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A pseudo-local property of gravity water waves system

Quang-Huy Nguyen

Abstract. By proving a weighted contraction estimate in uniformly local Sobolev
spaces for the flow of gravity water waves, we show that this nonlocal system is
in fact pseudo-local in the following sense: locally in time, the dynamic far away
from a given bounded region has a small effect on that region (again, in a sense
that we will make precise in the article). Our estimate on the flow also implies
a new spatial decay property of the waves. To prove this result, we establish a
paradifferential calculus theory in uniformly local Sobolev spaces with weights.

1. Introduction

1.1. The problem. We consider an incompressible, irrotational, inviscid fluid
moving in a domain Ω underneath a free surface described by η and above a bottom
described by a given function η∗, which is assumed to be bounded and continuous.
Namely,

(1.1) Ω = {(t, x, y) ∈ [0, T ]×Rd ×R : η∗(x) < y < η(t, x)}.

We also denote by Σ the free surface and by Γ the bottom,

Σ = {(t, x, y) ∈ [0, T ]×Rd ×R : y = η(t, x))},

Γ = {(x, y) ∈ Rd ×R : y = η∗(x)}.

The velocity filed v admits a potential φ : Ω→ R such that v = ∇x,yφ and ∆x,yφ = 0
in Ω. We introduce the trace of the potential on the surface

ψ(t, x) = φ(t, x, η(t, x))

and the Dirichlet-Neumann operator

(1.2)
G(η)ψ =

√
1 + |∇xη|2

(∂φ
∂n


Σ

)
= (∂yφ)(t, x, η(t, x))−∇xη(t, x) · (∇xφ)(t, x, η(t, x)).

Then (see [12]) the gravity water waves system in the Zakharov/Craig–Sulem for-
mulation reads as follows

(1.3)


∂tη = G(η)ψ,

∂tψ = −1

2
|∇xψ|2 +

1

2

(∇xη · ∇xψ +G(η)ψ)2

1 + |∇xη|2
− gη

where g is the acceleration of gravity.
Following [1] we shall consider the vertical and horizontal components of the velocity

The author was supported in part by Agence Nationale de la Recherche project ANAÉ ANR-
13-BS01-0010-03.
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on the free surface as unknowns which can be expressed in terms of η and ψ:

(1.4) B = (vy)|Σ =
∇xη · ∇xψ +G(η)ψ

1 + |∇xη|2
, V = (vx)|Σ = ∇xψ −B∇xη.

Recall also that the Taylor coefficient a = −∂P
∂y


Σ

can be defined in terms of

η, ψ,B, V only (see §4.2 in [2] and §4.3.1 in [12]).
The (local) well-posedness theory for gravity water waves (under the formulation

(1.3) or the others) in Sobolev spaces Hs(Rd) has been studied by many authors,
for example Yosihara [22], Wu [19, 20], Lannes [11]; we refer to the recent book of
Lannes [12] for a comprehensive survey of the subject. In these works, the waves
were assumed to be of infinite extend (and vanish at infinity), that is, there is
no restriction on the horizontal direction. However, in reality water waves always
propagate in some bounded container (a lake, an ocean, etc) and hence there will
be contacts at the ”vertical boundary” of the container. A natural question then
arises: (Q) can we justify the Rd-approximation? More precisely, if (1.3) is a good
model then it has to satisfy in certain sense the following property: the dynamic at
”infinity” has a small effect on bounded regions. Since (1.3) appears to be nonlocal
(due to the presence of the Dirichlet-Neumann operator) it is not clear that the
above replacement at ”infinity” is harmless. We should mention that in the special
case of a canal or a rectangle basin where the walls are right vertical, the local the-
ory was considered by Alazard-Burq-Zuily [1], Kinsey-Wu [10], Wu [21]. Our goal
in the present paper is to give the following answer to question (Q). Considering a
bounded reference domain, we shall prove that in some sense, far away from this
reference domain, the dynamic there has a small effect on the reference domain, and
the farther it is the smaller the effect is. In other words, this proves that the gravity
water waves system enjoys the ”pseudo-local property” (the terminology ”pseudo”
will be clear in our explanation below).

1.2. Main results. We recall first the definition of uniformly local Sobolev
spaces (or Kato’s spaces) introduced by Kato in [9].

Definition 1.1. Let χ ∈ C∞(Rd) with suppχ ⊂ [−1, 1]d, χ = 1 near [−1
4 ,

1
4 ]d

such that

(1.5)
∑
q∈Zd

χq(x) = 1, ∀x ∈ Rd, χq(x) = χ(x− q).

For s ∈ R define Hs
ul(R

d) the space of distributions u ∈ Hs
loc(R

d) such that

‖u‖Hs
ul(R

d) := sup
q∈Zd

‖χqu‖Hs(Rd) < +∞.

This definition is independent of the choice of χ ∈ C∞0 (Rd) satisfying (1.5) (see
Lemma 7.1 in [1]). Let us now define the classes of weights that we will consider.

Definition 1.2. 1. We define the class W of acceptable weights to be the class
of all functions w : Rd → (0,∞) satisfying the following conditions:

(i) r1 := ∇w−1

w−1 and r′1 := ∇w
w belong to C∞b (Rd), where w−1(x) = 1/w(x),

(ii) for any C1 > 0, there exists C2 > 0 such that for any x0 ∈ Rd, there hold

w(x) ≤ C2w(x0) and w(x)−1 ≤ C2w(x0)−1 ∀x ∈ Rd, |x− x0| ≤ C1,

2. If w ∈ W and there exist % ≥ 0, C > 0 such that for any x, y ∈ Rd we have
w(x)w−1(y) ≤ C〈x− y〉% then we say that w ∈ Wpo(%).

3. If w ∈ W and there exist % ≥ 0, C > 0 such that for any x, y ∈ Rd we have
w(x)w−1(y) ≤ C exp(ρ〈x− y〉) then we say that w ∈ Wex(%).
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Example 1.3. For any t, s ∈ R, C > 1, the functions 〈x〉s, ln(C + |x|2) belong

to Wpo, and the functions et〈x〉, et〈x〉〈x〉s belong to Wex but not to any class Wpo if
t 6= 0. See Remark A.4 for further remarks.

Notation 1.4. 1. χ̃ denotes a function in C∞0 (Rd) such that χ̃ = 1 on the
support of χ in definition 1.1. For every k ∈ Zd, we also Define for x ∈ Rd,
χ̃k(x) := χ̃(x− k). 2. We set for all σ ∈ R,

Hσul = H
σ+ 1

2
ul (Rd)×Hσ+ 1

2
ul (Rd)×Hσ

ul(R
d)×Hσ

ul(R
d),

Wσ = W σ+ 1
2
,∞(Rd)×W σ+ 1

2
,∞(Rd)×W σ,∞(Rd)×W σ,∞(Rd).

Denote also by U = (η, ψ,B, V ) the unknown of system (1.3) and by U0 = (η0, ψ0, B0, V 0)
its initial value.

The Cauchy theory proved in [1] reads as follows

Theorem 1.5. Let s > 1 + d
2 and U0 ∈ Hs

ul with

(1.6) inf
x∈Rd

(η0(x)− η∗(x)) ≥ 2h > 0, inf
x∈Rd

a(0, x) ≥ 2c > 0.

Then there exists T > 0 such that the Cauchy problem for (1.3) with datum U0 has
a unique solution

U ∈ L∞([0, T ],Hs
ul) ∩ C0([0, T ],Hrul), ∀r < s

and

(1.7) inf
t∈[0,T ]

inf
x∈Rd

[η(t, x)− η∗(x)] ≥ h, inf
t∈[0,T ]

inf
x∈Rd

a(t, x) ≥ c.

Moreover, for given h, c > 0 the existence time T can be chosen uniformly for data
belonging to a bounded set of Hs

ul.

Conditions (1.6) mean that initially, the free surface is away from the bottom and
the Taylor coefficient is positively away from 0. Then the conclusion (1.7) asserts
that these properties are propagated by the waves, locally in time. We shall always
consider in the sequel solutions of (1.3) obeying these properties, which for the sake
of simplicity is denoted by

(1.8)
Ps,T (h, c) := {U = (η, ψ,B, V ) ∈ L∞([0, T ],Hs

ul) solution to (1.3), satisfying (1.7)

and U |t=0 satisfies (1.6)}.

Our main result concerning the solution map of the gravity water waves is stated in
the following theorem.

Theorem 1.6. Let s > 1 + d
2 , T > 0 and two positive constants h, c. Then for

every w ∈ Wpo(%), % ≥ 0 there exists a function K : R+×R+ → R+ nondecreasing
in each argument, such that

(1.9) ‖w(U1 − U2)‖C([0,T ],Hs−1
ul ) ≤ K(M1,M2)‖w(U1 − U2)|t=0‖Hs−1

ul

for all U1, U2 ∈ Ps,T (h, c), provided that the right-hand side is finite, where

Mj := ‖Uj‖L∞([0,T ],Hs
ul)
< +∞, j = 1, 2.

As a consequence, we have
3



Corollary 1.7. Let s > 1 + d
2 ; h, c > 0 and A be a bounded set in Hs

ul. Denote
by T the uniform existence time of solutions to (1.3) in Ps,T (h, c) with data in A.
Then there exists 0 < T1 ≤ T such that the following property holds:
for every w ∈ Wpo(%), % ≥ 0 one can find a constant C > 0 such that

(1.10) ‖w(U1 − U2)‖C([0,T1],Hs−1
ul ) ≤ C‖w(U1 − U2)|t=0‖Hs−1

ul
,

for all Uj ∈ Ps,T (h, c) with Uj |t=0 ∈ A and provided that the right-hand side is finite.

In Corollary 1.7 if we take U2|t=0 = 0 and use the Sobolev embeddings (see
Proposition 2.2, [1])

Hr
ul(R

d) ↪→W r− d
2
,∞(Rd), r >

d

2
, r − d

2
/∈ N,

we derive

Corollary 1.8. Let s > 1 + d
2 and h, c > 0. Then for any bounded set A in

Hs
ul, there exists a time T > 0 such that:

for every w ∈ Wpo(%), % ≥ 0 one can find a constant C > 0 such that

(1.11) ‖wU‖C([0,T ],Hs−1
ul ) ≤ C‖wU |t=0‖Hs−1

ul

for all U ∈ Ps,T (h, c) with U |t=0 ∈ A and provided that the right-hand side is finite.

Moreover, if s ≥ r > 1 + d
2 and r − d

2 /∈ N it follows that

(1.12) ‖wU‖
C([0,T ],Wr−1− d2 )

≤ C‖wU |t=0‖Hs−1
ul
.

Remark 1.9. If w ∈ C∞b (Rd) then the right-hand sides of (1.9), (1.10), (1.11), (1.12)
are automatically finite.

Remark 1.10. Persistence properties in weighted spaces have been studied ex-
tensively for asymptotic models of water waves in different regimes: (generalized)
Korteweg-de Vries equation equations, Schrödinger equations, Benjamin-Ono equa-
tion, Camassa-Holm equation,...We refer to the works of Brandolese [4], Bona-Saut
[5], Fonseca-Linares-Ponce [7], Nahas-Ponce [16], Ni-Zhou [17].

Remark 1.11. It is natural to ask if the results in Theorem 1.6, Corollary 1.7,
Corollary 1.8 hold for weights with exponential growth. For example, Theorem
1.6 with w = e−λ|x|, λ > 0 would give a strong pseudo-local property of gravity
water waves. As we shall explain, the proof of our results can be divided into two
parts: first, a study of the Dirichlet-Neumann operator in weighted spaces, and the
second part makes use of a paradifferential machinery in weighted Sobolev spaces
to paralinearize and symmetrize the system. For the first part, we are able to prove
bound estimates for the Dirichlet-Neumann operator in the presence of ”exponential
weights” in the class Wex (see Proposition 2.14 below). However, for the (pseudo-)
para-differential calculus, we have to restrict to ”polynomial weights” in the class
Wpo due to the fact that, in general, the kernel of a pseudodifferential operator only
decays polynomially (see paragraph 1.3 3. and the proof of Proposition A.5).

Remark 1.12. It would of course be more satisfactory if the results could be
formulated in terms of the derivatives of ψ since ψ is the trace of the velocity
potential (on the free surface) and hence is determined up to additive constants.
It should be possible to do so, modulo more technical complications; in particular,
a Cauchy theory in Kato’s spaces involving only regularity of ψ in homogeneous
spaces. We refer to a relating result of Lannes in [11] and the references therein.
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Remark 1.13. Our proofs rely on the known Cauchy theories of Alazard-Burq-
Zuily in [2], [1]. To avoid a loss of 1

2 derivatives, the authors assumed that initially,

the trace of velocity (B, V ) are 1
2 derivatives smoother than the natural threshold

suggested by formula (1.4) (see also Remark 1.4, [2]) . Another way of avoiding
this loss of derivatives can be found in Theorem 4.16, [12] where instead of directly
imposing regularity condition on ψ, the author works with the ”good unknown”
ψ ≈ ψ −Bη.

