline{f^{-1}(0)}$ of X_{Σ} of codimension two. Then as in [15], [17] and [26], by constructing a blow-up $\widetilde{X_{\Sigma}} \longrightarrow X_{\Sigma}$ of X_{Σ} we can eliminate this indeterminacy and obtain a commutative diagram:

of holomorphic maps, where $\iota: \mathbb{C}^{n} \hookrightarrow \widetilde{X_{\Sigma}}$ and $j: \mathbb{C} \hookrightarrow \mathbb{P}^{1}$ are the inclusion maps and g is proper. From now we shall prove that the jump $E_{f}(b) \in \mathbb{Z}$ of the constructible function on \mathbb{C}

$$
\begin{equation*}
\chi_{c}(a)=\sum_{j \in \mathbb{Z}}(-1)^{j} \operatorname{dim} H_{c}^{j}\left(f^{-1}(a) ; \mathbb{C}\right) \quad(a \in \mathbb{C}) \tag{3.5}
\end{equation*}
$$

at the point $b \in K_{f} \backslash[f(\operatorname{Sing} f) \cup\{f(0)\}]$ is positive. Let $h(a)=a-b(a \in \mathbb{C})$ be the coordinate of \mathbb{C} such that $h^{-1}(0)=\{b\}$. Then we have

$$
\begin{equation*}
E_{f}(b)=(-1)^{n-1} \sum_{j \in \mathbb{Z}}(-1)^{j} \operatorname{dim} H^{j} \varphi_{h}\left(R f_{!} \mathbb{C}_{\mathbb{C}^{n}}\right)_{b} \tag{3.6}
\end{equation*}
$$

where $\varphi_{h}: \mathbf{D}_{c}^{b}(\mathbb{C}) \longrightarrow \mathbf{D}_{c}^{b}(\{b\})$ is Deligne's vanishing cycle functor associated to h. Since we have $f=g \circ \iota$ on a neighborhood of $b \in K_{f} \backslash[f(\operatorname{Sing} f) \cup\{f(0)\}]$ and g is proper, by Proposition 2.7 we obtain an isomorphism

$$
\begin{equation*}
\varphi_{h}\left(R f_{!} \mathbb{C}_{\mathbb{C}^{n}}\right) \simeq R\left(\left.g\right|_{g^{-1}(b)}\right)_{*} \varphi_{h \circ g}\left(\iota!\mathbb{C}_{\mathbb{C}^{n}}\right) . \tag{3.7}
\end{equation*}
$$

This implies that for the constructible function $\chi\left\{\varphi_{h \circ g}\left(\iota_{!} \mathbb{C}_{\mathbb{C}^{n}}\right)\right\} \in F_{\mathbb{Z}}\left(g^{-1}(b)\right)$ on $g^{-1}(b)=$ $(h \circ g)^{-1}(0) \subset \widetilde{X_{\Sigma}}$ we have

$$
\begin{equation*}
\sum_{j \in \mathbb{Z}}(-1)^{j} \operatorname{dim} H^{j} \varphi_{h}\left(R f_{!} \mathbb{C}_{\mathbb{C}^{n}}\right)_{b}=\int_{g^{-1}(b)} \chi\left\{\varphi_{h \circ g}\left(\iota!\mathbb{C}_{\mathbb{C}^{n}}\right)\right\} \tag{3.8}
\end{equation*}
$$

Hence for the calculation of $E_{f}(b)$, it suffices to calculate

$$
\begin{equation*}
\chi\left\{\varphi_{h \circ g}\left(\iota!\mathbb{C}_{\mathbb{C}^{n}}\right)\right\}(p)=\sum_{j \in \mathbb{Z}}(-1)^{j} \operatorname{dim} H^{j} \varphi_{h \circ g}\left(\iota!\mathbb{C}_{\mathbb{C}^{n}}\right)_{p} \tag{3.9}
\end{equation*}
$$

at each point p of $g^{-1}(b)$. Let $\Sigma_{C}\left(\right.$ resp. $\left.\Sigma_{C}^{\prime}\right)$ be the fan formed by all the faces of the cone C (resp. by all the cones in Σ contained in C) and denote by $X_{\Sigma_{C}}$ (resp. $X_{\Sigma_{C}^{\prime}}$) the possibly singular (resp. smooth) toric variety associated to it. Then $X:=X_{\Sigma_{C}^{\prime}}=\sqcup_{\sigma \subset C} T_{\sigma}$ is an open subset of X_{Σ} and there exists a natural proper morphism

$$
\begin{equation*}
\pi: X=X_{\Sigma_{C}^{\prime}} \longrightarrow X_{\Sigma_{C}} \tag{3.10}
\end{equation*}
$$

of toric varieties. Since the Newton polytope $N P(f)$ of f is contained in the dual cone $C^{\circ}=\operatorname{Cone}_{\infty}(f)$ of C and

$$
\begin{equation*}
X_{\Sigma_{C}}=\operatorname{Spec}\left(\mathbb{C}\left[C^{\circ} \cap \mathbb{Z}^{n}\right]\right) \tag{3.11}
\end{equation*}
$$

we can naturally regard f as regular functions on $X_{\Sigma_{C}}$ and $X=X_{\Sigma_{C}^{\prime}}$. This implies that $X=X_{\Sigma_{C}^{\prime}}$ is an open subset of $g^{-1}(\mathbb{C}) \cap \widetilde{X_{\Sigma}}$. In particular, if $\sigma \in \Sigma_{C}^{\prime}$ is not contained in \mathbb{R}_{+}^{n} then $T_{\sigma} \subset X \backslash \mathbb{C}^{n}$ and f extends holomorphically to T_{σ}. Namely T_{σ} is a horizontal T-orbit in $X \backslash \mathbb{C}^{n}$. By our assumption and the results of [13], [15], [26] and [30] etc. we can also see that the support of the constructible sheaf $\varphi_{h \circ g}\left(\iota!\mathbb{C}_{\mathbb{C}^{n}}\right) \in \mathbf{D}_{c}^{b}\left(g^{-1}(b)\right)$ is contained in $\left(X \backslash \mathbb{C}^{n}\right) \cap g^{-1}(b)$. We thus obtain an equality

$$
\begin{equation*}
E_{f}(b)=(-1)^{n-1} \int_{\left(X \backslash \mathbb{C}^{n}\right) \cap g^{-1}(b)} \chi\left\{\varphi_{h \circ g}\left(\iota!\mathbb{C}_{\mathbb{C}^{n}}\right)\right\} \tag{3.12}
\end{equation*}
$$

