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Inapproximability of (1,2)-Exemplar Distance

Introduction

In the study of genome rearrangement, a gene is usually represented by a signed integer: the absolute value of the integer (the unsigned integer) denotes the gene family to which the gene belongs; the sign of the integer denotes the orientation of the gene in its chromosome. Then a chromosome is a sequence of signed integers, and a genome is a collection of chromosomes. Given two genomes possibly with duplicate genes, the exemplar distance problem [START_REF] Sankoff | Genome rearrangement with gene families[END_REF] is that of removing all but one copy of each gene in each genome, so as to minimize the distance between the two reduced genomes according to some measure. The reduced genomes are said to be exemplar subsequences of the original genomes. This approach amounts to considering that, in the evolution history, duplications have taken place after the speciation of the genomes (or more generally, that we are able to distinguish genes that have been duplicated before the speciation). Hence, in each genome, only one copy of each gene may be matched to an ortholog gene in the other genome.

For example, the following two monochromosomal genomes

G 1 : -4 +1 +2 +3 -5 +1 +2 +3 -6 G 2 : -1 -4 +1 +2 -5 +3 -2 -6 +3
can both be reduced to the same genome G ′ : -4 +1 +2 -5 +3 -6 by removing duplicates, thus they have exemplar distance zero for any reasonable distance measure. In general, unless we are to decide simply whether two genomes can be reduced to the same genome by removing duplicates, the exemplar distance problem is not a single problem but a group of related problems because the choice of the distance measure is not unique.

We denote by (s, t)-Exemplar Distance the exemplar distance problem on two genomes G 1 and G 2 where each gene occurs at most s times in G 1 and at most t times in G 2 . It is known [START_REF] Blin | The Exemplar Breakpoint Distance for non-trivial genomes cannot be approximated[END_REF][START_REF] Jiang | The zero exemplar distance problem[END_REF] that for any reasonable distance measure, (2, 2)-Exemplar Distance does not admit any approximation. This is because to decide simply whether two genomes with maximum occurrence 2 can be reduced to the same genome by removing duplicates is already NP-hard. In this paper, we focus on the simplest non-trivial variant of the exemplar distance problem: (1, 2)-Exemplar Distance.

The problem (1, t)-Exemplar Distance has been studied for several distance measures commonly used in genome rearrangement. Angibaud et al. [START_REF] Angibaud | On the approximability of comparing genomes with duplicates[END_REF] showed that (1, 2)-Exemplar Breakpoint Distance, (1, 2)-Exemplar Common Interval Distance, and (1, 2)-Exemplar Conserved Interval Distance are all APX-hard. Blin et al. [START_REF] Blin | Comparing genomes with duplications: a computational complexity point of view[END_REF] showed that (1, 9)-Exemplar MAD Distance is NP-hard to approximate within 2 -ǫ for any ǫ > 0, and that (1, ∞)-Exemplar SAD Distance is NP-hard to approximate within c log n for some constant c > 0, where n is the number of genes in G 1 . See also [START_REF] Chen | The approximability of the exemplar breakpoint distance problem[END_REF][START_REF] Bonizzoni | Exemplar longest common subsequence[END_REF][START_REF] Chen | On the inapproximability of the exemplar conserved interval distance problem of genomes[END_REF] for related results.

The two distance measures we first consider, MAD and SAD, were introduced by Sankoff and Haque [START_REF] Sankoff | Power boosts for cluster tests[END_REF]. For two permutations π ′ = π ′ 1 . . . π ′ n and π ′′ = π ′′ 1 . . . π ′′ n of n distinct elements, define τ ′ (i) as the index j such that π ′ j = π ′′ i , and τ ′′ (i) as the index j such that π ′′ j = π ′ i . Then the maximum adjacency disruption (MAD) and the summed adjacency disruption (SAD) between π ′ and π ′′ are

