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We characterize bifurcation points of non-tame polynomial functions by using the theory of perverse sheaves and their vanishing cycles. In particular, by introducing a method to compute the jumps of the Euler characteristics with compact support of their fibers, we confirm the conjecture of Némethi-Zaharia [19] in some cases.

Introduction

For a polynomial function f : C n -→ C it is well-known that there exists a finite subset B ⊂ C such that the restriction

C n \ f -1 (B) -→ C \ B (1.1)
of f is a C ∞ locally trivial fibration. We denote by B f the smallest subset B ⊂ C satisfying this condition. Let Singf ⊂ C n be the set of the critical points of f :

C n -→ C.
Then by the definition of B f , obviously we have f (Singf ) ⊂ B f . The elements of B f are called bifurcation points of f . The bifurcation set B f ⊂ C was studied by many mathematicians and from several viewpoints, e.g. [START_REF] Broughton | Milnor numbers and the topology of polynomial hypersurfaces[END_REF], [START_REF] Chen | Invertible polynomial mappings via Newton non-degeneracy[END_REF], [START_REF] Hà | Sur la topologie des polynômes complexes[END_REF], [START_REF] Hà | On the topology of polynomial mappings from C n to C n-1[END_REF], [START_REF] Némethi | On the bifurcation set of a polynomial function and Newton boundary[END_REF], [START_REF] Nguyen | Bifurcation set, M-tameness, asymptotic critical values and Newton polyhedrons[END_REF], [START_REF] Siersma | Singularities at infinity and their vanishing cycles[END_REF], [START_REF] Tibȃr | Polynomials and vanishing cycles[END_REF] and [START_REF] Zaharia | On the bifurcation set of a polynomial function and Newton boundary II[END_REF]. Here we study B f via the Newton polyhedron of f . We denote by Γ ∞ (f ) the convex hull of the Newton polytope NP (f ) of f and the origin in R n . We call Γ ∞ (f ) the Newton polyhedron at infinity of f . Throughout this paper we assume that f is non-degenerate at infinity (for the definition see Section 3) and dimΓ ∞ (f ) = n.

Definition 1.1. ( [START_REF] Takeuchi | Monodromies at infinity of non-tame polynomials[END_REF]) We say that a face γ ≺ Γ ∞ (f ) is atypical if 0 ∈ γ, dimγ ≥ 1 and the cone σ(γ) ⊂ R n which corresponds it in the dual fan of Γ ∞ (f ) (for the definition see Section 2) is not contained in the first quadrant R n + of R n . Let γ 1 , . . . , γ m be the atypical faces of Γ ∞ (f ). For 1 ≤ i ≤ m let K i ⊂ C be the set of the critical values of the γ i -part

f γ i : T = (C * ) n -→ C (1.2)
of f . Let us set

K f = f (Singf ) ∪ {f (0)} ∪ (∪ m i=1 K i ). (1.3)
Then Némethi-Zaharia [START_REF] Némethi | On the bifurcation set of a polynomial function and Newton boundary[END_REF] proved the following remarkable result.

Theorem 1.2. (Némethi-Zaharia [START_REF] Némethi | On the bifurcation set of a polynomial function and Newton boundary[END_REF]) In the situation as above, we have B f ⊂ K f .

Moreover they proved the equality B f = K f for n = 2 and conjectured its validity in higher dimensions. Later Zaharia [START_REF] Zaharia | On the bifurcation set of a polynomial function and Newton boundary II[END_REF] proved it for any n ≥ 2 under some supplementary assumptions. In this paper, we refine his approach to this conjecture by using the more sophisticated machinary of vanishing cycle functors for constructible sheaves to obtain a formula which describes the jump of the function χ c : C -→ Z defined by

χ c (a) = j∈Z (-1) j dimH j c (f -1 (a); C) (a ∈ C) (1.4) at each point b ∈ K f \ [f (Singf ) ∪ {f (0)}] ⊂ ∪ m i=1 K i . Let us fix such a point b ∈ K f \ [f (Singf ) ∪ {f (0)}] and set E f (b) = (-1) n-1 {χ c (b + ε) -χ c (b)} ∈ Z (1.5)
by taking sufficiently small ε > 0. For 1 ≤ i ≤ m let L γ i ≃ R dimγ i be the linear subspace of R n spanned by γ i and set

T i = Spec(C[L γ i ∩ Z n ]) ≃ (C * ) dimγ i .
We regard f γ i as a regular function on T i .

Definition 1.3. We say that f has isolated singularities at infinity over b ∈ K f \ [f (Singf ) ∪ {f (0)}] if for any 1 ≤ i ≤ m the hypersurface f -1 γ i (b) ⊂ T i ≃ (C * ) dimγ i in T i has only isolated singular points. Definition 1.4. We say that a face γ ≺ Γ ∞ (f ) is relatively simple if the cone σ(γ) ⊂ R n which corresponds to it in the dual fan of Γ ∞ (f ) is simplicial or satisfies the condition dimσ(γ) ≤ 3.

Recall that for a polytope ∆ in R n its relative interior rel.int(∆) is the interior of ∆ in its affine span Aff(∆) ≃ R dim∆ in R n . Theorem 1.5. Assume that f has isolated singularities at infinity over

b ∈ K f \ [f (Singf ) ∪{f (0)}] and for any 1 ≤ i ≤ m such that b ∈ K i the relative interior rel.int(γ i ) of γ i ≺ Γ ∞ (f ) is contained in Int(R n + ). Assume also that there exists 1 ≤ i ≤ m such that b ∈ K i and γ i ≺ Γ ∞ (f ) is relatively simple. Then we have E f (b) > 0 and hence b ∈ B f . Note that if dimγ i ≥ n -3 the atypical face γ i ≺ Γ ∞ (f )
is relatively simple. In particular, if n ≤ 4 this condition is always satisfied. Hence Theorem 1.5 extends the result of Zaharia [START_REF] Zaharia | On the bifurcation set of a polynomial function and Newton boundary II[END_REF]. Indeed he assumed the much stronger condition that for any

1 ≤ i ≤ m such that b ∈ K i we have dimγ i = n -1 (which implies rel.int(γ i ) ⊂ Int(R n + )).
His assumption means that on smooth toric compactifications of C n compatible with Γ ∞ (f ) the function f has isolated singular points only on T -orbits at infinity of dimension n -1 over the point b ∈ K f \ [f (Singf ) ∪ {f (0)}]. However under our weaker assumption, in the proof of Theorem 1.5 we encounter non-isolated singular points of f on such compactifications. We overcome this difficulty by reducing the problem to the case of isolated singular points by a standard property of vanishing cycle functors. Moreover in the case n = 3 we have the following stronger result.