Namely, for the calculation of $E_{f}(b)$ it suffices to calculate the constructible function $\chi\left\{\varphi_{h \circ g}\left(\iota!\mathbb{C}_{\mathbb{C}^{n}}\right)\right\}$ only on T-orbits in $X \backslash \mathbb{C}^{n}$ associated to the cones $\sigma \in \Sigma_{C}^{\prime} \subset \Sigma$ such that rel.int $(\sigma) \subset C \backslash \mathbb{R}_{+}^{n}$. For $\sigma \in \Sigma_{C}^{\prime} \subset \Sigma$ such that rel.int $(\sigma) \subset \operatorname{Int}(C) \backslash \mathbb{R}_{+}^{n}$ we have $\gamma_{\sigma}=$ $\{0\} \prec \Gamma_{\infty}(f)$ and the restriction of $\left.g\right|_{X}: X \longrightarrow \mathbb{C}$ to the T-orbit $T_{\sigma} \subset X$ is the constant function $f(0) \in \mathbb{C}$. Hence we get $g^{-1}(b) \cap T_{\sigma}=\emptyset$ for the point $b \in K_{f} \backslash[f(\operatorname{Sing} f) \cup\{f(0)\}]$. For $1 \leq i \leq m$ let $\sigma_{i}:=\sigma\left(\gamma_{i}\right) \in \Sigma_{0}$ be the cone which corresponds to γ_{i} in the dual fan Σ_{0} of $\Gamma_{\infty}(f)$. Recall that by the definition of atypical faces we have $0 \in \gamma_{i}$ and the face $\sigma_{i} \prec C$ of C is not contained in \mathbb{R}_{+}^{n}. For $\sigma \in \Sigma_{C}^{\prime} \subset \Sigma$ such that rel.int $(\sigma) \subset \partial C \backslash \mathbb{R}_{+}^{n}$ there exists unique $1 \leq i \leq m$ for which we have rel.int $(\sigma) \subset \operatorname{rel} . \operatorname{int}\left(\sigma_{i}\right)$. If $\operatorname{dim} \sigma=\operatorname{dim} \sigma_{i}$ we have an isomorphism $T_{\sigma} \simeq T_{i}=\operatorname{Spec}\left(\mathbb{C}\left[L_{\gamma_{i}} \cap \mathbb{Z}^{n}\right]\right) \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \gamma_{i}}$ and the restriction of $\left.g\right|_{X}: X \longrightarrow \mathbb{C}$ to $T_{\sigma} \subset X$ is naturally identified with $f_{\gamma_{i}}: T_{i} \longrightarrow \mathbb{C}$. This implies that the hypersurface $g^{-1}(b) \cap T_{\sigma} \subset T_{\sigma} \simeq T_{i}$ has only isolated singular points $p_{i, 1}, \ldots, p_{i, n_{i}} \in T_{\sigma} \simeq T_{i}$ and

$$
\begin{equation*}
T_{\sigma} \cap \operatorname{supp} \varphi_{h \circ g}\left(\iota!\mathbb{C}_{\mathbb{C}^{n}}\right) \subset\left\{p_{i, 1}, \ldots, p_{i, n_{i}}\right\} \tag{3.13}
\end{equation*}
$$

in this case. On the other hand, if $\operatorname{dim} \sigma<\operatorname{dim} \sigma_{i}$ we have $\operatorname{dim} T_{\sigma}>\operatorname{dim} T_{i}$ and for the hypersurface $g^{-1}(b) \cap T_{\sigma} \subset T_{\sigma}$ there exists an isomorphism

$$
\begin{equation*}
g^{-1}(b) \cap T_{\sigma} \simeq f_{\gamma_{i}}^{-1}(b) \times\left(\mathbb{C}^{*}\right)^{\operatorname{dim} T_{\sigma}-\operatorname{dim} T_{i}} . \tag{3.14}
\end{equation*}
$$

This implies that $g^{-1}(b) \cap T_{\sigma} \subset T_{\sigma}$ has non-isolated singular points if $n_{i}>0$. From now on, we shall overcome this difficulty by using Proposition 2.7. For $1 \leq i \leq m$ let Σ_{i} be the fan in \mathbb{R}^{n} formed by all the faces of σ_{i} and denote by $X_{\Sigma_{i}}$ the (possibly singular) toric variety associated to it. Then $X_{\Sigma_{i}}$ is an open subset of $X_{\Sigma_{C}}$. Let $\sigma_{i}^{\circ} \subset \mathbb{R}^{n}$ be the dual cone of σ_{i} in \mathbb{R}^{n}. Then $\sigma_{i}^{\circ} \simeq C_{i} \times \mathbb{R}^{\operatorname{dim} \gamma_{i}}$ for a proper convex cone C_{i} in $\mathbb{R}^{n-\operatorname{dim} \gamma_{i}}$ and we have an isomorphism

$$
\begin{equation*}
X_{\Sigma_{i}} \simeq \operatorname{Spec}\left(\mathbb{C}\left[\sigma_{i}^{\circ} \cap \mathbb{Z}^{n}\right]\right) \tag{3.15}
\end{equation*}
$$