1.3. Interpretation of the results. 1. The Zakharov system (1.3) appears
to be nonlocal, which comes from the fact that the Dirichlet-Neumann operator
defined by (1.2) is nonlocal. This can be seen more concretely by considering the
case of fluid domain with infinite depth (i.e. Γ = ∅) and free surface at rest (i.e.
η = 0). Then, the Dirichlet-Neumann operators is G(0) = |Dx|. However, Corollary
1.7 shows that the system is in fact still weakly local as explained below.

Take s > 1 + d
2 . Let’s restrict ourselves to a bounded set A of Hs

ul and suppose
that we are observing a bounded domain, which by translation can be assumed to
be centered at the origin, say O = B(0, 1). Let U0,1, U0,2 be two data in A such that

they are identical in a ball B(0, R) and have difference in Hs−1
ul of size 1 outside this

ball, where R > 1 is a given distance. Take a ”window” φ around our observation
region O, that is, φ ∈ C∞0 (B(0, 3/2)) and φ ≡ 1 in O. Then by the estimate (1.10)
we have for some T = T (A) > 0 and any N > 0

‖φ(U1 − U2)‖C([0,T ],Hs−1
ul ) ≤ CN‖〈·〉

−N (U1 − U2)‖C([0,T ],Hs−1
ul )

≤ CN,A‖〈·〉−N (U0,1 − U0,2)‖Hs−1
ul
≤ CN,AR−N .

−1 R−R 1

1

U0,1

t = 0

U0,2
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������������
������������
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�����������
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�����������
�����������
�����������

��

1

1
RN

U2

− 1
RN

U1

1

0 < t < T

−1

Therefore, under the dynamic governed by system (1.3), a difference of size 1 outside
the ball B(0, R) of initial data leads to a difference of size R−N of two solutions in
the bounded domain B(0, 1) (see the figures above). When R→ +∞, the difference
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of two solutions tends to 0 at a rate faster than any polynomial. In other words,
to some extent, what happens far away has small effect on a given bounded region;
moreover this effect becomes smaller and smaller when the distance increases to
+∞. This gives us a weakly local property of gravity water waves. This property is
indeed dictated by the polynomial decay off the diagonal of the kernel of differential
operators in suitable classes, as we shall explain in point 3. below.

2. As a consequence of Corollary 1.8, the estimate (1.12) with λ > 0 provides
a spatial decay property for solutions. In classical Sobolev spaces, solutions always
vanish at infinity. On the other hand, Theorem 1.5 gives the existence of solutions
in Kato’s spaces which can be neither decaying nor periodic. The estimate (1.12)
however gives a conclusion for the intermediate case: as long as the datum decays
at some rate which is at most algebraic in Kato’s space, the solution decays also,
and moreover, at the same rate.

3. Let us explain why the class Wpo of weight that are at most polynomial
growth is a reasonable choice in our results. For this purpose, a good way is to look
at the linearization of system (1.3) around the rest state (η, ψ) = (0, 0) (take g = 1
and the flat bottom {y = −h, h > 0})

(1.13)

{
∂tη − |Dx| tanh(h|Dx|)ψ = 0,

∂tψ + η = 0

or equivalently, with u := η + i|Dx|
1
2

√
tanh(h|Dx|)ψ,

∂tu+ i|Dx|
1
2

√
tanh(h|Dx|)u = 0.

Given a datum u0 at time t = 0, this linearized equation has the explicit solution

u(t, x) = p(t,Dx)u0,

where the symbol p reads p(t, ξ) = e−it|ξ|
1
2
√

tanh(h|ξ|). Then for w ∈ Wpo(%), % ≥ 0
and 0 < T <∞, we seek for the following estimate

(1.14) ‖wu‖C([0,T ];Hs
ul)
≤ C‖wu0‖Hs

ul
.

Due to the presence of tanh(h|ξ|) we have that p satisfies

(1.15) |∂αξ p(t, ξ)| ≤ Cα(1 + ξ)−
1
2
|α|, ∀α ∈ Nd, (t, ξ) ∈ [0, T ]×Rd,

which is usually denoted by p ∈ S0
1
2
,0

. An adaptation of the proof of Proposition A.5

then implies the estimate (1.14). Indeed, for simplicity let us consider s = 0. By
writing χq = χqχ̃q (recall Notation 1.4) we need to show for any fixed k ∈ Zd

(1.16) Ak :=
∑
q

wχkp(t,Dx)χqw
−1 : L2(Rd)→ L2(Rd)

with norm bounded uniformly in k. Using the classical pseudo-differential theory,
it suffices to prove (1.16) for q satisfying |q − k| ≥ M for fixed M > 0 (cf estimate
(A.2)). Due to the presence of χk it suffices to prove Ak : L2(Rd) → L∞(Rd). To
this end, we call

(1.17) K(x, y) = (2π)−d
∫
Rd

ei(x−y)ξp(t, ξ)dξ

the kernel of the pseudo-differential operator p(t,Dx) then the kernel of Ak reads

Hk(x, y) =
∑

|q−k|≥M

w(x)χk(x)K(x, y)χq(y)w(y)−1.

6



The Cauchy-Schwartz inequality implies

‖Akv‖L∞ ≤ sup
x
‖Hk(x, ·)‖L2‖v‖L2 .

By writing χq = χ̃qχq it suffices to show that ‖Hk‖L∞x,y is bounded by some constant
independent of k. Indeed, remark that by choosing M large enough, on the support
of χk(x)χq(y) (in the expression of Hk) we have |x − y| ≥ δ|k − q| for some δ > 0.

Therefore, one can multiply both side of (1.17) by (x − y)γ , γ ∈ Nd, integrate by
parts and take into account the decay property (in ξ) (1.15) of p to derive

(1.18) |Hk(x, y)| ≤ CN
∑

|q−k|≥M

|χk(x)w(x)χq(y)w(y)−1|
〈k − q〉N

, ∀N ∈ N.

Observe that for any w ∈ W the absolute value of the numerator of each term in
the above series is bounded by

Cw(k)w(q)−1.

Consequently, for the series in (1.18) to be convergent, it is reasonable to choose the
weights that satisfy for some λ > 0

w(k)w(q)−1 . 〈k − q〉λ, ∀k, q ∈ Zd.

Then by choosing N large enough the series in (1.18) converges to some constant
independent of k as desired.
This argument suggests heuristically that the finiteness of the fluid depth is likely
to be necessary since otherwise, the symbol p become p(t, ξ) = |ξ|1/2 which is sin-
gular at 0 and does not belong to a good class of symbols. The local property of
the system is closely related to the finite propagation speed property. Indeed, the
plane waves u(t, x) = ei(x·k−ω(k)t), ω(k) = |k|1/2 are solutions to ut + i|Dx|1/2u = 0.
These plane waves propagate at (group) velocity ∇kω(k), which is unbounded when
the wavenumber |k| tends to 0. In contrast, for the finite depth case (say h), the

dispersion relation reads ω(k) =
√
|k| tanh(h|k|) and thus the speed of propagation

is bounded over all wavenumber k.

Remark 1.14. In the theory of pseudo-differential calculus, the terminology
pseudo-local refers to the following property: if T is a pseudo-differential operator
then the singular support of Tu is contained in the singular support of u. The proof
of this result makes use of the fact that: the kernel of T is C∞ off the diagonal (x, x)
in Rd ×Rd. This in turn stems from the decay property of the symbol of T .
The ”pseudo-local property” in our result as explained above, also stems from the
decay of the kernel of a pseudo-differential operator. However, such a decay is then
translated not into the regularity (in term of the singular support) but the persistence
in weighted spaces.

1.4. Plan of the proof. To prove Theorem 1.6 we follow essentially the scheme
in [1]. The first task is to adapt the paradifferential machinery to Kato’s spaces with
weights. This is done in Appendix A, which can be of independent interest for other
studies in this framework. Having this in hand, compare to [1] (and also [2]) the main
ingredient for the proof of Theorem 1.6 reduces to the study of bound estimates, par-
alinearization and contraction estimate for the Dirichlet-Neumann operator. These
are done in section 2 and 3 below, respectively.

Acknowledgment. This work was partially supported by the labex LMH through
the grant no ANR-11-LABX-0056-LMH in the ”Programme des Investissements
d’Avenir”. I would like to send my deepest thanks to my advisor, Prof. Nicolas
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Burq for his great guidance with many fruitful discussions and constant encour-
agement during this work. I sincerely thanks Prof. Claude Zuily for interesting
discussions. Finally, I thanks the referees for proposing many valuable suggestions
that helped improve both the content and the presentation of the manuscript.

2. A weighted description for the Dirichlet-Neumann operator

Notation 2.1. Throughout this paper, we denote C > 0 and F : R+ → R+

are multiplicative constants and functions that may change from line to line within
a proof. The notation A . B means that there exist C > 0 such that A ≤ CB.

2.1. Definition of the Dirichlet-Neumann operator. In this sections, we
drop the time dependence of the domain and work on the domain of the form.

(2.1) Ω = {(x, y) ∈ Rd+1 : η∗(x) < y < η(x)}

where η∗ is a fixed bounded continuous function on Rd and η ∈ W 1,∞(Rd). We
assume that Ω contains a fixed strip

(2.2) Ωh := {(x, y) ∈ Rd+1 : η(x)− h ≤ y < η(x)}.

2.1.1. Straightening the boundary. We recall here the change of variables intro-
duced in [2] (see section 3.1.1) to flatten the domain with free boundary (which
is in turn inspired by Lannes [11]). Consider the map (x, z) 7→ (x, ρ(x, z)) from

Ω̃ := Rd × (−1, 0) to Ωh determined by

(2.3) ρ(x, z) = (1 + z)eδz〈Dx〉η(x)− z
[
e−(1+z)δ〈Dx〉η(x)− h

]
if (x, z) ∈ Ω̃.

If η ∈ W 1,∞(Rd) and δ is small enough this map is a Lipschitz-diffeomorphism

from Ω̃ to Ωh and moreover, ∂zρ ≥ c0 > 0 (see Lemma 3.6, [2]).

Notation 2.2. For any function f defined on Ω, we set

(2.4) f̃(x, z) = f(x, ρ(x, z))

then

(2.5)


∂f

∂y
(x, ρ(x, z)) =

1

∂zρ
∂z f̃(x, z) := Λ1f̃(x, z)

∇xf(x, ρ(x, z)) =
(
∇xf̃ −

∇xρ
∂zρ

∂z f̃
)
(x, z) := Λ2f̃(x, z).

2.1.2. Definition of the Dirichlet-Neumann operator G(η). Let ψ ∈ H
1
2
ul(R

d), we
recall how G(η)ψ is defined (section 3.1, [1]).

For every q ∈ Zd, set ψq = χqψ ∈ H
1
2 (Rd) then one can find ψ

q
∈ H1(Ω) such that

ψ
q
|y=η(x) = ψq(x) and for some F : R+ → R+,

(i) suppψ
q
⊂ {(x, y) : |x− q| ≤ 2, η(x)− h ≤ y ≤ η(x)}

(ii) ‖ψ
q
‖H1(Ω) ≤ F(‖η‖W 1,∞(Rd))‖ψq‖H 1

2 (Rd)
.

Let uq ∈ H1,0(Ω) :=
{
v ∈ H1(Ω), v|Σ = 0

}
be the unique variational solution, to

equation ∆x,yuq = −∆x,yψq, which is characterized by

(2.6)

∫∫
Ω
∇x,yuq(x, y) · ∇x,yθ(x, y)dxdy = −

∫∫
Ω
∇x,yψq(x, y) · ∇x,yθ(x, y)dxdy

8



for all θ ∈ H1,0(Ω). The series u :=
∑

q∈Zd uq is then convergent in

H1,0
ul (Ω) :=

{
v : sup

q∈Zd
‖χqv‖H1(Ω) < +∞ and v|Σ = 0

}
.

Finally, Φ := u+ ψ :=
∑

q∈Z uq +
∑

q∈Z ψq solves uniquely the elliptic problem

(2.7) ∆x,yΦ = 0 in Ω, Φ|Σ = ψ,
∂Φ

∂ν
|Γ = 0,

in the variational sense and moreover, there exists F : R+ → R+ such that

‖Φ‖H1
ul(Ω) ≤ F(‖η‖W 1,∞(Rd)) ‖ψ‖

H
1
2
ul(R

d)
.

(see Proposition 3.3, [1])
The Dirichlet-Neumann operator is defined by

(2.8)
G(η)ψ(x) = (1 + |∇xη|2)

1
2
∂Φ

∂n
|Σ =

(∂Φ

∂y
−∇xη · ∇xΦ

)
|Σ

=
(
Λ1Φ̃−∇xη · Λ2Φ̃

)
|z=0 =

(
Λ1Φ̃−∇xρ · Λ2Φ̃

)
|z=0.