Theorem 1.6. Assume that n = 3 and f has isolated singularities at infinity over b ∈

K f \ [f (Singf ) ∪ {f (0)}]. Then we have E f (b) > 0 and hence b ∈ B f .
We thus confirm the conjecture of [START_REF] Némethi | On the bifurcation set of a polynomial function and Newton boundary[END_REF] for n = 3 in the generic case. On the other hand, in the two-dimensional case n = 2 Hà-Lê [START_REF] Hà | Sur la topologie des polynômes complexes[END_REF] proved that b ∈ B f \[f (Singf )∪{f (0)}] implies E f (b) = 0 (for its generalization to polynomial maps see Hà-Nguyen [START_REF] Hà | On the topology of polynomial mappings from C n to C n-1[END_REF] ). So, our Theorem 1.6 can be considered as a three-dimensional analogue of their result. For the proofs of Theorems 1.5 and 1.6 we will use the theory of constructible (perverse) sheaves and their vanishing cycles. In particular, our argument relies on the fact that the constant sheaf of an orbifold is perverse (up to some shift).

Preliminary notions and results

In this section, we recall basic notions and results which will be used in this paper. In this paper, we essentially follow the terminology of [START_REF] Dimca | Sheaves in topology[END_REF], [START_REF] Hotta | D-modules, perverse sheaves, and representation theory[END_REF] and [START_REF] Kashiwara | Sheaves on manifolds[END_REF]. For example, for a topological space X we denote by D b (X) the derived category whose objects are bounded complexes of sheaves of C X -modules on X. Denote by D b c (X) the full subcategory of

D b (X) consisting of constructible objects. Let f (x) = v∈Z n + a v x v be a polynomial on C n (a v ∈ C). Definition 2.1.
1. We call the convex hull of supp(f

) := {v ∈ Z n + | a v = 0} ⊂ Z n + ⊂ R n
+ in R n the Newton polytope of f and denote it by NP (f ). 2. (see [START_REF] Libgober | On the zeta function of monodromy of a polynomial map[END_REF] etc.) We call the convex hull of {0} ∪ NP (f ) in R n the Newton polyhedron at infinity of f and denote it by Γ ∞ (f ).

For an element u ∈ R n of (the dual vector space of) R n define the supporting face

γ u ≺ Γ ∞ (f ) of u in Γ ∞ (f ) by γ u = v ∈ Γ ∞ (f ) | u, v = min w∈Γ∞(f ) u, w .
(2.1)

Then we introduce an equivalence relation ∼ on (the dual vector space of) R n by u ∼ u ′ ⇐⇒ γ u = γ u ′ . We can easily see that for any face γ ≺ Γ ∞ (f ) of Γ ∞ (f ) the closure of the equivalence class associated to γ in R n is an (ndimγ)-dimensional rational convex polyhedral cone σ(γ) in R n . Moreover the family {σ(γ) | γ ≺ Γ ∞ (f )} of cones in R n thus obtained is a subdivision of R n . We call it the dual subdivision of R n by Γ ∞ (f ). If dimΓ ∞ (f ) = n it satisfies the axiom of fans (see [START_REF] Fulton | Introduction to toric varieties[END_REF] and [START_REF] Oda | Convex bodies and algebraic geometry[END_REF] etc.). We call it the dual fan of Γ ∞ (f ).

We have the following two classical definitions due to Kouchnirenko:

Definition 2.2 ([11]). Let ∂f : C n -→ C n be the map defined by ∂f (x) = (∂ 1 f (x), . . . , ∂ n f (x)
). Then we say that f is tame at infinity if the restriction (∂f ) -1 (B(0; ε)) -→ B(0; ε) of ∂f to a sufficiently small ball B(0; ε) centered at the origin 0 ∈ C n is proper.

Definition 2.3 ([11]

). We say that the polynomial f

(x) = v∈Z n + a v x v (a v ∈ C) is non- degenerate at infinity if for any face γ of Γ ∞ (f ) such that 0 / ∈ γ the complex hypersurface {x ∈ (C * ) n | f γ (x) = 0} in (C * ) n is
smooth and reduced, where we defined the γ-part f γ of f by

f γ (x) = v∈γ∩Z n + a v x v .
Broughton showed in [START_REF] Broughton | Milnor numbers and the topology of polynomial hypersurfaces[END_REF] that if f is non-degenerate at infinity and convenient then it is tame at infinity. This implies that the reduced homology of the general fiber of f is concentrated in dimension n -1. The concentration result was later extended to polynomial functions with isolated singularities with respect to some fiber-compactifying extension of f by Siersma and Tibȃr [START_REF] Siersma | Singularities at infinity and their vanishing cycles[END_REF] and by Tibȃr [START_REF] Tibȃr | Topology at infinity of polynomial mappings and Thom regularity condition[END_REF]Theorem 4.6,Corollary 4.7]. In this paper we mainly consider non-convenient polynomials. Definition 2.4. ( [START_REF] Takeuchi | Monodromies at infinity of non-tame polynomials[END_REF]) We say that a face γ ≺ Γ ∞ (f ) is atypical if 0 ∈ γ, dimγ ≥ 1 and the cone σ(γ) ⊂ R n which corresponds it in the dual subdivision of Γ ∞ (f ) is not contained in the first quadrant R n + of R n . This definition is closely related to that of bad faces of NP (ff (0)) in Némethi-Zaharia [START_REF] Némethi | On the bifurcation set of a polynomial function and Newton boundary[END_REF].