Note that the (minimal) T-orbit $T_{\sigma_{i}}$ in $X_{\Sigma_{i}}$ which corresponds to $\sigma_{i} \in \Sigma_{i}$ is naturally identified with $T_{i}=\operatorname{Spec}\left(\mathbb{C}\left[L_{\gamma_{i}} \cap \mathbb{Z}^{n}\right]\right) \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \gamma_{i}}$. More precisely $X_{\Sigma_{i}}$ is the product $X_{i} \times T_{\sigma_{i}}$ of the $\left(n-\operatorname{dim} \gamma_{i}\right)$-dimensional affine toric variety $X_{i}=\operatorname{Spec}\left(\mathbb{C}\left[C_{i} \cap \mathbb{Z}^{n-\operatorname{dim} \gamma_{i}}\right]\right)$ and $T_{\sigma_{i}} \simeq T_{i} \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \gamma_{i}}$. Since $N P(f) \subset \sigma_{i}^{\circ}$ and $f \in \mathbb{C}\left[\sigma_{i}^{\circ} \cap \mathbb{Z}^{n}\right]$, we can naturally regard f as a regular function on $X_{\Sigma_{i}}$. We denote it by $f_{i}: X_{\Sigma_{i}} \longrightarrow \mathbb{C}$. For $1 \leq i \leq m$ let $\Sigma_{i}^{\prime} \subset \Sigma$ be the subfan of Σ consisting of the cones in Σ contained in σ_{i} and denote by $X_{\Sigma_{i}^{\prime}}$ the smooth toric variety associated to it. Then $X_{\Sigma_{i}^{\prime}}$ is an open subset of $X \subset \widetilde{X_{\Sigma}}$ and there exists a proper morphism

$$
\begin{equation*}
\pi_{i}: X_{\Sigma_{i}^{\prime}} \longrightarrow X_{\Sigma_{i}} \tag{3.16}
\end{equation*}
$$

of toric varieties. Moreover we have a commutative diagram

such that $\pi^{-1} X_{\Sigma_{i}}=X_{\Sigma_{i}^{\prime}} \subset X$, where the horizontal arrows are the inclusion maps. It is also easy to see that the closed subset $\left(X \backslash \mathbb{C}^{n}\right) \cap g^{-1}(b)$ of X is covered by the affine open subvarieties $X_{\Sigma_{1}^{\prime}}, \ldots, X_{\Sigma_{m}^{\prime}} \subset X$. Note that for the restriction $g_{i}=\left.g\right|_{X_{\Sigma_{i}^{\prime}}}: X_{\Sigma_{i}^{\prime}} \longrightarrow \mathbb{C}$ of $\left.g\right|_{X}$ we have $g_{i}=f_{i} \circ \pi_{i}$. Then by applying Proposition 2.7 to the proper morphism $\pi_{i}: X_{\Sigma_{i}^{\prime}} \longrightarrow X_{\Sigma_{i}}$ we obtain an isomorphism

$$
\begin{equation*}
R\left(\left.\pi_{i}\right|_{g_{i}^{-1}(b)}\right)_{*} \varphi_{h \circ g_{i}}\left(\left.\iota!\mathbb{C}_{\mathbb{C}^{n}}\right|_{X_{\Sigma_{i}^{\prime}}}\right) \simeq \varphi_{h \circ f_{i}}\left\{R\left(\pi_{i}\right)_{*}\left(\left.\iota!\mathbb{C}_{\mathbb{C}^{n}}\right|_{X_{\Sigma_{i}^{\prime}}}\right)\right\} . \tag{3.18}
\end{equation*}
$$

The advantage to consider $\varphi_{h \circ f_{i}}\left\{R\left(\pi_{i}\right)_{*}\left(\left.\iota!\mathbb{C}_{\mathbb{C}^{n}}\right|_{X_{\Sigma_{i}^{\prime}}}\right)\right\}$ instead of $\varphi_{h \circ g_{i}}\left(\left.\iota!\mathbb{C}_{\mathbb{C}^{n}}\right|_{X_{\Sigma_{i}^{\prime}}}\right)$ is that its support is a discrete subset of $f_{i}^{-1}(b) \subset X_{\Sigma_{i}} \subset X_{\Sigma_{C}}$ by our assumption that f has isolated singularities at infinity over $b \in K_{f} \backslash[f(\operatorname{Sing} f) \cup\{f(0)\}]$. Set

$$
\begin{equation*}
\mathcal{F}_{i}=R\left(\pi_{i}\right)_{*}\left(\left.\iota!\mathbb{C}_{\mathbb{C}^{n}}\right|_{X_{\Sigma_{i}^{\prime}}}\right) \simeq R\left(\pi_{i}\right)!\mathbb{C}_{\mathbb{C}^{n} \cap X_{\Sigma_{i}^{\prime}}} \in \mathbf{D}_{c}^{b}\left(X_{\Sigma_{i}}\right) \tag{3.19}
\end{equation*}
$$

Then the topological integral

$$
\begin{equation*}
\int_{g^{-1}(b)} \chi\left\{\varphi_{h \circ g}\left(\iota!\mathbb{C}_{\mathbb{C}^{n}}\right)\right\}=\int_{\left(X \backslash \mathbb{C}^{n}\right) \cap g^{-1}(b)} \chi\left\{\varphi_{h \circ g}\left(\iota!\mathbb{C}_{\mathbb{C}^{n}}\right)\right\} \tag{3.20}
\end{equation*}
$$

is equal to

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{j=1}^{n_{i}} \chi\left\{\varphi_{h \circ f_{i}}\left(\mathcal{F}_{i}\right)_{p_{i, j}}\right\} \tag{3.21}
\end{equation*}
$$

If $b \notin K_{i}\left(\Longleftrightarrow n_{i}=0\right)$ we have $\varphi_{h \circ f_{i}}\left(\mathcal{F}_{i}\right) \simeq 0$ on a neighborhood of $T_{\sigma_{i}} \subset X_{\Sigma_{i}}$. Let us consider the remaining case where $b \in K_{i}\left(\Longleftrightarrow n_{i}>0\right)$. Then by our assumption rel.int $\left(\gamma_{i}\right) \subset \operatorname{Int}\left(\mathbb{R}_{+}^{n}\right)$ we have $\sigma_{i} \cap \mathbb{R}_{+}^{n}=\{0\}$. This implies that for the embedding $\iota_{i}: T=\left(\mathbb{C}^{*}\right)^{n} \hookrightarrow X_{\Sigma_{i}}$ there exists an isomorphism $\mathcal{F}_{i} \simeq\left(\iota_{i}\right)!\mathbb{C}_{T}$. Hence \mathcal{F}_{i} is a perverse sheaf on $X_{\Sigma_{i}}$ (up to some shift). Since the support of $\varphi_{h \circ f_{i}}\left(\mathcal{F}_{i}\right)$ is discrete, by (the proof of) [3, Proposition 6.1.1] we thus obtain the concentration

$$
\begin{equation*}
H^{l} \varphi_{h \circ f_{i}}\left(\mathcal{F}_{i}\right)_{p_{i, j}} \simeq 0 \quad(l \neq n-1) \tag{3.22}
\end{equation*}
$$

for any $1 \leq j \leq n_{i}$. Set $\mu_{i, j}=\operatorname{dim} H^{n-1} \varphi_{h \circ f_{i}}\left(\mathcal{F}_{i}\right)_{p_{i, j}} \geq 0$. Then $E_{f}(b)$ can be expressed as a sum of non-negative integers as follows:

$$
\begin{equation*}
E_{f}(b)=(-1)^{n-1} \int_{\left(X \backslash \mathbb{C}^{n}\right) \cap g^{-1}(b)} \chi\left\{\varphi_{h \circ g}\left(\iota \mathbb{C}_{\mathbb{C}^{n}}\right)\right\}=\sum_{i=1}^{m} \sum_{j=1}^{n_{i}} \mu_{i, j} \tag{3.23}
\end{equation*}
$$

