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Along a vertical profile of a stratified estuary, we determined organic carbon in
the following fractions: low molecular weight (LMW-OC<0-02 pum), colloidal
(0-02 ym<COC<0-7 pm), dissolved (DOC<0-7um) and particulate
(POC>0-7 pm). The results showed abundant concentrations of organic col-
loids accounting for: 40% of total organic carbon (TOC) in the overlying
brackish water (salinity 2), 22% in the underlying marine water (salinity 38)
and 19% (% 5%) for intermediate salinity samples (salinity 3-31). Upon
contact with seawater (in the salinity range 2-5) both DOC and COC
concentrations decreased drastically (44 and 47 uM respectively), whereas
POC slightly increased (11 pM), being consistent with previous laboratory and
field studies, and indicating that at low salinities, the colloidal fraction is
actively involved in the DOC physicochemical aggregation. In the halocline, we
observed that organic colloids and relatively degraded particles accumulated
together in the lowest part of the interface (salinity 31). Because previous
studies in the same area have shown accumulation of degraded cells and
fragments in the bottom of the halocline, we suggest that large colloids (COC
in this study) at the interface probably originated from fragmentation of
non-living organisms or aggregates. Furthermore, it is likely that these processes
which are enhanced in a highly stratified estuary, are partly responsible for the
DOC non-conservative dilution observed along this profile.

Introduction

In aquatic environments colloids are defined as material in the range 0:001-1 pm (Vold
& Vold, 1983; Goldberg, 1988). Thereby, they comprise a large spectrum of organic and
inorganic species including clays, macromolecules, aggregates as well as viruses and
some bacteria and flagellates (Sharp, 1973; Cauwet, 1978; Stumm & Morgan, 1981;
Rassoulzadegan & Sheldon, 1986; Bergh et al., 1989). Although several studies have
reported a significant concentration of colloids particularly in particle-rich media
such as the oceanic euphotic layer, the coastal or estuarine waters (Sigleo ez al., 1982;
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Koike et al., 1990; Wells & Goldberg, 1991; Benner ez al., 1992; Ogawa & Ogura, 1992;
Sempéré er al., 1994), very little is known about their distribution and how they might
affect biogeochemical processes in natural waters.

However, in the estuary numerous studies reported physicochemical aggregation
phenomena of high molecular weight terrigenous-derived dissolved organic matter
(DOM) (Sholkovitz, 1976; Mayer, 1985; Whitehouse ez al., 1989; Sempéré & Cauwet,
1993) highlighting a colloid — particle transfer which may precede sedimentation (Pauc,
1980; McCave, 1984). On the other hand, it has been proposed that some organic
colloids may have originated from fragmentation of particles (Lampert, 1978; Cho &
Azam, 1988; Karl er al., 1988; Koike et al., 1990; Smith er al., 1992; Sempéré er al.,
1994) indicating in this case a particle—colloid pathway. Moreover, recent discoveries
indicated possible assimilation of colloidal DOM by choanoflagellates as well as
tunicates (Marchant & Scott, 1993; Tranvik er al., 1993). Therefore, qualifying and
quantifying processes involving the colloidal fraction, may help to a better understanding
of the microbial food-web as well as the organic matter transfer in estuary.

The highly stratified estuary of the Krka River (Croatia), is well suited for investiga-
tions dealing with the transformations of organic matter because different processes such
as primary production, degradation of particles by bacteria as well as physicochemical
aggregation/disaggregation have been observed along a vertical salinity gradient estab-
lished in less than 1 m (Zutic & Legovic, 1987; Vilicic ez al., 1989; Biscan ez al., 1991;
Cauwet, 1991; Fuks ez al., 1991; Legovic ez al., 1991a; Svetlicic et al., 1991). In spring
1990, we simultaneously collected water samples along a vertical profile from the Krka
Estuary and analysed them for organic carbon content in the so-called ¢ low molecular
weight ’, ‘ colloidal ’,  dissolved > and ° particulate ’ fractions. By comparison between
these parameters and previous studies, we discuss the physicochemical and biological
processes which may involve large organic colloids in the size range 0-02-0-7 um.

Materials and methods

In May 1990, seven water samples were collected from the Krka Estuary (Figure 1;
station E) above, below and at 4-10-cm intervals vertically in the halocline. For the
sampling a scuba diver used a multichannel peristaltic pump which avoids disturbance
by air bubbles (Kniewald ez al., 1987; Cauwet, 1991). In this study, the halocline which
was defined as the interval in which AS/AZ>5m ™' (Vukojevic, 1983, cited in Legovic
et al., 1991b), separated the upper brackish water layer from the lower marine layer at
c¢. 2 m below the surface. After collection, the water was filtered under reduced vacuum
with an all-glass filter holder through a 47-mm-diameter pre-heated (45 °C) glass
fibre filter (GF/F). The filtration was stopped after 1 1 to avoid colloid adsorption on the
filter. The rinsed filters were dried at 40 °C for 24 h and were used later for total
suspended matter (TSM) and POC determinations, whereas the filtrates were collected
in pre-heated (450 °C) graduated glass bottles (1 1) tightly closed with a Teflon-lined
cap.