MAD(π ′ , π ′′ ) = max 1≤i≤n-1 |τ ′ (i) -τ ′ (i + 1)|, |τ ′′ (i) -τ ′′ (i + 1)| , SAD(π ′ , π ′′ ) = 1≤i≤n-1 |τ ′ (i) -τ ′ (i + 1)| + |τ ′′ (i) -τ ′′ (i + 1)| .
Our first two theorems sharpen the previous results on the inapproximability on (1, t)-Exemplar Distance for both MAD and SAD measures: For an unsigned permutation π = π 1 . . . π n , an unsigned reversal (i, j) with 1 ≤ i ≤ j ≤ n turns it into π 1 . . . π i-1 π j . . . π i π j+1 . . . π n , where the substring π i . . . π j is reversed. For a signed permutation σ = σ 1 . . . σ n , a signed reversal (i, j) with 1 ≤ i ≤ j ≤ n turns it into σ 1 . . . σ i-1 -σ j . . . -σ i σ j+1 . . . σ n , where the substring σ i . . . σ j is reversed and negated. The unsigned reversal distance (resp. signed reversal distance) between two unsigned (resp. signed) permutations is the minimum number of unsigned (resp. signed) reversals required to transform one to the other. Computing the unsigned reversal distance is APXhard [START_REF] Berman | On some tighter inapproximability results[END_REF], although the signed reversal distance can be computed in polynomial time [START_REF] Hannenhalli | Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals[END_REF].

Our next theorem answers an open question of Blin et al. [START_REF] Blin | Comparing genomes with duplications: a computational complexity point of view[END_REF] on the inapproximability of the exemplar reversal distance problem: Theorem 3. (1, 2)-Exemplar Signed Reversal Distance is NP-hard to approximate within 1237/1236 -ǫ for any ǫ > 0.

In the last theorem of this paper, we present the first inapproximability result on the exemplar distance problem using the classic string edit distance measure: Theorem 4. (1, 2)-Exemplar Edit Distance is APX-hard to compute when the cost of a substitution is 1 and the cost of an insertion or a deletion is at least 1.

Note that both Levenshtein distance and Hamming distance are special cases of the string edit distance: for Levenshtein distance, the cost of every operation (substitution, insertion, or deletion) is 1; for Hamming distance, the cost of a substitution is 1 and the cost of an insertion or a deletion is +∞. Thus we have the following corollaries:

Corollary 1. (1, 2)-Exemplar Levenshtein Distance is APX-hard. Corollary 2. (1, 2)-Exemplar Hamming Distance is APX-hard.

MAD Distance

In this section we prove Theorem 1. We prove that Exemplar MAD Distance is NP-hard by a reduction from the well-known NP-hard problem 3SAT [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. Let (V, C) be a 3SAT instance, where V = {v 1 , . . . , v n } is a set of n boolean variables, C = {c 1 , . . . , c m } is a conjunctive boolean formula of m clauses, and each clause in C is a disjunction of exactly three literals of the variables in V . The problem 3SAT is that of deciding whether (V, C) is satisfiable, i.e., whether there is a truth assignment for the variables in V that satisfies all clauses in C.

Let M be a large number to be specified. We will construct two sequences (genomes) G 1 and G 2 over L = 3m + (n + 1) + (2n + 1) + (m + 1) + (2M + 2) = 2M + 3n + 4m + 5 distinct markers (genes):

-3 literal markers r j , s j , t j for the 3 literals of each clause c j , 1 ≤ j ≤ m;

-n + 1 variable markers x i , 0 ≤ i ≤ n; -2n + 1 separator markers y i , 0 ≤ i ≤ 2n; -m + 1 clause markers z j , 0 ≤ j ≤ m; -2M + 2 dummy markers φ k and ψ k , 0 ≤ k ≤ M .
For each clause c j , let O j = r j s j t j be the concatenation of the three literal markers of c j . For each variable v i , let P i = p i,1 . . . p i,ki be the concatenation of the k i literal markers of the positive literals of v i , and let Q i = q i,1 , . . . , q i,li be the concatenation of the l i literal markers of the negative literals of v i . Without loss of generality, assume that min{k i , l i } ≥ 1. Note that the two concatenated sequences O 1 . . . O m and P 1 Q 1 . . . P n Q n are both permutations of the 3m literal markers.