If ∆ ≺ NP (f -f (0)) is a bad face of NP (f -f (0)), then the convex hull γ of {0} ∪ ∆ in R n is an atypical one of Γ ∞ (f ). Conversely, if γ ≺ Γ ∞ (f ) is an atypical face and ∆ = γ ∩ NP (f -f (0)) ≺ NP (f -f (0)) satisfies the condition dim∆ = dimγ then ∆ is a bad face of NP (f -f (0)).
Example 2.5. Let n = 3 and consider a non-convenient polynomial f (x, y, z) on C 3 whose Newton polyhedron at infinity Γ ∞ (f ) is the convex hull of the points (2, 0, 0), (2, 2, 0), (2, 2, 3) ∈ R 3 + and the origin 0 = (0, 0, 0) ∈ R 3 . Then the line segment connecting the point (2, 2, 0) and the origin 0 ∈ R 3 is an atypical face of Γ ∞ (f ). However the triangle whose vertices are the points (2, 0, 0), (2, 2, 0) and the origin 0 ∈ R 3 is not so.

Next we introduce the notion of constructible functions. Definition 2.6. Let X be an algebraic variety over C. Then we say that a Z-valued function ψ : X -→ Z on X is constructible if there exists a stratification X = α X α of X such that ψ| Xα is constant for any α. We denote by F Z (X) the abelian group of constructible functions on X.

Let F ∈ D b c (X) be a constructible sheaf (complex of sheaves) on an algebraic variety X over C. Then we can naturally associate to it a constructible function

χ(F ) ∈ F Z (X) on X defined by χ(F )(x) = j∈Z (-1) j dimH j (F ) x (x ∈ X). (2.2) 
For a constructible function ψ : X -→ Z, we take a stratification X = α X α of X such that ψ| Xα is constant for any α as above. We denote the Euler characteristic of X α by χ(X α ). Then we set

X ψ := α χ(X α ) • ψ(x α ) ∈ Z, (2.3) 
where x α is a reference point in X α . Then we can easily show that X ψ ∈ Z does not depend on the choice of the stratification X = α X α of X. Hence we obtain a homomorphism

X : F Z (X) -→ Z (2.4)
of abelian groups. For ψ ∈ F Z (X), we call X ψ ∈ Z the topological (Euler) integral of ψ over X. More generally, to a morphism f : X -→ Y of algebraic varieties over C we can associate a homomorphism f :

F Z (X) -→ F Z (Y ) of abelian groups as follows. For ψ ∈ F Z (X) we define f ψ ∈ F Z (Y ) by f ψ (y) = f -1 (y) ψ ∈ Z (y ∈ Y ). (2.5)
Then for any constructible sheaf F ∈ D b c (X) on X we have the equality

f χ(F ) = χ(Rf * (F )). (2.6)
Now we recall the following well-known property of Deligne's vanishing cycle functors. Let X be an algebraic variety over C and f : X -→ C a non-constant regular function on X and set

X 0 = {x ∈ X | f (x) = 0} ⊂ X.
Then we denote Deligne's vanishing cycle functor associated to f by 

ϕ f : D b c (X) -→ D b c (X 0 ) (2.
: X -→ C a non- constant regular function on X. Set g = f • π : Y -→ C, X 0 = {x ∈ X | f (x) = 0} and Y 0 = {y ∈ Y | g(y) = 0}. Then for any G ∈ D b c (Y ) we have an isomorphism ϕ f (Rπ * G) ≃ R(π| Y 0 ) * ϕ g (G), (2.8) 
where the morphism π| Y 0 : Y 0 -→ X 0 is induced by π.

The following lemma will be used in the proofs of our main theorems. Let τ be a strictly convex rational polyhedral cone in R n and Σ τ the fan in R n formed by all its faces. Denote by X Στ the (n-dimensional) toric variety associated to Σ τ (see [START_REF] Fulton | Introduction to toric varieties[END_REF] and [START_REF] Oda | Convex bodies and algebraic geometry[END_REF] etc.). Lemma 2.8. In the above situation, assume also that dimτ ≤ 3. Then the constant sheaf C X Στ on X Στ is perverse (up to some shift).

Proof. If dimτ ≤ 2, then X Στ is an orbifold (see [START_REF] Fulton | Introduction to toric varieties[END_REF] etc.) and the assertion follows from [9, Proposition 8.2.21]. Assume that dimτ = 3. Let T τ ⊂ X Στ be the (minimal) T -orbit in X Στ associated to τ ∈ Σ τ and i τ : T τ ֒→ X Στ , j τ : X Στ \ T τ ֒→ X Στ the inclusion maps. Then by Fiesler [5, Theorems 1.1 and 1.2] we obtain

H l i -1 τ R(j τ ) * C X Στ \Tτ ≃ C Tτ (l = 0), 0 (l = 1). (2.9)
This implies that we have 

H l i ! τ C X Στ ≃ 0 (l ≤ 3 = codimT τ ). ( 2 

Bifurcation sets of polynomial functions

In this section we study the bifurcation points of polynomial functions. Let f : C n -→ C be a polynomial function. Assume that f is non-degenerate at infinity and dimΓ ∞ (f ) = n. Let Σ 0 be the dual fan of Γ ∞ (f ). Let γ 1 , . . . , γ m be the atypical faces of Γ ∞ (f ). For 1 ≤ i ≤ m let K i ⊂ C be the set of the critical values of the γ i -part

f γ i : T = (C * ) n -→ C (3.1)
of f . We denote by Singf ⊂ C n the set of the critical points of f : C n -→ C and set

K f = f (Singf ) ∪ {f (0)} ∪ (∪ m i=1 K i ). (3.2)
Then the following result was obtained by Némethi-Zaharia [START_REF] Némethi | On the bifurcation set of a polynomial function and Newton boundary[END_REF].