By our assumption there exists $1 \leq i \leq m$ such that $n_{i}>0\left(\Longleftrightarrow b \in K_{i}\right)$ and $\gamma_{i} \prec \Gamma_{\infty}(f)$ is relatively simple. Then the cone $\sigma_{i} \in \Sigma_{0}$ satisfies the condition $\sigma_{i} \cap \mathbb{R}_{+}^{n}=\{0\}$. For a face $\tau \prec \sigma_{i}$ of σ_{i} we set $Y_{\tau}=\overline{T_{\tau}} \subset X_{\Sigma_{i}}$ and $f_{\tau}=\left.f_{i}\right|_{Y_{\tau}}: Y_{\tau} \longrightarrow \mathbb{C}$. Note that we have $T_{\sigma_{i}}=Y_{\sigma_{i}}$. Then for any $1 \leq j \leq n_{i}$ we can easily show that $(-1)^{n-1} \mu_{i, j}=$ $\chi\left\{\varphi_{h \circ f_{i}}\left(\mathcal{F}_{i}\right)_{p_{i, j}}\right\}=\chi\left\{\varphi_{h \circ f_{i}}\left(\left(\iota_{i}\right)!\mathbb{C}_{T}\right)_{p_{i, j}}\right\}$ is equal to the alternating sum

$$
\begin{equation*}
\sum_{\tau \prec \sigma_{i}}(-1)^{\operatorname{dim} \tau} \chi\left\{\varphi_{h \circ f_{\tau}}\left(\mathbb{C}_{Y_{\tau}}\right)_{p_{i, j}}\right\} . \tag{3.24}
\end{equation*}
$$

Since γ_{i} is relatively simple, by Lemma 2.8 for any face $\tau \prec \sigma_{i}$ of σ_{i} the constant sheaf $\mathbb{C}_{Y_{\tau}}$ on Y_{τ} is perverse (up to some shift). Moreover by our assumption that f has isolated singularities at infinity over $b \in K_{f} \backslash[f(\operatorname{Sing} f) \cup\{f(0)\}]$, the support of $\varphi_{h \circ f_{\tau}}\left(\mathbb{C}_{Y_{\tau}}\right)$ is discrete on a neighborhood of $T_{\sigma_{i}} \subset X_{\Sigma_{i}}$. By (the proof of) [3, Proposition 6.1.1] we thus obtain the concentration

$$
\begin{equation*}
H^{l} \varphi_{h \circ f_{\tau}}\left(\mathbb{C}_{Y_{\tau}}\right)_{p_{i, j}} \simeq 0 \quad\left(l \neq \operatorname{dim} Y_{\tau}-1=n-\operatorname{dim} \tau-1\right) \tag{3.25}
\end{equation*}
$$

for any $1 \leq j \leq n_{i}$ and $\tau \prec \sigma_{i}$. Set

$$
\begin{equation*}
\mu_{i, j, \tau}=\operatorname{dim} H^{n-\operatorname{dim} \tau-1} \varphi_{h \circ f_{\tau}}\left(\mathbb{C}_{Y_{\tau}}\right)_{p_{i, j}} \geq 0 \tag{3.26}
\end{equation*}
$$

Then $\mu_{i, j}=(-1)^{n-1} \chi\left\{\varphi_{h \circ f_{i}}\left(\mathcal{F}_{i}\right)_{p_{i, j}}\right\} \geq 0$ is expressed as a sum of non-negative integers as follows:

$$
\begin{equation*}
\mu_{i, j}=\sum_{\tau \prec \sigma_{i}} \mu_{i, j, \tau} \geq 0 . \tag{3.27}
\end{equation*}
$$

Moreover the integer $\mu_{i, j, \sigma_{i}}$ is positive by the smoothness of $T_{\sigma_{i}}=Y_{\sigma_{i}}$. Consequently we get $E_{f}(b)>0$. This completes the proof.

In the generic (Newton non-degenerate) case, for any $1 \leq i \leq m$ and $1 \leq j \leq n_{i}$ we can explicitly calculate the above integer $\mu_{i, j} \geq 0$ by [14, Theorem 3.4, Corollary 3.6 and Remark 4.3] as follows. First by multiplying a monomial on $T_{\sigma_{i}} \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \gamma_{i}}$ to f_{i} we may assume that f_{i} is a regular function on $X_{i} \times \mathbb{C}^{\operatorname{dim} \gamma_{i}}$. Next by a translation in $\mathbb{C}^{\operatorname{dim} \gamma_{i}}$ we reduce the problem to the case $p_{i, j}=0 \in \mathbb{C}^{\operatorname{dim} \gamma_{i}}$. Then we can apply [14, Theorem 3.4 and Corollary 3.6] to $\varphi_{h \circ f_{i}}\left(\mathcal{F}_{i}\right)_{p_{i, j}} \simeq \psi_{h \circ f_{i}}\left(\mathcal{F}_{i}\right)_{p_{i, j}}$ if $f_{i}:\left(X_{i} \times \mathbb{C}^{\operatorname{dim} \gamma_{i}}, 0\right) \longrightarrow(\mathbb{C}, 0)$ is Newton non-degenerate at $p_{i, j}=0 \in \mathbb{C}^{\operatorname{dim} \gamma_{i}}$. In this way, even if σ_{i} is not simplicial we can express the integer $\mu_{i, j} \geq 0$ as an alternating sum of the normalized volumes of polytopes in $\mathbb{R}_{+}^{n} \backslash \Gamma_{+}(f)_{i, j}$, where $\Gamma_{+}(f)_{i, j} \subset \mathbb{R}_{+}^{n}$ is the (local) Newton polyhedron of f_{i} at $p_{i, j}$. See [14, Corollary 3.6] for the details. We conjecture that it is positive in our situation. In the case where $n=3$ we have the following stronger result.