The two sequences G 1 and G 2 are represented schematically as follows. G 1 contains exactly one copy of each marker, and has length L; G 2 contains exactly two copies of each literal marker and exactly one copy of each non-literal marker, and has length L + 3m.

G 1 : . . . z 3 z 1 φ 0 . . . x 2 x 0 φ M . . . φ 1 y 0 P 1 y 1 Q 1 y 2 . . . P n y 2n-1 Q n y 2n ψ 1 . . . ψ M z 0 z 2 . . . ψ 0 x 1 x 3 . . . G 2 : x n P n Q n . . . x 1 P 1 Q 1 x 0 φ M . . . φ 1 φ 0 y 0 y 1 y 2 . . . y 2n-1 y 2n ψ 0 ψ 1 . . . ψ M z 0 O 1 z 1 . . . O m z m Lemma 1. If (V, C) is satisfiable, then G 2 has an exemplar subsequence G ′ 2 that satisfies MAD(G 1 , G ′
2 ) ≤ M + 3n + 4m + 5. Proof. Let f be a truth assignment for the variables in V that satisfies all clauses in C. For each variable v i , compose a subsequence

V i of P i Q i such that V i = Q i if f (v i ) is true and V i = P i if f (v i ) is false.
For each clause c j , compose a subsequence C j of O j containing only the literal markers of the literals that are true under the assignment f . Then V 1 . . . V n C 1 . . . C m is a permutation of the 3m literal markers. It is straightforward to verify that the exemplar subsequence

G ′ 2 of G 2 in the following satisfies MAD(G 1 , G ′ 2 ) ≤ L -M = M + 3n + 4m + 5: G 1 : . . . z 3 z 1 φ 0 . . . x 2 x 0 φ M . . . φ 1 y 0 P 1 y 1 Q 1 y 2 . . . P n y 2n-1 Q n y 2n ψ 1 . . . ψ M z 0 z 2 . . . ψ 0 x 1 x 3 . . . G 2 : x n P n Q n . . . x 1 P 1 Q 1 x 0 φ M . . . φ 1 φ 0 y 0 y 1 y 2 . . . y 2n-1 y 2n ψ 0 ψ 1 . . . ψ M z 0 O 1 z 1 . . . O m z m G ′ 2 : x n V n . . . x 1 V 1 x 0 φ M . . . φ 1 φ 0 y 0 y 1 y 2 . . . y 2n-1 y 2n ψ 0 ψ 1 . . . ψ M z 0 C 1 z 1 . . . C m z m ⊓ ⊔ Lemma 2. If (V, C) is not satisfiable, then every exemplar subsequence G ′ 2 of G 2 satisfies MAD(G 1 , G ′ 2 ) > 2M . Proof. We prove the contrapositive. Suppose G 2 has an exemplar subsequence G ′ 2 that satisfies MAD(G 1 , G ′ 2 ) ≤ 2M .
We will find a truth assignment f for the variables in V that satisfies all clauses in C.

First, we claim that for each variable v i , the literal markers of the positive literals of v i must appear in G ′ 2 either all before φ M or all after ψ M . Suppose the contrary. Then there would be two literal markers of v i , one before φ M and one after ψ M in G ′ 2 , that are adjacent in the substring P i in G 1 , incurring a MAD distance larger than 2M . Similarly, we claim that the literal markers of the negative literals of each variable v i must appear in G ′ 2 either all before φ M or all after ψ M .

Next, we claim that for each variable v i , the literal markers of either all positive literals of v i or all negative literals of v i must appear in G ′ 2 before φ M , between x i and x i-1 . Suppose the contrary that all literal markers of both the positive and the negative literals of v i appear in G ′ 2 after ψ M . Then the two variable markers x i and x i-1 , one before φ M and one after ψ M in G 1 , would become adjacent in G ′ 2 , incurring a MAD distance larger than 2M . Finally, we claim that for each clause c j , at least one of the three literal markers r j , s j , t j must appear in G ′ 2 after ψ M , between z j-1 and z j . Suppose the contrary. Then the two clause markers z j-1 and z j , one before φ M and one after ψ M in G 1 , would become adjacent in G ′ 2 , again incurring a MAD distance larger than 2M . Now compose a truth assignment f for the variables in V such that f (v i ) is true if the literal markers for the negative literals of v i appear before φ M , and is false otherwise. Then f satisfies all clauses in C.