Theorem 3.1. (Némethi-Zaharia [START_REF] Némethi | On the bifurcation set of a polynomial function and Newton boundary[END_REF]) In the situation above, we have

B f ⊂ K f . Remark 3.2. If for an atypical face γ i of Γ ∞ (f ) the face ∆ = γ i ∩ NP (f -f (0)) ≺ NP (f -f (0)) of NP (f -f (0)) is not bad in the sense of Némethi-Zaharia [19], then dimNP (f γ i -f (0)) = dim∆ < dimγ i , f γ i -f (0) is a positively homogeneous Laurent polynomial on T = (C *
) n and we have K i = {f (0)}. Therefore the above inclusion B f ⊂ K f coincides with the one in [START_REF] Némethi | On the bifurcation set of a polynomial function and Newton boundary[END_REF].

Moreover the authors of [START_REF] Némethi | On the bifurcation set of a polynomial function and Newton boundary[END_REF] proved the equality B f = K f for n = 2 and conjectured its validity in higher dimensions. Later Zaharia [START_REF] Zaharia | On the bifurcation set of a polynomial function and Newton boundary II[END_REF] proved it for any n ≥ 2 but under some supplementary assumptions on f . We can improve his result as follows. For 1 ≤ i ≤ m let L γ i ≃ R dimγ i be the linear subspace of R n spanned by γ i and set

T i = Spec(C[L γ i ∩ Z n ]) ≃ (C * ) dimγ i .
We regard f γ i as a regular function on T i . Definition 3.3. We say that f has isolated singularities at infinity over b 

∈ K f \ [f (Singf ) ∪ {f (0)}] if for any 1 ≤ i ≤ m the hypersurface f -1 γ i (b) ⊂ T i ≃ (C * ) dimγ i in T i
∈ K f \ [f (Singf ) ∪{f (0)}] and for any 1 ≤ i ≤ m such that b ∈ K i the relative interior rel.int(γ i ) of γ i ≺ Γ ∞ (f ) is contained in Int(R n + )
. Assume also that there exists

1 ≤ i ≤ m such that b ∈ K i and γ i ≺ Γ ∞ (f ) is relatively simple. Then we have E f (b) > 0 and hence b ∈ B f .
Proof. By our assumption, for any 1

≤ i ≤ m the hypersurface f -1 γ i (b) ⊂ T i ≃ (C * ) dimγ i in T i
has only isolated singular points at p i,1 , . . . , p i,n i . Here some n i can be zero. Obviously we have n i > 0 if and only if b ∈ K i . First we recall the construction of a smooth toric compactification of C n in [START_REF] Zaharia | On the bifurcation set of a polynomial function and Newton boundary II[END_REF]. Let Σ be a smooth fan obtained by subdividing Σ 0 such that R n + ∈ Σ. Then the toric variety X Σ associated to it is a smooth compactification of C n . Recall that the algebraic torus T = (C * ) n acts on X Σ and its orbits are parametrized by the cones in Σ. For a cone σ ∈ Σ let T σ ≃ (C * ) n-dimσ ⊂ X Σ be the T -orbit in X Σ which corresponds to it. Moreover we denote by γ σ ≺ Γ ∞ (f ) the face of Γ ∞ (f ) which corresponds to the minimal cone in Σ 0 containing σ. Then we say that a cone σ ∈ Σ is at infinity if 0 / ∈ γ σ . Let Cone ∞ (f ) ⊂ R n v be the cone generated by Γ ∞ (f ). We define its dual cone C ⊂ R n u by

C = {u ∈ R n | u, v ≥ 0 for any v ∈ Cone ∞ (f )}. (3.3)
Then σ ∈ Σ is at infinity if and only if it is not contained in C. Let ρ 1 , . . . , ρ r ∈ Σ be the one-dimensional cones at infinity in Σ. Then f extends to a meromorphic function on X Σ whose poles are contained in the normal crossing divisor D = ∪ r i=1 T ρ i ⊂ X Σ . By the nondegeneracy at infinity of f the closure f -1 (0) of f -1 (0) in X Σ intersects T ρ i transversally for any 1 ≤ i ≤ r. We can easily see that the meromorphic extension of f to X Σ has points of indeterminacy in the subvariety D ∩ f -1 (0) of X Σ of codimension two. Then as in [START_REF] Matsui | Monodromy zeta functions at infinity, Newton polyhedra and constructible sheaves[END_REF], [START_REF] Matsui | Monodromy at infinity of polynomial maps and Newton polyhedra, with Appendix by C. Sabbah[END_REF] and [START_REF] Takeuchi | Monodromies at infinity of non-tame polynomials[END_REF], by constructing a blow-up X Σ -→ X Σ of X Σ we can eliminate this indeterminacy and obtain a commutative diagram:

C n ι ---→ X Σ f     g C ---→ j P 1 (3.4)
of holomorphic maps, where ι : C n ֒→ X Σ and j : C ֒→ P 1 are the inclusion maps and g is proper. From now we shall prove that the jump

E f (b) ∈ Z of the constructible function on C χ c (a) = j∈Z (-1) j dimH j c (f -1 (a); C) (a ∈ C) (3.5) at the point b ∈ K f \ [f (Singf ) ∪ {f (0)}] is positive. Let h(a) = a -b (a ∈ C) be the coordinate of C such that h -1 (0) = {b}. Then we have E f (b) = (-1) n-1 j∈Z (-1) j dimH j ϕ h (Rf ! C C n ) b , (3.6) 
where

ϕ h : D b c (C) -→ D b c ({b}) is Deligne's vanishing cycle functor associated to h. Since we have f = g • ι on a neighborhood of b ∈ K f \ [f (Singf ) ∪ {f (0)}]
and g is proper, by Proposition 2.7 we obtain an isomorphism

ϕ h (Rf ! C C n ) ≃ R(g| g -1 (b) ) * ϕ h•g (ι ! C C n ). (3.7)
This implies that for the constructible function

χ{ϕ h•g (ι ! C C n )} ∈ F Z (g -1 (b)) on g -1 (b) = (h • g) -1 (0) ⊂ X Σ we have j∈Z (-1) j dimH j ϕ h (Rf ! C C n ) b = g -1 (b) χ{ϕ h•g (ι ! C C n )}. (3.8)
Hence for the calculation of E f (b), it suffices to calculate

