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A pseudo-local property of gravity water waves system
Quang-Huy Nguyen

ABSTRACT. By proving a weighted contraction estimate in uniformly local Sobolev
spaces for the flow of gravity water waves, we show that this nonlocal system is
in fact pseudo-local in the following sense: locally in time, the dynamic far away
from a given bounded region has a small effect on that region (again, in a sense
that we will make precise in the article). Our estimate on the flow also implies
a new spatial decay property of the waves. To prove this result, we establish a
paradifferential calculus theory in uniformly local Sobolev spaces with weights.

1. Introduction

1.1. The problem. We consider an incompressible, irrotational, inviscid fluid
moving in a domain €2 underneath a free surface described by 1 and above a bottom
described by a given function 7, which is assumed to be bounded and continuous.
Namely,

(1.1) Q={(t,z,y) €[0,T] x REx R : n,(z) <y < n(t,x)}.
We also denote by ¥ the free surface and by I' the bottom,

= {(t,a,y) € [0,T] x R x R iy = n(t,2))},

I ={(z,y) eR" xR :y=nu(z)}.

The velocity filed v admits a potential ¢ : 2 — R such that v =V, ;¢ and A, y¢ =0
in 2. We introduce the trace of the potential on the surface

U(t, @) = o(t, z,n(t,x))
and the Dirichlet-Neumann operator
0
1+ |Vx77’2(£ ’ z)
= (0y9)(t,z,n(t, x)) — Ven(t,z) - (Va@)(t, z,n(t, 7).

Then (see [12]) the gravity water waves system in the Zakharov/Craig—Sulem for-
mulation reads as follows

atﬁ = G(’I’])¢,

1 , 1
8## - _§|vx¢’ + 5

(1.2)

(1.3) (Vo - Vath + G(n)y)?

14 [Van|?

—gn

where ¢ is the acceleration of gravity.
Following [1] we shall consider the vertical and horizontal components of the velocity

The author was supported in part by Agence Nationale de la Recherche project ANAE ANR-
13-BS01-0010-03.
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on the free surface as unknowns which can be expressed in terms of n and :

Van Ve G
(L) B ()l = TR

Recall also that the Taylor coefficient a = —%—]; | 5 can be defined in terms of
n,v¢, B,V only (see §4.2 in [2] and §4.3.1 in [12]).

The (local) well-posedness theory for gravity water waves (under the formulation
(1.3) or the others) in Sobolev spaces H®(R?) has been studied by many authors,
for example Yosihara [22], Wu [19, 20], Lannes [11]; we refer to the recent book of
Lannes [12] for a comprehensive survey of the subject. In these works, the waves
were assumed to be of infinite extend (and vanish at infinity), that is, there is
no restriction on the horizontal direction. However, in reality water waves always
propagate in some bounded container (a lake, an ocean, etc) and hence there will
be contacts at the ”vertical boundary” of the container. A natural question then
arises: (Q) can we justify the R%-approximation? More precisely, if (1.3) is a good
model then it has to satisfy in certain sense the following property: the dynamic at
"infinity” has a small effect on bounded regions. Since (1.3) appears to be nonlocal
(due to the presence of the Dirichlet-Neumann operator) it is not clear that the
above replacement at ”infinity” is harmless. We should mention that in the special
case of a canal or a rectangle basin where the walls are right vertical, the local the-
ory was considered by Alazard-Burg-Zuily [1], Kinsey-Wu [10], Wu [21]. Our goal
in the present paper is to give the following answer to question (Q). Considering a
bounded reference domain, we shall prove that in some sense, far away from this
reference domain, the dynamic there has a small effect on the reference domain, and
the farther it is the smaller the effect is. In other words, this proves that the gravity
water waves system enjoys the ”pseudo-local property” (the terminology ”pseudo”
will be clear in our explanation below).

V = (vz)|x = Vatp — BV

1.2. Main results. We recall first the definition of uniformly local Sobolev
spaces (or Kato’s spaces) introduced by Kato in [9].

DEFINITION 1.1. Let x € C®°(R%) with suppx C [~1,1]% x = 1 near [-1, 1]¢
such that

(1.5) Z Xo(x) =1, VzeRY y,(z) = x(z—q).
qEZ?

For s € R define HS,(RY) the space of distributions u € Hi (R?) such that

[ullgs (may = sup [Ixqull s may < +o0.
qc€Zd

=
=

This definition is independent of the choice of y € C§°(RY) satisfying (1.5) (see
Lemma 7.1 in [1]). Let us now define the classes of weights that we will consider.

DEFINITION 1.2. 1. We define the class W of acceptable weights to be the class
of all functions w : RY — (0, 00) satisfying the following conditions:
(i) m = Yol gnd )= % belong to Cg°(RY), where w™(z) = 1/w(x),

w—

(i3) for any Cy > 0, there exists Co > 0 such that for any xo € R, there hold
w(z) < Cow(zy) and w(x)™ < Cow(zg)™t Vo e RY, |z — x| < C,
2. If w € W and there exist 0 > 0, C > 0 such that for any z, y € R we have
w(x)w™(y) < Clz —y)? then we say that w € Wy(0).
3. Ifw € W and there exist o > 0, C > 0 such that for any z, y € R? we have

w(a:)w_l(y) < Cexp(p(x —y)) then we say that w € Wez(0).
2



EXAMPLE 1.3. For any t,s € R, C > 1, the functions (z)°, In(C + |z|?) belong
to Wyo, and the functions et @) ()5 belong to W, but not to any class Wo if
t # 0. See Remark A.4 for further remarks.

NOTATION 1.4. 1. Y denotes a function in C§°(R?) such that ¥ = 1 on the

support of x in definition 1.1. For every k € Z? we also Define for z € R?,
Xk(x) == x(x — k). 2. We set for all o0 € R,

o o+3 md o+3 mad o (md o (T
w=Hy *(RY) > H, 2 (R x Hy(RY) x H(RY),
WO = WO'-‘F%,OO(Rd) % Wa+%,o<>(Rd) % WU,OO(Rd) % WO',OO(Rd)‘
Denote also by U = (1,4, B, V) the unknown of system (1.3) and by U® = (n°,4?, B®, V?)
its initial value.

The Cauchy theory proved in [1] reads as follows
THEOREM 1.5. Let s > 1+ 4 and U € S, with

1.6 inf (n°(z) — n, >2h >0, inf a(0,z)>2¢c>0.
(1.6) mlean(" (z) —nu(z)) > Zleana( T) > 2c

Then there exists T > 0 such that the Cauchy problem for (1.3) with datum U° has
a unique solution

U € L>([0,T],H5,) N C°([0,T], 1Y), Vr<s
and

1.7 inf inf [n(t, ) — ne(z)] > h, inf inf a(t,z) > c.
(1.7) tel[r&T}xlean[n( r) —nu(x)] > tel[%,T}xleana( r)>c

Moreover, for given h, ¢ > 0 the existence time T can be chosen uniformly for data
belonging to a bounded set of H,.

Conditions (1.6) mean that initially, the free surface is away from the bottom and
the Taylor coefficient is positively away from 0. Then the conclusion (1.7) asserts
that these properties are propagated by the waves, locally in time. We shall always
consider in the sequel solutions of (1.3) obeying these properties, which for the sake
of simplicity is denoted by

(1.8)
Psr(h,c):={U = (n,¢,B,V) e L>([0,T],H},;) solution to (1.3), satistying (1.7)
and Ul;—o satisfies (1.6)}.

Our main result concerning the solution map of the gravity water waves is stated in
the following theorem.

THEOREM 1.6. Let s > 1+ %l, T > 0 and two positive constants h,c. Then for
every w € Wyo(0), 0> 0 there exists a function K : RT x RT — R nondecreasing
i each argument, such that

(1.9) lw(Ur = Ua)llo(jo,11,261) < KM, Ma)[w(Un = Uz)e=oll 51
for all Uy, Uy € Psr(h,c), provided that the right-hand side is finite, where

As a consequence, we have



COROLLARY 1.7. Let s > 1+ %; h,c >0 and A be a bounded set in H;,. Denote
by T' the uniform existence time of solutions to (1.3) in Psr(h,c) with data in A.
Then there exists 0 < T < T such that the following property holds:
for every w € Wyo(0), 0> 0 one can find a constant C > 0 such that

110) 0 - Ulogoaerty < Ol ~ Ul
for allU; € Psr(h,c) with Ujli—o € A and provided that the right-hand side is finite.

In Corollary 1.7 if we take Us|t—o = 0 and use the Sobolev embeddings (see
Proposition 2.2, [1])

N

d
W(RY S WESRY, r>Cor- D ¢N,

we derive

COROLLARY 1.8. Lets > 1+ %l and h,c > 0. Then for any bounded set A in
H3,, there exists a time T > 0 such that:
Jor every w € Wpo(0), 0 > 0 one can find a constant C > 0 such that

(1.11) ||U)UHC([07T]7H:;1) < CHU’U‘t=0HH271

for allU € Psr(h,c) with Uli—g € A and provided that the right-hand side is finite.
Moreover, if s >r > 1+ % and r — % ¢ N it follows that

(1.12) ”’LUU d S C”wU|t:0”’H‘El'

HC([O,T],W“*?)
REMARK 1.9. If w € C£°(R?) then the right-hand sides of (1.9), (1.10), (1.11), (1.12)
are automatically finite.

REMARK 1.10. Persistence properties in weighted spaces have been studied ex-
tensively for asymptotic models of water waves in different regimes: (generalized)
Korteweg-de Vries equation equations, Schrodinger equations, Benjamin-Ono equa-
tion, Camassa-Holm equation,...We refer to the works of Brandolese [4], Bona-Saut
[5], Fonseca-Linares-Ponce [7], Nahas-Ponce [16], Ni-Zhou [17].

REMARK 1.11. It is natural to ask if the results in Theorem 1.6, Corollary 1.7,
Corollary 1.8 hold for weights with exponential growth. For example, Theorem
1.6 with w = e=*l, X\ > 0 would give a strong pseudo-local property of gravity
water waves. As we shall explain, the proof of our results can be divided into two
parts: first, a study of the Dirichlet-Neumann operator in weighted spaces, and the
second part makes use of a paradifferential machinery in weighted Sobolev spaces
to paralinearize and symmetrize the system. For the first part, we are able to prove
bound estimates for the Dirichlet-Neumann operator in the presence of ” exponential
weights” in the class We, (see Proposition 2.14 below). However, for the (pseudo-)
para-differential calculus, we have to restrict to ”polynomial weights” in the class
Wi due to the fact that, in general, the kernel of a pseudodifferential operator only
decays polynomially (see paragraph 1.3 3. and the proof of Proposition A.5).

REMARK 1.12. It would of course be more satisfactory if the results could be
formulated in terms of the derivatives of 1 since v is the trace of the velocity
potential (on the free surface) and hence is determined up to additive constants.
It should be possible to do so, modulo more technical complications; in particular,
a Cauchy theory in Kato’s spaces involving only regularity of ¢ in homogeneous
spaces. We refer to a relating result of Lannes in [11] and the references therein.
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REMARK 1.13. Our proofs rely on the known Cauchy theories of Alazard-Burqg-
Zuily in [2], [1]. To avoid a loss of 3 derivatives, the authors assumed that initially,
the trace of velocity (B,V') are % derivatives smoother than the natural threshold
suggested by formula (1.4) (see also Remark 1.4, [2]) . Another way of avoiding
this loss of derivatives can be found in Theorem 4.16, [12] where instead of directly

imposing regularity condition on v, the author works with the ”good unknown”
Y = — Bn.