The subsamples were subsequently ultrafiltered under a laminar flow air bench
through a 0-02 um laboratory synthesized tubular membrane of zirconium/aluminium
oxide (Larbot er al., 1989) by the method described previously (Sempéré, 1991;
Sempéré ez al., 1994). The laboratory experiments (with Dextran solutions) indicated
that the membrane cutoff was around 500 000 dalton. Briefly, 11 of each pre-filtered
sample was 1-7 times concentrated by cross-flow ultrafiltration on the membrane
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Figure 1. Location of the Krka Estuary (Croatia) and sampling station (E).

inserted in a Teflon/Kel F unit. These conditions facilitated a good conditioning of the
membrane and avoided membrane clogging. Ultrafiltrate and concentrate were collected
in pre-heated (450 °C) graduated glass bottles (1 1) and closed with a Teflon-lined cap.
Total procedure time for each sample was ¢. 5h. Aliquots (8 ml) of filtered and
ultrafiltered samples (ultrafiltrate+concentrate) were taken in pre-heated (450 °C)
10-ml glass vials poisoned with HgCl, (10 mg 1~ '), covered with a Teflon-lined
cap, and stored at 4 °C in the dark. Therefore, by the separative methods described
above, organic carbon was operationally fractionated in the following fractions:
LMW-0C<0-02 pm; 0-:02<COC<0-7 um; DOC<0-7 pm; POC>0-7 pm.

For DOC (ultrafiltrate, concentrate and initial GF/F filtrate) measurements, after
acidification (pH 2) with a 2 M HCl solution, the samples were bubbled for 5 min, with
CO,-free pure air to purge inorganic carbon. Dissolved organic carbon was measured by
means of the uv-persulphate oxidation method (Collins & Williams, 1977) modified by
Cauwet (1984). The standard deviation was c¢. 3 pM for <83 uM and less than 2% above.
The carbon blank of the water used for the standard solutions (83, 167, 250, 333 uM)



TaBLE 1. Depth collection, salinity, particulate organic carbon (POC) and dissolved
inorganic carbon (DIC) in water samples collected from the Krka Estuary, May 1990

Depth (m) Salinity POC (uM) POC% DIC(uM)
1-50 2 48+ 1 18 3815+ 8
1-90 3 361 16 3931+8
1-96 5 50+1 17 3591 £8
2:06 19 82+2 26 323918
2-08 24 108 +2 22 2951+ 8
2:12 31 106 £+ 2 20 2934+ 8
5-00 38 32+1 15 2488+ 8

POC%=(POC x 100)/TSM.

was estimated to be 15 pM by pure air circulation inside the system and subtracted from
the standards. In this study, COC represented (after volume corrections) the difference
between DOC,_, ccnirare a0d DOC | sierae @nd thus its uncertainty was estimated to
¢. 4 uM from the square root of the sum of the standard deviation calculation. Our
uv-persulphate unit might have underestimated DOC values by a factor of 1:0-1-2
(Cauwet ez al., 1990a; Sempéré & Cauwet, 1993; Cauwet, 1994). Dissolved inorganic
carbon (DIC) was measured by a uv-persulphate analyser with a standard deviation of
8 uM. After removal of carbonates, POC was determined by GF/F filter combustion
(LECO CS 125 analyser) with a standard deviation of 2%.

Results and discussion

Descriprion of the halocline, particle characteristics

Table 1 gives the physical parameters (depth collection, salinity) as well as DIC and
POC concentrations and POC% [(POC x 100)/TSM] of the water samples along the
profile. The DIC distribution showed a normal (Meybeck, 1982; Cauwet, 1991)
conservative behaviour [Figure 2(a); ©*=0-96, n=7] establishing confidence in our
sampling precision. The POC concentration range was 32-108 uM (average 67 pM)
comprising 15-26% (average 19%) of TSM and 21-44% (average 32%) of total organic
carbon (TOC). These high POC% for corresponding TSM data reflect a situation in
which aquatic production dominated the charge of the river (Meybeck, 1982; Ittekot,
1988; Cauwet et al., 1990b).

