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Abstract. Given two genomes possibly with duplicate genes, the exem-
plar distance problem is that of removing all but one copy of each gene
in each genome, so as to minimize the distance between the two reduced
genomes according to some measure. Let (s, t)-Exemplar Distance de-
note the exemplar distance problem on two genomes G1 and G2 where
each gene occurs at most s times in G1 and at most t times in G2. We
show that the simplest non-trivial variant of the exemplar distance prob-
lem, (1, 2)-Exemplar Distance, is already hard to approximate for a
wide variety of distance measures, including popular genome rearrange-
ment measures such as adjacency disruptions and signed reversals, and
classic string edit distance measures such as Levenshtein and Hamming
distances.

Keywords: comparative genomics, hardness of approximation, adja-
cency disruption, sorting by reversals, edit distance, Levenshtein dis-
tance, Hamming distance.

1 Introduction

In the study of genome rearrangement, a gene is usually represented by a signed
integer: the absolute value of the integer (the unsigned integer) denotes the gene
family to which the gene belongs; the sign of the integer denotes the orientation of
the gene in its chromosome. Then a chromosome is a sequence of signed integers,
and a genome is a collection of chromosomes. Given two genomes possibly with
duplicate genes, the exemplar distance problem [14] is that of removing all but
one copy of each gene in each genome, so as to minimize the distance between the
two reduced genomes according to some measure. The reduced genomes are said
to be exemplar subsequences of the original genomes. This approach amounts
to considering that, in the evolution history, duplications have taken place after
the speciation of the genomes (or more generally, that we are able to distinguish
genes that have been duplicated before the speciation). Hence, in each genome,
only one copy of each gene may be matched to an ortholog gene in the other
genome.
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For example, the following two monochromosomal genomes

G1 : −4 +1 +2 +3 −5 +1 +2 +3 −6

G2 : −1 −4 +1 +2 −5 +3 −2 −6 +3

can both be reduced to the same genome

G′ : −4 +1 +2 −5 +3 −6

by removing duplicates, thus they have exemplar distance zero for any reason-
able distance measure. In general, unless we are to decide simply whether two
genomes can be reduced to the same genome by removing duplicates, the exem-
plar distance problem is not a single problem but a group of related problems
because the choice of the distance measure is not unique.

We denote by (s, t)-Exemplar Distance the exemplar distance problem
on two genomes G1 and G2 where each gene occurs at most s times in G1

and at most t times in G2. It is known [5, 12] that for any reasonable distance
measure, (2, 2)-Exemplar Distance does not admit any approximation. This is
because to decide simply whether two genomes with maximum occurrence 2 can
be reduced to the same genome by removing duplicates is already NP-hard. In
this paper, we focus on the simplest non-trivial variant of the exemplar distance
problem: (1, 2)-Exemplar Distance.

The problem (1, t)-Exemplar Distance has been studied for several dis-
tance measures commonly used in genome rearrangement. Angibaud et al. [2]
showed that (1, 2)-Exemplar Breakpoint Distance, (1, 2)-Exemplar Com-

mon Interval Distance, and (1, 2)-Exemplar Conserved Interval Dis-

tance are all APX-hard. Blin et al. [4] showed that (1, 9)-Exemplar MAD

Distance is NP-hard to approximate within 2 − ǫ for any ǫ > 0, and that
(1,∞)-Exemplar SAD Distance is NP-hard to approximate within c logn
for some constant c > 0, where n is the number of genes in G1. See also [8, 6, 7]
for related results.

The two distance measures we first consider, MAD and SAD, were introduced
by Sankoff and Haque [15]. For two permutations π′ = π′

1 . . . π
′
n and π′′ =

π′′
1 . . . π

′′
n of n distinct elements, define τ ′(i) as the index j such that π′

j = π′′
i ,

and τ ′′(i) as the index j such that π′′
j = π′

i. Then the maximum adjacency
disruption (MAD) and the summed adjacency disruption (SAD) between π′ and
π′′ are

MAD(π′, π′′) = max
1≤i≤n−1

{

|τ ′(i)− τ ′(i+ 1)|, |τ ′′(i)− τ ′′(i+ 1)|
}

,

SAD(π′, π′′) =
∑

1≤i≤n−1

(

|τ ′(i)− τ ′(i+ 1)|+ |τ ′′(i)− τ ′′(i + 1)|
)

.