1.3. Interpretation of the results. 1. The Zakharov system (1.3) appears
to be nonlocal, which comes from the fact that the Dirichlet-Neumann operator
defined by (1.2) is nonlocal. This can be seen more concretely by considering the
case of fluid domain with infinite depth (i.e. T' = ) and free surface at rest (i.e.
n = 0). Then, the Dirichlet-Neumann operators is G(0) = |D,|. However, Corollary
1.7 shows that the system is in fact still weakly local as explained below.

Take s > 1+ g. Let’s restrict ourselves to a bounded set A of H?;, and suppose
that we are observing a bounded domain, which by translation can be assumed to
be centered at the origin, say O = B(0,1). Let Uy 1, Up2 be two data in A such that
they are identical in a ball B(0, R) and have difference in 75, of size 1 outside this
ball, where R > 1 is a given distance. Take a "window” ¢ around our observation
region O, that is, ¢ € C§°(B(0,3/2)) and ¢ =1 in O. Then by the estimate (1.10)
we have for some T'=T(A) > 0 and any N > 0

lo(U1 = U2)ll o aesy < O IO ™ (U1 = U2)l ooy 3001
< Onall() N (Uoa — UOQ)”H;;l < COnaR™VN.

Uo,2 11
Uoa
_R 1 1 R
t=0
7 7
11
1
BN

Therefore, under the dynamic governed by system (1.3), a difference of size 1 outside

the ball B(0, R) of initial data leads to a difference of size R~ of two solutions in

the bounded domain B(0,1) (see the figures above). When R — +o00, the difference
5



of two solutions tends to 0 at a rate faster than any polynomial. In other words,
to some extent, what happens far away has small effect on a given bounded region;
moreover this effect becomes smaller and smaller when the distance increases to
+o00. This gives us a weakly local property of gravity water waves. This property is
indeed dictated by the polynomial decay off the diagonal of the kernel of differential
operators in suitable classes, as we shall explain in point 3. below.

2. As a consequence of Corollary 1.8, the estimate (1.12) with A > 0 provides
a spatial decay property for solutions. In classical Sobolev spaces, solutions always
vanish at infinity. On the other hand, Theorem 1.5 gives the existence of solutions
in Kato’s spaces which can be neither decaying nor periodic. The estimate (1.12)
however gives a conclusion for the intermediate case: as long as the datum decays
at some rate which is at most algebraic in Kato’s space, the solution decays also,
and moreover, at the same rate.

3. Let us explain why the class W, of weight that are at most polynomial
growth is a reasonable choice in our results. For this purpose, a good way is to look
at the linearization of system (1.3) around the rest state (n,v) = (0,0) (take g =1
and the flat bottom {y = —h, h > 0})

dyn — | Dy tanh(h| Dy )y = 0,
) (o 1D 1)1
8t¢+7720

or equivalently, with v :=n + i|Dx|%\/tanh(h\Dm\)w,
Byu + i|Dy|2 \/tanh(h| Dy )u = 0.

Given a datum ug at time ¢t = 0, this linearized equation has the explicit solution
U(t, I‘) = p(ta DI)an

il
where the symbol p reads p(t, ) = e 2 Vtanh(hl€) - Then for w e Wpo(0), 0> 0
and 0 < T < oo, we seek for the following estimate

(1.14) lwulleo.ry;ms,) < Cllwuollms, -

Due to the presence of tanh(h|¢|) we have that p satisfies
(L15) 08Pt &) < Call +6)72, Va e N, (1,6) € [0.7] x RY,

which is usually denoted by p € S¢ o An adaptation of the proof of Proposition A.5
3

then implies the estimate (1.14). Indeed, for simplicity let us consider s = 0. By
writing x4 = X4Xq (recall Notation 1.4) we need to show for any fixed k € Z¢

(1.16) A= wxap(t, Dy)xqw™" : L*(RY) — L*(RY)
q

with norm bounded uniformly in k. Using the classical pseudo-differential theory,
it suffices to prove (1.16) for g satisfying |¢ — k| > M for fixed M > 0 (cf estimate
(A.2)). Due to the presence of x; it suffices to prove A : L2(R?) — L>®(R9). To
this end, we call

(117 K(ay) = (n) [ (e g
Rd
the kernel of the pseudo-differential operator p(t, D,) then the kernel of Ay reads
Hi(z,y) = Y w@)xs@)K(z,y)xey)wly) .

lg—k|>M
6



The Cauchy-Schwartz inequality implies
[AkvllLee < sup [[Hy(z, )|l 22 ]|v][ z2-
X

By writing x4 = XgXq it suffices to show that || Hy|[1g, is bounded by some constant
independent of k. Indeed, remark that by choosing M large enough, on the support
of xx(z)xq(y) (in the expression of Hy) we have |z — y| > 6|k — ¢| for some 6 > 0.
Therefore, one can multiply both side of (1.17) by (z — y)Y, v € N, integrate by
parts and take into account the decay property (in §) (1.15) of p to derive
-1
lg— k=M h-a

Observe that for any w € W the absolute value of the numerator of each term in
the above series is bounded by

Cw(k)w(q)™L.

Consequently, for the series in (1.18) to be convergent, it is reasonable to choose the
weights that satisfy for some A > 0

w(k:)w(q)f1 < (k- q>)‘, Vk, q € Z4.

Then by choosing N large enough the series in (1.18) converges to some constant
independent of k as desired.

This argument suggests heuristically that the finiteness of the fluid depth is likely
to be necessary since otherwise, the symbol p become p(t, &) = |€|'/? which is sin-
gular at 0 and does not belong to a good class of symbols. The local property of
the system is closely related to the finite propagation speed property. Indeed, the
plane waves u(t, z) = e/@k=w®t) (k) = |k|'/? are solutions to us + i|Dy|"?u = 0.
These plane waves propagate at (group) velocity Viw(k), which is unbounded when
the wavenumber |k| tends to 0. In contrast, for the finite depth case (say h), the
dispersion relation reads w(k) = +/|k| tanh(h|k|) and thus the speed of propagation

is bounded over all wavenumber k.

REMARK 1.14. In the theory of pseudo-differential calculus, the terminology

pseudo-local refers to the following property: if T is a pseudo-differential operator
then the singular support of T'u is contained in the singular support of u. The proof
of this result makes use of the fact that: the kernel of T" is C'*° off the diagonal (z, z)
in R% x R%. This in turn stems from the decay property of the symbol of 7.
The ”pseudo-local property” in our result as explained above, also stems from the
decay of the kernel of a pseudo-differential operator. However, such a decay is then
translated not into the regularity (in term of the singular support) but the persistence
i weighted spaces.

1.4. Plan of the proof. To prove Theorem 1.6 we follow essentially the scheme
in [1]. The first task is to adapt the paradifferential machinery to Kato’s spaces with
weights. This is done in Appendix A, which can be of independent interest for other
studies in this framework. Having this in hand, compare to [1] (and also [2]) the main
ingredient for the proof of Theorem 1.6 reduces to the study of bound estimates, par-
alinearization and contraction estimate for the Dirichlet-Neumann operator. These
are done in section 2 and 3 below, respectively.

Acknowledgment. This work was partially supported by the labex LMH through
the grant no ANR-11-LABX-0056-LMH in the ”"Programme des Investissements
d’Avenir”. I would like to send my deepest thanks to my advisor, Prof. Nicolas
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Burq for his great guidance with many fruitful discussions and constant encour-
agement during this work. I sincerely thanks Prof. Claude Zuily for interesting
discussions. Finally, I thanks the referees for proposing many valuable suggestions
that helped improve both the content and the presentation of the manuscript.

2. A weighted description for the Dirichlet-Neumann operator

NOTATION 2.1. Throughout this paper, we denote C' > 0 and F : Rt — R*
are multiplicative constants and functions that may change from line to line within
a proof. The notation A < B means that there exist C > 0 such that A < CB.

2.1. Definition of the Dirichlet-Neumann operator. In this sections, we
drop the time dependence of the domain and work on the domain of the form.

(2.1) Q={(z,y) e R :ny(2) <y <nla)}

where 7, is a fixed bounded continuous function on R? and n € Wh>(R4). We
assume that € contains a fixed strip

(2:2) O = {(z,y) e R ip(a) —h <y <n(x)}.

2.1.1. Straightening the boundary. We recall here the change of variables intro-
duced in [2] (see section 3.1.1) to flatten the domain with free boundary (which
is in turn inspired by Lannes [11]). Consider the map (z,z) — (z,p(z,z)) from
Q :=R% x (—1,0) to €, determined by

(2.3) p(z,2) = (1+ 2)e?*Pelp(z) — 2 [e_(1+z)5<D””>77(x) —h| if (z,2) € Q.
Ifn e Wh(R?) and § is small enough this map is a Lipschitz-diffeomorphism
from Q to € and moreover, d,p > ¢y > 0 (see Lemma 3.6, [2]).

NoTATION 2.2. For any function f defined on 2, we set

(2-4) f(]:, Z) = f(I,p(iU, Z))
then
af 1= 7
(2.5) @(w7p(m7 z)) = 8Zpazf(w7 Z) = Alf(xa Z)
Vif(z, p(z,2)) = (fo— Mﬁzf) (z,2) = Agf(x, z).

0.p

1
2.1.2. Definition of the Dirichlet-Neumann operator G(n). Let 1 € H2(R?), we
recall how G(n)v is defined (section 3.1, [1]).

For every q € Z%, set 1, = x,1 € H%(Rd) then one can find % € H'(Q) such that
%q|y=n(m) = 1)4(x) and for some F : RT — R™,

(1) suppy C{(z,y): |z —ql <2,n(zx) —h <y <n(x)}

(@) [yl o) < Fllnllwrooma) 1¥all 3 o)

Let uq € HYO(Q) := {v e H'(Q), v|y, =0} be the unique variational solution, to
equation Ay yuy = —Ag 41y, which is characterized by

(2.6) //Q Vaytq(x,y) - Ve 0(z,y)dedy = — //Q Vx,yyq(:v,y) - Vay0(z,y)dzdy

8



for all # € H°(Q). The series u := > _qezd Ug is then convergent in

HiiO(Q) = {v : suzpd quvHHl(Q) < 400 and v|y = O} .
q€

Finally, ® :=u + ¢ := }_ gez Vg t > . yq solves uniquely the elliptic problem
0P
v
in the variational sense and moreover, there exists 7 : Rt — R™ such that

H(I)HH}”(Q) < f(|’77HW1¢°°(Rd)) ||¢||H3(Rd) .

(2.7) Apy®=0inQ, &|g=71, Ir =0,

(see Proposition 3.3, [1])
The Dirichlet-Neumann operator is defined by

L oo
(2.8) G(n)p(r) = (1+ |V:c77|2)2%|2 = (8—y

= (Aﬁi — Va;?] . AQE)) |z:0 = (Al(i — pr . AQ&))|Z:0.