Particulate organic carbon concentrations increased with the salinity from the brackish
water to the bottom of the halocline, thus, the strong salinity gradient (from 3 to 31 in
22 cm) and particulate content (POC and POC%) of the profile [Figure 2(b,c)] are in
good agreement with those described previously (Zutic & Legovic, 1987; Cauwet, 1991,
and references therein; Legovic ez al., 19914,b). (1) A well-defined halocline (atc.2m
below the surface) separating the overlaying brackish water (first sample salinity 2) and
the underlying marine water (salinity 38). (2) A particle accumulation in the bottom of
the halocline (depth=2-08-2-12 m; salinity 24-31) as a consequence of the density and
shear stress barrier (Cauwet, 1991). However, it is important to notice that POC%
maximum (depth=2-06 m; salinity 19) was situated above the POC maximum
(depth=2-08 m; salinity 24) indicating that the particles are preferentially degraded in
the lowest part of the interface. This later observation is consistent with the results of
Zutic and Legovic (1987) and Vilicic et al. (1989) who reported in the bottom of the
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Figure 2. Vertical profiles for (a) salinity, (b) particulate organic carbon
(POC>0-7um) and (c) organic content of total suspended matter
[POC%=(100 x POC)/TSM]. POC standard deviation is within 2%, horizontal error
bars are smaller than the symbol size.

TABLE 2. Depth collection, salinity, dissolved organic carbon (DOC), colloidal organic
carbon (COC) and low molecular weight organic carbon (LMW-OC) in the water
samples collected from the Krka Estuary, May 1990

Depth (m) Salinity DOC (uM) COC (uM) LMW-OC (uM) COC/DOC (%) % Initial DOC

1-50 2 147+£3 79+£3 75+£2 54 108
1-90 3 1343 46 £ 4 99 +2 34 108
1-96 5 103+2 32+3 802 31 108
2-:06 19 1473 3214 12142 22 104
2-08 24 144 %3 40+ 4 109+2 28 103
2:12 31 133£3 414 98+ 2 31 104
5-00 38 121+2 33+ 4 92+2 27 103

DOC<0-7 pm; 0-02<COC<0-7 ym; LMW-OC<0-02 um.
% Initial DOC=(DOC yapireac+ COC) X 100/DOC;iiar warer:

halocline, accumulation of chlorophyll degradation product (phaeophytin) as well as
heterotrophic activity, the chlorophyll being produced in the overlying water.

Diussolved and colloidal organic carbon distribution
Table 2 gives DOC and COC data for the samples. Mass balances measured on the
samples indicated that an average of 105+ 2% was found in the concentrate and
ultrafiltrate fractions indicating that contamination and loss were minimized during the
procedure. Dissolved organic carbon concentrations ranged from 103 to 147 uM
(average 133 uM) and are similar with those already published (Cauwet, 1991). The
COC concentration range was 32-79 uM (average 43 uM) being maximum at low



TaBLE 3. Depth collection, salinity, and relative abundance of particulat.e organic
carbon (POC), colloidal organic (COC) and low molecular weight organic carbon
(LMW-OC) in the water samples collected from the Krka Estuary, May 1990

Depth (m) Salinity POC/TOC (%) COC/TOC (%) LMW-OC/TOC (%)

1-50 2 25 40 38
1-90 3 21 27 58
1-96 5 36 20 49
2:06 19 36 14 53
2:08 24 43 16 43
212 31 44 17 41
5-00 38 21 22 60

POC>0-7um; DOC<0:7pm; 0-02 um<COC<0-7um; LMW-OC<0-02 pm;
POC+DOC=TOC.
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Figure 3. Vertical profiles for (a) salinity, (b) dissolved organic carbon (DOC<0-7 um),
(¢) colloidal organic carbon (0-02<COC<0:7 um) and (d) low molecular weight
organic carbon (LMW-OC<0-02 pm). Horizontal error bars are instrument standard
deviations (indicated in Tables 1 and 2) and if not shown are smaller than the symbol
size.

salinity (2); COC comprised 22-54% (average 32%) of DOC (Table 2) and 14-40%
(average 22%) of TOC (Table 3), indicating that organic colloids represented a
significant fraction of organic carbon during the spring season in the Krka Estuary.
Interestingly, the results show a clear non-conservative behaviour of DOC (Figures 3
and 4) as well as COC and LMW-OC (Figure 3), a point which will be discussed later.

In the overlying brackish water the colloidal fraction was relatively the most abundant
(COC/DOC=54%; COC/TOC=40%). We found that upon contact with seawater
(salinity 2-5) the brackish-water DOC decreased sharply by 44 pM, moreover, Tables 2,
3 and Figure 3 indicate that this can principally be attributed to its colloidal fraction.
This fact has been observed in other estuaries by different authors (Sholkovitz, 1976;
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Figure 4. Dissolved organic carbon (DOC) concentration versus salinity for the water
samples collected from the Krka Estuary, May 1990. Horizontal error bars are
instrument standard deviations (indicated in Table 2).