Theorem 3.6. Assume that $n=3$ and f has isolated singularities at infinity over $b \in$ $K_{f} \backslash[f(\operatorname{Sing} f) \cup\{f(0)\}]$. Then we have $E_{f}(b)>0$ and hence $b \in B_{f}$.

Proof. The proof is similar to that of Theorem 3.5. We shall use the notations in it. For any $1 \leq i \leq m$ the dimension of the atypical face $\gamma_{i} \prec \Gamma_{\infty}(f)$ is 1 or 2 . If $\operatorname{dim} \gamma_{i}=2$ and $n_{i}>0$ we have $\chi\left\{\varphi_{h \circ f_{i}}\left(\mathcal{F}_{i}\right)_{p_{i, j}}\right\}>0$ for any $1 \leq j \leq n_{i}$ by the result of Zaharia [30]. If $\operatorname{dim} \gamma_{i}=1$ and $n_{i}>0$ the two-dimensional cone σ_{i} is simplicial but $\sigma_{i} \cap \mathbb{R}_{+}^{3}$ can be bigger than $\{0\}$. Nevertheless we can show the positivity $\chi\left\{\varphi_{h_{\circ} f_{i}}\left(\mathcal{F}_{i}\right)_{p_{i, j}}\right\}>0$ for any $1 \leq j \leq n_{i}$ by calculating $\mathcal{F}_{i} \in \mathbf{D}_{c}^{b}\left(X_{\Sigma_{i}}\right)$ very explicitly depending on how σ_{i} intersects \mathbb{R}_{+}^{3}. First we consider the case where $\operatorname{dim} \sigma_{i}=2, \operatorname{dim} \sigma_{i} \cap \mathbb{R}_{+}^{3}=1$ and rel.int $\left(\sigma_{i} \cap \mathbb{R}_{+}^{3}\right) \subset \operatorname{rel} . \operatorname{int}\left(\sigma_{i}\right)$. Then for any point $q \in T_{\sigma_{i}} \subset X_{\Sigma_{i}}$ its fiber of the map

$$
\begin{equation*}
\left.\pi_{i}\right|_{\mathbb{C}^{3} \cap X_{\Sigma_{i}^{\prime}}}: \mathbb{C}^{3} \cap X_{\Sigma_{i}^{\prime}} \longrightarrow X_{\Sigma_{i}} \tag{3.28}
\end{equation*}
$$

is isomorphic to \mathbb{C}^{*}. For its cohomology groups with compact support $H_{c}^{l}\left(\mathbb{C}^{*} ; \mathbb{C}\right)(l \in \mathbb{Z})$ we have

$$
H_{c}^{l}\left(\mathbb{C}^{*} ; \mathbb{C}\right) \simeq\left\{\begin{align*}
\mathbb{C} & (l=1,2) \tag{3.29}\\
0 & (l \neq 1,2)
\end{align*}\right.
$$

Hence for the point $q \in T_{\sigma_{i}}$ we have

$$
H^{l}\left(\mathcal{F}_{i}\right)_{q} \simeq\left\{\begin{align*}
\mathbb{C} & (l=1,2) \tag{3.30}\\
0 & (l \neq 1,2)
\end{align*}\right.
$$

and $\chi\left(\mathcal{F}_{i}\right)(q)=0$. Since the two one-dimensional faces $\rho_{i, 1}, \rho_{i, 2}$ of σ_{i} are not contained in \mathbb{R}_{+}^{3} there exists also an isomorphism

$$
\begin{equation*}
\left.\left.\mathcal{F}_{i}\right|_{X_{\Sigma_{i}} \backslash T_{\sigma_{i}}} \simeq\left(\iota_{i}\right)!\mathbb{C}_{T}\right|_{X_{\Sigma_{i}} \backslash T_{\sigma_{i}}}=\left.\mathbb{C}_{T}\right|_{X_{\Sigma_{i}} \backslash T_{\sigma_{i}}} \tag{3.31}
\end{equation*}
$$

It follows from (3.30) and (3.31) we have an equality

$$
\begin{equation*}
\chi\left\{\varphi_{h \circ f_{i}}\left(\mathcal{F}_{i}\right)_{p_{i, j}}\right\}=\chi\left\{\varphi_{h \circ f_{i}}\left(\left(\iota_{i}\right)!\mathbb{C}_{T}\right)_{p_{i, j}}\right\}=\chi\left\{\varphi_{h \circ f_{i}}\left(\mathbb{C}_{T}\right)_{p_{i, j}}\right\} \tag{3.32}
\end{equation*}
$$

for any $1 \leq j \leq n_{i}$. Then for any $1 \leq j \leq n_{i}$ we obtain the positivity

$$
\begin{equation*}
\chi\left\{\varphi_{h \circ f_{i}}\left(\mathcal{F}_{i}\right)_{p_{i, j}}\right\}=\chi\left\{\varphi_{h \circ f_{i}}\left(\mathbb{C}_{T}\right)_{p_{i, j}}\right\}>0 \tag{3.33}
\end{equation*}
$$

by the proof of Theorem 3.5. Next we consider the case where $\operatorname{dim} \sigma_{i}=2$ and $\sigma_{i} \cap \mathbb{R}_{+}^{3}$ is one of the two one-dimensional faces $\rho_{i, 1}, \rho_{i, 2}$ of σ_{i}. We may assume that $\sigma_{i} \cap \mathbb{R}_{+}^{3}=\rho_{i, 1}$. For $1 \leq j \leq 2$ we denote by $T_{i, j} \simeq\left(\mathbb{C}^{*}\right)^{2}$ the T-orbit in $X_{\Sigma_{i}}$ associated to $\rho_{i, j} \prec \sigma_{i}$. Then for $Y_{\{2\}}=\overline{\overline{T_{i, 2}}}$ we have an isomorphism $\mathcal{F}_{i} \simeq \mathbb{C}_{X_{\Sigma_{i}} \backslash Y_{\{2\}}}$. Since $\mathbb{C}_{X_{\Sigma_{i}}}$ is a perverse sheaf (up to some shift) and the two-dimensional variety $Y_{\{2\}}=\overline{T_{i, 2}}$ is smooth, for any $1 \leq j \leq n_{i}$ we obtain the positivity