- vxn : V:E(I)) |Z

2.2. Elliptic regularity with weights. We observe that if u is a solution of
the elliptic equation Au = 0 on Q and u is its image via the diffeomorphism (2.3)
then

(A7 + A3)u =0,

which is equivalent to (see equation (3.16), [2])

(2.9) (02 + al, + B -V0. —70.)u =0,
where
(8210)2 az'pvxp 1 2
2.10) o= —2 ) Ml el = o A, V,0.p).
(2.10) « T VP B RN 8zp( Sp+algp+B-Vi0:p)

These coefficients are estimated by

LeMMA 2.3 ([1, Lemma 3.17]). Let J = (=1,0) and s > 1+ $. There exists

F : RY — R" non decreasing such that (see Definition A.1 for the definition of
X*")
ul

v

Let us denote by L the linear differential operator
(2.11) L=08+aA,+ B V.0,
and consider the following inhomogeneous initial value problem
(L—~0.)u=F in R¥x J,
(o

Recall Definition 1.2 for the definitions of weight classes W, Wp,, We,. It is clear
that Who(0) C Wez(p) for all p > 0. For any w € W, defining

Aw™? Aw
2.13 =0 gl = T
( ) T2 w1 T9 w
we have that 79, 75 € C°(R?). Now we fix a weight w € W and set 7 = wu. A
simple computation shows that v satisfies

. <F 1),
oy FIB g g < F i)

1
53 2
Xul Xul (J) ul ul

(2.12)

LY+ (811 —7)0:0 + argt + 2ary - V0 = wF.
9



Next, set U, = xxv, then
(2.14) Lo, = xpswF + Fy + Fy
where
Fo = aAxiv +2aVxy - Vv + B - Vexr0:0 — Xif - 110:0 — X0 — 2xgary - V0,
{Fl = Xk700.
Estimates for F’s are given in the next lemma.

LEMMA 2.4. Let J = (—1,0) and s > 1+ %. There exists F : Rt — R* non
decreasing such that for —% <o <s-—1 we have

1
218) 3o g < PO ey (bl + 19270
j= u

(see Definition A.1 for the definition of Y*), where F depends on w only through
the semi-norms of r;, 7%, i =1,2 in C°(RY).

PROOF. 1. It was proved in Lemma 3.20, 2] (applied with ¢ = 1) that under
the conditions of this lemma,

17031 oy 5y < C I L2151y 1001 o)

whose proof uses only the regularity of v and 0,v. By writing xxv0,0 = (xx7)(Xx0-0)
and using the proof of preceding estimate we obtain

1l oy 5y = X700 oy ) < C V20 19201 x2,0)
< }-(”n”HST%) 100l xa () -

2. We turn to estimate Fy. All the terms containing either V,v or 9,v can be handled
by the same method (remark that r; € Cg°(R?)). Let us consider for example
aVxy- V. There exists M > 0 such that if |k—j| > M then supp xxNsupp x; = 0.
Therefore, it suffices to estimate A = x;aVxy - V40 for [j — k| < M. We have the
following product rule in Sobolev spaces (see for instance, Corollary 2.11 (i), [2]): if
S0 < s1, S < 82,81 +52>0and sy <81+ 50 — % then there exists C' > 0 such that
for all u1 € H%, ug € H® there holds

(2.16) Jurug| o < O lluall sy luzll g -

The preceding result applied with sy = o, s; = s, sy = 0 together with Lemma 2.3
leads to

HAHLQ(J,H") < HXkOéHm(J,HS) VX - VaﬁHLoo(J,HU) < ]'—(H"?HHM%) vag”xgl .

ul

3. We are left with two terms aAx v and yrparev, which can be treated in the same
way (remark that o € Cp°(R%)). Let us consider for example aAx;0. As in 2., one
only need to estimate x;aAx;v for j close to k. The product rule (2.16) gives

IXgaBXkVlary ) = IXGOAXED 2 (g 11
<C ||04AXk”L2(J,HS) ‘|ij|Loo(J7Hv)
< Cllallpz s ) 1X501 Lo (g, 10y -
Now, by writing

(2.17)  x;v(z,2) = x;0(z,0) +/ X;j0:0(z, 7)dT = xjwi(z) +/ X;0.v(x, T)drT,
0 0
10



we obtain
||ij|Loo(J7Ho) < Hw¢||Hgl + ”@EHLOO(J,HU)M = Hw¢”Hgl + ||025HX31(J)-
Consequently,
38T ) € F O y) (0, + 10T )
O

REMARK 2.5. Lemma 2.4 is in the same spirit of Lemma 3.18, [1]. However, in
Lemma 3.18, [1] the authors considered two cases corresponding to two ranges of o:
—% <o<s-— % and s — % < 0 < s— 1. This aimed to keep in the estimate (2.15)
the function F depending only on HnHHSO 4y for any 1+ 4 < s < s, which appeared

in their finial a priori estimate (see Pru(l)position 4.7, [1]). Here, however, for our
contraction estimates we do not need this tame estimate. In fact, our contraction
estimates shall be established in 1-derivative lower Sobolev spaces, hence we even
do not use weighted bounds in the highest norms.

Next, we prove an elliptic regularity theorem with weights for V, .v:

THEOREM 2.6. Let J = (—1,0), s > 1 —1—% and w € Wey(0), 0 > 0. Let u be a
1
solution of the problem (2.12) and set ¥ = wu. For —3 < o < s—% letn € Hz;rz (R%)
satisfying (2.2), wip € HG'HRD), F € Y9(J) and
(2.18) ||Vz725||x_%(‘]) < +00.

ul

Then for every zo €] — 1,0[ there exists F : RT — R™ non decreasing, depending
only on (s,d) and the semi-norms of r;, r},i=1,2 (in C°(RY)) such that

(219) ||va:,zf6||Xgl(z0,0) SJt(‘UHH:I%){”wwHH5l+1+HwF”YJl(J)+”Vx,z5HX%(J)}

ul
Consequently,
(2.20)

Ve sl o0y < F(ll o) {0l goss + 0P llygen + Vel _y ).
Hul ul Xul (J)
PRrROOF. Estimate (2.19) is a consequence of Proposition 3.19, Proposition 3.20

and the proof of Proposition 3.16 in [1], tacking into account Remark 2.5. We now
derive (2.20) using (2.19). Remark first that 0,0 = wd,u. Next, we write

wVzu = V0 —uVw,

where
u(z, 2)Vew(z) = ri(z)w(x)u(x, 2) = r|(z)w(z) (ﬁ(a:, 0) + /OZ o.u(x, T)dT),

which implies (using again 7} € Cf°(RY))
Vol e, < CON0wl Ly + lwdeiil e, ) < CQNwl vy + 103l xs,).

ul ul

We have proved that
vam,zm\xgl <C( HW/JHHH% + “Vm,zg“xgl )
ul

Likewise, it holds that
0y < C(Iwbllgn, + Vsl

ul ul

11
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The two inequalities above show that (2.20) is a consequence of (2.19) (notice that
o+12>0). O

REMARK 2.7. We remark that in all the results stated below, the function F
depends on w only through the semi-norms of r; and 7, ¢ = 1,2 in Cp° (RY).

_1
To apply Theorem 2.6 we need a base estimate in the low norm X ,?. For the

proof of this, let us recall a classical interpolation result.

LEMMA 2.8 ([13, Theorem 3.1)). Let J = (—1,0) and o € R. Let f € L2(J, H 2 (R%))
be such that 0, f € L?(J, H”_%(Rd)). Then f € CY([—1,0], H°(R%)) and there exists
an absolute constant C' > 0 such that

”f”CQ([—l,O},H"(Rd)) S CHfHL%(J,HU+%(Rd)) + CHaZfHLg(J’Haf%(Rd))'

Recall also here the Poincaré inequality proved in [1] (cf. Remark 3.2) for fluid
domains with finite depth of type Q (cf. (1.1)).

LEMMA 2.9. Let 0, 0, € CY(RY) satisfying |0 — O]l Lo (ray > 0. Define
O ={(z,y) e R" xR : 0.(x) <y < 0(z)}

and
HY(0) = {u € L*(0) : Vyyu € L*(0) and ul,—g() = 0}.
Then for all u € H*°(0), a € C°(RY), a > 0, there holds

(2.21) // z)|u(z, y)|Pdedy < |0 — 0.3 (R9) // z)|0yu(z, y)|*dzdy.

REMARK 2.10. In Remark 3.2, [1] the constant appearing in the Poincaré in-
equality is stated to be dependent only on ||0||e + ||0«||zoc. However, it is easy to
track the proof to derive the explicit constant |6 — G*H%w(Rd) in (2.21).

PROPOSITION 2.11. Let J = (—1,0), s > 1+ 4. Let ® be the unique solution to
(2.7). Then the following statements hold true.
(i) For every w € Wpo(0), 0 > 0, one can find a non decreasing function F : RT —
R* such that

V.. P <F
[ I b (lImll 1 AL i ey

(i7) There exists an absolute constant Cy = Cy(d) > 0 such that for all w € Wez(p)
and 0 < 0, with

1
(2.22) 0+C |1 = ell 7o (mety = 3
one can find a non decreasing function F : Rt — R™ such that
Va Z<I> <F s
[w || 10, (llmll et Rd))ll wyl| i ey’

PrROOF. We proceed in two steps.
Step 1. By Lemma 3.6, [1] one can find an absolute constant C, > 0 such that for
all p > 0 satisfying

(2.23) pCe |1 = nell Foo(may < 1
there exists F : Rt — R* non decreasing such that for all ¢ € Z¢ we have

(2.24) 1e#=0 yugl z2() < F(lImllwr.oo ey 1]
12
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Using properties (i) and (ii) above of ¢ (see section 2.1.2), we see that (2.24) also
holds for u, replaced by yq for any p > O and thus (2.24) is true for u, replaced by
D, = uy —1—9(], ie.,

||eu<qu>vx,zq>q||L2( < F(lInllwr.eo ma )HlﬁqHHQ (R4)

for any pu > 0 satisfying (2.23).
Using the diffeomorphism (2.3) we deduce that

(225) OByl acmn) < Fllnlhwr )l 3

Consider a weight w that is a priori in W. On the support of xj, we have w(:v)e“<x_q> ~
w(k)e#=9 . Hence by the product rule (2.16) we have

(226) Xk oBll 2 2y < CoolR)e™ 0 F ([l 19l gy

from which it follows that
(2.27)

ka’wa,z(f”l?(JvLQ(Rd)) < Z Hkav:n z(i HLQ(J,LQ(R'i))
< CZ 6 —u(k— q (||77||W1,00(Rd))HT/}qHH%(Rd)

< O3 utiyu (@ =D F il )bl g

Now we distinguish two cases:

(i) w € Wpo(0), 0 > 0. By definition, w(k)w=*(q) < C(k — ¢)¢ and thus the final
sum in (2.27) converges for any p > 0, which leads to

(2.28) Xk V2| L2 22 (Ry) < f(ll??llwl,oo(Rd))Hw¢|lH%l(Rd)-
(71) w € Wez(0), 0> 0. Choosing p, g« such that
1
MOl = 0w ey = 1 0Ca 1 = ey = 5

then the final sum in (2.27) converges for all p < p, and one also ends up with
(2.28).