Whitehouse et al., 1989; Sempéré & Cauwet, 1993), and certainly reflects the physico-
chemical flocculation of some terrigenous-derived dissolved organic matter (mainly
humic acids) through colloidal state into particles due to ionic strength changes
(Sholkovitz, 1976; Mayer, 1985). This phenomenon might explain why we observed
[Figure 2(b)] in the salinity 5 sample, a small increase of POC concentration (11 pM),
the rest of the newly generated particles having probably sunk towards the sediment
through the interface. This assumption seems consistent with the previous work of
Hadzija et al. (1985) indicating a preferentially terrigenous source of sedimented organic
material (rich in carbohydrate-humic substances complexes) in the estuarine sediments.
Slightly above the halocline (depth=2-06 m; salinity 19) we observed a DOC sub-
maximum due to the LMW-OC. It is important to notice that at the same level, we
observed the highest organic content of particles [see POC%, Figure 2(c)]. Although in
this study, we do not have simultaneous biological data available, several authors in
previous work located the chlorophyll maximum above the halocline as well (Zutic &
Legovic, 1987; Vilicic ez al., 1989). If these informations were confirmed together, they
may suggest a production of LMW-OC by healthy phytoplankton above the interface.

From the higher part of the halocline (depth=2-06 m; salinity 19) to its lowest part
(depth=2-12 m; salinity 31), the LMW-OC concentrations decreased slightly from 121
to 98 pM, whereas COC increased slightly from 32 to 41 uM. These results showed that
at the interface level (depth=2-12 m; salinity 31), organic carbon is in colloidal and
particulate states for, respectively, 17 and 44% (Table 3). Actually, the residence time of
particles as well as the number of heterotrophic bacteria in an interface is larger than
anywhere else in the water column (Mayer, 1982; Zutic & Legovic, 1987; Legovic et al.,
1991a), then particulate organic matter including dead organisms and also various
aggregates, represents a potential source for transformations such as flocculation,
disaggregation or DOM releases by organisms. However, it has been reported that in
seawater, autolysis of dead cells releases mainly low molecular weight compounds
(Carlucci et al., 1984) whereas the ultrafiltration membrane we used in this study, retains
mostly large colloids with a molecular weight higher than 500 000 dalton (Sempéré et al.,
1994).



Although in estuaries, physicochemical aggregation of dissolved organic matter into
colloids induced by seawater usually appears mainly at low salinities (salinity less than
10; Sholkovitz, 1976; Mayer, 1985), we can not totally disregard the flocculation process
in saline waters (Baskaran et al., 1992; Moran & Buesseler, 1992). However, we feel that
the apparent increase of organic colloids near the interface may be due to the
fragmentation of larger particles by physical disaggregation (Karl ez al., 1988) or
biological processes (such as micro-organism degradation as well as interspecies grazing;
Lampert, 1978; Koike et al., 1990; Smith et al., 1992). Furthermore, Koike ez al. (1990)
reported that the grazing of bacteria by flagellates in the open ocean is responsible for
some submicrometre particle (essentially organic) production. Interestingly, Sigleo ez al.
(1982) gave a similar composition (30% carbohydrates, 10% lipids and 10% nucleo-
tides) for colloidal material and phytoplankton in the Patuxent River. It is likely that
these processes occur together at the interface in proportions difficult to determine.

Non-conservative distribution of DOC

These phenomena may certainly explain partly the clear non-conservative DOC behav-
iour (Figure 4; *<0-1, n="7) along the vertical profile at this season. Several authors have
already reported no clear relationship between salinity and DOC (Cauwet, 1991; Suzuki
& Tanoue, 1991; Miller ez al., 1993; Sempéré & Cauwet, 1993). On the other hand,
although the flocculation of the colloidal fraction of DOC was generally admitted, DOC
conservative dilution has been observed many times (Moore ez al., 1979; Mantoura &
Woodward, 1983; Whitehouse ez al.,, 1989). Dissolved organic carbon conservative
dilution concept along an estuary is usually related to internal physicochemical and
biological processes (Mantoura, 1987). Flowing from a karstic environment, the Krka
River generally has clear water and a very low DOC concentration constant throughout
the year, therefore, the biological production in the estuary will play an important role in
the carbon budget (Cauwet, 1991). However, upon the first contact with seawater, and
probably because of the sensitive sampling technique we observed the fate of DOC by
physicochemical processes (29% as regard to the theoretical dilution by seawater salinity
5). Moreover, the special character of the interface (which acts as a kind of density
barrier) probably contributes to biologically regulate the concentration of colloidal and
low molecular weight fractions of DOC slightly above and in the halocline. All these
organic matter transformations which in other kinds of estuaries may occur near the
sediment or in the bottom nepheloid layer (Sempéré er al., 1994) might firstly not be
detected by surface water sampling, and secondly affect the DOC mass balance in the
estuary.
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