χ{ϕ h•g (ι ! C C n )}(p) = j∈Z (-1) j dimH j ϕ h•g (ι ! C C n ) p (3.9)
at each point p of g -1 (b). Let Σ C (resp. Σ ′ C ) be the fan formed by all the faces of the cone C (resp. by all the cones in Σ contained in C) and denote by X Σ C (resp. X Σ ′ C ) the possibly singular (resp. smooth) toric variety associated to it. Then X := X Σ ′ C = ⊔ σ⊂C T σ is an open subset of X Σ and there exists a natural proper morphism

π : X = X Σ ′ C -→ X Σ C (3.10)
of toric varieties. Since the Newton polytope NP (f ) of f is contained in the dual cone

C • = Cone ∞ (f ) of C and X Σ C = Spec(C[C • ∩ Z n ]), (3.11) 
we can naturally regard f as regular functions on

X Σ C and X = X Σ ′ C .This implies that X = X Σ ′ C is an open subset of g -1 (C) ∩ X Σ . In particular, if σ ∈ Σ ′ C is not contained in R n
+ then T σ ⊂ X \ C n and f extends holomorphically to T σ . Namely T σ is a horizontal T -orbit in X \C n . By our assumption and the results of [START_REF] Libgober | On the zeta function of monodromy of a polynomial map[END_REF], [START_REF] Matsui | Monodromy zeta functions at infinity, Newton polyhedra and constructible sheaves[END_REF], [START_REF] Takeuchi | Monodromies at infinity of non-tame polynomials[END_REF] and [START_REF] Zaharia | On the bifurcation set of a polynomial function and Newton boundary II[END_REF] etc. we can also see that the support of the constructible sheaf

ϕ h•g (ι ! C C n ) ∈ D b c (g -1 (b)) is contained in (X \ C n ) ∩ g -1 (b).
We thus obtain an equality

E f (b) = (-1) n-1 (X\C n )∩g -1 (b) χ{ϕ h•g (ι ! C C n )}.
(3.12)

Namely, for the calculation of E f (b) it suffices to calculate the constructible function

χ{ϕ h•g (ι ! C C n )} only on T -orbits in X \ C n associated to the cones σ ∈ Σ ′ C ⊂ Σ such that rel.int(σ) ⊂ C \ R n + . For σ ∈ Σ ′ C ⊂ Σ such that rel.int(σ) ⊂ Int(C) \ R n + we have γ σ = {0} ≺ Γ ∞ (f ) and the restriction of g| X : X -→ C to the T -orbit T σ ⊂ X is the constant function f (0) ∈ C. Hence we get g -1 (b)∩T σ = ∅ for the point b ∈ K f \[f (Singf )∪{f (0)}].
For 1 ≤ i ≤ m let σ i := σ(γ i ) ∈ Σ 0 be the cone which corresponds to γ i in the dual fan Σ 0 of Γ ∞ (f ). Recall that by the definition of atypical faces we have 0 ∈ γ i and the face σ i ≺ C of C is not contained in R n + . For σ ∈ Σ ′ C ⊂ Σ such that rel.int(σ) ⊂ ∂C \ R n + there exists unique 1 ≤ i ≤ m for which we have rel.int(σ) ⊂ rel.int(σ i ). If dimσ = dimσ i we have an isomorphism T σ ≃ T i = Spec(C[L γ i ∩Z n ]) ≃ (C * ) dimγ i and the restriction of g| X : X -→ C to T σ ⊂ X is naturally identified with f γ i : T i -→ C. This implies that the hypersurface g -1 (b) ∩ T σ ⊂ T σ ≃ T i has only isolated singular points p i,1 , . . . , p i,n i ∈ T σ ≃ T i and

T σ ∩ supp ϕ h•g (ι ! C C n ) ⊂ {p i,1 , . . . , p i,n i } (3.13)
in this case. On the other hand, if dimσ < dimσ i we have dimT σ > dimT i and for the hypersurface g -1 (b) ∩ T σ ⊂ T σ there exists an isomorphism

g -1 (b) ∩ T σ ≃ f -1 γ i (b) × (C * ) dimTσ-dimT i . (3.14)
This implies that g -1 (b) ∩ T σ ⊂ T σ has non-isolated singular points if n i > 0. From now on, we shall overcome this difficulty by using Proposition 2.7. For 1 ≤ i ≤ m let Σ i be the fan in R n formed by all the faces of σ i and denote by X Σ i the (possibly singular) toric variety associated to it. Then

X Σ i is an open subset of X Σ C . Let σ • i ⊂ R n be the dual cone of σ i in R n . Then σ • i ≃ C i × R dimγ i for a proper convex cone C i in R n-dimγ i and we have an isomorphism X Σ i ≃ Spec(C[σ • i ∩ Z n ]). (3.15) Note that the (minimal) T -orbit T σ i in X Σ i which corresponds to σ i ∈ Σ i is naturally identified with T i = Spec(C[L γ i ∩ Z n ]) ≃ (C * ) dimγ i . More precisely X Σ i is the product X i × T σ i of the (n -dimγ i )-dimensional affine toric variety X i = Spec(C[C i ∩ Z n-dimγ i ]) and T σ i ≃ T i ≃ (C * ) dimγ i . Since NP (f ) ⊂ σ • i and f ∈ C[σ • i ∩ Z n ],
we can naturally regard f as a regular function on X Σ i . We denote it by f i :

X Σ i -→ C. For 1 ≤ i ≤ m let Σ ′
i ⊂ Σ be the subfan of Σ consisting of the cones in Σ contained in σ i and denote by X Σ ′ i the smooth toric variety associated to it. Then X Σ ′

i is an open subset of X ⊂ X Σ and there exists a proper morphism

π i : X Σ ′ i -→ X Σ i (3.16)
of toric varieties. Moreover we have a commutative diagram