Our first two theorems sharpen the previous results on the inapproximability
on (1, t)-Exemplar Distance for both MAD and SAD measures:

Theorem 1. (1, 2)-Exemplar MAD Distance is NP-hard to approximate

within 2− ǫ for any ǫ > 0.
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Theorem 2. (1, 2)-Exemplar SAD Distance is NP-hard to approximate within

10
√
5 − 21 − ǫ = 1.3606 . . .− ǫ, and is NP-hard to approximate within 2 − ǫ if

the unique games conjecture is true, for any ǫ > 0.

For an unsigned permutation π = π1 . . . πn, an unsigned reversal (i, j) with
1 ≤ i ≤ j ≤ n turns it into π1 . . . πi−1 πj . . . πi πj+1 . . . πn, where the substring
πi . . . πj is reversed. For a signed permutation σ = σ1 . . . σn, a signed reversal

(i, j) with 1 ≤ i ≤ j ≤ n turns it into σ1 . . . σi−1 −σj . . .−σi σj+1 . . . σn, where
the substring σi . . . σj is reversed and negated. The unsigned reversal distance

(resp. signed reversal distance) between two unsigned (resp. signed) permuta-
tions is the minimum number of unsigned (resp. signed) reversals required to
transform one to the other. Computing the unsigned reversal distance is APX-
hard [3], although the signed reversal distance can be computed in polynomial
time [11].

Our next theorem answers an open question of Blin et al. [4] on the inap-
proximability of the exemplar reversal distance problem:

Theorem 3. (1, 2)-Exemplar Signed Reversal Distance is NP-hard to

approximate within 1237/1236− ǫ for any ǫ > 0.

In the last theorem of this paper, we present the first inapproximability result
on the exemplar distance problem using the classic string edit distance measure:

Theorem 4. (1, 2)-Exemplar Edit Distance is APX-hard to compute when

the cost of a substitution is 1 and the cost of an insertion or a deletion is at least

1.

Note that both Levenshtein distance and Hamming distance are special cases
of the string edit distance: for Levenshtein distance, the cost of every operation
(substitution, insertion, or deletion) is 1; for Hamming distance, the cost of a
substitution is 1 and the cost of an insertion or a deletion is +∞. Thus we have
the following corollaries:

Corollary 1. (1, 2)-Exemplar Levenshtein Distance is APX-hard.

Corollary 2. (1, 2)-Exemplar Hamming Distance is APX-hard.

2 MAD Distance

In this section we prove Theorem 1. We prove that Exemplar MAD Distance

is NP-hard by a reduction from the well-known NP-hard problem 3SAT [10]. Let
(V,C) be a 3SAT instance, where V = {v1, . . . , vn} is a set of n boolean variables,
C = {c1, . . . , cm} is a conjunctive boolean formula of m clauses, and each clause
in C is a disjunction of exactly three literals of the variables in V . The problem
3SAT is that of deciding whether (V,C) is satisfiable, i.e., whether there is a
truth assignment for the variables in V that satisfies all clauses in C.

Let M be a large number to be specified. We will construct two sequences
(genomes) G1 and G2 over L = 3m+ (n+1)+ (2n+1)+ (m+1)+ (2M +2) =
2M + 3n+ 4m+ 5 distinct markers (genes):
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– 3 literal markers rj , sj, tj for the 3 literals of each clause cj , 1 ≤ j ≤ m;
– n+ 1 variable markers xi, 0 ≤ i ≤ n;
– 2n+ 1 separator markers yi, 0 ≤ i ≤ 2n;
– m+ 1 clause markers zj , 0 ≤ j ≤ m;
– 2M + 2 dummy markers φk and ψk, 0 ≤ k ≤M .