$$
\begin{equation*}
\chi\left\{\varphi_{h \circ f_{i}}\left(\mathcal{F}_{i}\right)_{p_{i, j}}\right\}=\chi\left\{\varphi_{h \circ f_{i}}\left(\mathbb{C}_{X_{\Sigma_{i}}}\right)_{p_{i, j}}\right\}-\chi\left\{\varphi_{h \circ f_{i}}\left(\mathbb{C}_{Y_{\{2\}}}\right)_{p_{i, j}}\right\} \geq-\chi\left\{\varphi_{h \circ f_{i}}\left(\mathbb{C}_{Y_{\{2\}}}\right)_{p_{i, j}}\right\}>0 . \tag{3.34}
\end{equation*}
$$

Finally, let us treat the case where $\operatorname{dim} \sigma_{i}=\operatorname{dim} \sigma_{i} \cap \mathbb{R}_{+}^{3}=2$. Since the face γ_{i} is atypical, its dual cone σ_{i} is not contained in \mathbb{R}_{+}^{3} and hence we have $\sigma_{i} \cap \mathbb{R}_{+}^{3} \neq \sigma_{i}$ in this case. Assume also that rel.int $\left(\sigma_{i} \cap \mathbb{R}_{+}^{3}\right) \subset \operatorname{rel} . \operatorname{int}\left(\sigma_{i}\right)$. Then for any point $q \in T_{\sigma_{i}} \subset X_{\Sigma_{i}}$ its fiber of the map

$$
\begin{equation*}
\left.\pi_{i}\right|_{\mathbb{C}^{3} \cap X_{\Sigma_{i}^{\prime}}}: \mathbb{C}^{3} \cap X_{\Sigma_{i}^{\prime}} \longrightarrow X_{\Sigma_{i}} \tag{3.35}
\end{equation*}
$$

is isomorphic to the singular algebraic curve $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{C}^{2} \mid x_{1} x_{2}=0\right\} \subset \mathbb{C}^{2}$. By calculating its Euler characteristic with compact support, we obtain $\chi\left(\mathcal{F}_{i}\right)(q)=1$. Moreover we have the isomorphism (3.31) in this case. We thus obtain the positivity

$$
\begin{equation*}
\chi\left\{\varphi_{h \circ f_{i}}\left(\mathcal{F}_{i}\right)_{p_{i, j}}\right\}=\chi\left\{\varphi_{h \circ f_{i}}\left(\mathbb{C}_{T}\right)_{p_{i, j}}\right\}+\chi\left\{\varphi_{h \circ f_{i}}\left(\mathbb{C}_{T_{\sigma_{i}}}\right)_{p_{i, j}}\right\}>0 \tag{3.36}
\end{equation*}
$$

for any $1 \leq j \leq n_{i}$. Similarly we can prove the non-negativity and the positivity also in the remaining case. This completes the proof.

We thus confirm the conjecture of [19] for $n=3$ in the generic case. Similarly, we can improve Theorem 3.5 as follows. In fact, Theorem 3.7 below extends Theorems 3.5 and 3.6 in a unified manner. Note that the condition rel.int $\left(\gamma_{i}\right) \subset \operatorname{Int}\left(\mathbb{R}_{+}^{n}\right)$ is equivalent to the one $\sigma_{i} \cap \mathbb{R}_{+}^{n}=\{0\}$ for the cone $\sigma_{i}=\sigma\left(\gamma_{i}\right) \in \Sigma_{0}$.

Theorem 3.7. Assume that f has isolated singularities at infinity over $b \in K_{f} \backslash$ $[f(\operatorname{Sing} f) \cup\{f(0)\}]$ and for any $1 \leq i \leq m$ such that $b \in K_{i}$ the set $\sigma_{i} \cap \mathbb{R}_{+}^{n}$ is a face of \mathbb{R}_{+}^{n} of dimension ≤ 2. Assume also that there exists $1 \leq i \leq m$ such that $b \in K_{i}$, $\gamma_{i} \prec \Gamma_{\infty}(f)$ is relatively simple and moreover in the case $\operatorname{dim} \sigma_{i} \cap \mathbb{R}_{+}^{n}=2$ the number of the common edges of $\sigma_{i} \cap \mathbb{R}_{+}^{n}$ and σ_{i} is ≤ 1. Then we have $E_{f}(b)>0$ and hence $b \in B_{f}$.
Proof. The proof is similar to those of Theorems 3.5 and 3.6. We shall use the notations in them. In the proof of Theorem 3.5]we proved for $1 \leq i \leq m$ such that $\sigma_{i} \cap \mathbb{R}_{+}^{n}=\{0\}$ (resp. $\sigma_{i} \cap \mathbb{R}_{+}^{n}=\{0\}$ and γ_{i} is relatively simple) we have $(-1)^{n-1} \chi\left\{\varphi_{h \circ f_{i}}\left(\mathcal{F}_{i}\right)_{p_{i, j}}\right\} \geq 0$ (resp. >0) for any $1 \leq j \leq n_{i}$. Let us consider the remaining cases where $1 \leq \operatorname{dim} \sigma_{i} \cap \mathbb{R}_{+}^{n} \leq 2$. For a face $\tau \prec \sigma_{i}$ of such σ_{i}, by taking a reference point $q \in T_{\tau} \subset X_{\Sigma_{i}}$ of the T-orbit T_{τ} associated to it we set $e(\tau)=\chi\left(\mathcal{F}_{i}\right)(q)$. Then as in the proof of Theorem 3.6 we can easily show that

$$
e(\tau)= \begin{cases}1 & \left(\operatorname{dim} \tau \cap \mathbb{R}_{+}^{n}=\operatorname{dim} \tau\right) \tag{3.37}\\ 0 & \left(\operatorname{dim} \tau \cap \mathbb{R}_{+}^{n}<\operatorname{dim} \tau\right)\end{cases}
$$