2.2. Elliptic regularity with weights. We observe that if u is a solution of
the elliptic equation ∆u = 0 on Ω and ũ is its image via the diffeomorphism (2.3)
then

(Λ2
1 + Λ2

2)ũ = 0,

which is equivalent to (see equation (3.16), [2])

(2.9) (∂2
z + α∆x + β · ∇x∂z − γ∂z)ũ = 0,

where

(2.10) α :=
(∂zρ)2

1 + |∇ρ|2
, β := −2

∂zρ∇xρ
1 + |∇xρ|2

, γ :=
1

∂zρ

(
∂2
zρ+α∆xρ+β ·∇x∂zρ

)
.

These coefficients are estimated by

Lemma 2.3 ([1, Lemma 3.17]). Let J = (−1, 0) and s > 1 + d
2 . There exists

F : R+ → R+ non decreasing such that (see Definition A.1 for the definition of
Xµ
ul)

‖α‖
X

s− 1
2

ul (J)
+ ‖β‖

X
s− 1

2
ul (J)

+ ‖γ‖
X

s− 3
2

ul (J)
≤ F

(
‖η‖

H
s+1

2
ul

)
.

Let us denote by L the linear differential operator

(2.11) L = ∂2
z + α∆x + β · ∇x∂z

and consider the following inhomogeneous initial value problem

(2.12)

{
(L − γ∂z)ũ = F in Rd × J,
ũ|z=0 = ψ.

Recall Definition 1.2 for the definitions of weight classes W, Wpo, Wex. It is clear
that Wpo(%) ⊂ Wex(%) for all % ≥ 0. For any w ∈ W, defining

(2.13) r2 :=
∆w−1

w−1
, r′2 :=

∆w

w
,

we have that r2, r
′
2 ∈ C∞b (Rd). Now we fix a weight w ∈ W and set ṽ = wũ. A

simple computation shows that ṽ satisfies

Lṽ + (β · r1 − γ)∂z ṽ + αr2ṽ + 2αr1 · ∇xṽ = wF.
9



Next, set ṽk = χkṽ, then

(2.14) Lṽk = χkwF + F0 + F1

where{
F0 = α∆χkṽ + 2α∇χk · ∇xṽ + β · ∇xχk∂z ṽ − χkβ · r1∂z ṽ − χkαr2ṽ − 2χkαr1 · ∇xṽ,
F1 = χkγ∂z ṽ.

Estimates for Fj ’s are given in the next lemma.

Lemma 2.4. Let J = (−1, 0) and s > 1 + d
2 . There exists F : R+ → R+ non

decreasing such that for −1
2 ≤ σ ≤ s − 1 we have

(2.15)
1∑
j=0

‖Fj‖
Y σ+

1
2 (J)
≤ F

(
‖η‖

H
s+1

2
ul

)(
‖wψ‖Hσ

ul
+ ‖∇x,z ṽ‖Xσ

ul(J)

)
.

(see Definition A.1 for the definition of Y µ), where F depends on w only through
the semi-norms of ri, r

′
i, i = 1, 2 in C∞b (Rd).

Proof. 1. It was proved in Lemma 3.20, [2] (applied with ε = 1
2) that under

the conditions of this lemma,

‖γ∂z ṽ‖
Y σ+

1
2 (J)
≤ C ‖γ‖L2(J,Hs−1) ‖∂z ṽ‖Xσ(J) ,

whose proof uses only the regularity of γ and ∂z ṽ. By writing χkγ∂z ṽ = (χkγ)(χ̃k∂z ṽ)
and using the proof of preceding estimate we obtain

‖F1‖
Y σ+

1
2 (J)

= ‖χkγ∂z ṽ‖
Y σ+

1
2 (J)
≤ C ‖γ‖L2(J,Hs−1

ul ) ‖∂z ṽ‖Xσ
ul(J)

≤ F
(
‖η‖

H
s+1

2
ul

)
‖∂z ṽ‖Xσ

ul(J) .

2. We turn to estimate F0. All the terms containing either∇xṽ or ∂z ṽ can be handled
by the same method (remark that r1 ∈ C∞b (Rd)). Let us consider for example
α∇χk ·∇xṽ. There exists M > 0 such that if |k−j| > M then suppχk∩suppχj = ∅.
Therefore, it suffices to estimate A = χjα∇χk · ∇xṽ for |j − k| ≤ M . We have the
following product rule in Sobolev spaces (see for instance, Corollary 2.11 (i), [2]): if
s0 ≤ s1, s0 ≤ s2, s1 + s2 > 0 and s0 < s1 + s2 − d

2 then there exists C > 0 such that
for all u1 ∈ Hs1 , u2 ∈ Hs2 there holds

(2.16) ‖u1u2‖Hs0 ≤ C ‖u1‖Hs1 ‖u2‖Hs2 .

The preceding result applied with s0 = σ, s1 = s, s2 = σ together with Lemma 2.3
leads to

‖A‖L2(J,Hσ) ≤ ‖χkα‖L2(J,Hs) ‖∇χk · ∇xṽ‖L∞(J,Hσ) ≤ F
(
‖η‖

H
s+1

2
ul

)
‖∇xṽ‖Xσ

ul
.

3. We are left with two terms α∆χkṽ and χkαr2ṽ, which can be treated in the same
way (remark that r2 ∈ C∞b (Rd)). Let us consider for example α∆χkṽ. As in 2., one
only need to estimate χjα∆χkṽ for j close to k. The product rule (2.16) gives

‖χjα∆χkṽ‖
Y s+1

2 (J)
≤ ‖χjα∆χkṽ‖L2(J,Hσ)

≤ C ‖α∆χk‖L2(J,Hs) ‖χj ṽ‖L∞(J,Hσ)

≤ C ‖α‖L2(J,Hs
ul)
‖χj ṽ‖L∞(J,Hσ) .

Now, by writing

(2.17) χj ṽ(x, z) = χj ṽ(x, 0) +

∫ z

0
χj∂z ṽ(x, τ)dτ = χjwψ(x) +

∫ z

0
χj∂z ṽ(x, τ)dτ,
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we obtain

‖χj ṽ‖L∞(J,Hσ) ≤ ‖wψ‖Hσ
ul

+ ‖∂z ṽ‖L∞(J,Hσ)ul
≤ ‖wψ‖Hσ

ul
+ ‖∂z ṽ‖Xσ

ul(J) .

Consequently,

‖χjα∆χkṽ‖
Y σ+

1
2 (J)
≤ F(‖η‖

H
s+1

2
ul

)
(
‖wψ‖Hσ

ul
+ ‖∂z ṽ‖Xσ

ul(J)

)
.

�

Remark 2.5. Lemma 2.4 is in the same spirit of Lemma 3.18, [1]. However, in
Lemma 3.18, [1] the authors considered two cases corresponding to two ranges of σ:
−1

2 ≤ σ < s − 3
2 and s − 3

2 ≤ σ ≤ s − 1. This aimed to keep in the estimate (2.15)

the function F depending only on ‖η‖
H

s0+
1
2

ul

for any 1 + d
2 < s0 ≤ s, which appeared

in their finial a priori estimate (see Proposition 4.7, [1]). Here, however, for our
contraction estimates we do not need this tame estimate. In fact, our contraction
estimates shall be established in 1-derivative lower Sobolev spaces, hence we even
do not use weighted bounds in the highest norms.

Next, we prove an elliptic regularity theorem with weights for ∇x,z ṽ:

Theorem 2.6. Let J = (−1, 0), s > 1 + d
2 and w ∈ Wex(%), % ≥ 0. Let ũ be a

solution of the problem (2.12) and set ṽ = wũ. For −1
2 ≤ σ ≤ s− 1

2 let η ∈ Hs+ 1
2

ul (Rd)

satisfying (2.2), wψ ∈ Hσ+1
ul (Rd), F ∈ Y σ

ul(J) and

(2.18) ‖∇x,z ṽ‖
X
− 1

2
ul (J)

< +∞.

Then for every z0 ∈] − 1, 0[ there exists F : R+ → R+ non decreasing, depending
only on (s, d) and the semi-norms of ri, r

′
i, i = 1, 2 (in C∞b (Rd)) such that

(2.19) ‖∇x,z ṽ‖Xσ
ul(z0,0) ≤ F

(
‖η‖

H
s+1

2
ul

){
‖wψ‖Hσ+1

ul
+‖wF‖Y σul(J) +‖∇x,z ṽ‖

X
− 1

2
ul (J)

}
.

Consequently,
(2.20)

‖w∇x,zũ‖Xσ
ul(z0,0) ≤ F

(
‖η‖

H
s+1

2
ul

){
‖wψ‖Hσ+1

ul
+ ‖wF‖Y σul(J) + ‖w∇x,zũ‖

X
− 1

2
ul (J)

}
.

Proof. Estimate (2.19) is a consequence of Proposition 3.19, Proposition 3.20
and the proof of Proposition 3.16 in [1], tacking into account Remark 2.5. We now
derive (2.20) using (2.19). Remark first that ∂z ṽ = w∂zũ. Next, we write

w∇xũ = ∇xṽ − ũ∇xw,
where

ũ(x, z)∇xw(x) = r′1(x)w(x)ũ(x, z) = r′1(x)w(x)
(
ũ(x, 0) +

∫ z

0
∂zũ(x, τ)dτ

)
,

which implies (using again r′1 ∈ C∞b (Rd))

‖ũ∇xw‖Xσ
ul
≤ C

(
‖wψ‖

H
σ+1

2
ul

+ ‖w∂zũ‖Xσ
ul

)
≤ C

(
‖wψ‖

H
σ+1

2
ul

+ ‖∂z ṽ‖Xσ
ul

)
.

We have proved that

‖w∇x,zũ‖Xσ
ul
≤ C

(
‖wψ‖

H
σ+1

2
ul

+ ‖∇x,z ṽ‖Xσ
ul

)
.

Likewise, it holds that

‖∇x,z ṽ‖
X
− 1

2
ul

≤ C
(
‖wψ‖H0

ul
+ ‖w∇x,zũ‖

X
− 1

2
ul

)
.
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The two inequalities above show that (2.20) is a consequence of (2.19) (notice that
σ + 1 ≥ 0). �

Remark 2.7. We remark that in all the results stated below, the function F
depends on w only through the semi-norms of ri and r′i, i = 1, 2 in C∞b (Rd).

To apply Theorem 2.6 we need a base estimate in the low norm X
− 1

2
ul . For the

proof of this, let us recall a classical interpolation result.

Lemma 2.8 ([13, Theorem 3.1]). Let J = (−1, 0) and σ ∈ R. Let f ∈ L2
z(J,H

σ+ 1
2 (Rd))

be such that ∂zf ∈ L2
z(J,H

σ− 1
2 (Rd)). Then f ∈ C0

z ([−1, 0], Hσ(Rd)) and there exists
an absolute constant C > 0 such that

‖f‖C0
z ([−1,0],Hσ(Rd)) ≤ C‖f‖L2

z(J,Hσ+1
2 (Rd))

+ C‖∂zf‖
L2
z(J,Hσ− 1

2 (Rd))
.

Recall also here the Poincaré inequality proved in [1] (cf. Remark 3.2) for fluid
domains with finite depth of type Ω (cf. (1.1)).

Lemma 2.9. Let θ, θ∗ ∈ C0
b (Rd) satisfying ‖θ − θ∗‖L∞(Rd) > 0. Define

O = {(x, y) ∈ Rd ×R : θ∗(x) ≤ y ≤ θ(x)}
and

H1,0(O) = {u ∈ L2(O) : ∇x,yu ∈ L2(O) and u|y=θ(x) = 0}.
Then for all u ∈ H1,0(O), α ∈ C∞b (Rd), α ≥ 0, there holds

(2.21)

∫∫
O
α(x)|u(x, y)|2dxdy ≤ ‖θ − θ∗‖2L∞(Rd)

∫∫
O
α(x)|∂yu(x, y)|2dxdy.

Remark 2.10. In Remark 3.2, [1] the constant appearing in the Poincaré in-
equality is stated to be dependent only on ‖θ‖L∞ + ‖θ∗‖L∞ . However, it is easy to
track the proof to derive the explicit constant ‖θ − θ∗‖2L∞(Rd)

in (2.21).

Proposition 2.11. Let J = (−1, 0), s > 1 + d
2 . Let Φ be the unique solution to

(2.7). Then the following statements hold true.
(i) For every w ∈ Wpo(%), % ≥ 0, one can find a non decreasing function F : R+ →
R+ such that

‖w∇x,zΦ̃‖
X
− 1

2
ul (J)

≤ F(‖η‖
H

s+1
2

ul (Rd)
)‖wψ‖

H
1
2
ul(R

d)
.

(ii) There exists an absolute constant C∗ = C∗(d) > 0 such that for all w ∈ Wex(%)
and % ≤ %∗ with

(2.22) %∗C∗ ‖η − η∗‖2L∞(Rd) =
1

2
,

one can find a non decreasing function F : R+ → R+ such that

‖w∇x,zΦ̃‖
X
− 1

2
ul (J)

≤ F(‖η‖
H

s+1
2

ul (Rd)
)‖wψ‖

H
1
2
ul(R

d)
.