X Σ ′ i ---→ X = X Σ ′ C π i     π X Σ i ---→ X Σ C (3.17) such that π -1 X Σ i = X Σ ′ i ⊂ X,
where the horizontal arrows are the inclusion maps. It is also easy to see that the closed subset (X

\ C n ) ∩ g -1 (b) of X is covered by the affine open subvarieties X Σ ′ 1 , . . . , X Σ ′ m ⊂ X. Note that for the restriction g i = g| X Σ ′ i : X Σ ′ i -→ C of g| X we have g i = f i • π i .
Then by applying Proposition 2.7 to the proper morphism

π i : X Σ ′ i -→ X Σ i we obtain an isomorphism R(π i | g -1 i (b) ) * ϕ h•g i (ι ! C C n | X Σ ′ i ) ≃ ϕ h•f i R(π i ) * (ι ! C C n | X Σ ′ i ) . (3.18) 
The advantage to consider

ϕ h•f i {R(π i ) * (ι ! C C n | X Σ ′ i )} instead of ϕ h•g i (ι ! C C n | X Σ ′ i ) is that its support is a discrete subset of f -1 i (b) ⊂ X Σ i ⊂ X Σ C by our assumption that f has isolated singularities at infinity over b ∈ K f \ [f (Singf ) ∪ {f (0)}]. Set F i = R(π i ) * (ι ! C C n | X Σ ′ i ) ≃ R(π i ) ! C C n ∩X Σ ′ i ∈ D b c (X Σ i ). (3.19)
Then the topological integral

g -1 (b) χ{ϕ h•g (ι ! C C n )} = (X\C n )∩g -1 (b) χ{ϕ h•g (ι ! C C n )} (3.20) is equal to m i=1 n i j=1 χ{ϕ h•f i (F i ) p i,j }. (3.21) If b / ∈ K i (⇐⇒ n i = 0) we have ϕ h•f i (F i ) ≃ 0 on a neighborhood of T σ i ⊂ X Σ i .
Let us consider the remaining case where b ∈ K i (⇐⇒ n i > 0). Then by our assumption rel.int(γ i ) ⊂ Int(R n + ) we have σ i ∩ R n + = {0}. This implies that for the embedding ι i : T = (C * ) n ֒→ X Σ i there exists an isomorphism F i ≃ (ι i ) ! C T . Hence F i is a perverse sheaf on X Σ i (up to some shift). Since the support of ϕ h•f i (F i ) is discrete, by (the proof of) [3, Proposition 6.1.1] we thus obtain the concentration

H l ϕ h•f i (F i ) p i,j ≃ 0 (l = n -1) (3.22) 
for any 1

≤ j ≤ n i . Set µ i,j = dimH n-1 ϕ h•f i (F i ) p i,j ≥ 0.
Then E f (b) can be expressed as a sum of non-negative integers as follows:

E f (b) = (-1) n-1 (X\C n )∩g -1 (b) χ{ϕ h•g (ι ! C C n )} = m i=1 n i j=1 µ i,j . (3.23) 
By our assumption there exists 1

≤ i ≤ m such that n i > 0 (⇐⇒ b ∈ K i ) and γ i ≺ Γ ∞ (f ) is relatively simple. Then the cone σ i ∈ Σ 0 satisfies the condition σ i ∩ R n + = {0}. For a face τ ≺ σ i of σ i we set Y τ = T τ ⊂ X Σ i and f τ = f i | Yτ : Y τ -→ C. Note that we have T σ i = Y σ i . Then for any 1 ≤ j ≤ n i we can easily show that (-1) n-1 µ i,j = χ{ϕ h•f i (F i ) p i,j } = χ{ϕ h•f i ((ι i ) ! C T ) p i,j } is equal to the alternating sum τ ≺σ i (-1) dimτ χ{ϕ h•fτ (C Yτ ) p i,j }. (3.24) 
Since γ i is relatively simple, by Lemma 2.8 for any face τ ≺ σ i of σ i the constant sheaf C Yτ on Y τ is perverse (up to some shift). Moreover by our assumption that f has isolated singularities at infinity over b

∈ K f \ [f (Singf ) ∪ {f (0)}], the support of ϕ h•fτ (C Yτ ) is discrete on a neighborhood of T σ i ⊂ X Σ i .
By (the proof of) [3, Proposition 6.1.1] we thus obtain the concentration

H l ϕ h•fτ (C Yτ ) p i,j ≃ 0 (l = dimY τ -1 = n -dimτ -1) (3.25) 
for any 1 ≤ j ≤ n i and τ ≺ σ i . Set

µ i,j,τ = dimH n-dimτ -1 ϕ h•fτ (C Yτ ) p i,j ≥ 0. (3.26) 
Then µ i,j = (-1) n-1 χ{ϕ h•f i (F i ) p i,j } ≥ 0 is expressed as a sum of non-negative integers as follows:

µ i,j = τ ≺σ i µ i,j,τ ≥ 0. (3.27) 
Moreover the integer µ i,j,σ i is positive by the smoothness of T σ i = Y σ i . Consequently we get E f (b) > 0. This completes the proof.

In the generic (Newton non-degenerate) case, for any 1 ≤ i ≤ m and 1 ≤ j ≤ n i we can explicitly calculate the above integer µ i,j ≥ 0 by [14, Theorem 3.4, Corollary 3.6 and Remark 4.3] as follows. First by multiplying a monomial on T σ i ≃ (C * ) dimγ i to f i we may assume that f i is a regular function on X i × C dimγ i . Next by a translation in C dimγ i we reduce the problem to the case p i,j = 0 ∈ C dimγ i . Then we can apply [14, Theorem 3.4 and Corollary 3.6] to