In particular, for the zero-dimensional face $\{0\} \prec \sigma_{i}$ of σ_{i} we have $T_{\{0\}}=T,\left.\mathcal{F}_{i}\right|_{T} \simeq \mathbb{C}_{T}$ and $e(\{0\})=1$. We thus obtain an equality

$$
\begin{equation*}
(-1)^{n-1} \chi\left\{\varphi_{h \circ f_{i}}\left(\mathcal{F}_{i}\right)_{p_{i, j}}\right\}=(-1)^{n-1} \sum_{\tau: e(\tau)=1} \chi\left\{\varphi_{h \circ f_{i}}\left(\mathbb{C}_{T_{\tau}}\right)_{p_{i, j}}\right\} \tag{3.38}
\end{equation*}
$$

for any $1 \leq j \leq n_{i}$. First let us consider the case where $\operatorname{dim} \sigma_{i} \cap \mathbb{R}_{+}^{n}=1$. If $\sigma_{i} \cap \mathbb{R}_{+}^{n}$ is not an edge of the cone σ_{i}, by (3.38) we have

$$
\begin{equation*}
(-1)^{n-1} \chi\left\{\varphi_{h \circ f_{i}}\left(\mathcal{F}_{i}\right)_{p_{i, j}}\right\}=(-1)^{n-1} \chi\left\{\varphi_{h \circ f_{i}}\left(\mathbb{C}_{T}\right)_{p_{i, j}}\right\} \tag{3.39}
\end{equation*}
$$

for any $1 \leq j \leq n_{i}$. By the proof of Theorem 3.5 this integer is non-negative. Moreover it is positive if γ_{i} is relatively simple. Let $\rho_{i, 1}, \rho_{i, 2}, \ldots, \rho_{i, d_{i}} \prec \sigma_{i}$ be the edges of σ_{i}. For $1 \leq j \leq d_{i}$ we denote by $T_{i, j} \simeq\left(\mathbb{C}^{*}\right)^{n-1}$ the T-orbit in $X_{\Sigma_{i}}$ associated to $\rho_{i, j} \prec \sigma_{i}$. If $\sigma_{i} \cap \mathbb{R}_{+}^{n}$ is an edge ρ of σ_{i}, by (3.38) we can easily see that for the remaining edges $\rho_{i, j}$ $\left(1 \leq j \leq d_{i}\right)$ of σ_{i} satisfying $\rho_{i, j} \neq \rho$ and the hypersurface $Z_{i}:=\cup_{j: \rho_{i, j} \neq \rho} \overline{T_{i, j}} \subset X_{\Sigma_{i}}$ defined by them there exists an isomorphism $\mathcal{F}_{i} \simeq \mathbb{C}_{X_{\Sigma_{i}} \backslash Z_{i}}$. Since the hypersurface complement $X_{\Sigma_{i}} \backslash Z_{i}$ is an affine open subset of $X_{\Sigma_{i}}, \mathcal{F}_{i}$ is perverse (up to some shift) and we obtain the non-negativity

$$
\begin{equation*}
(-1)^{n-1} \chi\left\{\varphi_{h \circ f_{i}}\left(\mathcal{F}_{i}\right)_{p_{i, j}}\right\}=(-1)^{n-1} \chi\left\{\varphi_{h \circ f_{i}}\left(\mathbb{C}_{X_{\Sigma_{i}} \backslash Z_{i}}\right)_{p_{i, j}}\right\} \geq 0 \tag{3.40}
\end{equation*}
$$

for any $1 \leq j \leq n_{i}$. Moreover we can rewrite this integer as follows:

$$
\begin{equation*}
(-1)^{n-1} \chi\left\{\varphi_{h \circ f_{i}}\left(\mathcal{F}_{i}\right)_{p_{i, j}}\right\}=(-1)^{n-1} \sum_{\tau: \rho \nless \tau}(-1)^{\operatorname{dim} \tau} \chi\left\{\varphi_{h \circ f_{i}}\left(\mathbb{C}_{\overline{T_{\tau}}}\right)_{p_{i, j}}\right\} . \tag{3.41}
\end{equation*}
$$

If γ_{i} is relatively simple, the right hand side is a sum of non-negative integers and for a facet τ of σ_{i} such that $\rho \nprec \tau$ the closure $\overline{T_{\tau}}$ of T_{τ} is smooth and we have the positivity

$$
\begin{equation*}
(-1)^{n-1+\operatorname{dim} \tau} \chi\left\{\varphi_{h \circ f_{i}}\left(\mathbb{C}_{\overline{T_{\tau}}}\right)_{p_{i, j}}\right\}>0 . \tag{3.42}
\end{equation*}
$$

Finally let us consider the case where $\operatorname{dim} \sigma_{i} \cap \mathbb{R}_{+}^{n}=2$. Assume that rel.int $\left(\sigma_{i} \cap \mathbb{R}_{+}^{n}\right) \subset$ rel.int $\left(\sigma_{i}\right)$. Since the case where $\operatorname{dim} \sigma_{i}=\operatorname{dim} \sigma_{i} \cap \mathbb{R}_{+}^{n}=2$ was already treated in the proof of Theorem 3.6, here we treat only the case where $\operatorname{dim} \sigma_{i}>\operatorname{dim} \sigma_{i} \cap \mathbb{R}_{+}^{n}=2$. Then by (3.38) we obtain the non-negativity

$$
\begin{equation*}
(-1)^{n-1} \chi\left\{\varphi_{h \circ f_{i}}\left(\mathcal{F}_{i}\right)_{p_{i, j}}\right\}=(-1)^{n-1} \chi\left\{\varphi_{h \circ f_{i}}\left(\mathbb{C}_{T}\right)_{p_{i, j}}\right\} \geq 0 \tag{3.43}
\end{equation*}
$$

for any $1 \leq j \leq n_{i}$. Moreover it is positive if γ_{i} is relatively simple. Similarly we can prove the non-negativity and the positivity also in the remaining cases. We omit the details. This completes the proof.