Proof. We proceed in two steps.
Step 1. By Lemma 3.6, [1] one can find an absolute constant C∗ > 0 such that for
all µ > 0 satisfying

(2.23) µC∗ ‖η − η∗‖2L∞(Rd) ≤ 1

there exists F : R+ → R+ non decreasing such that for all q ∈ Zd we have

(2.24) ‖eµ〈x−q〉∇x,yuq‖L2(Ω) ≤ F(‖η‖W 1,∞(Rd))‖ψq‖H 1
2 (Rd)

.
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Using properties (i) and (ii) above of ψ
q

(see section 2.1.2), we see that (2.24) also

holds for uq replaced by ψ
q

for any µ > 0 and thus (2.24) is true for uq replaced by

Φq = uq + ψ
q
, i.e.,

‖eµ〈x−q〉∇x,zΦq‖L2(Ω) ≤ F(‖η‖W 1,∞(Rd))‖ψq‖H 1
2 (Rd)

for any µ > 0 satisfying (2.23).
Using the diffeomorphism (2.3) we deduce that

(2.25) ‖eµ〈x−q〉∇x,zΦ̃q‖L2(J,L2(Rd)) ≤ F(‖η‖W 1,∞(Rd))‖ψq‖H 1
2 (Rd)

.

Consider a weight w that is a priori inW. On the support of χk, we have w(x)eµ〈x−q〉 ∼
w(k)eµ〈k−q〉. Hence by the product rule (2.16) we have

(2.26) ‖χkw∇x,zΦ̃q‖L2(J,L2(Rd)) ≤ Cw(k)e−µ〈k−q〉F(‖η‖W 1,∞(Rd))‖ψq‖H 1
2 (Rd)

,

from which it follows that
(2.27)

‖χkw∇x,zΦ̃‖L2(J,L2(Rd)) ≤
∑
q

‖χkw∇x,zΦ̃q‖L2(J,L2(Rd))

≤ C
∑
q

w(k)e−µ〈k−q〉F(‖η‖W 1,∞(Rd))‖ψq‖H 1
2 (Rd)

≤ C
∑
q

w(k)w−1(q)e−µ〈k−q〉F(‖η‖W 1,∞(Rd))‖wψq‖H 1
2 (Rd)

.

Now we distinguish two cases:
(i) w ∈ Wpo(%), % ≥ 0. By definition, w(k)w−1(q) ≤ C〈k − q〉% and thus the final
sum in (2.27) converges for any ρ ≥ 0, which leads to

(2.28) ‖χkw∇x,zΦ̃‖L2(J,L2(Rd)) ≤ F(‖η‖W 1,∞(Rd))‖wψ‖
H

1
2
ul(R

d)
.

(ii) w ∈ Wex(%), % ≥ 0. Choosing µ, %∗ such that

µC∗ ‖η − η∗‖2L∞(Rd) = 1, %∗C∗ ‖η − η∗‖2L∞(Rd) =
1

2

then the final sum in (2.27) converges for all % ≤ %∗ and one also ends up with
(2.28).
Step 2. Let us fix a weight w as in (i) or (ii). To complete the proof of this lemma,
it remains to show for any k ∈ Zd that

(2.29) ‖χkw∇x,zΦ̃‖
L∞(J,H−

1
2 (Rd))

≤ F(‖η‖
H

s+1
2

ul

)‖wψ‖
H

1
2
ul(R

d)
.

By the interpolation Lemma 2.8

‖wχk∇xΦ̃‖
L∞(J,H−

1
2 )
≤ ‖wχk∇xΦ̃‖L2(J,L2) + ‖wχk∂z∇xΦ̃‖L2(J,H−1).

The first term on the right-hand side is estimated by (2.28), so we need to estimate

M := ‖wχk∇x∂zΦ̃‖L2(J,H−1).

Notice that for any acceptable weight ω ∈ W, there holds with χ̃ ∈ C∞0 (Rd) and
χ̃ = 1 on suppχ that

‖ωχk∇xf‖Hs(Rd) ≤ ‖∇(ωχkf)‖Hs(Rd) + ‖ω∇xχkf‖Hs(R)d + ‖∇xωχkf‖Hs(Rd)

≤ ‖χkωf‖Hs+1(Rd) + ‖ω∇xχkf‖Hs(Rd) + ‖r′1χ̃k‖Hs‖χkωf‖Hs(Rd)

13



where r′1 = ∇ω
ω as in Definition 1.2. This implies

(2.30) ‖ωχk∇xf‖Hs(Rd) ≤ C‖ωf‖Hs+1
ul (Rd), ∀ω ∈ W, s ∈ R.

Applying this estimate and (2.28) leads to

M ≤ C‖w∂zΦ̃‖L2(J,L2)ul ≤ F(‖η‖
H

s+1
2

ul

)‖wψ‖
H

1
2
ul

.

Finally, to obtain (2.29) we shall prove

(2.31) ‖w∂zΦ̃‖
L∞(J,H−

1
2 )ul
≤ F(‖η‖

H
s+1

2
ul

)‖wψ‖
H

1
2
ul

.

Again, by interpolation,

‖wχk∂zΦ̃‖
L∞(J,H−

1
2 )
≤ ‖wχk∂zΦ̃‖L2(J,L2) + ‖wχk∂2

z Φ̃‖L2(J,H−1).

It remains to estimate A := ‖wχk∂2
z Φ̃‖L2(J,H−1). Taking into account the fact that

Φ̃q satisfies equation (2.9), we have

A ≤
∑
q

A1,q +A2,q +A3,q,

where by the product rule (2.16) (remark that s > 1 + d
2 is sufficient), Lemma 2.3

and (2.28),

A1,q = ‖χkwα∆Φ̃q‖L2(J,H−1) ≤ ‖α‖L∞(J,Hs− 1
2 )ul
‖w∆Φ̃q‖L2(J,H−1)ul ,

A2,q = ‖χkwβ∂z∇xΦ̃q‖L2(J,H−1) ≤ ‖β‖L∞(J,Hs− 1
2 )ul
‖w∂z∇xΦ̃q‖L2(J,H−1)ul ,

A3,q = ‖χkwγ∂zΦ̃q‖L2(J,H−1) ≤ ‖γ‖L∞(J,Hs− 3
2 )ul
‖w∂zΦ̃q‖L2(J,L2)ul .

Finally, to sum ‖w∇x,zΦ̃q‖L2(J,L2)ul over q ∈ Zd, one makes use of (2.26) and argues
as in (2.27). The proof of Proposition 2.11 is complete. �

Remark 2.12. In statement (ii) above, the function F depends on %, which
is in turn bounded from above by C‖η − η∗‖−2

L∞ . Therefore, F is really increasing
in ‖η‖

H
s+1

2
ul

if the fluid depth ‖η − η∗‖L∞ is bounded from below by some positive

constant.

Using Proposition 2.11 as the ground step for the regularity Theorem 2.6 we

now prove a weighted estimate for Φ̃ and its gradient.

Corollary 2.13. Let J = (−1, 0), s > 1 + d
2 . Let Φ be the unique solution to

(2.7). Then the following statements hold true.
(i) For every w ∈ Wpo(%), % ≥ 0 and −1

2 ≤ σ ≤ s− 1
2 , one can find a non decreasing

function F : R+ → R+ such that for any z0 ∈ (−1, 0),

‖wΦ̃‖Xσ+1
ul (z0,0) + ‖w∇x,zΦ̃‖Xσ

ul(z0,0) ≤ F
(
‖η‖

H
s+1

2
ul

)
‖wψ‖Hσ+1

ul
.

(ii) For every w ∈ Wex(%) with % ≤ %∗ (defined by (2.22)) and −1
2 ≤ σ ≤ s− 1

2 , one
can find a non decreasing function F : R+ → R+ such that for any z0 ∈ (−1, 0),

‖wΦ̃‖Xσ+1
ul (z0,0) + ‖w∇x,zΦ̃‖Xσ

ul(z0,0) ≤ F
(
‖η‖

H
s+1

2
ul

)
‖wψ‖Hσ+1

ul
.

Proof. Observe that Φ̃ satisfies (2.12) with F = 0. According to Proposi-
tion 2.11, with the weight w given either in (i) or (ii) we have

‖w∇x,zΦ̃‖
X
− 1

2
ul (z0,0)

≤ F(‖η‖
H

s0+
1
2

ul

)‖wψ‖
H

1
2
ul

< +∞.
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Theorem 2.6 then leads to the desired estimate for ‖w∇x,zΦ̃‖Xσ
ul(z0,0). Consequently,

the argument in (2.17) leads to

‖wΦ̃‖Xσ
ul(z0,0) ≤ ‖wψ‖Hσ+1

2
+ ‖w∂zΦ̃‖Xσ

ul(z0,0) ≤ F
(
‖η‖

H
s+1

2
ul

)
‖wψ‖Hσ+1

ul
.

Finally, using the fact that for any W ∈ W,

‖Wu‖Hσ+1
ul
≤ C

(
‖W∇u‖Hσ

ul
+ ‖Wu‖Hσ

ul

)
we derive

‖wΦ̃‖Xσ+1
ul (z0,0) ≤ F

(
‖η‖

H
s+1

2
ul

)
‖wψ‖Hσ+1

ul
.

�

Corollary 2.13 implies the following weighted estimate for the Dirichlet-Neumann
operator, which is of independent interest.

Proposition 2.14. Let s > 1 + d
2 and η ∈ Hs+ 1

2 (Rd)ul. Then the following
statements hold true.
(i) For every w ∈ Wpo(%), % ≥ 0 and −1

2 ≤ σ ≤ s− 1
2 , one can find a non decreasing

function F : R+ → R+ such that

‖wG(η)ψ‖Hσ
ul
≤ F

(
‖η‖

H
s+1

2
ul

)
‖wψ‖Hσ+1

ul
.

(ii) For every w ∈ Wex(%) with % ≤ %∗ (defined by (2.22)) and −1
2 ≤ σ ≤ s− 1

2 , one
can find a non decreasing function F : R+ → R+ such that

‖wG(η)ψ‖Hσ
ul
≤ F

(
‖η‖

H
s+1

2
ul

)
‖wψ‖Hσ+1

ul
.

Proof. Let w be the weight as in (i) or (ii). By (2.8),

G(η)ψ =
(
Λ1Φ̃−∇xρ · Λ2Φ̃

)
|z=0 =: H|z=0.

Owing to Lemma 2.8, we have for any J = (z0, 0) ⊂ (−1, 0)

‖χqwG(η)ψ‖Hσ ≤ C
(
‖χqwH‖

L2(J,Hσ+1
2 )

+ ‖χqw∂zH‖
L2(J,Hσ− 1

2 )

)
.

For the term ‖χqw∂zH‖
L2(J,Hσ− 1

2 )
we make use of the following identity (see (3.21),

[1])

∂zH = −∇
(
(∂zρ)Λ2Φ̃

)
to have

‖χqw∂zH‖
L2(J,Hσ− 1

2 )
≤ ‖w(∂zρ)Λ2Φ̃‖

L2(J,Hσ+1
2 )ul

.

On the other hand, we observe by definition (2.5) of Λ1,2 that the terms in H have

the same structure as (∂zρ)Λ2Φ̃ and thus, it suffices to prove, for example, that

‖w∇xρ · ∇xΦ̃‖
L2(J,Hσ+1

2 )ul
≤ F

(
‖η‖

H
s+1

2
ul

)
‖wψ‖Hσ+1

ul
.

By virtue of Corollary 2.13, this reduces to proving

(2.32) ‖w∇xρ · ∇xΦ̃‖
L2(J,Hσ+1

2 )ul
≤ F

(
‖η‖

H
s+1

2
ul

)
‖w∇x,zΦ̃‖Xσ

ul
.

We consider two cases:
Case 1: −1

2 ≤ σ ≤ s − 1. We apply the product rule (2.16) with s0 = σ + 1
2 , s1 =

s − 1
2 , s2 = σ + 1

2 to obtain

‖χkw∇xρ · ∇xΦ̃‖
L2(J,Hσ+1

2 )
≤ C‖χ̃k∇xρ‖

L∞(J,Hs− 1
2 )
‖χkw∇xΦ̃‖

L2(J,Hσ+1
2 )
,
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from which (2.32) follows in view of Lemma 2.3.
Case 2: s − 1 ≤ σ ≤ s − 1

2 . Since σ + 1
2 > d

2 we have the following well-known
inequality

‖ab‖
Hσ+1

2
. ‖a‖L∞‖b‖

Hσ+1
2

+ ‖a‖
Hσ+1

2
‖b‖L∞ .

On the other hand, σ + 1
2 ≤ s and σ ≥ s − 1 > d

2 so

‖ab‖
Hσ+1

2
. ‖a‖

Hs− 1
2
‖b‖

Hσ+1
2

+ ‖a‖Hs‖b‖Hσ .