For each clause cj , let Oj = rjsjtj be the concatenation of the three literal
markers of cj . For each variable vi, let Pi = pi,1 . . . pi,ki

be the concatenation of
the ki literal markers of the positive literals of vi, and let Qi = qi,1, . . . , qi,li be
the concatenation of the li literal markers of the negative literals of vi. Without
loss of generality, assume that min{ki, li} ≥ 1. Note that the two concatenated
sequences O1 . . . Om and P1Q1 . . . PnQn are both permutations of the 3m literal
markers.

The two sequences G1 and G2 are represented schematically as follows. G1

contains exactly one copy of each marker, and has length L; G2 contains exactly
two copies of each literal marker and exactly one copy of each non-literal marker,
and has length L+ 3m.

G1 : . . . z3z1 φ0 . . . x2x0 φM . . . φ1 y0P1y1Q1y2 . . . Pny2n−1Qny2n ψ1 . . . ψM z0z2 . . . ψ0 x1x3 . . .

G2 : xnPnQn . . . x1P1Q1x0 φM . . . φ1φ0 y0y1y2 . . . y2n−1y2n ψ0ψ1 . . . ψM z0O1z1 . . . Omzm

Lemma 1. If (V,C) is satisfiable, then G2 has an exemplar subsequence G′
2 that

satisfies MAD(G1, G
′
2) ≤M + 3n+ 4m+ 5.

Proof. Let f be a truth assignment for the variables in V that satisfies all clauses
in C. For each variable vi, compose a subsequence Vi of PiQi such that Vi = Qi

if f(vi) is true and Vi = Pi if f(vi) is false. For each clause cj , compose a
subsequence Cj of Oj containing only the literal markers of the literals that are
true under the assignment f . Then V1 . . . VnC1 . . . Cm is a permutation of the
3m literal markers. It is straightforward to verify that the exemplar subsequence
G′

2 of G2 in the following satisfies MAD(G1, G
′
2) ≤ L−M =M + 3n+ 4m+ 5:

G1 : . . . z3z1 φ0 . . . x2x0 φM . . . φ1 y0P1y1Q1y2 . . . Pny2n−1Qny2n ψ1 . . . ψM z0z2 . . . ψ0 x1x3 . . .

G2 : xnPnQn . . . x1P1Q1x0 φM . . . φ1φ0 y0y1y2 . . . y2n−1y2n ψ0ψ1 . . . ψM z0O1z1 . . . Omzm

G′
2 : xnVn . . . x1V1x0 φM . . . φ1φ0 y0y1y2 . . . y2n−1y2n ψ0ψ1 . . . ψM z0C1z1 . . . Cmzm

⊓⊔

Lemma 2. If (V,C) is not satisfiable, then every exemplar subsequence G′
2 of

G2 satisfies MAD(G1, G
′
2) > 2M .

Proof. We prove the contrapositive. Suppose G2 has an exemplar subsequence
G′

2 that satisfies MAD(G1, G
′
2) ≤ 2M . We will find a truth assignment f for the

variables in V that satisfies all clauses in C.
First, we claim that for each variable vi, the literal markers of the positive

literals of vi must appear in G′
2 either all before φM or all after ψM . Suppose
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the contrary. Then there would be two literal markers of vi, one before φM and
one after ψM in G′

2, that are adjacent in the substring Pi in G1, incurring a
MAD distance larger than 2M . Similarly, we claim that the literal markers of
the negative literals of each variable vi must appear in G′

2 either all before φM
or all after ψM .