Step 2. Let us fix a weight w as in (¢) or (i7). To complete the proof of this lemma,
it remains to show for any k € Z? that

(2.29) IxkwVa, b @) S (HnH it Pllwd]l

(Rd)
By the interpolation Lemma 2.8

HUJXkV:c‘T) < HkaVm‘AISHB(J,m) + Hkaanz&)HLZ(J,Hfl)-

HLOO(J,H’%)
The first term on the right-hand side is estimated by (2.28), so we need to estimate
= |wxkV20:® L2(s,1-1)-

Notice that for any acceptable weight w € W, there holds with ¥ € C5°(R9) and
X = 1 on supp x that

lwxeVaflmmey < IV@xkN)ms@maey + lwVaxeflms@ye + [ Vewxnfll msma

< lxewf s may + loVaxif lasay + 171Xkl s k@ f | s ey
13



Vw

where 1] = as in Definition 1.2. This implies

(2.30) lwxkVa £l gsray < C’waHHZlH(Rd), YweW, seR.
Applying this estimate and (2.28) leads to
M < Clud Bl < Flll v,

ul

Finally, to obtain (2.29) we shall prove
(2.31) ||w8z<l>||Loo(J

_1
H 2)ul

< F(ll e )Ivl 3.

ul

Again, by interpolation,

||U)Xk3z;1v’ < Hkaaz‘i;HLQ(J,LQ) + wamg‘I)HL?(J,H—I)-

”Loo(J,H*%)
It remains to estimate A := ||wy,02®|| r2(J,H-1)- Taking into account the fact that
EIVDq satisfies equation (2.9), we have
ASY Aigt Az + Asg,
q
where by the product rule (2.16) (remark that s > 1+ % is sufficient), Lemma 2.3
and (2.28),

Arg= Hkao‘A(iq”L?(J,H <l HWA‘I’ 220711

ul?

Loo(J,H®™
A2q = HXk:w/Bazvx(I) 22 (LH-1) = <8l

Az g = || xpwy 0, ® dlee -1 < 7l

LW(J,HS’%)M Hwazvxq)qHLQ(J,H—l)ula

Loo(J,HS*%)ul Hwaz‘pq”m(J,B)M-

Finally, to sum vaxyzéqHLQ(J’LQ)ul over q € Z?, one makes use of (2.26) and argues
as in (2.27). The proof of Proposition 2.11 is complete. O

REMARK 2.12. In statement (ii) above, the function F depends on p, which
is in turn bounded from above by C||n — 77*||530 Therefore, F is really increasing
in [|n]| s+1 if the fluid depth || — n«||ze is bounded from below by some positive

constant

Using Proposition 2.11 as the ground step for the regularity Theorem 2.6 we
now prove a weighted estimate for ® and its gradient.

COROLLARY 2.13. Let J = (—1,0), s > 1+ g. Let @ be the unique solution to
(2.7). Then the following statements hold true.
(i) For every w € Wy(0), 0> 0 and —3 <o <s—1,
function F : RT — R such that for cmy 20 € (—1,0),

one can find a non decreasing

Bl 0+ 190V B, o) < F () el

(i1) For every w € Wez(0) with 0 < o, (defined by (2.22)) and —% < o <s— 1, one

can find a non decreasing function F : RT — R such that for any 20 € (—1,0),

0@l o120 0) + 110V, @l x2,(20,0) < Flnll_ ey Mlwpll g
ul

PROOF. Observe that ® satisfies (2.12) with F = 0. According to Proposi-
tion 2.11, with the weight w given either in (i) or (i) we have
[Vl _y < Flllp)ww] y < oo

2
ul” \%0; ) ul ul
14



Theorem 2.6 then leads to the desired estimate for ||wv$725HXUZ(zo,O)‘ Consequently,
the argument in (2.17) leads to

[w®] xe,(z0.0) < WPl oy + [10DB] x2,(z00) < F (] 1) lwdllgosa.

ul

H°+2 H

Finally, using the fact that for any W € W,
IWallgos < C(IWVulag, + (Wl a)

we derive
||w¢llxo+1(Z0 0 < (II??IIHW)IIW#IIHH1

ul

0

Corollary 2.13 implies the following weighted estimate for the Dirichlet-Neumann
operator, which is of independent interest.

PROPOSITION 2.14. Let s > 1 —i-g and n € HS+%(Rd)ul. Then the following
statements hold true.
(i) For every w € Wy(0), 0> 0 and —% < o < s— 1, one can find a non decreasing
function F : RT — R™T such that

lwGmyllag, < F(Inll ey )bl o

ul —
ul

(i7) For every w € Weg(0) with o < oy (defined by (2.22)) and —3 < o < s— 3, one
can find a non decreasing function F : RT — R™ such that

lwGmyllag, < F(Inll ey ) lwbll g

ul —
ul

PROOF. Let w be the weight as in (i) or (i7). By (2.8),
G(n)y = (Al‘i) —Vap- Aﬁ)) |l2=0 =: H|.=0.
Owing to Lemma 2.8, we have for any J = (29,0) C (—1,0)
IxXqwG (MYl < C(lIxqwH| + [Ixqwo-H|
For the term ||x,w0, H||

[1])

L2(JH°+2 L2 JH“*?))

Ho-4) Ve make use of the following identity (see (3.21),
8.H = —V ((.p)A2®)
to have

g0l ey < 0@ AP oy

On the other hand, we observe by definition (2.5) of A; 2 that the terms in H have
the same structure as (0,p)A2® and thus, it suffices to prove, for example, that

00 ol ety S F ) Bl

By virtue of Corollary 2.13, this reduces to proving

(232) vaxp ’ vw(I)”LQ(J’HoJr%)ul < ‘F(HUHHH{%)va$,zq)HXgl

We consider two cases:
Casei 1: —% <o <s—1. We apply the product rule (2.16) with sy = o + %, S1 =
S — bR
Vg Tl eid < CIRRY ol e 00V
15

Sy =0+ % to obtain
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from which (2.32) follows in view of Lemma 2.3.
Case 2: s—1< g <s— % Since o + % > % we have the following well-known
inequality

labll oy S llallzeollbll yory + llall or g 18] zoe-

Ontheotherhand,aJr%gsandazs—1>%so

[lab] 3 0l os g+ llallars][bl] e

HoJr% 5 HaHHs HUJr%
Applying the preceding inequality to a = X, V,p and b = kaVxEIV) yields

IxxwVep - V||

L2(J7HU+%) S ||kawp”Loo(J,Hb_%) kawvfﬂq)HLQ(J,HU-l»%)
+ IXk Vol 207,19 IxXkwV 2@ || oo (1,17 -
Lemma 2.3 then implies the desired estimate (2.32). The proof is complete. U

REMARK 2.15. Several comments are in order about Proposition 2.14. Let us
recall a relating result on the exponential decay of the Dirichlet-Neumann operator
(for d = 1) obtained by Ming-Rousset-Tzvetkov [15]:

PROPOSITION 2.16 ([15, Proposition 3.2]). Assume that n. = —H and ¢ €
Cy°(R) having an exponential decay:

N>0,VjeN, j>1,3C; >0, Vo € R, [4(z)] < Cje L,

Then for n € H*(R) with n — H > h > 0, G(n)y also has an exponential decay,
that is, there exist 0 < € < A such that for any j € N we can find a constant C']’~ >0
such that

DG () ()| < Che=l.

1. The advantage of Proposition 2.16 is that it does not assume decay on 1 itself
but its derivatives, which is compatible with the solitons studied there. The authors
were not interested in the way the estimates depend on the regularity of the surface
7.

2. Proposition 2.16 is asymmetric in the sense that the exponential decay of G(n)y
is lower than the decay of .

3. Proposition 2.14 assumes also that ¢ is decay (choosing for example w(x) = 2().
However, compare to Proposition 2.16, it has the following advantages:

(i) Proposition 2.14 holds in any dimension, with varying bottom (7, is only
assumed to be in CY) and allows domains with non smooth surfaces (1 €
02+5)‘

(ii) The decay rate of G(n)vy is preserved, i.e., the same as the rate of .
Moreover, the exponential rate g of ¥ can be chosen as

1
o<
2C|In — N |7 o0

(2.33)

(for some absolute constant C, = C,(d)) which is decreasing in the square
of the fluid depth. Such a rate is therefore higher for shallow water but
deteriorates when the depth tends to infinity.
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2.3. Paralinearization of the Dirichlet—Neumann operator. We denote
by k the principal symbol of the Dirichlet-Neumann operator:

2\ £12 2\ 3
k= ((1+[Vanl*)|E]* = (Van - €)%)2
and define the remainder

(2.34) Ry =Gy — Ty
Our aim in this section is to prove the following weighted version of Theorem 3.11
in [1].

THEOREM 2.17. Let s > 1+ g and w € Wpo(0), 0 > 0. Then there exists F :

1
s+35

R* — R non decreasing such that for 0 <t < s—3%,n € H,, *(RY) satisfying (2.2)
we have

R lrg, < F (Il eyt ey

1
provided that wip € HZ;_Q (RY).

PROOF. Let us fix a real number ¢ € [0,s — 3]. By definition of the Dirichlet-
Neumann operator, one has
~ ~ 1+ |Vapl?
G(UW =h10,® — hy -V, ® | 2=0? hy = a’ pxp , ho = Vp.
z

Let A be the symbol of class T'} (R? x J) given in Lemma 3.20, [1]. We set
2
i = (0: = TA) Oaxw®),  hjlazo =hJ, j=1,2, Ao = Ao.
Then we can write
XkwG(n) = hY(8. (xgw®))|.=0 — xrwh - Va1h
= 1Ykl =0 + P Ta, (Xk Xkw?) — Xk Xkwh3 - V1)

(2.35) 7 ! N . N
= RYGk|z=0 + I [Tay, xe] (Xkw?) + xk (AT, — h3 - V) (Xkwt)
+ xkhS - V(Xewi) — xpXrwh - Vat).
Therefore,
xrwG(n)Y = By + B,
where

By = hGk|.=0 + B [Tay, xa) (Xkwt) + xi (h{Ta, — hS - V) (Xewib),
By = xxh§ - (VXk)w + xih - (Vw)y = xih - (Vw)y.
The proof of Theorem 3.11, [1] shows that
By = xx T (Xpwy)) + S
with the remainder S satisfies
100 < F (Il e ]

Writing Vw = wry with r; € Cg°(R?). Since h3 € HS_%(Rd)ul with norm bounded
by F(||n]| H%) and t < s — % the product rule yields
Hul
| Ball e = [IxihS - riwgp| g
= [ Xxh3 - rill o Ixewdd || e
< F(Inl oy vl

17



We have proved the following result
XrwG (Y = i T(Xkw) + S, [1S]ge < F Wl g Wil iy
ul ul

The proof of Theorem 2.17 boils down to showing that the commutator T :=
Xk [T, Xxw]) satisfies

(236) Il < F (Il ) 10

Indeed, introduce ¥ € C2°(R?), ¥ = 1 on the support of ¥ and define also Xq() =
X(- — q) for all ¢ € Z?. Denoting w; = Xxw and noticing that wy, = wyY, we can
write
T = xxTu(wiXr¥) — xewiXeTet)