Applying the preceding inequality to a = χ̃k∇xρ and b = χkw∇xΦ̃ yields

‖χkw∇xρ · ∇xΦ̃‖
L2(J,Hσ+1

2 )
≤ ‖χ̃k∇xρ‖

L∞(J,Hs− 1
2 )
‖χkw∇xΦ̃‖

L2(J,Hσ+1
2 )

+ ‖χ̃k∇xρ‖L2(J,Hs)‖χkw∇xΦ̃‖L∞(J,Hσ).

Lemma 2.3 then implies the desired estimate (2.32). The proof is complete. �

Remark 2.15. Several comments are in order about Proposition 2.14. Let us
recall a relating result on the exponential decay of the Dirichlet-Neumann operator
(for d = 1) obtained by Ming-Rousset-Tzvetkov [15]:

Proposition 2.16 ([15, Proposition 3.2]). Assume that η∗ = −H and ψ ∈
C∞b (R) having an exponential decay:

∃λ > 0, ∀j ∈ N, j ≥ 1, ∃Cj > 0, ∀x ∈ R, |∂jxψ(x)| ≤ Cje−λ|x|.

Then for η ∈ H∞(R) with η − H ≥ h > 0, G(η)ψ also has an exponential decay,
that is, there exist 0 < ε < λ such that for any j ∈ N we can find a constant C ′j > 0
such that

|∂jxG(η)ψ)(x)| ≤ C ′je−ε|x|.

1. The advantage of Proposition 2.16 is that it does not assume decay on ψ itself
but its derivatives, which is compatible with the solitons studied there. The authors
were not interested in the way the estimates depend on the regularity of the surface
η.
2. Proposition 2.16 is asymmetric in the sense that the exponential decay of G(η)ψ
is lower than the decay of ψ.
3. Proposition 2.14 assumes also that ψ is decay (choosing for example w(x) = e%〈x〉).
However, compare to Proposition 2.16, it has the following advantages:

(i) Proposition 2.14 holds in any dimension, with varying bottom (η∗ is only
assumed to be in C0

b ) and allows domains with non smooth surfaces (η ∈
C2+ε).

(ii) The decay rate of G(η)ψ is preserved, i.e., the same as the rate of ψ.
Moreover, the exponential rate % of ψ can be chosen as

(2.33) % ≤ 1

2C∗‖η − η∗‖2L∞

(for some absolute constant C∗ = C∗(d)) which is decreasing in the square
of the fluid depth. Such a rate is therefore higher for shallow water but
deteriorates when the depth tends to infinity.
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2.3. Paralinearization of the Dirichlet–Neumann operator. We denote
by κ the principal symbol of the Dirichlet-Neumann operator:

κ =
(
(1 + |∇xη|2)|ξ|2 − (∇xη · ξ)2

) 1
2

and define the remainder

(2.34) R(η)ψ := G(η)ψ − Tκψ.
Our aim in this section is to prove the following weighted version of Theorem 3.11
in [1].

Theorem 2.17. Let s > 1 + d
2 and w ∈ Wpo(%), % ≥ 0. Then there exists F :

R+ → R+ non decreasing such that for 0 ≤ t ≤ s− 1
2 , η ∈ H

s+ 1
2

ul (Rd) satisfying (2.2)
we have

‖wR(η)ψ‖Ht
ul
≤ F

(
‖η‖

H
s+1

2
ul

)
‖wψ ‖

H
t+1

2
ul

provided that wψ ∈ Ht+ 1
2

ul (Rd).

Proof. Let us fix a real number t ∈ [0, s − 1
2 ]. By definition of the Dirichlet-

Neumann operator, one has

G(η)ψ = h1∂zΦ̃− h2 · ∇xΦ̃

z=0

, h1 =
1 + |∇xρ|2

∂zρ
, h2 = ∇xρ.

Let A be the symbol of class Γ1
1
2

(Rd × J) given in Lemma 3.20, [1]. We set

g̃k = (∂z − TA)(χkwΦ̃), hj |z=0 = h0
j , j = 1, 2, A|z=0 = A0.

Then we can write

(2.35)

χkwG(η)ψ = h0
1(∂z(χkwΦ̃))|z=0 − χkwh0

2 · ∇xψ
= h0

1g̃k|z=0 + h0
1TA0(χkχ̃kwψ)− χkχ̃kwh0

2 · ∇xψ
= h0

1g̃k|z=0 + h0
1[TA0 , χk](χ̃kwψ) + χk

(
h0

1TA0 − h0
2 · ∇

)
(χ̃kwψ)

+ χkh
0
2 · ∇(χ̃kwψ)− χkχ̃kwh0

2 · ∇xψ.
Therefore,

χkwG(η)ψ = B1 +B2,

where

B1 = h0
1g̃k|z=0 + h0

1[TA0 , χk](χ̃kwψ) + χk
(
h0

1TA0 − h0
2 · ∇

)
(χ̃kwψ),

B2 = χkh
0
2 · (∇χ̃k)wψ + χkh

0
2 · (∇w)ψ = χkh

0
2 · (∇w)ψ.

The proof of Theorem 3.11, [1] shows that

B1 = χkTκ(χ̃kwψ) + S

with the remainder S satisfies

‖S‖Ht ≤ F
(
‖η‖

H
s+1

2
ul

)‖wψ‖
H
t+1

2
ul

.

Writing ∇w = wr1 with r1 ∈ C∞b (Rd). Since h0
2 ∈ Hs− 1

2 (Rd)ul with norm bounded

by F(‖η‖
H

s+1
2

ul

) and t ≤ s − 1
2 the product rule yields

‖B2‖Ht = ‖χkh0
2 · r1wψ‖Ht

= ‖χ̃kh0
2 · r1‖

Hs− 1
2
‖χkwψ‖Ht

≤ F
(
‖η‖

H
s+1

2
ul

)
‖wψ‖Ht

ul
.
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We have proved the following result

χkwG(η)ψ = χkTκ(χ̃kwψ) + S̃, ‖S̃‖Ht ≤ F
(
‖η‖

H
s+1

2
ul

)
‖wψ‖

H
t+1

2
ul

.

The proof of Theorem 2.17 boils down to showing that the commutator T :=
χk[Tκ, χ̃kw]ψ satisfies

(2.36) ‖T‖Ht ≤ F
(
‖η‖

H
s+1

2
ul

)
‖wψ‖

H
t+1

2
ul

.

Indeed, introduce χ ∈ C∞c (Rd), χ = 1 on the support of χ̃ and define also χq(·) =

χ(· − q) for all q ∈ Zd. Denoting wk = χ̃kw and noticing that wk = wkχk we can
write

T = χkTκ(wkχkψ)− χkwkχkTκψ
= χkTκ(wkχkψ)− χkwk[χk, Tκ]ψ − χkwkTκ(χkψ)

= χk[Tκ, wk](χkψ)− χkwk[χk, Tκ]ψ =: R1 −R2.

1. R1 can be written as

R1 = χk[Tκ, Twk ](χkψ) + χkTκ[(wk − Twk)(χkψ)]− χk(wk − Twk)(Tκ(χkψ))

=: R1,a +R1,b −R1,c.

a) For R1,a we apply the symbolic calculus for paradifferential operators in Kato’s
spaces (cf. Theorem 7.16 (ii), [1]) to κ ∈ Γ1

1, wk ∈ Γ0
1 (see also Theorem A.11 (ii)

in the Appendix) to have

‖R1,a‖Ht ≤ CF
(
‖η‖

H
s+1

2
ul

)
‖wk‖W 1,∞‖χkψ‖Ht

ul
.

Now by properties (i), (ii) in Definition 1.2, the weight w satisfies

‖wk‖W 1,∞ ≤ Cw(k) and w(k)‖χkψ‖Ht
ul
≤ C‖wψ‖Ht

ul
.

Consequently,
‖R1,a‖Ht ≤ F

(
‖η‖

H
s+1

2
ul

)
‖wψ‖Ht

ul
.

b) For R1,b one first uses the boundedness of Tκ from Ht+1
ul to Ht

ul (see Theorem
7.16 (i), [1]) to have

‖R1,b‖Ht ≤ F
(
‖η‖

H
s+1

2
ul

)
‖(wk − Twk)(χkψ)‖Ht+1

ul

Next, the paraproduct rule in Proposition 7.18, [1] gives for n large enough

‖(wk − Twk)(χkψ)‖Ht+1
ul
≤ C‖wk‖Hn

ul
‖χkψ‖Ht

ul

As in a) we remark that ‖wk‖Hn
ul
≤ Cw(k) and hence obtain the desired estimate for

R1,b. The term R1,c can be handled using exactly the same method. In summary,
we have proved an estimate better than needed:

‖R1‖Ht ≤ F
(
‖η‖

H
s+1

2
ul

)
‖wψ‖Ht

ul
.

2. To study R2 we decompose

R2 = wk[Tχk , Tκ]ψ + wk(χk − Tχk)Tκψ − wkTκ[(χk − Tχk)ψ]

By the same arguments as in the the study of R1 but using instead the symbolic
calculus in Kato’s spaces with weights in Theorem A.11 together with inequality
(A.21) one ends up with

‖R2‖Ht ≤ F
(
‖η‖

H
s+1

2
ul

)
‖wψ‖Ht

ul
.

The proof of Proposition 2.17 is complete. �
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Remark 2.18. In the proof above, it is for the study of the remainder R2 that
we need to restrict the weight w to the class of ”polynomial weights” Wpo(%).

2.4. A weighted estimate for Φ. We use the elliptic regularity theorem 2.6
to prove a weighted estimate for Φ–solution to (2.7), which will be used later in
proving a contraction estimate for Dirichlet-Neumann operator.

Lemma 2.19. Let s > 1+ d
2 and w ∈ Wpo(%), % ≥ 0. With µ > 0 satisfying (2.23)

and Φq, ψq as in section 2.1.2 there exists a non-decreasing function F independent
of q such that∑

k∈Zd
‖we

µ
2
〈x−q〉χk∇x,zΦ̃q‖L∞(J×Rd) ≤ F(‖η‖

H
s+1

2
ul

)‖wψq‖Hs .

Proof. We remark that wψq ∈ Hs(Rd) for every q ∈ Zd provided that ψ ∈
Hs
ul(R

d). It is clear that

‖we
µ
2
〈x−q〉χk∇x,zΦ̃q‖L∞(J×Rd) ≤ e−

µ
4
〈k−q〉‖we3µ/4〈x−q〉∇x,zΦ̃q‖L∞(J×Rd).

Consider the weight we3µ/4〈x−q〉 ∈ W which has semi-norms independent of q. Ap-
plying Theorem 2.6 to Φq (with σ = s− 1) and taking into account Remark 2.7 , we
may estimate∑

k∈Zd
‖we

µ
2
〈x−q〉χk∇x,zΦ̃q‖L∞(J×Rd)

≤ C
∑
k∈Zd

e−
µ
4
〈k−q〉‖we3µ/4〈x−q〉∇x,zΦ̃q‖L∞(J×Rd)

≤ C‖we3µ/4〈x−q〉∇x,zΦ̃q‖L∞(J,Hs−1(Rd))ul

≤ F(‖η‖
H

s+1
2

ul

)

{
‖we3µ/4〈x−q〉ψq‖Hs

ul
+ ‖we3µ/4〈x−q〉∇x,zΦ̃q‖

X
− 1

2
ul (J)

}
≤ F(‖η‖

H
s+1

2
ul

)

{
‖wψq‖Hs + ‖we3µ/4〈x−q〉∇x,zΦ̃q‖

X
− 1

2
ul (J)

}
.

Remark that in the first inequality, we have used the trivial fact that
∑

k∈Zd e
−µ

4
〈k−q〉

is finite and independent of q.
To complete the proof we need to prove that

(2.37) ‖we3µ/4〈x−q〉∇x,zΦ̃q‖
X
− 1

2
ul (J)

≤ F(‖η‖
H

s+1
2

ul

)‖wψq‖
H

1
2
.

However, using interpolation inequality as in step 2 of the proof of Proposition 2.11,
it suffices to show that

(2.38) ‖we3µ/4〈x−q〉∇x,zΦ̃q‖L2(J,L2)ul ≤ F(‖η‖
H

s+1
2

ul

)‖wψq‖
H

1
2
.

Indeed, by virtue of (2.25) one can estimate

‖χpwe
3µ
4
〈x−q〉∇x,zΦ̃q‖L2(J,L2) . e

−µ
4
〈p−q〉w(p)‖χpeµ〈x−q〉∇x,zΦ̃q‖L2(J,L2)

. e−
µ
4
〈p−q〉w(p)F(‖η‖W 1,∞)‖χqψ‖

H
1
2

. e−
µ
4
〈p−q〉w(p)w(q)−1F(‖η‖W 1,∞)‖wχqψ‖

H
1
2

. e−
µ
4
〈p−q〉〈p− q〉%(‖η‖W 1,∞)‖wχqψ‖

H
1
2

. F(‖η‖W 1,∞)‖wχqψ‖
H

1
2
,

which is the desired bound. �
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Remark 2.20. As in Proposition 2.11, Lemma 2.17 can be formulated for weights
in the class Wex(%) with % sufficiently small.