Next, we claim that for each variable vi, the literal markers of either all
positive literals of vi or all negative literals of vi must appear in G′

2 before φM ,
between xi and xi−1. Suppose the contrary that all literal markers of both the
positive and the negative literals of vi appear in G′

2 after ψM . Then the two
variable markers xi and xi−1, one before φM and one after ψM in G1, would
become adjacent in G′

2, incurring a MAD distance larger than 2M .
Finally, we claim that for each clause cj , at least one of the three literal

markers rj , sj , tj must appear in G′
2 after ψM , between zj−1 and zj. Suppose

the contrary. Then the two clause markers zj−1 and zj , one before φM and one
after ψM in G1, would become adjacent in G′

2, again incurring a MAD distance
larger than 2M .

Now compose a truth assignment f for the variables in V such that f(vi) is
true if the literal markers for the negative literals of vi appear before φM , and
is false otherwise. Then f satisfies all clauses in C. ⊓⊔

For any constant ǫ, 0 < ǫ < 2, we can get a gap of 2M/(M +3n+4m+5) =
2− ǫ by setting M = (2

ǫ
− 1)(3n+4m+5). Thus the NP-hardness of 3SAT and

the two preceding lemmas together imply that Exemplar MAD Distance is
NP-hard to approximate within 2− ǫ for any ǫ > 0.

3 SAD Distance

In this section we prove Theorem 2. We show that Exemplar SAD Distance

is NP-hard to approximate by a reduction from another well-known NP-hard
problem Minimum Vertex Cover [10]. Let (V,E) be a graph, where V =
{v1, . . . , vn} is a set of n vertices, and E = {e1, . . . , em} is a set of m edges. The
problem Minimum Vertex Cover is that of finding a subset C ⊆ V of the
minimum cardinality such that each edge in E is incident to at least one vertex
in C. Dinur and Safra [9] showed that Minimum Vertex Cover is NP-hard
to approximate within any constant less than 10

√
5− 21 = 1.3606 . . .. Khot and

Regev [13] showed that Minimum Vertex Cover is NP-hard to approximate
within any constant less than 2 if the unique games conjecture is true.

Let M = 2(n+m)2. We will construct two sequences (genomes) G1 and G2

over L = n+m+M + 1 distinct markers (genes):

– n vertex markers vi, 1 ≤ i ≤ n;
– m edge markers ej , 1 ≤ j ≤ m;
– M dummy markers φk, 0 ≤ k ≤M .

For each vertex vi, let Ei = ei,1 . . . ei,ki
be the concatenation of the edge

markers of all edges incident to vi, where ki is the degree of vi. The two sequences
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G1 and G2 are represented schematically as follows.G1 contains exactly one copy
of each marker, and has length L; G2 contains exactly two copies of each edge
marker and exactly one copy of each non-edge marker, and has length L+m.

G1 : e1 . . . em φ0φ1 . . . φM v1 . . . vn

G2 : φ0φ1 . . . φM E1v1 . . . Envn

Lemma 3. G has a vertex cover of size at most k if and only if G2 has an

exemplar subsequence G′
2 that satisfies SAD(G1, G

′
2) ≤ (2k + 4)M .

Proof. We first prove the direct implication. Let C be a vertex cover of size at
most k in G. Extract a subsequence E′

i of Ei for each vertex vi in C such that
the concatenated sequence E′

1 . . . E
′
n contains each edge marker ej exactly once.

From G2, remove Ei for each vertex vi not in C, and replace Ei by E
′
i for each

vertex vi in C. Then we obtain an exemplar subsequence G′
2 of G2.

The two sequences G1 and G′
2 have the same length L = n+m+M +1 and

together have 2n+2m+2M adjacencies. The contributions of these adjacencies
to SAD(G1, G

′
2) are as follows:

1. The shared adjacencies φiφi+1 in G1 and G′
2, 0 ≤ i ≤ M − 1, contribute a

total value of exactly 2M .
2. The adjacency emφ0 in G1 contributes a value of at least M and at most
M + n+m.

3. Each adjacency between an edge marker and a non-edge marker in G′
2 con-

tributes a value of at least M and at most M + n+m.
4. Each remaining adjacency contributes a value of at least 1 and at most n+m.