⊓ ⊔

For any constant ǫ, 0 < ǫ < 2, we can get a gap of 2M/(M + 3n + 4m + 5) = 2 -ǫ by setting M = ( 2 ǫ -1)(3n + 4m + 5). Thus the NP-hardness of 3SAT and the two preceding lemmas together imply that Exemplar MAD Distance is NP-hard to approximate within 2 -ǫ for any ǫ > 0.

SAD Distance

In this section we prove Theorem 2. We show that Exemplar SAD Distance is NP-hard to approximate by a reduction from another well-known NP-hard problem Minimum Vertex Cover [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. Let (V, E) be a graph, where V = {v 1 , . . . , v n } is a set of n vertices, and E = {e 1 , . . . , e m } is a set of m edges. The problem Minimum Vertex Cover is that of finding a subset C ⊆ V of the minimum cardinality such that each edge in E is incident to at least one vertex in C. Dinur and Safra [START_REF] Dinur | On the hardness of approximating minimum vertex cover[END_REF] showed that Minimum Vertex Cover is NP-hard to approximate within any constant less than 10 √ 5 -21 = 1.3606 . . .. Khot and Regev [START_REF] Khot | Vertex cover might be hard to approximate to within 2 -ǫ[END_REF] showed that Minimum Vertex Cover is NP-hard to approximate within any constant less than 2 if the unique games conjecture is true.

Let M = 2(n + m) 2 . We will construct two sequences (genomes) G 1 and G 2 over L = n + m + M + 1 distinct markers (genes):

-n vertex markers v i , 1 ≤ i ≤ n; -m edge markers e j , 1 ≤ j ≤ m; -M dummy markers φ k , 0 ≤ k ≤ M .
For each vertex v i , let E i = e i,1 . . . e i,ki be the concatenation of the edge markers of all edges incident to v i , where k i is the degree of v i . The two sequences G 1 and G 2 are represented schematically as follows. G 1 contains exactly one copy of each marker, and has length L; G 2 contains exactly two copies of each edge marker and exactly one copy of each non-edge marker, and has length L + m. 

G 1 : e 1 . . . e m φ 0 φ 1 . . . φ M v 1 . . . v n G 2 : φ 0 φ 1 . . . φ M E 1 v 1 . . . E n v n Lemma 3. G
i φ i+1 in G 1 and G ′ 2 , 0 ≤ i ≤ M -1, contribute a total value of exactly 2M . 2.
The adjacency e m φ 0 in G 1 contributes a value of at least M and at most M + n + m.

Each adjacency between an edge marker and a non-edge marker in G ′

2 contributes a value of at least M and at most M + n + m. 4. Each remaining adjacency contributes a value of at least 1 and at most n+m.

The number of adjacencies between an edge marker and a non-edge marker in G ′

2 is exactly twice the size of the vertex cover C. Thus we have

SAD(G 1 , G ′ 2 ) ≤ 2M + (2k + 1)(M + n + m) + (2n + 2m + 2M -2M -2k -1)(n + m) = (2k + 3)M + 2(n + m) 2 = (2k + 4)M.
We next prove the reverse implication. Let G ′ 2 be an exemplar subsequence of G 2 such that SAD(G 1 , G ′ 2 ) ≤ (2k + 4)M . Refer back to the list of contributions to SAD(G 1 , G ′ 2 ). Let l be the number of adjacencies between an edge marker and a non-edge marker in G ′ 2 . Then we have the following inequality:

SAD(G 1 , G ′ 2 ) ≥ 2M + (l + 1)M = (l + 3)M. Since SAD(G 1 , G ′
2 ) ≤ (2k+4)M , we have l+3 ≤ 2k+4 and hence l ≤ 2k+1. Note that l must be an even number: for each adjacency between an edge marker in E i and a non-edge marker to its left, there must be another adjacency between an edge marker in E i and a non-edge marker (indeed a vertex marker) to its right, and vice versa. It follows that there are at most k vertex markers v i that are adjacent to an edge marker to its left. The corresponding at most k vertices v i form a vertex cover of G.