3. Weighted contraction for the Dirichlet-Neumann operator

The main ingredient in proving the contraction for the Dirichlet-Neumann oper-
ator is the contraction estimate for solutions to the elliptic problem (2.7). The key
idea then is to compare the two variational solutions Φj after changing the variables

Φj to Φ̃j as in (2.4). However, after straightening the fluid domains by the diffeo-
morphism (2.3), the new domains will depend on their upper surface. To overcome
this, we use a slightly different diffeomorphism as follows.
Given η∗ ∈ C0

b (Rd) and h > 0, there exists η̃ ∈ C∞b (Rd) such that

(3.1) η∗(x) < η̃(x) < η∗(x) +
h

3
, ∀x ∈ Rd.

Then, because ηj > η∗ + h we set
Ω1,j = {(x, y) : x ∈ Rd, ηj(x)− h

3 < y < ηj(x)},
Ω2,j = {(x, y) : x ∈ Rd, η̃(x) ≤ y ≤ ηj(x)− h

3},
Ω3,j = {(x, y) : x ∈ Rd, η∗(x) < y < η̃(x)},
Ωj = Ω1,j ∪ Ω2,j ∪ Ω3,j ,

and 
Ω̃1 = Rd

x × (−1, 0)z,

Ω̃2 = Rd
x × [−2,−1]z,

Ω̃3 = {(x, z) ∈ Rd × (−∞− 2) : z + 2 + η̃(x) > η∗(x)},
Ω̃ = Ω̃1 ∪ Ω̃2 ∪ Ω̃3.

Remark that Ω̃ depends on η∗, h but not on ηj . Thus, we can define
(3.2)

ρj(x, z) =


ρ1,j(x, z) = (1 + z)eδz〈Dx〉ηj(x)− z

[
e−(1+z)δ〈Dx〉ηj(x)− h

3

]
, in Ω̃1,

ρ2,j(x, z) = (2 + z)
[
eδ(z+1)〈Dx〉ηj(x)− h

3

]
− (1 + z)η̃, in Ω̃2,

ρ3,j(x, z) = z + 2 + η̃(x), in Ω̃3.

Lemma 3.1. Assume that ηj ∈ W 1,∞(Rd), j = 1, 2. There exists an absolute
constant C > 0 such that if

Cδ ‖ηj‖W 1,∞(Rd) ≤ h, j = 1, 2

then the mappings (x, z) 7→ (x, ρj(x, z)) are Lipschitz diffeomorphisms from Ω̃ to Ωj

and there exists a constant c0 > 0 such that ∂zρj ≥ c0 a.e. in Ω.

Proof. Observe first that ρk,j are Lipschitz for k = 1, 2, 3; j = 1, 2. Clearly,

(x, z) 7→ (x, ρ3,j(x, z)) are diffeomorphisms from Ω̃3 to Ω3,j and ∂zρ3,j = 1 ≥ c0 > 0.
The same properties hold for ρ1,j as in (2.3). We now prove it for ρ2,j . Notice first
that

ρ2,j(−1, x) = ηj −
h

3
, ρ2,j(−2, x) = η̃.

Compute now

∂zρ2,j = eδ(z+1)〈Dx〉ηj(x)− h

3
− (2 + z)δeδ(z+1)〈Dx〉〈Dx〉ηj − η̃

= eδ(z+1)〈Dx〉ηj(x)− ηj(x)− (2 + z)δeδ(z+1)〈Dx〉〈Dx〉ηj + ηj(x)− η̃ − h

3
.
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By writing eδ(z+1)〈Dx〉ηj − ηj = δ(z + 1)
∫ 1

0 e
rδ(z+1)〈Dx〉〈Dx〉ηjdr we deduce that∥∥∥eδ(z+1)〈Dx〉ηj − ηj

∥∥∥
L∞(Rd)

+
∥∥∥(2 + z)δeδ(z+1)〈Dx〉〈Dx〉ηj

∥∥∥
L∞(Rd)

≤ Cδ ‖ηj‖W 1,∞(Rd) ≤
h

6

for δ > 0 small enough. On the other hand, thanks to (2.2) and (3.1) it holds that

ηj − η̃ −
h

3
= (ηj − η∗) + (η∗ − η̃)− h

3
> h− h

3
− h

3
=
h

3

and thus ∂zρ2,j ≥ h
3 −

h
6 = h

6 in Ω̃2. Therefore, we can conclude that (x, z) 7→
(x, ρ2,j(x, z)) are diffeomorphisms from Ω̃2 to Ω2,j . �

With the functions ρj above we denote for every f : Ω→ R

(3.3) f̃j(x, z) = f(x, ρj(x, z))

and as in (2.5) we define the differential operators Λj = (Λj1,Λ
j
2). Hereafter, we

denote J = (−2, 0) and assume that

(3.4) ηj ∈ H
s+ 1

2
ul (Rd), s > 1 +

d

2
, j = 1, 2.

Lemma 3.2. Let w ∈ Wpo(%), % ≥ 0. We have Λ1 −Λ2 = ℘∂z = (℘1, ℘2)∂z with
℘ = 0 for z < −2 and

(3.5) ‖w℘‖L2(J,L2(Rd))ul
≤ F(‖(η1, η2)‖

H
s+1

2
ul ×H

s+1
2

ul

)‖w(η1 − η2)‖
H

1
2
ul

.

Proof. By definition, one gets

℘1 =
∂z(ρ2 − ρ1)

∂zρ1∂zρ2
,

℘2 = −∇x(ρ2 − ρ1)

∂zρ1
−∇xρ2

∂z(ρ2 − ρ1)

∂zρ1∂zρ2

so in Ω̃3, ℘ = 0. To obtain (3.5) one writes

‖w℘‖L2(J,L2(Rd))ul
≤ ‖w℘‖L2((−1,0),L2(Rd))ul

+ ‖w℘‖L2((−2,−1),L2(Rd))ul

to use definition (3.2), the fact that η̃ ∈ C∞b (Rd) and the 1
2 -smoothing effect of the

Poisson kernel, which is Proposition A.7 applied with r = 1. �

Theorem 3.3. Let ψj ∈ H
1
2
ul(R

d) and Φj , j = 1, 2 be the unique solution in
H1
ul(Ωj) of the problem

(3.6) ∆x,yΦj = 0 in Ω, Φj |Σ = ψj ,
∂Φj

∂ν
|Γ = 0.

Set η = η1− η2, ψ = ψ1−ψ2, Φ̃ = Φ̃1− Φ̃2 where Φ̃j is the image of Φj as in (3.3).
Then for every w ∈ Wpo(%), % ≥ 0 there exists a nonnegative function F such that
(3.7)

‖w∇x,zΦ̃‖
X
− 1

2
ul (J)

≤ F(‖(η1, η2)‖
H

s+1
2

ul ×H
s+1

2
ul

)

(
‖wη‖

H
s− 1

2
ul

‖ψ2‖Hs
ul

+ ‖wψ‖
H

1
2
ul

)
.

For the proof of this result, we shall apply Lemma 2.19 for Φ̃q. However, Φ̃q

here is the image of Φq via the diffeomorphism corresponding to one of ρj defined
by (3.2) instead of (2.3). We want the same result as Lemma 2.19 in this situation.
To have this, we notice that on J = (−2, 0), ρj is comprised of two functions ρ1,j

for z ∈ (−1, 0) and ρ2,j for z ∈ (−2,−1]. The function ρ1,j possesses the same
properties as ρ does and so does ρ2,j since η̃ ∈ C∞b ⊂ H∞ul . Therefore, we obtain
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Lemma 3.4. Let w ∈ Wpo(%), % ≥ 0 and Φj,q, ψj,q, j = 1, 2, q ∈ Z as in section
2.1.2. There exists F1 non-decreasing such that: if 0 < µF1(‖ηj‖Hs

ul
) ≤ 1 then one

can find a non-decreasing function F independent of q such that∑
k∈Zd

‖we
µ
2
〈x−q〉χk∇x,zΦ̃j,q‖L∞(J×Rd) ≤ F(‖ηj‖

H
s+1

2
ul

)‖wψj,q‖Hs .

Proof. (of Theorem 3.3) For simplicity in notations we shall denote F =
F(‖η1‖

H
s+1

2
ul

, ‖η2‖
H

s+1
2

ul

) which may change from line to line. We proceed in the

following steps.
Step 1. Let Φj,q = uj,q + ψ

j,q
where uj,q is the variational solution characterized by

(2.6). After changing the variables, (2.6) becomes∫
Ω̃

ΛjΦ̃j,qΛ
jθJjdX = 0, ∀θ ∈ H1,0(Ω̃), j = 1, 2

with the Jacobian Jj = |∂zρj | = ∂zρj ≥ c0 > 0 a.e. in Ω̃ (by Lemma 3.1).

Set Φ̃q = Φ̃1,q − Φ̃2,q, ψq = ψ
1,q
− ψ

2,q
and choose

θ = e2δgε(Φ̃q − ψ̃q) ∈ H
1,0(Ω̃)

where gε = 〈x−q〉
1+ε〈x−q〉 . It follows that∣∣∣∣∫

Ω̃
Λ1Φ̃qΛ

1θJ1dX

∣∣∣∣ ≤ 3∑
j=1

Aj ,


A1 =

∫
Ω̃
|(Λ1 − Λ2)Φ̃2,qΛ

1θJ1|dX,
A2 =

∫
Ω̃
|Λ2Φ̃2,q(Λ

1 − Λ2)θJ1|dX,
A3 =

∫
Ω̃
|Λ2Φ̃2,qΛ

2θ(J1 − J2)|dX.

By Lemma (3.2) we know that Λ1−Λ2 = 0 in Ω̃3. Likewise, J1−J2 = ∂zρ1−∂zρ2 = 0

in Ω̃3. Consequently, with Ω̃0 = Rd × J we have Aj , j = 1, 2, 3 are equal to the

corresponding integrals over Ω̃0.
Step 2. (Estimate for A1) First of all, we remark that

(3.8) Λj(e2δgεU) = e2δgεΛjU + (0, U)2δe2δgε∇gε.

Using Lemma 3.2 and formula (3.8) with j = 1, U = Φ̃q − ψ̃q one can write

A1 =

∫
Ω̃0

e2δgε |℘∂zΦ̃2,qΛ
1(Φ̃q − ψ̃q)J1|dX + 2δ

∫
Ω̃0

e2δgε |∇gε℘2∂zΦ̃2,q(Φ̃q − ψ̃q)J1|dX

:= A1,1 +A1,2.

Since ‖Jj‖L∞x,z ≤ F , we may estimate

A1,1 ≤ F
∫

Ω̃0

e2δgε |℘∂zΦ̃2,qΛ
1(Φ̃q − ψ̃q)|dX

≤ F‖℘eδgε∂zΦ̃2,q‖L2(Ω̃0)
‖eδgεΛ1(Φ̃q − ψ̃q)‖L2(Ω̃0)

.

On the other hand, there holds

(3.9)

‖f1f2‖L2(J,L2(Rd)) ≤
∑
k

‖χ̃kf1χkf2‖L2(J,L2(Rd))

≤ ‖f1‖L2(J,L2(Rd)ul)

∑
k

‖χkf2‖L∞(J×Rd).
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Now we choose δ > 0 such that

(3.10) δF1(‖η2‖
H

s+1
2

ul

) ≤ 1

2

then the condition of Lemma 3.4 is fulfilled with µ = 2δ. It then follows from (3.9)
and Lemma 3.2 that
(3.11)

‖℘eδgε∂zΦ̃2,q‖L2(Ω̃0)
≤ ‖w℘w−1eδ〈x−q〉∂zΦ̃2,q‖L2(J,L2(Rd))

≤ ‖w℘‖L2(J,L2(Rd)ul)

∑
k

‖χkw−1eδ〈x−q〉∂zΦ̃2,q‖L∞(J×Rd)

≤ F‖wη‖
H

1
2
ul

‖w−1ψ2,q‖Hs .

Therefore,

A1,1 ≤ F‖eδgεΛ1(Φ̃q − ψ̃q)‖L2(Ω̃0)
‖wη‖

H
1
2
ul

‖w−1ψ2,q‖Hs .

For A1,2 we have

A1,2 ≤ 2δF‖eδgε℘2∂zΦ̃2,q‖L2(Ω̃0)
‖eδgε(Φ̃q − ψ̃q)‖L2(Ω̃0)

.