The number of adjacencies between an edge marker and a non-edge marker
in G′

2 is exactly twice the size of the vertex cover C. Thus we have

SAD(G1, G
′
2) ≤ 2M + (2k + 1)(M + n+m)

+ (2n+ 2m+ 2M − 2M − 2k − 1)(n+m)

= (2k + 3)M + 2(n+m)2 = (2k + 4)M.

We next prove the reverse implication. Let G′
2 be an exemplar subsequence of

G2 such that SAD(G1, G
′
2) ≤ (2k + 4)M . Refer back to the list of contributions

to SAD(G1, G
′
2). Let l be the number of adjacencies between an edge marker

and a non-edge marker in G′
2. Then we have the following inequality:

SAD(G1, G
′
2) ≥ 2M + (l + 1)M = (l + 3)M.

Since SAD(G1, G
′
2) ≤ (2k+4)M , we have l+3 ≤ 2k+4 and hence l ≤ 2k+1. Note

that l must be an even number: for each adjacency between an edge marker in
Ei and a non-edge marker to its left, there must be another adjacency between
an edge marker in Ei and a non-edge marker (indeed a vertex marker) to its
right, and vice versa. It follows that there are at most k vertex markers vi that
are adjacent to an edge marker to its left. The corresponding at most k vertices
vi form a vertex cover of G. ⊓⊔
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The inapproximability of Minimum Vertex Cover and the preceding lemma
together imply that Exemplar SAD Distance is NP-hard to approximate
within 10

√
5− 21− ǫ, and is NP-hard to approximate within 2− ǫ if the unique

games conjecture is true, for any ǫ > 0.

4 Signed Reversal Distance

In this section we prove Theorem 3. We show that (1, 2)-Exemplar Signed Re-

versal Distance is APX-hard by a reduction from the problem Min-SBR [3],
which asks for the minimum number of unsigned reversals to sort a given un-
signed permutation into the identity permutation.

Let π = π1 . . . πn be an unsigned permutation of 1 . . . n. We construct two
sequences G1 = 1 . . . n and G2 = π1 −π1 . . . πn −πn.

Lemma 4. π can be sorted into the identity permutation 1 . . . n by at most k
unsigned reversals if and only if G2 has an exemplar subsequence G′

2 with signed

reversal distance at most k from G1.

We leave the proof of Lemma 4 to the reader as an easy exercise. Since Min-

SBR is NP-hard to approximate within 1237/1236− ǫ for any ǫ > 0 [3], (1, 2)-
Exemplar Signed Reversal Distance is NP-hard to approximate within
1237/1236− ǫ for any ǫ > 0 too.

5 Edit Distance

In this section we prove Theorem 4. For any edit distance where the cost of a
substitution is 1 and the cost of an insertion or a deletion is at least 1 (possibly
+∞), we show that the problem (1, 2)-Exemplar Edit Distance is APX-hard
by a reduction from the problem Minimum Vertex Cover in Cubic Graphs.

Let G = (V,E) be a cubic graph of n vertices and m edges, where 3n = 2m.
We will construct two sequences (genomes) G1 and G2 over an alphabet of

3m+ 4n+ 2(m+ 7n) + 2(m− 1) + (n− 1)

distinct markers (genes). For each edge e = {u, v} ∈ E, we have three edge
markers e, eu, and ev. For each vertex v ∈ V , we have a vertex marker v and 3
dummy markers v′1, v

′
2, v

′
3. In addition, we have 2(m+ 7n) + 2(m− 1) + (n− 1)

markers for separators.
The two sequences G1 and G2 are composed from m+n+1 gadgets: an edge

gadget for each edge, a vertex gadget for each vertex, and a tail gadget. The
m+n+1 gadgets are separated by m+n separators of total length 2(m+7n)+
2(m− 1) + (n− 1):

– two long separators, each of length m+7n: one between the last edge gadget
and the first vertex gadget, one between the last vertex gadget and the tail
gadget;
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– m+n−2 short separators: a length-2 separator between any two consecutive
edge gadgets, and a length-1 separator between any two consecutive vertex
gadgets.