ϕ h•f i (F i ) p i,j ≃ ψ h•f i (F i ) p i,j if f i : (X i × C dimγ i , 0) -→ (C, 0) is Newton non-degenerate at p i,j = 0 ∈ C dimγ i .
In this way, even if σ i is not simplicial we can express the integer µ i,j ≥ 0 as an alternating sum of the normalized volumes of polytopes in R n + \ Γ + (f ) i,j , where Γ + (f ) i,j ⊂ R n + is the (local) Newton polyhedron of f i at p i,j . See [START_REF] Matsui | Milnor fibers over singular toric varieties and nearby cycle sheaves[END_REF]Corollary 3.6] for the details. We conjecture that it is positive in our situation. In the case where n = 3 we have the following stronger result. Proof. The proof is similar to that of Theorem 3.5. We shall use the notations in it. For any 1 ≤ i ≤ m the dimension of the atypical face γ i ≺ Γ ∞ (f ) is 1 or 2. If dimγ i = 2 and n i > 0 we have χ{ϕ h•f i (F i ) p i,j } > 0 for any 1 ≤ j ≤ n i by the result of Zaharia [START_REF] Zaharia | On the bifurcation set of a polynomial function and Newton boundary II[END_REF]. If dimγ i = 1 and n i > 0 the two-dimensional cone σ i is simplicial but σ i ∩ R 3 + can be bigger than {0}. Nevertheless we can show the positivity χ{ϕ h•f i (F i ) p i,j } > 0 for any 1 ≤ j ≤ n i by calculating F i ∈ D b c (X Σ i ) very explicitly depending on how σ i intersects R 3 + . First we consider the case where dimσ i = 2, dimσ i ∩ R 3 + = 1 and rel.int(σ i ∩ R 3 + ) ⊂ rel.int(σ i ). Then for any point q ∈ T σ i ⊂ X Σ i its fiber of the map

π i | C 3 ∩X Σ ′ i : C 3 ∩ X Σ ′ i -→ X Σ i (3.28)
is isomorphic to C * . For its cohomology groups with compact support H l c (C * ; C) (l ∈ Z) we have

H l c (C * ; C) ≃ C (l = 1, 2), 0 (l = 1, 2). (3.29)
Hence for the point q ∈ T σ i we have

H l (F i ) q ≃ C (l = 1, 2), 0 (l = 1, 2) (3.30)
and χ(F i )(q) = 0. Since the two one-dimensional faces ρ i,1 , ρ i,2 of σ i are not contained in R 3 + there exists also an isomorphism

F i | X Σ i \Tσ i ≃ (ι i ) ! C T | X Σ i \Tσ i = C T | X Σ i \Tσ i . (3.31) 
It follows from (3.30) and (3.31) we have an equality

χ{ϕ h•f i (F i ) p i,j } = χ{ϕ h•f i ((ι i ) ! C T ) p i,j } = χ{ϕ h•f i (C T ) p i,j } (3.32)
for any 1 ≤ j ≤ n i . Then for any 1 ≤ j ≤ n i we obtain the positivity

χ{ϕ h•f i (F i ) p i,j } = χ{ϕ h•f i (C T ) p i,j } > 0 (3.33)
by the proof of Theorem 3.5. Next we consider the case where dimσ i = 2 and σ i ∩ R 3 + is one of the two one-dimensional faces ρ i,1 , ρ i,2 of σ i . We may assume that

σ i ∩ R 3 + = ρ i,1 . For 1 ≤ j ≤ 2 we denote by T i,j ≃ (C * ) 2 the T -orbit in X Σ i associated to ρ i,j ≺ σ i . Then for Y {2} = T i,2 we have an isomorphism F i ≃ C X Σ i \Y {2} . Since C X Σ i
is a perverse sheaf (up to some shift) and the two-dimensional variety Y {2} = T i,2 is smooth, for any 1 ≤ j ≤ n i we obtain the positivity

χ{ϕ h•f i (F i ) p i,j } = χ{ϕ h•f i (C X Σ i ) p i,j } -χ{ϕ h•f i (C Y {2} ) p i,j } ≥ -χ{ϕ h•f i (C Y {2} ) p i,j } > 0.
(3.34) Finally, let us treat the case where dimσ i = dimσ i ∩ R 3 + = 2. Since the face γ i is atypical, its dual cone σ i is not contained in R 3

+ and hence we have σ i ∩ R 3 + = σ i in this case. Assume also that rel.int(σ i ∩ R 3 + ) ⊂ rel.int(σ i ). Then for any point q ∈ T σ i ⊂ X Σ i its fiber of the map

π i | C 3 ∩X Σ ′ i : C 3 ∩ X Σ ′ i -→ X Σ i (3.35) is isomorphic to the singular algebraic curve {(x 1 , x 2 ) ∈ C 2 | x 1 x 2 = 0} ⊂ C 2 .
By calculating its Euler characteristic with compact support, we obtain χ(F i )(q) = 1. Moreover we have the isomorphism (3.31) in this case. We thus obtain the positivity

χ{ϕ h•f i (F i ) p i,j } = χ{ϕ h•f i (C T ) p i,j } + χ{ϕ h•f i (C Tσ i ) p i,j } > 0 (3.36)
for any 1 ≤ j ≤ n i . Similarly we can prove the non-negativity and the positivity also in the remaining case. This completes the proof.

We thus confirm the conjecture of [START_REF] Némethi | On the bifurcation set of a polynomial function and Newton boundary[END_REF] for n = 3 in the generic case. Similarly, we can improve Theorem 3.5 as follows. In fact, Theorem 3.7 below extends Theorems 3.5 and 3.6 in a unified manner. Note that the condition rel.int(γ

i ) ⊂ Int(R n + ) is equivalent to the one σ i ∩ R n + = {0} for the cone σ i = σ(γ i ) ∈ Σ 0 . Theorem 3.7. Assume that f has isolated singularities at infinity over b ∈ K f \ [f (Singf ) ∪ {f (0)}] and for any 1 ≤ i ≤ m such that b ∈ K i the set σ i ∩ R n + is a face of R n + of dimension ≤ 2.
Assume also that there exists

1 ≤ i ≤ m such that b ∈ K i , γ i ≺ Γ ∞ (f )
is relatively simple and moreover in the case dimσ i ∩ R n + = 2 the number of the common edges of σ i ∩ R n + and σ i is ≤ 1. Then we have E f (b) > 0 and hence b ∈ B f . Proof. The proof is similar to those of Theorems 3.5 and 3.6. We shall use the notations in them. In the proof of Theorem 3.5 we proved for 1