The first L2-norm on the right-hand side is already estimated by (3.11). For the
second term on the right-hand side, one applies the Poincaré inequality in Lemma

2.9 (with O = Ω1,1 ∪ Ω2,1, which is diffeomorphic to Ω̃0) to the image of (Φ̃q − ψ̃q)
under the inverse of ρ1(x, z), (x, z) ∈ Ω̃0 and then changes the variables back to Ω̃0

to derive
(3.12)

‖eδgε(Φ̃q − ψ̃q)‖L2(Ω̃0)
≤ F‖eδgε∂z(Φ̃q − ψ̃q)‖L2(Ω̃0)

≤ F‖eδgεΛ1(Φ̃q − ψ̃q)‖L2(Ω̃0)

from which we deduce that A1,2 satisfies the same estimate as A1,1 does and hence,
so does A1, i.e.,

(3.13) A1 ≤ F‖eδgεΛ1(Φ̃q − ψ̃q)‖L2(Ω̃0)
‖wη‖

H
1
2
ul

‖w−1ψ2,q‖Hs .

Step 3. (Estimates for A2, A3) By Lemma 3.5 we have

(Λ1 − Λ2)θ = ℘e2δgε∂z(Φ̃q − ψ̃q).

It follows that

A2 ≤ F‖℘eδgεΛ2Φ̃2,q‖L2(Ω̃0)
‖eδgε∂z(Φ̃q − ψ̃q)‖L2(Ω̃0)

.

Using the definition of Λ2 and the same method as in (3.11) one obtains that the
first term is also bounded by the right-hand side of (3.11). On the other hand, it is

easy to see the second term is bounded by F‖eδgεΛ1(Φ̃q− ψ̃q)‖L2(Ω̃0)
. Therefore, A2

also satisfies the bound (3.13).
For A3 one uses the formula (3.8) to get A3 ≤ A3,1 +A3,2 with

A3,1 =

∫
Ω̃0

e2δgε |Λ2Φ̃2,qΛ
2(Φ̃q − ψ̃q)(J1 − J2)|dX,

A3,2 = δ

∫
Ω̃0

e2δgε |∇gεΛ2
2Φ̃2,q(Φ̃q − ψ̃q)(J1 − J2)|dX.

First, A3,2 is estimated by ‖(J1 − J2)eδgεΛ2Φ̃2,q‖L2(Ω̃0)
‖eδgε(Φ̃q − ψ̃

q
)‖
L2(Ω̃0)

. The

second term is estimated by (3.12) and the first term is estimated as in (3.11) with
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℘ replaced by J1 − J2 which satisfies ‖w(J1 − J2)‖L2(J,L2
ul)
≤ F‖wη‖

H
1
2
ul

. Similarly,

A3,1 ≤ ‖(J1 − J2)eδgεΛ2Φ̃2,q‖L2(Ω̃0)
‖eδgεΛ2(Φ̃q − ψ̃q)‖L2(Ω̃0)

.

We only need to study the second term on the right-hand side. With u := Φ̃q − ψ̃q
one has Λ2

1u = ∂zρ1
∂zρ2

Λ1
1u which implies ‖eδgεΛ2

1u‖L2(Ω̃0)
≤ F‖eδgεΛ1

1u‖L2(Ω̃0)
. On the

other hand,

Λ2
2u = ∇xu−

∇xρ2

∂zρ2
∂zu = Λ1

2u+

(
∇xρ1

∂zρ1
− ∇xρ2

∂zρ2

)
∂zρ1

(
1

∂zρ1
∂zu

)
.

Hence, ‖eδgεΛ2
2u‖L2(Ω̃0)

≤ F‖eδgεΛ1u‖
L2(Ω̃0)

and ‖eδgεΛ2u‖
L2(Ω̃0)

≤ F‖eδgεΛ1u‖
L2(Ω̃0)

.

In conclusion, we have proved that: for any (small) δ > 0 satisfying (3.10), there
holds ∣∣∣∣∫

Ω̃
Λ1Φ̃qΛ

1θJ1dX

∣∣∣∣ ≤ F‖eδgεΛ1(Φ̃q − ψ̃q)‖L2(Ω̃0)
‖wη‖

H
1
2
ul

‖w−1ψ2,q‖Hs .(3.14)

Step 4. Next, in view of (3.8) we write

(3.15)

∫
Ω̃

Λ1Φ̃qΛ
1θJ1dX

=

∫
Ω̃
e2δgεΛ1Φ̃qΛ

1(Φ̃q − ψ̃q)J1dX + 2δ

∫
Ω̃

Λ1
2Φ̃q.(Φ̃q − ψ̃q)e

2δgε∇gεJ1dX

=

∫
Ω̃
e2δgε |Λ1(Φ̃q − ψ̃q)|

2J1dX +

∫
Ω̃
e2δgεΛ1ψ̃

q
Λ1(Φ̃q − ψ̃q)J1dX

+ 2δ

∫
Ω̃

Λ1
2(Φ̃q − ψ̃q)(Φ̃q − ψ̃q)e

2δgε∇gεJ1dX

+ 2δ

∫
Ω̃

Λ1
2ψ̃q(Φ̃q − ψ̃q)e

2δgε∇gεJ1dX := B1 +B2 +B3 +B4.

Owing to the Poincaré inequality in Lemma 2.21 (applied with O = Ω1) and a
change of variables one has

(3.16) |B3| ≤ δF2(‖η1‖
H

s+1
2

ul

)‖eδgεΛ1(Φ̃q − ψ̃q)‖
2
L2(Ω̃)

where F2 : R+ → R+ is a non decreasing function. Likewise,

(3.17) |B4| ≤ δF2(‖η1‖
H

s+1
2

ul

)‖eδgεΛ1ψ̃
q
‖
L2(Ω̃)

‖Λ1(Φ̃q − ψ̃q)e
δgε‖

L2(Ω̃)
.

Finally, it is clear that

(3.18) |B2| ≤ F2(‖η1‖
H

s+1
2

ul

)‖eδgεΛ1ψ̃
q
‖
L2(Ω̃)

‖Λ1(Φ̃q − ψ̃q)e
δgε‖

L2(Ω̃)
.

Now, remark that there exists a constant c0 depending only on h such that |J1| ≥ c0.
Choose δ > 0 satisfying

(3.19) δ

{
F1(‖η2‖

H
s+1

2
ul

) + F2(‖η1‖
H

s+1
2

ul

)

}
= min(

c0

2
,
1

2
).

A combination of (3.14)-(3.18) yields∥∥∥eδgεΛ1(Φ̃q − ψ̃q)
∥∥∥
L2(Ω̃)

≤ F
{
‖wη‖

H
1
2
ul

‖w−1ψ2,q‖Hs + ‖eδgεΛ1ψ̃
q
‖
L2(Ω̃)

}
.
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Step 5. Now, letting ε → 0 and taking into account properties (i), (ii) of ψ
q

in

section 2.1.2 lead to

(3.20)
‖eδ〈x−q〉Λ1Φ̃q‖L2(Ω̃)

≤ F
{
‖wη‖H1

ul
‖w−1ψ2,q‖Hs + ‖eδ〈x−q〉Λ1ψ̃

q
‖
L2(Ω̃)

}
≤ F

{
‖wη‖H1

ul
‖w−1ψ2,q‖Hs + ‖ψq‖

H
1
2

}
.

Hence

‖eδ〈x−q〉∇x,zΦ̃q‖L2(Ω̃)
≤ F

{
‖wη‖H1

ul
‖w−1ψ2,q‖Hs + ‖ψq‖

H
1
2

}
.

Consequently,
(3.21)

‖χpw∇x,zΦ̃q‖L2(J,L2(Rd)) ≤ e−δ〈p−q〉w(p)F
{
‖wη‖

H
1
2
ul

‖w−1ψ2,q‖Hs + ‖ψq‖
H

1
2 (Ω)

}
≤ e−δ〈p−q〉w(p)w(q)−1F

{
‖wη‖

H
1
2
ul

‖ψ2,q‖Hs + ‖wψq‖
H

1
2

}
.

Finally, we get

(3.22)

‖χpw∇x,zΦ̃‖L2(J,L2(Rd)) ≤
∑
q

‖χpw∇x,zΦ̃q‖L2(J,L2(Rd))

≤ F
{
‖wη‖

H
1
2
ul

‖ψ2‖Hs
ul

+ ‖wψ‖
H

1
2
ul

}
.

Step 6. It remains to prove that ‖χpw∇x,zΦ̃‖
L∞(J,H−

1
2 (Rd))

is bounded by the right

hand side of (3.7).

The estimate of ‖χpw∇xΦ̃‖
L∞(J,H−

1
2 (Rd))

follows from (3.22) and the interpo-

lation Lemma 2.8. By the same lemma, for ‖χpw∂zΦ̃‖
L∞(J,H−

1
2 (Rd))

it remains to

estimate

‖χpw∂2
z Φ̃‖L2(J,H−1(Rd)).

For this purpose we use equation (3.26) below, satisfied by Φ̃ to have
(3.23)

‖χpw∂2
z Φ̃‖L2(J,H−1(Rd)) ≤‖χpwα1∆Φ̃‖L2(J,H−1(Rd)) + ‖χpwβ1.∇∂zΦ̃‖L2(J,H−1(Rd))

+ ‖χpwγ1∂zΦ̃‖L2(J,H−1(Rd)) + ‖χpwF‖L2(J,H−1(Rd)).

In the above inequality, α1, β1, γ1 are defined as in (2.10), for the diffeomorphism
ρ defined in term of η1.
Because −1 < s − 2, the estimate (3.28) applied with f = ψ2 implies the desired
estimate for ‖χpwF‖L2(J,H−1(Rd)). Concerning the other terms, the product rule

(2.16) gives

(3.24)

‖χpwα1∆Φ̃‖L2(J,H−1) ≤ C‖χ̃pα1‖
L∞(J,Hs− 1

2 )
‖χpw∆Φ̃‖L2(J,H−1)

‖χpwβ1 · ∇∂zΦ̃‖L2(J,H−1) ≤ C‖χ̃pβ1‖
L∞(J,Hs− 1

2 )
‖χpw∇∂zΦ̃‖L2(J,H−1)

‖χpwγ1∂zΦ̃‖L2(J,H−1) ≤ C‖χ̃pγ1‖
L∞(J,Hs− 3

2 )
‖χpw∂zΦ̃‖L2(J,L2).

Owing to (3.22) we are left with the estimates for the first term on the right-hand
side of the above inequalities. Again, this is done along the same line as in the proof
of Lemma 2.3 noticing that η̃ ∈ C∞b ⊂ H∞ul . This completes the proof. �

We are now in position to derive the weighted estimate for the Dirichlet-Neumann
operator:
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Theorem 3.5. Assume that s > 1 + d
2 . Then for every w ∈ Wpo(%), % ≥ 0

there exists F : R+ → R+ non decreasing such that for all η1, η2 ∈ H
s+ 1

2
ul (Rd) and

f ∈ Hs
ul(R

d) we have

‖w[G(η1)−G(η2)]f‖
H

s− 3
2

ul

≤ F(‖(η1, η2)‖
H

s+1
2

ul ×H
s+1

2
ul

)‖w(η1 − η2)‖
H

s− 1
2

ul

‖f‖Hs
ul
.

Proof. Let Φj defined as in (3.6) (with ψj = f , j = 1, 2) and Φ̃j be its image
via the diffeomorphism (x, z) 7→ (x, ρj(x, z)) given by (3.2). We have from definition
(2.8) of the Dirichlet-Neumann operator

(3.25) G(ηj)f =

(
1 + |∇xρj |2

∂zρj
∂zΦ̃j −∇xρj∇xΦ̃j

)
z=0

.

Recall from (2.9) that each Φ̃j satisfies the elliptic problem

(∂2
z + αj∆x + βj · ∇x∂z − γj∂z)Φ̃j = 0,

where αj , βj , γj are defined as in (2.10) with η replaced by ηj .

Set Φ̃ = Φ̃1 − Φ̃2 then

(3.26)
(
∂2
z + α1∆x + β1 · ∇∂z − γ1∂z

)
Φ̃ = F

with

F = {(α2 − α1)∆x + (β2 − β1) · ∇∂z − (γ2 − γ1)∂z} Φ̃2.

We fix z0 ∈ (−1, 0) and set I0 = (z0, 0), I = (−1, 0). We first prove that

(3.27) ‖w∇x,zΦ̃‖
X

s− 3
2

ul (I0)
≤ F(‖(η1, η2)‖

H
s+1

2
ul ×H

s+1
2

ul

)‖w(η1 − η2)‖
H

s− 1
2

ul

‖f‖Hs
ul
.

To prove the preceding estimate, we claim that

(3.28) ‖wF‖L2(I,Hs−2)ul ≤ F(‖(η1, η2)‖
H

s+1
2

ul ×H
s+1

2
ul

)‖w(η1 − η2)‖
H

s− 1
2

ul

‖f‖Hs
ul
.