For each edge e = {u, v}, the edge gadget for e is

G1 〈e〉 = e

G2 〈e〉 = euev

For each vertex v incident to edges e, f, g, the vertex gadget for v is

G1 〈v〉 = v v′1v
′
2v

′
3

G2 〈v〉 = evfvgv v e f g

Let V ′ be the 3nmarkers v′1, v
′
2, v

′
3 for v ∈ V . Let E′ be the 2m = 3n markers

eu and ev for e = {u, v} ∈ E. The tail gadget is

G1 〈tail〉 = E′

G2 〈tail〉 = V ′

This completes the construction.

Lemma 5. G has a vertex cover of size at most k if and only if G2 has an

exemplar subsequence G′
2 with edit distance at most m+ 6n+ k from G1.

Proof. We first prove the direct implication. Let X be a vertex cover of G with
|X | ≤ k. CreateG′

2 as follows. For each edge e = {u, v}, at least one vertex, say u,
is in X . Remove eu and retain ev in the edge gadget G2 〈e〉, and correspondingly
retain eu in the vertex gadget G2 〈u〉 and remove ev in the vertex gadget G2 〈v〉,
then remove e in G2 〈u〉 and retain e in G2 〈v〉. We claim that the edit distance
from G1 to G′

2 is at most m+ 6n+ k.
It suffices to show that the Hamming distance of G1 and G′

2 is at most
m+6n+k since, for the edit distance that we consider, the cost of a substitution
is 1. Observe that in both G1 and G′

2, each edge gadget has length 1, and
each vertex gadget has length 4. Thus all gadgets are aligned and all separators
are matched. The Hamming distance for each edge gadget is 1, so the total
Hamming distance over all edge gadgets is m. The Hamming distance for each
vertex gadget is at most 4. Moreover, for each vertex v /∈ X (v incident to
edges e, f, g), since the markers ev, fv, gv are removed (and the markers e, f, g
are retained) in the vertex gadget, the marker v is matched, which reduces the
Hamming distance by 1. Thus the total Hamming distance over all vertex gadgets
is at most 4n− (n − |X |) = 3n+ |X |. Finally, since the Hamming distance for
the tail gadget is 3n, the overall Hamming distance of G1 and G′

2 is at most
m+ 6n+ |X | ≤ m+ 6n+ k.

We next prove the reverse implication. Let G′
2 be an exemplar subsequence

of G2 with edit distance at most m+6n+ k from G1. Compute an alignment of
G1 and G′

2 corresponding to the edit distance, then obtain the following three
sets XE(G

′
2), XV (G

′
2), and X(G′

2):
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– The set XE(G
′
2) ⊆ E contains every edge e = {u, v} such that either G′

2 〈e〉
contains both eu and ev, or G

′
1 〈e〉 has an adjacent separator marker which

is unmatched.
– The set XV (G

′
2) ⊆ V contains every vertex v (v incident to edges e, f, g)

such that either G′
2 〈v〉 contains one of {ev, fv, gv}, or G′

1 〈v〉 has an adjacent
separator marker (to its left) which is unmatched.

– The setX(G′
2) ⊆ V is the union ofXV (G

′
2) and a set composed by arbitrarily

choosing one vertex from each edge in XE(G
′
2) (thus |X(G′

2)| ≤ |XV (G
′
2)|+

|XE(G
′
2)|).

We first show that the edit distance fromG1 toG
′
2 is at leastm+6n+|X(G′

2)|.
If a long separator (with m + 7n markers) is completely unmatched, then the
edit distance is at least m+ 7n ≥ m+ 6n+ |X(G′

2)|. Hence we can assume that
there is at least one matched marker in each long separator. Consequently, the
markers e, eu, ev for all e ∈ E and v′1, v

′
2, v

′
3 for all v ∈ V are unmatched.