= Xk T (WeXp¥) — Xkwk [Xe, Tl — Xwwi T (X))

= Xk T, wi) (X ) — X0wk[Xg, Ti]th = R1 — Ra.
1. Ry can be written as

Ri = Xk[Th, Tu J (X)) + xeTul(wk — T, ) (X)) — Xie (Wi — T ) (T (X))
= Riq+ Rip— Ric.

a) For Ry, we apply the symbolic calculus for paradifferential operators in Kato’s

spaces (cf. Theorem 7.16 (i), [1]) to x € T'}, w; € T'Y (see also Theorem A.11 (i)
in the Appendix) to have

1Rrallme < CF(Nll oy llonlln |1,

ul

Now by properties (i), (i7) in Definition 1.2, the weight w satisfies
lonllwres < Cw(k) and  wE)IXblme, < Clwl e
Consequently,
sl < F (Il ey,
b) For R;; one first uses the boundedness of T, from HZH to Hfd (see Theorem
7.16 (i), [1]) to have
[R5

i S F (Il )k = o) () e
ul
Next, the paraproduct rule in Proposition 7.18, [1] gives for n large enough

I(wk = T ) X0 gy < Cllwrll g, [l e,

ul

As in a) we remark that ||wg||gn, < Cw(k) and hence obtain the desired estimate for
Ryyp. The term R; . can be handled using exactly the same method. In summary,
we have proved an estimate better than needed:

IRullge < F(Wall o)l
ul

2. To study Rs we decompose

Ry = Wi [TikaTn]dJ + wk(?k - TYk)Tﬁdj - wkTH[(Yk - Tfk)w]

By the same arguments as in the the study of R; but using instead the symbolic
calculus in Kato’s spaces with weights in Theorem A.11 together with inequality
(A.21) one ends up with

Rellze < F (Il eyt

The proof of Proposition 2.17 is complete. 0
18



REMARK 2.18. In the proof above, it is for the study of the remainder Ry that
we need to restrict the weight w to the class of ”polynomial weights” W, (o).

2.4. A weighted estimate for ®. We use the elliptic regularity theorem 2.6
to prove a weighted estimate for ®—solution to (2.7), which will be used later in
proving a contraction estimate for Dirichlet-Neumann operator.

LEMMA 2.19. Let s > 1—|—‘§l and w € Wyo(p), 0 > 0. With i1 > 0 satisfying (2.23)
and @4, 1y as in section 2.1.2 there exists a non-decreasing function F independent
of q such that

oo ~
Y llwe= @ 0xg Ve o @yl| oo e < Fllll oy Mlwtbgll -
kEZd ul

PROOF. We remark that wy, € H*(RY) for every ¢ € Z¢ provided that ¢ €
HS,(RY). Tt is clear that

||we% <x_q>Xka,z&>q | oo (rxma) < e th—a) Hwegu/4<$_q> V%Z&)q Lo (7xR)-

Consider the weight we?*/**=49 ¢ W which has semi-norms independent of ¢. Ap-
plying Theorem 2.6 to ®, (with ¢ = s— 1) and taking into account Remark 2.7 , we
may estimate

Z Hweg<$_q>kax,z€Iv)QHL°°(J><Rd)

kezd

<C Y e 1D we MDY, By || oo xma)
kezd

< C||we3'u/4<x_q>vx,z$q||L°°(J,H571(Rd))ul

3u/4{z—q) ; 3u/4{z—q) b
< (il .p) (e 8e-0ag, + froesrte-s Vol "

3u/4z—q) o
< Pl o) { Il + e -0, By
Remark that in the first inequality, we have used the trivial fact that ), e~ 1 (k—a)
is finite and independent of q.
To complete the proof we need to prove that
3p/4(z— F
(2:37) e 0T Byl g ) < Tl gl -

ul
However, using interpolation inequality as in step 2 of the proof of Proposition 2.11,
it suffices to show that

(2.38) lwe® =0, @yl 2s2),, < FUnller g lwirgl 5

ul

(/)

Indeed, by virtue of (2.25) one can estimate
||Xpwe%(I_q>vx,z&>q||L2(J,L2) S 6_%(p_q>w(p)HXPEMI_@V:M%(J||L2(J,L2)
S e 5P Dw(p) F(|Inlwre) Ixg?ll 3
S e 50 Dw(p)w(q) T F(Inllwree) [wxgdll, 3
S e 504 — eyl ) gl
S Flllnllwre)llwxgdll 15

which is the desired bound. OJ
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REMARK 2.20. Asin Proposition 2.11, Lemma 2.17 can be formulated for weights
in the class W,,(0) with p sufficiently small.

3. Weighted contraction for the Dirichlet-Neumann operator

The main ingredient in proving the contraction for the Dirichlet-Neumann oper-
ator is the contraction estimate for solutions to the elliptic problem (2.7). The key
idea then is to compare the two variational solutions ®; after changing the variables
®; to (T)j as in (2.4). However, after straightening the fluid domains by the diffeo-
morphism (2.3), the new domains will depend on their upper surface. To overcome
this, we use a slightly different diffeomorphism as follows.

Given 7, € C)(R?) and h > 0, there exists 77 € Cg°(R?) such that

- h
(3.1) ns(2) < 0@) <me(@)+ 5, Vo R
Then, because 7; > 1, + h we set
My ={(z,y):ze RY, n;(z) — % <y <ni(x)},
Doy ={(z.y):x e RY, ij(a) <y <my(z) — 5},

j
Q5 ={(x,y): xR, nu(z) <y <7
Q;  =Q;Uy,;UQ3;,
and B
M = Rg X (_150),%
QZ = Rgcl X [_27 _1]Z7
Q3 ={(z,2) R x (=00 —2) 1 2+ 2+7j(z) > nu(2)},
Q =0 UQUQs.
Remark that Q depends on 7., h but not on n;. Thus, we can define
3.2
(3.2) pLj(l‘,Z) —(1+ Z)€5Z<D”>T]j($) — [6_(1+Z)6<D”>77j(x) _ %] . in 617
pi(e.2) = pajlez) = (24 2) [FEDPD g (@) — 5] — (14 2)7, in O,
p3i(z,2) =2z+2+1n(x), in Q3.

LEMMA 3.1. Assume that n; € WH°(R%), j = 1,2. There exists an absolute
constant C > 0 such that if

C(SHUJHWLOO(Rd) < hv j = 172

then the mappings (z,z) — (x, pj(x, 2)) are Lipschitz diffeomorphisms from Q to Q
and there exists a constant co > 0 such that 0,p; > co a.e. in Q.

PROOF. Observe first that py ; are Lipschitz for &k = 1,2,3; j = 1,2. Clearly,
(x,2) = (z, p3,j(x, 2)) are diffeomorphisms from Q3 to Q3 ; and d,p3; =1 > ¢y > 0.

The same properties hold for p; ; as in (2.3). We now prove it for ps ;. Notice first
that

p2(—1,2) =n; — p2,(=2,2) =1.

g )
Compute now

0.p2,j = 65(Z+1)<Dz>17j(a?) — g -2+ 2)565(Z+1)<DI><Dx>77j -n

= DDy, () = (o) = 2+ D0 PD ) + () — 7 -
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By writing e®GHDPalp, —pp = §(2 + 1) fl eGP (D Vn;dr we deduce that

6(2+1)<Dz> H H 9 §ed D= H
He — 1 T (2+ z)de 21 Lo (RA)
h
<Co H77j||W1,oo(Rd) < 6
for ¢ > 0 small enough. On the other hand, thanks to (2.2) and (3.1) it holds that
h h h h h
m=f=g=0j—n)+ -0 -3 >h-g-g=3

and thus 0,pa; > % — % = % in Q. Therefore, we can conclude that (x,z) —

(x, p2,j(z, 2)) are diffeomorphisms from Qs to Qo j. O
With the functions p; above we denote for every f: ) — R

and as in (2.5) we define the differential operators A/ = (A{,A*;). Hereafter, we
denote J = (—2,0) and assume that

d
(3.4) EHS+2(Rd), s>1+5,j=12

LEMMA 3.2. Let w € Wyo(0), 0> 0. We have A' — A? = 00, = (p1, 92)0, with
=0 for z < -2 and

(3.5) lwpllr2(sr2®a),, < f(||(771’772)||ﬂ;+% HZT%)”w(m - 772)HH§Z-
PROOF. By definition, one gets
o 8z(p2 - Pl)
P1=——F 5 >
0.p10.p2
on — ~Valp2—p1) meaz(m —p1)
0.p1 0.p10:p2
so in Q3, p = 0. To obtain (3.5) one writes
HWPHL?(J,L?(Rd) Jul = ||“’K’||L2 ~1,0),L2(R4)),;, T ||w@||L?((—2,_1),L2(Rd))ul

to use definition (3.2), the fact that 77 € C°(R?) and the i-smoothing effect of the
Poisson kernel, which is Proposition A.7 applied with r = 1. U

1

THEOREM 3.3. Let ¢; € Hqu(Rd) and ®;,7 = 1,2 be the unique solution in
H!/(Q)) of the problem
0P
—|r =0.
ov e
Setm =mn1—n9, Y =11 — o, ® = &1 — Dy where ZI;]- is the image of ®; as in (3.3).
Then for every w € Wyo(0), 0 > 0 there exists a nonnegative function F such that
(3.7)

0¥y < F U,y ey) (ol ol + vl )

ul ul

(36) Ax,yq)j =0 1in Q, (I)j|2 = 1,[13',

For the proof of this result, we shall apply Lemma 2.19 for <I>q. However, ®,
here is the image of ®, via the diffeomorphism corresponding to one of p; defined
by (3.2) instead of (2.3). We want the same result as Lemma 2.19 in this situation.
To have this, we notice that on J = (—2,0), p; is comprised of two functions p ;
for z € (—1,0) and py; for z € (—2,—1]. The function p;; possesses the same
properties as p does and so does po ; since 1) € Cp° C H77. Therefore, we obtain
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LEMMA 3.4. Let w € Wpo(0), 0> 0 and ®j4, Vjq, j =1,2, ¢ € Z as in section
2.1.2. There exists F1 non-decreasing such that: if 0 < ,u.7-"1(||17JHHsl) <1 then one

can find a non-decreasing function F independent of q such that

3 e D\ VB e (e < Flnl oo lwbiallr
keZd

PROOF. (of Theorem 3.3) For simplicity in notations we shall denote F =
F(||m]] ey H772H 5+ 1) which may change from line to line. We proceed in the

ul
following steps.
Step 1. Let @, = ujq + gjq where u; 4 is the variational solution characterized by

(2.6). After changing the variables, (2.6) becomes
/~Ajci>jquJ'9deX =0, Voe HY(Q), j=1,2

with the Jacobian J; = |0,p;| = 0.p; > ¢o > 0 a.e. in Q (by Lemma 3.1).