≤ i ≤ m such that σ i ∩R n + = {0} (resp. σ i ∩ R n + = {0} and γ i is relatively simple) we have (-1) n-1 χ{ϕ h•f i (F i ) p i,j } ≥ 0 (resp. > 0) for any 1 ≤ j ≤ n i . Let us consider the remaining cases where 1 ≤ dimσ i ∩ R n + ≤ 2.
For a face τ ≺ σ i of such σ i , by taking a reference point q ∈ T τ ⊂ X Σ i of the T -orbit T τ associated to it we set e(τ ) = χ(F i )(q). Then as in the proof of Theorem 3.6 we can easily show that

e(τ ) = 1 (dimτ ∩ R n + = dimτ ), 0 (dimτ ∩ R n + < dimτ ).
(3.37)

In particular, for the zero-dimensional face {0} ≺ σ i of σ i we have T {0} = T , F i | T ≃ C T and e({0}) = 1. We thus obtain an equality

(-1) n-1 χ{ϕ h•f i (F i ) p i,j } = (-1) n-1 τ :e(τ )=1 χ{ϕ h•f i (C Tτ ) p i,j } (3.38) 
for any 1 ≤ j ≤ n i . First let us consider the case where dimσ i ∩ R n + = 1. If σ i ∩ R n + is not an edge of the cone σ i , by (3.38) we have (-1) n-1 χ{ϕ h•f i (F i ) p i,j } = (-1) n-1 χ{ϕ h•f i (C T ) p i,j } (3.39)

for any 1 ≤ j ≤ n i . By the proof of Theorem 3.5 this integer is non-negative. Moreover it is positive if γ i is relatively simple. Let ρ i,1 , ρ i,2 , . . . , ρ i,d i ≺ σ i be the edges of σ i . For 1 ≤ j ≤ d i we denote by T i,j ≃ (C * ) n-1 the T -orbit in X Σ i associated to ρ i,j ≺ σ i . If σ i ∩ R n + is an edge ρ of σ i , by (3.38) we can easily see that for the remaining edges ρ i,j (1 ≤ j ≤ d i ) of σ i satisfying ρ i,j = ρ and the hypersurface Z i := ∪ j:ρ i,j =ρ T i,j ⊂ X Σ i defined by them there exists an isomorphism F i ≃ C X Σ i \Z i . Since the hypersurface complement X Σ i \ Z i is an affine open subset of X Σ i , F i is perverse (up to some shift) and we obtain the non-negativity (-1) n-1 χ{ϕ h•f i (F i ) p i,j } = (-1) n-1 χ{ϕ h•f i (C X Σ i \Z i ) p i,j } ≥ 0 (3.40)

for any 1 ≤ j ≤ n i . Moreover we can rewrite this integer as follows:

(-1) n-1 χ{ϕ h•f i (F i ) p i,j } = (-1) n-1 τ :ρ ≺τ (-1) dimτ χ{ϕ h•f i (C Tτ ) p i,j }.

(3.41)

If γ i is relatively simple, the right hand side is a sum of non-negative integers and for a facet τ of σ i such that ρ ≺ τ the closure T τ of T τ is smooth and we have the positivity (-1) n-1+dimτ χ{ϕ h•f i (C Tτ ) p i,j } > 0.

(3.42)

Finally let us consider the case where dimσ i ∩ R n + = 2. Assume that rel.int(σ i ∩ R n + ) ⊂ rel.int(σ i ). Since the case where dimσ i = dimσ i ∩ R n + = 2 was already treated in the proof of Theorem 3.6, here we treat only the case where dimσ i > dimσ i ∩ R n + = 2. Then by (3.38) we obtain the non-negativity (-1) n-1 χ{ϕ h•f i (F i ) p i,j } = (-1) n-1 χ{ϕ h•f i (C T ) p i,j } ≥ 0 (3.43)

for any 1 ≤ j ≤ n i . Moreover it is positive if γ i is relatively simple. Similarly we can prove the non-negativity and the positivity also in the remaining cases. We omit the details. This completes the proof.

In the case n = 4 we can also partially verify the conjecture of [START_REF] Némethi | On the bifurcation set of a polynomial function and Newton boundary[END_REF] as follows. Since the proof of Theorem 3.8 is similar to those of Theorems 3.5, 3.6 and 3.7, we omit it here.
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 10 Then the assertion follows from[START_REF] Hotta | D-modules, perverse sheaves, and representation theory[END_REF] Proposition 8.1.22].

  has only isolated singular points. Definition 3.4. We say that a face γ ≺ Γ ∞ (f ) is relatively simple if the cone σ(γ) ⊂ R n which corresponds to it in the dual fan of Γ ∞ (f ) is simplicial or satisfies the condition dimσ(γ) ≤ 3. Theorem 3.5. Assume that f has isolated singularities at infinity over b
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 36 Assume that n = 3 and f has isolated singularities at infinity over b ∈ K f \ [f (Singf ) ∪ {f (0)}]. Then we have E f (b) > 0 and hence b ∈ B f .
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 3839 Assume that n = 4, f has isolated singularities at infinity over b ∈ K f \ [f (Singf ) ∪ {f (0)}] and for any 1 ≤ i ≤ m such that b ∈ K i and dimσ i = dimσ i ∩ R 4 + = 3 there exists no common edge of σ i and σ i ∩ R 4+ . Assume also that there exists1 ≤ i ≤ m such that b ∈ K i andin the case dimσ i = 3 and dimσ i ∩R 4 + = 2 the number of the common edges of σ i and σ i ∩ R 4 + is ≤ 1. Then we have E f (b) > 0 and hence b ∈ B f . Assume that n = 4, f has isolated singularities at infinity over b ∈ K f \ [f (Singf ) ∪ {f (0)}] and for any 1 ≤ i ≤ m such that b ∈ K i we have dimσ i ∩ R 4 + ≤ 1 or dimσ i ≤ 2. Then we have E f (b) > 0 and hence b ∈ B f .