Consider an edge e = {u, v} ∈ E. If e /∈ XE(G
′
2), then the edit distance for

G1 〈e〉 is at least 1 since the marker e is unmatched. If e ∈ XE(G
′
2), then consider

the substring of G1 〈e〉 containing the marker e and the at most two separator
markers adjacent to it (for the first edge gadget, there is only one separator
marker adjacent to e, to its right). The edit distance for this substring is at least
2: the marker e is unmatched, and moreover either an adjacent separator marker
is unmatched or an insertion is required. The total edit distance over all edge
gadgets is at least m+ |XE(G

′
2)|.

Consider a vertex v ∈ V incident to three edges e, f, g. If v /∈ XV (G
′
2),

then the edit distance for G1 〈v〉 is at least 3 since the markers v′1, v
′
2, v

′
3 are

unmatched. If v ∈ XV (G
′
2), then consider the substring of G1 containing G1 〈v〉

and the separator to its left. The edit distance for this substring is at least 4: the
markers v′1, v

′
2, v

′
3 are unmatched, and moreover at least one insertion is required

unless either the marker v or the separator marker to its left is unmatched. The
total edit distance over the vertex gadgets is at least 3n+ |XV (G

′
2)|.

Finally, the edit distance over the tail gadget is at least the length ofG1 〈tail〉,
which is 3n. Hence the overall edit distance is at least

m+ |XE(G
′
2)|+ 3n+ |XV (G

′
2)|+ 3n ≥ m+ 6n+ |X(G′

2)|.

Since the edit distance from G1 to G′
2 is at most m + 6n + k, it follows that

|X(G′
2)| ≤ k.

To complete the proof, we show that X(G′
2) is a vertex cover of G. Consider

any edge e = {u, v}. If e ∈ XE(G
′
2), then, by our choice of X(G′

2), either
u ∈ X(G′

2) or v ∈ X(G′
2). Otherwise, if e /∈ XE(G

′
2), then in the edge gadget

G2 〈e〉 = euev, at least one marker is removed to obtain G′
2 〈e〉. Assume that eu is

removed: then the second copy, in G2 〈u〉, is retained, and u ∈ XV (G
′
2) ⊆ X(G′

2).
Likewise if ev is removed, then v ∈ X(G′

2). In summary, X(G′
2) contains a vertex

from every edge in E, hence it is a vertex cover of G. ⊓⊔

The problem Minimum Vertex Cover in Cubic Graphs is APX-hard;
see e.g. [1]. For a cubic graph G of n vertices and m edges, where 3n = 2m,
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the minimum size k∗ of a vertex cover is Θ(m + n). By Lemma 5, the exem-
plar edit distance of the two sequences G1 and G2 in the reduced instance is
also Θ(m + n). Thus by the standard technique of L-reduction, it follows that
(1, 2)-Exemplar Edit Distance, when the cost of a substitution is 1 and the
cost of an insertion or a deletion is at least 1, is APX-hard too. Then the APX-
hardness of (1, 2)-Exemplar Levenshtein Distance and the APX-hardness
of (1, 2)-Exemplar Hamming Distance follow as special cases. Moreover,
since the lengths of the two sequences G1 and G2 in the reduced instance are
both Θ(m + n) as well, it follows that the complementary maximization prob-
lem (1, 2)-Exemplar Hamming Similarity is also APX-hard, if we define the
Hamming similarity of two sequences of the same length ℓ as ℓ minus their
Hamming distance.

6 Concluding Remarks

We find it most intriguing that although the problem (1, 2)-Exemplar Dis-

tance has been shown to be APX-hard for a wide variety of distance mea-
sures, including breakpoints, conserved intervals, common intervals, MAD, SAD,
signed reversals, Levenshtein distance, Hamming distance. . . , no constant ap-
proximation is known for any one of these measures, while on the other hand, it
seems difficult to improve the constant lower bound in any one of these APX-
hardness results into a lower bound that grows with the input size similar to the
logarithmic lower bound for Minimum Set Cover.
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