Setfb —(I)lq @2,(1, % _1[)

—1), and choose
qg —lg 24

0 = (0, — ¢ ) € HYO(Q)

where g. = 5 JS(;‘&D. It follows that
B 3
'/ﬁAlq)quajldx‘ < gAj,

= [5 (At — A2 )®o (A0 |dX,
= [5|A2® 4 (A" — A%)0.11|dX,
A3 = [5 |A2D9 A%0(J) — Jo)|dX.
By Lemma (3.2) we know that A' =A% = 0 in Q3. Likewise, J1—Jo = 0,p1—0,p2 =0
in Qg Consequently, with QQ = R? x J we have Aj, 7 =1,2,3 are equal to the
corresponding integrals over Qg.
Step 2. (Estimate for A;) First of all, we remark that

(3.8) N (e®9:U) = X9 ATU + (0, U)20e2%9:V g...

Using Lemma 3.2 and formula (3.8) with j =1, U = &, — ¢ one can write

A= /S~2 G908 N (By D) HIAX +20 | e0(Vgea. B By — D)X
0 0

= A1+ Ajp.
Since [|J;[| o < F, we may estimate

A < F 62595|@3z‘52,q1\1(€’q—&q)\dX
o -

-FHKJeagEazq)?,qu(ﬁo)||€6g€A1((I)q - ﬂq)HB(ﬁo)‘
On the other hand, there holds

IN

I f1foll 2 r2may < O Xk fixefall 2o e may
k

< il rerrz®ayn D Ixkfall o (rxray-
k

(3.9)
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Now we choose § > 0 such that

1
(3.10) 0F1(m2ll ry) < 5

ul

then the condition of Lemma 3.4 is fulfilled with p = 26. It then follows from (3.9)
and Lemma 3.2 that

(3.11)
89: 9 & —1_6(x— &
[| e azq)lq”m(ﬁo) < Jlwpw Ledt q>azq)2,qHL2(J,L2(Rd))
< Nwpllrare@ay O Ixew ™ e 90.@9 || oo (rxra)
k
-1

SfllwnllHéllw V2.9l a5

Therefore,

vy < Fe A @y = D) gl o gl

ul

For A; 2 we have
A < 25-7:H€595@28zq)27q”L2(ﬁo)||eégg(q>q - %q)HLz(ﬁOy

The first L?-norm on the right-hand side is already estimated by (3.11). For the
second term on the right-hand side, one applies the Poincaré inequality in Lemma
2.9 (with O = Q1 Uy 1, which is diffeomorphic to ) to the image of (&, — yq)

under the inverse of p1(z,z), (x,2) € Q and then changes the variables back to €
to derive
(3.12)

||6595((§q _ iq)HLQ(ﬁO) S f‘”efsgsaz(iq - &q)”LQ(ﬁo) S ‘FHe&gEAl((/iq - @q)HLQ(ﬁo)

from which we deduce that A; o satisfies the same estimate as Ay ; does and hence,
so does Ay, i.e.,

(3.13) A < f”e5gaA1($q — %q)HLQ(QO)HwnHH% Hw_1¢2,qHH5'

ul

Step 3. (Estimates for Ag, Az) By Lemma 3.5 we have
1 A2vg _ 2009 (& _
(A =A%) = pe25:0,(3, ~ ).
It follows that

Ay < Flloe™ 82| o gy 16990 (Bg — 0 ) 23

Using the definition of A% and the same method as in (3.11) one obtains that the
first term is also bounded by the right-hand side of (3.11). On the other hand, it is
easy to see the second term is bounded by F|e?9 A (®, — yq) . Therefore, A

also satisfies the bound (3.13).
For A3 one uses the formula (3.8) to get A3 < A3 + A3 with

2 @)

’ —q

Ay = /~ 209 | A28y A2(By — 3 )(Jy — Jo)|dX,
Qo

Agp =06 | €% |Vg.A3do (@ — ¥ )(J1 — J2)|dX.
Qo
First, A2 is estimated by [|(Ji — J2)e?% APy g 12 g, [|€7% (@4 — @q)”LQF The

Qo)*
second term is estimated by (3.12) and the first term is estimated as in (3.11) with
23



o replaced by J; — Jy which satisfies ||w(J; — J2)||L2(JL2l) < Fllwn|| y. Similarly,
Lo, H

ul

Az p < (|(J1 = J2)e®9 A2 ®o || o 5, 1€7 A% (D = &) 12

We only need to study the second term on the right-hand side. With u := &Jq — @q
one has A2y = 82”1 Alu which implies He‘sng%uHLQ(@O) < ,7-“||6598A%UHL2(S~)O). On the

other hand,

Vep2 1 <V:p,01 Vmp2> < >
A2u = Vu— O.u = Asu + — 0, o.u | .
2 0.p2 2 0.p1  O:p2 P 0.p1

Hence, ||e598A%uHL2(§O) < ]:He‘sngluHLQ(ﬁO) and ||€695A2UHL2(§O) < .7:||e‘595A1u||L2(S~2 )
In conclusion, we have proved that: for any (small) § > 0 satisfying (3.10), there
holds

(3.14)

/ﬁAltf)quejldX‘ < .7:H6695A1(<f>q —iq)HLQ(QO)HwnHH% w4 g || 175

ul

Step 4. Next, in view of (3.8) we write
/ A @, AT dX
Q
— /~ e209: N1 AV (D, — @q)JldX + 26 /~ AL, (D, — @q )eX9 Vg J1dX
Q Q
(3.15) = / 9 |A (@ — )P TidX + / 9N AN (D — ¢ ) TdX
+ 26 / A (D - @q)e%gfvgejldx
+ 25[, Azyq(q)q — @q)eQ‘SgeVgledX =By + By + Bg + By.
Q
Owing to the Poincaré inequality in Lemma 2.21 (applied with O = Q1) and a

change of variables one has

(3.16) 1Bl < $Fa(llml.y)lle™ A (R — ¥ )17

s+§
ul

where 5 : RT — R™T is a non decreasing function. Likewise,

(3.17) (Bl < 6Fa(lm o) €Ay 1A By = D)™ 12

ul

Finally, it is clear that
(3.18) Bl < Bl e 1A,y I (B — )6 N

Now, remark that there exists a constant ¢y depending only on h such that |Ji| > cg.
Choose § > 0 satistying

C 1
(3.19) 5 {f1(||n2||H5+%) +f2(||171||H5+%)} = min(%, 5)-

ul ul

A combination of (3.14)-(3.18) yields

o)

dge
iy < T 10nly lo gl 1A, |-

ul
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Step 5. Now, letting ¢ — 0 and taking into account properties (i), (ii) of yq in
section 2.1.2 lead to

1D AL || oy < F {lwmlpgs o o gl + €5 VAY oy }

(3.20) )
< F{lwnll s o~ b gllar + il 3}
Hence
108 | 23y < F {lomll o™ gl + Nl § -
Consequently,
(3.21)

”Xpwvw,z:ﬁq”L2(J,L2(Rd)) < 676<p7q>w( )F {‘U”?H 1Hw 11/}241 Hs + qu” )}

ul

< e (p)ug)” 1f{uwnu yllglla + lwisgl, }

ul

Finally, we get

IXpw Ve 2@ L2 r2may < D IXpw Ve 2@qll 1207 12 (R
q

(3.22)
{Hwnu y ol + o] }

ul

Step 6. It remains to prove that ||x,wVy, 9| is bounded by the right

hand side of (3.7).
The estimate of ||x,wV,®||

Leo(JH 3 (RA))

Loo(J,H™ 3 (R4)) follows from (3.22) and the interpo-

lation Lemma 2.8. By the same lemma, for || Xpwazcium it remains to

(JH™ 2 (R%)
estimate

IXpwd2® || 121 pr-1 (Ra)-

For this purpose we use equation (3.26) below, satisfied by ® to have
(3.23)

HXpwag&)HLQ(J,H—l(Rd)) < HXpwalA‘I’HLZ(J,H—I(Rd)) + ||Xpw51-Vaz‘i)HH(J,H—l(Rd))
+ Ixpwr10:® L2 (g -1 (re)) + [XpWF || 120511 (R4 -

In the above inequality, oy, (1, 71 are defined as in (2.10), for the diffeomorphism
p defined in term of 7;.

Because —1 < s — 2, the estimate (3.28) applied with f = 1) implies the desired
estimate for ||xpwF|[12(; g1 (may)- Concerning the other terms, the product rule
(2.16) gives

||xpwa1A<I>HL2 JH-1) < C||Xp041||Loo JHH HXpZUA@HLZ(JH 1)

(3.24) [xpwph - vaz‘I’HLQ(J,H—l) < CHXpﬁl”Loo L [xpwVo, ‘I)HL2 JH-1)

JH )

IXpwy1 0= @ L2(g,-1) < CHSCVP’ﬂHLOO(le—%)HXPwaZ(I)HLQ(J,LQ)-

Owing to (3.22) we are left with the estimates for the first term on the right-hand

side of the above inequalities. Again, this is done along the same line as in the proof
of Lemma 2.3 noticing that € C;* C H;7. This completes the proof. O

We are now in position to derive the weighted estimate for the Dirichlet-Neumann

operator:
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THEOREM 3.5. Assume that s > 1+ g. Then for every w € Wye(0), 0 > 0
1
there exists F : RT — R non decreasing such that for all 1,12 € HZ;FQ (RY) and
f € H5,(R%) we have

JwlGOm) = GO g < FU g ) =)y

ul ul

PROOF. Let ®; defined as in (3.6) (with ¢; = f, j = 1,2) and &)j be its image
via the diffeomorphism (z, z) — (z, p;(z, 2)) given by (3.2). We have from definition
(2.8) of the Dirichlet-Neumann operator

1+ |vaj|2
3.25 Gnj)f = (
(3.25) () b
Recall from (2.9) that each :I;j satisfies the elliptic problem
(02 + Ay + Bj - V0 — 70:)®; = 0,

where o, (j, 7; are defined as in (2.10) with 7 replaced by ;.
Set & = (I>1 — ‘132 then

(3.26) (02 + 1Ay + B1 - VI, —719,) & = F
with

8Z<I>j — prjvx(fj) _0.

F ={(az = a1)As + (B2 = B1) - VO: — (32 — 11)0:} Ba.
We fix zp € (—1,0) and set Iy = (20,0), I = (—1,0). We first prove that
B2 VBl Ly < FUmwl g p)leln = w)l

ul ) ul ul u

To prove the preceding estimate, we claim that

(3.28) |wF || 21, m5-2y,, < F[(11,72)

3l

e e 00 =)y Wl

ul

Indeed, the H;, version of the product rule (2.16) (see Proposition 7.3 (i), [1])
applied with s) =s—2, 51 =s—1, 590 =5 — 2 yields

lwE 221, m5-2),, S llwloz — a2 g1y, [ BaP2l Lo (1,55-2),,
(3.29) + lw(B2 = Bl 21,151, VO P2l oo (1,152,
+llw(v2 = )l L2, m15-2),, 110:Pall Loo (1, 1551, -

On the other hand, applying Proposition A.7 for the %—smoothing effect of the
Poisson kernel in weighted spaces gives

(3.30)

|w(az — a2 ms-1y,, + lwB2 — Bl 21,551y, + w2 — Yl 221, m55-2).