⊓ ⊔

The inapproximability of Minimum Vertex Cover and the preceding lemma together imply that Exemplar SAD Distance is NP-hard to approximate within 10 √ 5 -21 -ǫ, and is NP-hard to approximate within 2 -ǫ if the unique games conjecture is true, for any ǫ > 0.

Signed Reversal Distance

In this section we prove Theorem 3. We show that (1, 2)-Exemplar Signed Reversal Distance is APX-hard by a reduction from the problem Min-SBR [START_REF] Berman | On some tighter inapproximability results[END_REF], which asks for the minimum number of unsigned reversals to sort a given unsigned permutation into the identity permutation.

Let π = π 1 . . . π n be an unsigned permutation of 1 . . . n. We construct two sequences G 1 = 1 . . . n and

G 2 = π 1 -π 1 . . . π n -π n .
Lemma 4. π can be sorted into the identity permutation 1 . . . n by at most k unsigned reversals if and only if G 2 has an exemplar subsequence G ′ 2 with signed reversal distance at most k from G 1 .

We leave the proof of Lemma 4 to the reader as an easy exercise. Since Min-SBR is NP-hard to approximate within 1237/1236 -ǫ for any ǫ > 0 [START_REF] Berman | On some tighter inapproximability results[END_REF], (1, 2)-Exemplar Signed Reversal Distance is NP-hard to approximate within 1237/1236 -ǫ for any ǫ > 0 too.

Edit Distance

In this section we prove Theorem 4. For any edit distance where the cost of a substitution is 1 and the cost of an insertion or a deletion is at least 1 (possibly +∞), we show that the problem (1, 2)-Exemplar Edit Distance is APX-hard by a reduction from the problem Minimum Vertex Cover in Cubic Graphs.

Let G = (V, E) be a cubic graph of n vertices and m edges, where 3n = 2m. We will construct two sequences (genomes) G 1 and G 2 over an alphabet of 3m + 4n + 2(m + 7n) + 2(m -1) + (n -1) distinct markers (genes). For each edge e = {u, v} ∈ E, we have three edge markers e, e u , and e v . For each vertex v ∈ V , we have a vertex marker v and 3

dummy markers v ′ 1 , v ′ 2 , v ′ 3 .
In addition, we have 2(m + 7n) + 2(m -1) + (n -1) markers for separators.

The two sequences G 1 and G 2 are composed from m + n + 1 gadgets: an edge gadget for each edge, a vertex gadget for each vertex, and a tail gadget. The m + n + 1 gadgets are separated by m + n separators of total length 2(m + 7n) + 2(m -1) + (n -1):

two long separators, each of length m + 7n: one between the last edge gadget and the first vertex gadget, one between the last vertex gadget and the tail gadget;

-m+ n-2 short separators: a length-2 separator between any two consecutive edge gadgets, and a length-1 separator between any two consecutive vertex gadgets.

For each edge e = {u, v}, the edge gadget for e is

G 1 e = e G 2 e = e u e v
For each vertex v incident to edges e, f, g, the vertex gadget for v is

G 1 v = v v ′ 1 v ′ 2 v ′ 3 G 2 v = e v f v g v v e f g Let V ′ be the 3n markers v ′ 1 , v ′ 2 , v ′ 3 for v ∈ V
. Let E ′ be the 2m = 3n markers e u and e v for e = {u, v} ∈ E. The tail gadget is

G 1 tail = E ′ G 2 tail = V ′
This completes the construction.