In the case $n=4$ we can also partially verify the conjecture of [19] as follows.
Theorem 3.8. Assume that $n=4, f$ has isolated singularities at infinity over $b \in K_{f} \backslash$ $[f(\operatorname{Sing} f) \cup\{f(0)\}]$ and for any $1 \leq i \leq m$ such that $b \in K_{i}$ and $\operatorname{dim} \sigma_{i}=\operatorname{dim} \sigma_{i} \cap \mathbb{R}_{+}^{4}=3$ there exists no common edge of σ_{i} and $\sigma_{i} \cap \mathbb{R}_{+}^{4}$. Assume also that there exists $1 \leq i \leq m$ such that $b \in K_{i}$ and in the case $\operatorname{dim} \sigma_{i}=3$ and $\operatorname{dim} \sigma_{i} \cap \mathbb{R}_{+}^{4}=2$ the number of the common edges of σ_{i} and $\sigma_{i} \cap \mathbb{R}_{+}^{4}$ is ≤ 1. Then we have $E_{f}(b)>0$ and hence $b \in B_{f}$.

Corollary 3.9. Assume that $n=4, f$ has isolated singularities at infinity over $b \in$ $K_{f} \backslash[f(\operatorname{Sing} f) \cup\{f(0)\}]$ and for any $1 \leq i \leq m$ such that $b \in K_{i}$ we have $\operatorname{dim} \sigma_{i} \cap \mathbb{R}_{+}^{4} \leq 1$ or $\operatorname{dim} \sigma_{i} \leq 2$. Then we have $E_{f}(b)>0$ and hence $b \in B_{f}$.

Since the proof of Theorem 3.8 is similar to those of Theorems 3.5, 3.6 and 3.7, we omit it here.

References

[1] Broughton, S. A. Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math. 92 (1988): 217-241.
[2] Chen, Y., Dias, L. R. G., Takeuchi, K. and Tibăr, M. Invertible polynomial mappings via Newton non-degeneracy, to appear in Ann. Inst. Fourier.
[3] Dimca, A. Sheaves in topology, Universitext, Springer-Verlag, Berlin, 2004.
[4] Esterov, A. and Takeuchi, K. Motivic Milnor fibers over complete intersection varieties and their virtual Betti numbers, Int. Math. Res. Not., Vol. 2012, No. 15 (2012): 3567-3613.
[5] Fiesler, K. H. Rational intersection cohomology of projective toric varieties, J. Reine Angew. Math., 413 (1991): 88-98.
[6] Fulton, W. Introduction to toric varieties, Princeton University Press, 1993.
[7] Hà, H. V. and Lê, D. T. Sur la topologie des polynômes complexes, Acta Math. Vietnam., 9 (1984): 21-32.
[8] Hà, H. V. and Nguyen, T. T. On the topology of polynomial mappings from \mathbb{C}^{n} to \mathbb{C}^{n-1}, Internat. J. Math., 22 (2011): 435-448.
[9] Hotta, R., Takeuchi, K. and Tanisaki, T. D-modules, perverse sheaves, and representation theory, Birkhäuser Boston, 2008.
[10] Kashiwara, M. and Schapira, P. Sheaves on manifolds, Springer-Verlag, 1990.
[11] Kouchnirenko, A. G. Polyédres de Newton et nombres de Milnor, Invent. Math. 32 (1976): 1-31.
[12] Kurdyka, K., Orro, P. and Simon, S. Semilgebraic Sard theorem for generalized critical values, J. Differential Geometry 56 (2000): 67-92.
[13] Libgober, A. and Sperber, S. On the zeta function of monodromy of a polynomial map, Compositio Math. 95 (1995): 287-307.
[14] Matsui, Y. and Takeuchi, K. Milnor fibers over singular toric varieties and nearby cycle sheaves, Tohoku Math. J. 63 (2011): 113-136.
[15] Matsui, Y. and Takeuchi, K. Monodromy zeta functions at infinity, Newton polyhedra and constructible sheaves, Mathematische Zeitschrift 268 (2011): 409-439.
[16] Matsui, Y. and Takeuchi, K. A geometric degree formula for A-discriminants and Euler obstructions of toric varieties, Adv. in Math. 226 (2011): 2040-2064.
[17] Matsui, Y. and Takeuchi, K. Monodromy at infinity of polynomial maps and Newton polyhedra, with Appendix by C. Sabbah, Int. Math. Res. Not., Vol. 2013, No. 8 (2013): 1691-1746.
[18] Milnor, J. Singular points of complex hypersurfaces, Princeton University Press, 1968.
[19] Némethi, A. and Zaharia A. On the bifurcation set of a polynomial function and Newton boundary, Publ. Res. Inst. Math. Sci. 26 (1990): 681-689.
[20] Nguyen, T. T., Bifurcation set, M-tameness, asymptotic critical values and Newton polyhedrons, Kodai Math. J. Vol. 36, No. 1 (2013): 77-90.
[21] Oda, T. Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Springer-Verlag, 1988.
[22] Oka, M. Non-degenerate complete intersection singularity, Hermann, Paris (1997).
[23] Rabier, P.J. Ehresmann's fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Ann. of Math. 146 (1997): 647-691.
[24] Siersma, D. and Tibăr, M. Singularities at infinity and their vanishing cycles, Duke Math. J. 80 (1995): 771-783.
[25] Suzuki, M. Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace \mathbb{C}^{2}, J. Math. Soc. Japan, 26 (1974): 241-257.
[26] Takeuchi, K. and Tibăr, M. Monodromies at infinity of non-tame polynomials, arXiv:1208.4584v2., submitted.
[27] Tibăr, M. Topology at infinity of polynomial mappings and Thom regularity condition, Compositio Math., 111, no. 1 (1998), 89-109.
[28] Tibăr, M. Polynomials and vanishing cycles, Cambridge University Press, 2007.
[29] Varchenko, A. N. Zeta-function of monodromy and Newton's diagram, Invent. Math., 37 (1976): 253-262.
[30] Zaharia A. On the bifurcation set of a polynomial function and Newton boundary II, Kodai Math. J., 19 (1996): 218-233.

[^0]: *2000 Mathematics Subject Classification: 14E18, 14M25, 32C38, 32S35, 32S4
 ${ }^{\dagger}$ Institute of Mathematics, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8571, Japan. E-mail: takemicro@nifty.com
 ${ }^{\ddagger}$ Mathématiques, Laboratoire Paul Painlevé, Université Lille 1, 59655 Villeneuve d’Ascq, France. Email: tibar@math.univ-lille1.fr