< -7:(”(771,772)HH;+% H;r%)Hw(m - 772)”1{21’%'

Remark that in Corollary 2.13 one can replace the assumption zy € (—1,0) by
29 € J = (—2,0) because on (—2, 1] the diffeomorphism p; satisfies the same bounds
as the diffeomorphism defined in (2.3) does (again, this is true because 1 € C;*° (R%).
This remark applied with ¢ = s — 1 and w = 1 leads to
(3.31) IVaPoll poo g sty < Fllm2ll iy IS, -

ul

Putting together (3.29), (3.30), (3.31) one obtains the claim (3.28).
Since ®|,—¢ = 0, with the aid of Theorem 2.6 (which is applicable since p; ; and p

in (2.3) have exactly the same form), the proof of (3.27) now reduces to estimate
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[V Bl
Xul
(and the fact that I C J).

3
In view of (3.25), to obtain the bound for w|[G(m)f —G(n2)]f in HZZ 2 it is necessary
to bound [|wVg @[ . 3 at 2 =0. More precisely, we shall prove that
H

ul

e Blecoll g < F UM vy ep)Cm =l

ul ul ul

) This is a consequence of Theorem 3.3 applied with ¥ = 1o = f

To this end, we use the argument in step 6 of the proof of Theorem 3.3. By virtue
of Lemma 2.8 and (3.27), we then only need to estimate |wdZ®||2(z, gs-2),,, Which
in turn follows by using equation (3.26) together with the estimate (3.28) and the
product rule (A.22). Finally, using (3.25) and the product rule (A.22) once again,
we conclude the proof of Theorem 3.5. 0

REMARK 3.6. Theorem 3.3 is also a crucial ingredient in proving contraction
of the remainder R appearing in the reformulation of water waves system-equation
(4.4) in Proposition 4.2, [1]. Notice that our estimate (3.7) is sufficient for this
purpose because

=)l 3 < (s = o)l

ul

owing to the fact that s > 1+ %.

4. Proof of the main results

4.1. Proof of Theorem 1.6. The contraction estimate in Theorem 1.6 was
proved in [2] (see Theorem 5.1) for classical Sobolev spaces and then in [1] for
Kato’s spaces. Both use the following scheme:

1) study the Dirichlet-Neumann operator: bound estimates and paralinearization
2) contraction estimate for the Dirichlet-Neumann operator

3) paralinearization of the difference equations (after reformulation)

4) estimates for the good unknown

5) back to the original unknowns.

Here, we shall follow the same scheme as above. The first two items are the real
new points in our problem and have been studied in Section 2 and 3. For the last
three items we need a para-differential machinery in Kato’s spaces with weights and
this is established in Appendix A. The key point in this machinery is that: whenever
we estimate S(u,v) in weighted norms, where S is an operator of two variables, we
are always able to shift the weight to u or v. Having this in hand, items 3),4),5)
follow line by line those in [1] and [2]: one only need to replace || - ||gz, or |- ||z~ by
[w - [|pro, in the relevant estimates (w is the weight). We conclude the proof.

4.2. Proof of Corollary 1.7. We need to show how (1.9) implies (1.10). To
this end, it suffices to prove that there exist 0 < 73 < T and N > 0 (both are
independent of U;) such that

Define the Sobolev norms of the solutions as
Mg(T) = HU]‘HLOO([O’TL’HZZ) ) VT € [07T]7 vj Z O

Let us recall the a priori estimate derived in [1]: for any 1 + g <oc<sand T >0
one can find a non decreasing function F : R™ — R™ such that

(4.2) MI(T) < F(ML(0) + TMI(T)) (MZ(0) + TMI(T)), Vj>o.
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Fix sp € (1 + %,s). Since each Uj is a solution to the gravity waters system in
CO([0, T], 1), the estimate (4.2) gives for some non decreasing 7, : RT — R
(independent of U)

M, (1) < Fr(MZ,(0) + M (7)), V7 € [0,T], Vj > 0.

50

W Sice sp < s.

According to Theorem 1.5, U; is continuous in time with value in H

Consequently, Mg (1) is continuous in 7. In addition, Mg (0) can be bounded by
some constant independent of j, say A. The standard argument then gives the
existence of Ty € (0,7] and N > 0, both are independent of U; (but depend on A),
such that

(4.3) M (1) < N, ¥r €[0,Tp), Vj=>0.

Applying again the estimate (4.2) with 0 = sy < s we get for some non-decreasing
function F : R™ — R (independent of U)

MI(1) < F(MZ(0) + ToMZ (7)) (MZ(0) +7MI(7)), V7 € [0,Tp], Vj > 0.
By (4.3), this implies
MI(r) < F(N(1+1Tp)) (MZ(0) + 7MI(1)), V7 € [0, Tp).
Now, let T} € (0, Tp] satisfying
TF(N(1+Ty)) < %
one deduces
M(Tv) < 2F(N(1+Tp))M{(0), Vj >0

which concludes the proof.

Appendix A. Paradifferential calculus in Kato’s spaces with weights

In this section, we adapt the paradifferential machinery for the presence of
weights which can be of independent interest. The proofs of these results follow
those in [1] but we need to take some care (so we only present the proof whenever
it is necessary). We recall first various spaces which will be used in the sequel.

DEFINITION A.1. Let p € [1,400], J = (20,0),20 <0 and o € R.
1. The space LP(J, H?(R%)),, is defined as the space of measurable functions u from
J. x RZ to C such that

ull Lo, o (Y 7= SUP [[Xqull Lo (s o (RAY) < +00-
qeZ4

2. We set
o (J) = L®(J, H° (R%)) N L2(J, H* "2 (RY))

ul

o(J) = L' (J, H*(R))w + L2(J, H 2 (R%))

ul

endowed with their natural norms.
The same spaces without subscript "ul” are defined for classical Sobolev spaces.

Notice that L>(J, H° (R%)),, = L*°(J, HS(R?)).

NoTATION A.2. For t € R, we denote [t] the smallest integer strictly greater

than or equal t.
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A.1. Weighted continuity of pseudo-differential operators. In [1], the
authors proved the continuity of pseudo-differential operators on the framework of
L? based uniformly local Sobolev spaces. Here, we perform similar results with
the presence of weights in classes Wp,(0), 0 > 0 (see Definition 1.2), which are
composed of functions that are at most polynomial growth. For the sake of clarity,
let us redefine this class.

DEFINITION A.3. For every o > 0, we define Why,(p) to be the class of all func-
tions w : R4 — (0,00) satisfying the following conditions:

(i) r1 = wai:ll and | = % belong to Cg°(RY), where w™(z) = 1/w(x),

(ii) for any Cy > 0, there exists Co > 0 such that for any xo € R, there hold
w(z) < Cow(zp) and w(av)_1 < Cow(xg)™! Vz e RY, |z — x0| < C1,

(iii) there exists C > 0 such that for any z, y € R we have w(z)w 1 (y) <
C(x —y)°.

REMARK A.4. 1. For all A € R and C > 1, the functions (z)*, In(C + |z|?)
belong to Wy (|A|) and Wy, (1) respectively. For every ¢t € R\ {0}, the function ")
does not belong to any class Wy, (0).

2. If wj € Who(05), j = 1,2 then wiwa € Wpo(01 + 02).
3. If w € Wpo(p) and w > 0 then w* € Wy,(0|A|) for any A € R.
4. Condition (#4i) in Definition A.3 is equivalent to
(i4i") there exist My, My > 0 and A\, A2 € R such that
My (z)™ < w(x) < My(z)?2, Vo e R

Although (4i7") seems to be more natural than (ii), in the following proofs, condition
(#91) is more convenient.
We denote by ST the standard Hérmander’s class of symbols p € C> (R?xRY)
satisfying
|DEDIp(x,€)| < Cap(1+ )™ Vo, 8 € N%V(z,¢) € R x R™.
PRrROPOSITION A.5. Let P be a pseudo-differential operator whose symbol p be-
longs to STy and let w be a weight in Wpo(0), 0 > 0. Then for any s € R, there

exists C' > 0 such that
lwPulg;, < Cllwul]gesm

provided that the right hand side is finite.

Proor. We write
(A.1) wxkPu = Z wxrPxqu + Z wxpPxqu = A+ Z By 4.
lk—q|<2 lk—q|>3 lk—q|>3

Since x,u = (xqw(z)u)(Xqw(zr)~t) € H*™(R?), we have by properties (i), (i), (iii)
of the weight w, the product rule (2.16) and the classical pseudo-differential calculus
that

Cw(k)|Pxqull -
Cuo(k)xqull oo

lwx P xqul ms

Cw(k)w(q) ™ wxqul pesn
C{k = g) gl yosm

(VAN VANSN VANER VANRR VAN

Cllwul s
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provided |k — ¢| < 2. Thus,

To bound the second part, we fix ng € N, ng > s. We shall prove

(A.3) 1D Brgllr2rey < WHWUHH;TW la| < ng

(k
which implies the desired estimate for Z| h—q|>3 By, 4.
By the presence of X, | D3 Bk gllL2(re) < Cl|Dg B gl oo (ra)- We have

Dg By q(z) = (DK (z,), Xqu)
with

(A4) Kla) = 20 [ (e, dexu(a)u(@)Ty(o)

Fix n; € N,ny > —(s+m) and 8 € N9, |8| < ny. Let v € N9 be such that |y| = N
with

(A.5) N >max(m+mng+n +d+1,0+d+1).
Multiplying Dg‘Dy’BK(x, y) by (x — y)? and integrating by parts with a remark that
|z —y| > |k — ¢| (for some § > 0) on the support of xx(x)w(x)x4(y), we obtain

C -
DIDK ()| < 22wy 3 075,
h—a 1B11<I8]

It follows that
|Dg Brg(z)| < [[Dg K (2, )| gr—csm) [ Xqul| prs+m
C
< T k S m
< o g Bl
C

(A.6) < Ww(@w(Q)’l\lxquHHsm
C
Tk _ \e ]
< (k—q>N<k q) kuHHZme
< C
which proves (A.3). O

In a particular case the proof above gives the following more precise result.

PROPOSITION A.6. Letm € R, andw € Wyo(0), 0 > 0. Let h(€) = h(1g) €™ ()
with h € C®(S41), and

(A7) GECTRY, wO =121 vE) =0l <y
Then for every s € R and
3d

(A8) P> [m] + [s] 4 [~(m+5)] + [e] + 5 +1,

there exists a constant C such that
lwh(Da)ul gz gy < Clllge i1yl gesom g

provided that the right-hand side is finite.
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Remark that the condition on r above comes from the choice of N in (A.5), plus
% + € derivatives from Sobolev embeddings. Next, tracking the proof of Lemma 7.10
in [1] and Proposition A.5 above, we easily obtain the following proposition.

PROPOSITION A.7. Let v > 0, and m € R and w € Wpye(0), 0 > 0 . Let
p € 571"70(Rd),a € S{’?O(Rd) be two symbols with constant coefficients. We assume

that there exists co > 0 such that for all ¢ € R we have p(&) > col€|". Then for all
s€ R and I =[0,T], one can find a positive constant C' such that

(A.9)  [lwe*Pa(D)ul| oo (1,19, + lwe™ P Pa(D)ul|
provided that the right-hand side is finite.

sy, = Clwullm

A.2. Para-differential calculus with weights. Assuming the theory of para-
differential calculus for classical Sobolev spaces (see [14]) and for uniformly local
Sobolev spaces (see [1]), we present in this section such a theory with the presence
of weights.