Lemma 5. G has a vertex cover of size at most k if and only if G 2 has an exemplar subsequence G ′ 2 with edit distance at most m + 6n + k from G 1 . Proof. We first prove the direct implication. Let X be a vertex cover of G with |X| ≤ k. Create G ′ 2 as follows. For each edge e = {u, v}, at least one vertex, say u, is in X. Remove e u and retain e v in the edge gadget G 2 e , and correspondingly retain e u in the vertex gadget G 2 u and remove e v in the vertex gadget G 2 v , then remove e in G 2 u and retain e in G 2 v . We claim that the edit distance from G 1 to G ′ 2 is at most m + 6n + k. It suffices to show that the Hamming distance of G 1 and G ′ 2 is at most m+ 6n+ k since, for the edit distance that we consider, the cost of a substitution is 1. Observe that in both G 1 and G ′ 2 , each edge gadget has length 1, and each vertex gadget has length 4. Thus all gadgets are aligned and all separators are matched. The Hamming distance for each edge gadget is 1, so the total Hamming distance over all edge gadgets is m. The Hamming distance for each vertex gadget is at most 4. Moreover, for each vertex v / ∈ X (v incident to edges e, f, g), since the markers e v , f v , g v are removed (and the markers e, f, g are retained) in the vertex gadget, the marker v is matched, which reduces the Hamming distance by 1. Thus the total Hamming distance over all vertex gadgets is at most 4n -(n -|X|) = 3n + |X|. Finally, since the Hamming distance for the tail gadget is 3n, the overall Hamming distance of G 1 and G ′ 2 is at most m + 6n + |X| ≤ m + 6n + k.

We next prove the reverse implication. Let G ′ 2 be an exemplar subsequence of G 2 with edit distance at most m + 6n + k from G 1 . Compute an alignment of G 1 and G ′ 2 corresponding to the edit distance, then obtain the following three sets X E (G ′ 2 ), X V (G ′ 2 ), and X(G ′ 2 ):

-The set X E (G ′ 2 ) ⊆ E contains every edge e = {u, v} such that either G ′ 2 e contains both e u and e v , or G ′ 1 e has an adjacent separator marker which is unmatched.

-The set X V (G ′

2 ) ⊆ V contains every vertex v (v incident to edges e, f, g) such that either G ′ 2 v contains one of {e v , f v , g v }, or G ′ 1 v has an adjacent separator marker (to its left) which is unmatched.

-The set X(G ′

2 ) ⊆ V is the union of X V (G ′ 2 ) and a set composed by arbitrarily choosing one vertex from each edge in

X E (G ′ 2 ) (thus |X(G ′ 2 )| ≤ |X V (G ′ 2 )| + |X E (G ′ 2 )|). We first show that the edit distance from G 1 to G ′ 2 is at least m+6n+|X(G ′ 2 )|. If a long separator (with m + 7n markers) is completely unmatched, then the edit distance is at least m + 7n ≥ m + 6n + |X(G ′ 2 )|.
Hence we can assume that there is at least one matched marker in each long separator. Consequently, the markers e, e u , e v for all e ∈ E and v

′ 1 , v ′ 2 , v ′ 3 for all v ∈ V are unmatched. Consider an edge e = {u, v} ∈ E. If e / ∈ X E (G ′ 2 )
, then the edit distance for G 1 e is at least 1 since the marker e is unmatched. If e ∈ X E (G ′ 2 ), then consider the substring of G 1 e containing the marker e and the at most two separator markers adjacent to it (for the first edge gadget, there is only one separator marker adjacent to e, to its right). The edit distance for this substring is at least 2: the marker e is unmatched, and moreover either an adjacent separator marker is unmatched or an insertion is required. The total edit distance over all edge gadgets is at least m