Given m € R, p > 0 we denote by I']! (R%) the class of symbols of order m and by
T, the associated para-differential operator as in Definition 7.15, [1]. In particular,
f;”(Rd) denotes the subspace of I‘Z”‘(Rd) which consists of symbols a(x, ) homoge-
neous of degree m with respect to &.

To deal with the weights in the class Wp,(0), for any symbol a € T'}' and any real
number s, let us define the semi-norm

(A.10) M (a,s)p= sup  sup [[(L+[EDT"OEal-, €)oo (me),
‘O‘|§I(d7mvs)9 \&lZ%

where I(d,m,s), is the smallest even integer strictly greater than

(A1) ]+ 5]+ [—(m + )] + ] + 22 +2.

If a is a symbol independent of &, the associated operator 7T, is called a paraproduct
and we have the formal decomposition of Bony

au = Tyu + Tya + R(a,u).
A.2.1. Symbolic calculus. The following technical lemmas will be used in proving

results on symbolic calculus.

LEMMA A8. Let p € R, w € Wpo(0), 0 >0 and N > o+ d+ 1. Then there
exists C' > 0 such that

(A.12) sup, lw(@)(z = )N ull gu(gay < Cllwul gr wey
e
provided that the right hand side is finite.

Proor. We write

-1 1 (z —Q>N~

Vxa(y)uly) = wiz)w(y) TN (o= y>qu(y)w(y)xq(y)U(y)-

w(z)(z —y)

Since the function y — g:ZiZ Xq(y) belongs to W*°(R?) with semi-norms uni-

formly bounded (independently of x and ¢), we deduce that

wl T )w -1
) =) ullmuen < 3 w@le =) gl < Ox 3 HEE Dy
qc€Z4 qc€Z4

(x —q)* !
<Cy Z T \N |wu||H5l = CN||wU||H5l-

(x — )V
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]
Combining this lemma and the proof of Lemma 7.13, [1], we obtain

LEMMA A.9. Let w € Wpyo(0), 0 > 0. Let x € C°(RY) and X € C°(R?) be
equal to one on the support of x. Let 1,0 € S(R?Y). For every m,o € R there exists
a constant C' > 0 such that
(A.13)

Z lwxgp (277 D)((1 — )Zk)u)g(?f]D)UHHm(Rd) < Cku”Hgl(Rd)HUHLC’O(Rd)'

j>-1

For every m,o,t € R one can find a constant C' > 0 such that
(A.14)

> lwxa 27 D) (1 = Xk)w)0(2 77 D)ol gm(ray < Cllwull o meayl|vll e, (ray
j>—1

and
(A.15)

> lwxr (277 D)((1 = X)uw)0(2 ™ D)Xav | prm (ray < Cllwull e, mayl Xkl e (ra)-
i>—1

REMARK A.10. It follows easily from the proof of the above lemma that the
same estimates as in (A.13), (A.14) and (A.15) hold if on the left-hand sides 277
is replaced by 27777 where jo € Z is fixed. We shall use this remark to deal with
paraproduct estimates.

It turns out that the symbolic calculus with weights possesses the same features
as in the usual setting.

THEOREM A.11. Let m,m’ € R, p >0 and w € Wp,(0), 0 > 0.
(i) If a € TRY(RY), then for all p € R, there exist a constant C' > 0 such that

[l Taul s ray < CMG (a, ) ol [l gt -

(1i) If a € I‘;”(Rd), be F?,(Rd) then, for all n € R, there exist a constant C > 0
such that

lw(TaTh — Tags)ull g (ra)
< C7<A4Z”(a,u)gﬂ46”(b,u)g4-ﬁdﬁn(a,u)gﬂ4ﬁl(bau)g)|hUUHHﬁrm+mﬂ—pa{%
with

(=)
affb := Z o O¢a(x,§)0yb(x, §).
laf<p
(7i1) Let a € F;”(Rd) and denote by T the adjoint operator of T, and by a* the
complex conjugate of a (in case a is a matriz, a* is its conjugate transpose). Then
for all v € R there exists a constant C' > 0 such that

lw(T5 — Tb)UHHgl(Rd) < CM,T(G,M)QHWUHHme*P(Rd)-

with

(_i)‘al Q qa, *
b= Z ol 0¢ 0 a*(z,8).
la|<p
PRrROOF. We give the proof for the first assertion only since these three points are
proved along the same lines. For simplicity we shall consider symbols in F;” (RY).
Step 1. Consider first the case where a is a bounded function and write

Xrwlgu = XkU)Ta(%ku) + XkU}Ta((l - %k)u)
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The classical theory gives

I T (R 1 < Coo(k) all | Rl < Cuo(k)al (k)™ K]
< Cllal| < Jwul .

The estimate for the second term follows immediately from (A.13).

Step 2. Next we consider the case a(x, &) = b(x)h(§) where h(§) = ]{\mﬁ(%) with

h € C®(S%1). Then directly from the definition we have T, = Tj,(1h)(D,), where
the cut-off ¢ is given by (A.7). The desired estimate in (¢) follows from Step 1 and
Proposition A.6.

Step 3. Finally, for the general case we introduce (Eu)yeN* an orthonormal basis of
L?(S91) consisting of eigenfunctions of the (self adjoint) Laplace Beltrami operator
A, = Aga—1 on L2(S971) ie. Auhy = A2h,,. Setting h, = |£\mﬁ(w), w=
£ # 0, we can write

% when

a(z,§) = Z by(x)h,(§) where b,(x)= /Sdl a(z,w)h,(w)dw.

veN*

With I = I(d, m, p), we have

I =
M, (z) = / AZa(z,w)h,(w)dw,
Sd—1

which gives
(A.16) 16 L (ray < CXT MG (s 1)

By definition of I, we can find an integer r such that
3d
[m]+ (el + [=(m+ ]+ el + 5 +1<r<I-d

By the Weyl formula we know that A, ~ cvi. In addition, there exists a positive
constant K such that for all v > 1

(A.17) 7| g1y < K.

Now using the steps above and Proposition A.6 we obtain (¢ is given by (A.7))

Tl s, < 37 1T, () (DYl

v>1

< O3 bl oe ey o L0 01 1l g
v>1
—I+4r

< M (0 gl g S 07

v>1

< M (a, 1) ]y

A.2.2. Paraproducts.

PROPOSITION A.12. Let w € Wyo(0), 0> 0. Let sg, 51,52 € R satisfying sp < sp
and sp < 81 + Sg — %. Then there exists C > 0 such that

loTaull gy < Cmin {llal ol e, Jwall el g
ul ul ul ul ul
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PrROOF. We write
(A.18) xkwTau = xpwTy (1 — Xe)u + Xew T o Xkt + XewT(1-5,)a XKU-

By the classical result, we have
(A.19)
I T aXeul o S Wk TxaXaull o S wkbl|Fnal s [Reul s S llall g leoul -

On the other hand, applying (A.14) gives
IxxwTa(l = Xe)ull o S llall go llwull g
and it follows form (A.15) (applied with w = 1) that
IXkwT(1—5)aXkull a0 S wk)lIXkT(1-5)aXkw]| o0
S wk)llall g IXeull e < llall g llwull g
Consequently, we obtain
Tl < Cllall s looull .
Now if instead of (A.2.2), we decompose

xrwTou = xpwT(1—5,)et + XeWTga Xkt + Xpw Ty, o(1 — Xk)u

then we get
[wTaull g < Cllwal o ul -
The proof is complete. O
PROPOSITION A.13. Let w € Wpo(0), 0 > 0 and two functions a € H:}(R?),u €

HS2 (Rd)

ul :
(1) If s1 + s2 > 0 then
(A.20) lwR(a, u)IIHsll+SQ_g(Rd) < Cllall gy mayllwull g2 (gay -

(1i) If s1 +s2 > 0, sp < s1 and sy < s1 + S2 — % then there exists a constant C > 0
such that
(A.21)

lw(a — Ta)ul| o (ray < C'min { lall go1 ey llwull o2 (may, lwall gy gy HUHHZZZ(Rd)} :

(7i1) If s1 +s2 > 0, sop < s1, s2 and sp < s1 + S — % then there exists a constant
C > 0 such that

(A.22) ||waUHHj3(Rd) < C'min {||a”H;jll(Rd)||w“HHZ2l(Rd)> HwaHHill(Rd)HUHH;?Z(Rd)} :
PROOF. (i) By definition, we have (for some cut-off function ¢)
R(a,u) = Z Z ©(277D)a - o(27*D)u.
g=2=1k—j|<1
We write a = Xra + (1 — Xr)a,u = Yrpu + (1 — Xx)u so that
xwwR(a,u) = xpwR(Xka, Xku) + XkwSk(a, u).

The first term is estimated by the same method as (A.19) with the use of Theorem
2.9 (4) in [2]. The remainder wySk(a,u) is estimated by using (A.14) and (A.15).
(73) and (#ii) are direct consequences of (i) and Proposition A.12. O

REMARK A.14. We remark that with the methods in the proofs above, the
commutator estimate in Lemma 7.20, [1] still holds for uniformly local Sobolev

spaces with the weight w € W,(p), 0 > 0.
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A.3. Transport equations. For the sake of completeness we present a weighted
version of Lemma 7.19, [1] on transport equations in uniformly local Sobolev spaces.
The result holds for weights in a large class than W while its proof is a direct con-
sequence of Lemma 7.19, [1].

We denote by Wy the class of all functions w : R% — (0, o0) such that % € C°(RY).

LEMMA A.15. Let I = [0,T], so > 1+ %, >0 and w € Wy. Then there
evists F : RT — R* non decreasing such that for V; € L*(I,H%(R%)), N
L®(I,HMRY)y j = 1,d, wf € L' (I, H*RY))y, wuy € HY(R?) and any solu-
tion u with wu € L®(I, H*(R%)),,; to the problem
(A.23) (O +V -VIu=f, ul=0=uo

we have
(A.24) kuHL‘”(I,H#)ul < ]:(THV”LOO(I,HSO)M){kuOHHﬁl + waHLl(I,Hﬂ)ul

T
+sup [ (o) gy IReV (@) s}
keZd JO “

PROOF. If u is a solution to the transport problem (A.23) then wu is a solution
to

(0 +V -V)(wu) =g, wul=o = uo

with g := f+uV - Vw = f+uwV -r, r = % € C'bOO(Rd). We are in position to
apply Lemma 7.19, [1] to have

|wull Loo (1,p1),, < F(THVHLOO(I,HSO)M){kuOHHjjl + [[wgll L1 (7, 50y,

T
+sup [ (o) gy IReV (@) s}
kezd Jo o

On the other hand, for k € Z? using the product rule (2.16) one has with n large
enough

Ixxwu(o)V (o) - rllme < Clixrwul(e)V (o) | el xer| an

Since r € Cg°(RY), || xx7||g» can be bounded by a constant independent of k. Finally,
applying once again the product rule (2.16) (remark that sp > 1+ %) gives

IXewu(@)V (@)l < > lIxqwu(o)|| o | X6V (o) | e
lg—k|<M

< Cllwu(o) | g |%V (@)l

Consequently,

T
JwaV vl i, = sup [ wu(@V(o) - rlumdo
keZd JO

T
< C sup / lwu(@) | o l|%eV (@) e do,
kezd Jo ul

from which the estimate (A.24) follows. O
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