+ |X E (G ′ 2 )|. Consider a vertex v ∈ V incident to three edges e, f, g. If v / ∈ X V (G ′ 2 ), then the edit distance for G 1 v is at least 3 since the markers v ′ 1 , v ′ 2 , v ′ 3 are unmatched. If v ∈ X V (G ′
2 ), then consider the substring of G 1 containing G 1 v and the separator to its left. The edit distance for this substring is at least 4: the markers v ′ 1 , v ′ 2 , v ′ 3 are unmatched, and moreover at least one insertion is required unless either the marker v or the separator marker to its left is unmatched. The total edit distance over the vertex gadgets is at least 3n + |X V (G ′ 2 )|. Finally, the edit distance over the tail gadget is at least the length of G 1 tail , which is 3n. Hence the overall edit distance is at least

m + |X E (G ′ 2 )| + 3n + |X V (G ′ 2 )| + 3n ≥ m + 6n + |X(G ′ 2 )|. Since the edit distance from G 1 to G ′ 2 is at most m + 6n + k, it follows that |X(G ′ 2 )| ≤ k. To complete the proof, we show that X(G ′ 2 ) is a vertex cover of G. Consider any edge e = {u, v}. If e ∈ X E (G ′ 2 ), then, by our choice of X(G ′ 2 ), either u ∈ X(G ′ 2 ) or v ∈ X(G ′ 2 ). Otherwise, if e / ∈ X E (G ′ 2 )
, then in the edge gadget G 2 e = e u e v , at least one marker is removed to obtain G ′ 2 e . Assume that e u is removed: then the second copy, in G 2 u , is retained, and u ∈ X V (G ′

2 ) ⊆ X(G ′ 2 ). Likewise if e v is removed, then v ∈ X(G ′ 2 ). In summary, X(G ′ 2 ) contains a vertex from every edge in E, hence it is a vertex cover of G.

⊓ ⊔

The problem Minimum Vertex Cover in Cubic Graphs is APX-hard; see e.g. [START_REF] Alimonti | Some APX-completeness results for cubic graphs[END_REF]. For a cubic graph G of n vertices and m edges, where 3n = 2m, the minimum size k * of a vertex cover is Θ(m + n). By Lemma 5, the exemplar edit distance of the two sequences G 1 and G 2 in the reduced instance is also Θ(m + n). Thus by the standard technique of L-reduction, it follows that (1, 2)-Exemplar Edit Distance, when the cost of a substitution is 1 and the cost of an insertion or a deletion is at least 1, is APX-hard too. Then the APXhardness of (1, 2)-Exemplar Levenshtein Distance and the APX-hardness of (1, 2)-Exemplar Hamming Distance follow as special cases. Moreover, since the lengths of the two sequences G 1 and G 2 in the reduced instance are both Θ(m + n) as well, it follows that the complementary maximization problem (1, 2)-Exemplar Hamming Similarity is also APX-hard, if we define the Hamming similarity of two sequences of the same length ℓ as ℓ minus their Hamming distance.

Concluding Remarks

We find it most intriguing that although the problem (1, 2)-Exemplar Distance has been shown to be APX-hard for a wide variety of distance measures, including breakpoints, conserved intervals, common intervals, MAD, SAD, signed reversals, Levenshtein distance, Hamming distance. . . , no constant approximation is known for any one of these measures, while on the other hand, it seems difficult to improve the constant lower bound in any one of these APXhardness results into a lower bound that grows with the input size similar to the logarithmic lower bound for Minimum Set Cover.
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  has a vertex cover of size at most k if and only if G 2 has an exemplar subsequence G ′ 2 that satisfies SAD(G 1 , G ′ 2 ) ≤ (2k + 4)M . Proof. We first prove the direct implication. Let C be a vertex cover of size at most k in G. Extract a subsequence E ′ i of E i for each vertex v i in C such that the concatenated sequence E ′ 1 . . . E ′ n contains each edge marker e j exactly once. From G 2 , remove E i for each vertex v i not in C, and replace E i by E ′ i for each vertex v i in C. Then we obtain an exemplar subsequence G ′ 2 of G 2 . The two sequences G 1 and G ′ 2 have the same length L = n + m + M + 1 and together have 2n + 2m + 2M adjacencies. The contributions of these adjacencies to SAD(G 1 , G ′ 2 ) are as follows: 1. The shared adjacencies φ