Indeed, the Hs
ul version of the product rule (2.16) (see Proposition 7.3 (i), [1])

applied with s0 = s − 2, s1 = s − 1, s2 = s − 2 yields

(3.29)

‖wF‖L2(I,Hs−2)ul . ‖w(α2 − α1)‖L2(I,Hs−1)ul‖∆xΦ̃2‖L∞(I,Hs−2)ul

+ ‖w(β2 − β1)‖L2(I,Hs−1)ul‖∇∂zΦ̃2‖L∞(I,Hs−2)ul

+ ‖w(γ2 − γ1)‖L2(I,Hs−2)ul‖∂zΦ̃2‖L∞(I,Hs−1)ul .

On the other hand, applying Proposition A.7 for the 1
2 -smoothing effect of the

Poisson kernel in weighted spaces gives

(3.30)
‖w(α2 − α1)‖L2(I,Hs−1)ul + ‖w(β2 − β1)‖L2(I,Hs−1)ul + ‖w(γ2 − γ1)‖L2(I,Hs−2)ul

≤ F(‖(η1, η2)‖
H

s+1
2

ul ×H
s+1

2
ul

)‖w(η1 − η2)‖
H

s− 1
2

ul

.

Remark that in Corollary 2.13 one can replace the assumption z0 ∈ (−1, 0) by
z0 ∈ J = (−2, 0) because on (−2, 1] the diffeomorphism ρj satisfies the same bounds

as the diffeomorphism defined in (2.3) does (again, this is true because η̃ ∈ C∞b (Rd)).
This remark applied with σ = s − 1 and w ≡ 1 leads to

(3.31) ‖∇x,zΦ̃2‖L∞(I,Hs−1
ul ) ≤ F(‖η2‖

H
s+1

2
ul

)‖f‖Hs
ul
.

Putting together (3.29), (3.30), (3.31) one obtains the claim (3.28).

Since Φ̃|z=0 = 0, with the aid of Theorem 2.6 (which is applicable since ρ1,j and ρ
in (2.3) have exactly the same form), the proof of (3.27) now reduces to estimate
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‖w∇x,zΦ̃‖
X
− 1

2
ul (I)

. This is a consequence of Theorem 3.3 applied with ψ1 = ψ2 = f

(and the fact that I ⊂ J).

In view of (3.25), to obtain the bound for w[G(η1)f−G(η2)]f in H
s− 3

2
ul it is necessary

to bound ‖w∇x,zΦ̃‖
H

s− 3
2

ul

at z = 0. More precisely, we shall prove that

‖w∇x,zΦ̃|z=0‖
H

s− 3
2

ul

≤ F(‖(η1, η2)‖
H

s+1
2

ul ×H
s+1

2
ul

)‖w(η1 − η2)‖
H

s− 1
2

ul

‖f‖Hs
ul
.

To this end, we use the argument in step 6 of the proof of Theorem 3.3. By virtue

of Lemma 2.8 and (3.27), we then only need to estimate ‖w∂2
z Φ̃‖L2(I0,Hs−2)ul , which

in turn follows by using equation (3.26) together with the estimate (3.28) and the
product rule (A.22). Finally, using (3.25) and the product rule (A.22) once again,
we conclude the proof of Theorem 3.5. �

Remark 3.6. Theorem 3.3 is also a crucial ingredient in proving contraction
of the remainder R appearing in the reformulation of water waves system-equation
(4.4) in Proposition 4.2, [1]. Notice that our estimate (3.7) is sufficient for this
purpose because

‖w(ψ1 − ψ2)‖
H

1
2
ul

≤ ‖w(ψ1 − ψ2)‖Hs−1
ul

owing to the fact that s > 1 + d
2 .

4. Proof of the main results

4.1. Proof of Theorem 1.6. The contraction estimate in Theorem 1.6 was
proved in [2] (see Theorem 5.1) for classical Sobolev spaces and then in [1] for
Kato’s spaces. Both use the following scheme:

1) study the Dirichlet-Neumann operator: bound estimates and paralinearization
2) contraction estimate for the Dirichlet-Neumann operator
3) paralinearization of the difference equations (after reformulation)
4) estimates for the good unknown
5) back to the original unknowns.

Here, we shall follow the same scheme as above. The first two items are the real
new points in our problem and have been studied in Section 2 and 3. For the last
three items we need a para-differential machinery in Kato’s spaces with weights and
this is established in Appendix A. The key point in this machinery is that: whenever
we estimate S(u, v) in weighted norms, where S is an operator of two variables, we
are always able to shift the weight to u or v. Having this in hand, items 3), 4), 5)
follow line by line those in [1] and [2]: one only need to replace ‖ · ‖Hσ

ul
or ‖ · ‖Hσ by

‖w · ‖Hσ
ul

in the relevant estimates (w is the weight). We conclude the proof.

4.2. Proof of Corollary 1.7. We need to show how (1.9) implies (1.10). To
this end, it suffices to prove that there exist 0 < T1 ≤ T and N > 0 (both are
independent of Uj) such that

(4.1) ‖Uj‖L∞([0,T1],Hs
ul)
≤ N, j = 1, 2.

Define the Sobolev norms of the solutions as

M j
σ(τ) = ‖Uj‖L∞([0,τ ],Hσul)

, ∀τ ∈ [0, T ], ∀j ≥ 0.

Let us recall the a priori estimate derived in [1]: for any 1 + d
2 < σ ≤ s and T > 0

one can find a non decreasing function F : R+ → R+ such that

(4.2) M j
s (T ) ≤ F

(
M j
σ(0) + TM j

σ(T )
)(
M j

s (0) + TM j
s (T )

)
, ∀j ≥ 0.
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Fix s0 ∈
(
1 + d

2 , s
)
. Since each Uj is a solution to the gravity waters system in

C0([0, T ],Hs0
ul), the estimate (4.2) gives for some non decreasing F1 : R+ → R+

(independent of U)

M j
s0(τ) ≤ F1(M j

s0(0) + τM j
s0(τ)), ∀τ ∈ [0, T ], ∀j ≥ 0.

According to Theorem 1.5, Uj is continuous in time with value in Hs0
ul since s0 < s.

Consequently, M j
s0(τ) is continuous in τ . In addition, M j

s0(0) can be bounded by
some constant independent of j, say A. The standard argument then gives the
existence of T0 ∈ (0, T ] and N > 0, both are independent of Uj (but depend on A),
such that

(4.3) M j
s0(τ) ≤ N, ∀τ ∈ [0, T0], ∀j ≥ 0.

Applying again the estimate (4.2) with σ = s0 < s we get for some non-decreasing
function F : R+ → R+ (independent of U)

M j
s (τ) ≤ F(M j

s0(0) + T0M
j
s0(τ))

(
M j

s (0) + τM j
s (τ)

)
, ∀τ ∈ [0, T0], ∀j ≥ 0.

By (4.3), this implies

M j
s (τ) ≤ F(N(1 + T0))

(
M j

s (0) + τM j
s (τ)

)
, ∀τ ∈ [0, T0].

Now, let T1 ∈ (0, T0] satisfying

T1F(N(1 + T0)) ≤ 1

2

one deduces

M j
s (T1) ≤ 2F(N(1 + T0))M j

s (0), ∀j ≥ 0

which concludes the proof.

Appendix A. Paradifferential calculus in Kato’s spaces with weights

In this section, we adapt the paradifferential machinery for the presence of
weights which can be of independent interest. The proofs of these results follow
those in [1] but we need to take some care (so we only present the proof whenever
it is necessary). We recall first various spaces which will be used in the sequel.

Definition A.1. Let p ∈ [1,+∞], J = (z0, 0), z0 < 0 and σ ∈ R.
1. The space Lp(J,Hσ(Rd))ul is defined as the space of measurable functions u from
Jz ×Rd

x to C such that

‖u‖Lp(J,Hσ(Rd))ul
:= sup

q∈Zd
‖χqu‖Lp(J,Hσ(Rd)) < +∞.

2. We set

Xσ
ul(J) = L∞(J,Hσ(Rd))ul ∩ L2(J,Hσ+ 1

2 (Rd))ul

Y σ
ul(J) = L1(J,Hσ(Rd))ul + L2(J,Hσ− 1

2 (Rd))ul

endowed with their natural norms.
The same spaces without subscript ”ul” are defined for classical Sobolev spaces.

Notice that L∞(J,Hσ(Rd))ul = L∞(J,Hσ
ul(R

d)).

Notation A.2. For t ∈ R, we denote dte the smallest integer strictly greater
than or equal t.
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A.1. Weighted continuity of pseudo-differential operators. In [1], the
authors proved the continuity of pseudo-differential operators on the framework of
L2 based uniformly local Sobolev spaces. Here, we perform similar results with
the presence of weights in classes Wpo(%), % > 0 (see Definition 1.2), which are
composed of functions that are at most polynomial growth. For the sake of clarity,
let us redefine this class.

Definition A.3. For every % ≥ 0, we define Wpo(%) to be the class of all func-

tions w : Rd → (0,∞) satisfying the following conditions:

(i) r1 := ∇w−1

w−1 and r′1 := ∇w
w belong to C∞b (Rd), where w−1(x) = 1/w(x),

(ii) for any C1 > 0, there exists C2 > 0 such that for any x0 ∈ Rd, there hold

w(x) ≤ C2w(x0) and w(x)−1 ≤ C2w(x0)−1 ∀x ∈ Rd, |x− x0| ≤ C1,

(iii) there exists C > 0 such that for any x, y ∈ Rd we have w(x)w−1(y) ≤
C〈x− y〉%.

Remark A.4. 1. For all λ ∈ R and C > 1, the functions 〈x〉λ, ln(C + |x|2)

belong toWpo(|λ|) andWpo(1) respectively. For every t ∈ R\{0}, the function et〈x〉

does not belong to any class Wpol(%).
2. If wj ∈ Wpo(%j), j = 1, 2 then w1w2 ∈ Wpo(%1 + %2).

3. If w ∈ Wpo(%) and w > 0 then wλ ∈ Wpo(%|λ|) for any λ ∈ R.
4. Condition (iii) in Definition A.3 is equivalent to
(iii′) there exist M1, M2 > 0 and λ1, λ2 ∈ R such that

M1〈x〉λ1 ≤ w(x) ≤M2〈x〉λ2 , ∀x ∈ Rd.

Although (iii′) seems to be more natural than (iii), in the following proofs, condition
(iii) is more convenient.

We denote by Sm1,0 the standard Hörmander’s class of symbols p ∈ C∞(Rd×Rd)
satisfying

|Dα
ξD

β
xp(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|α| ∀α, β ∈ Nd,∀(x, ξ) ∈ Rd ×Rd.

Proposition A.5. Let P be a pseudo-differential operator whose symbol p be-
longs to Sm1,0 and let w be a weight in Wpo(%), % ≥ 0. Then for any s ∈ R, there
exists C > 0 such that

‖wPu‖Hs
ul
≤ C ‖wu‖Hs+m

ul
,

provided that the right hand side is finite.

Proof. We write

(A.1) wχkPu =
∑
|k−q|≤2

wχkPχqu+
∑
|k−q|>3

wχkPχqu := A+
∑
|k−q|>3

Bk,q.

Since χqu = (χqw(x)u)(χ̃qw(x)−1) ∈ Hs+m(Rd), we have by properties (i), (ii), (iii)
of the weight w, the product rule (2.16) and the classical pseudo-differential calculus
that

‖wχkPχqu‖Hs ≤ Cw(k)‖Pχqu‖Hs

≤ Cw(k)‖χqu‖Hs+m

≤ Cw(k)w(q)−1‖wχqu‖Hs+m

≤ C〈k − q〉%‖wχqu‖Hs+m

≤ C‖wu‖Hs+m
ul

,
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provided |k − q| ≤ 2. Thus,

(A.2) A ≤ C‖wu‖Hs+m
ul

.

To bound the second part, we fix n0 ∈ N, n0 ≥ s. We shall prove

(A.3) ‖Dα
xBk,q‖L2(Rd) ≤

C

〈k − q〉d+1
‖wu‖Hs+m

ul
, |α| ≤ n0

which implies the desired estimate for
∑
|k−q|>3Bk,q.

By the presence of χk, ‖Dα
xBk,q‖L2(Rd) ≤ C‖Dα

xBk,q‖L∞(Rd). We have

Dα
xBk,q(x) = 〈Dα

xK(x, ·), χqu〉

with

(A.4) K(x, y) = (2π)−d
∫
Rd

ei(x−y)ξp(x, ξ)dξχk(x)w(x)χ̃q(y).

Fix n1 ∈ N, n1 ≥ −(s +m) and β ∈ Nd, |β| ≤ n1. Let γ ∈ Nd be such that |γ| = N
with

(A.5) N ≥ max(m+ n0 + n1 + d+ 1, %+ d+ 1).

Multiplying Dα
xD

β
yK(x, y) by (x− y)γ and integrating by parts with a remark that

|x− y| ≥ δ|k − q| (for some δ > 0) on the support of χk(x)w(x)χ̃q(y), we obtain∣∣∣Dα
xD

β
yK(x, y)

∣∣∣ ≤ Cβ,d,λ
〈k − q〉N

w(k)
∑
|β1|≤|β|

∣∣∣∂β1χ̃q(y)
∣∣∣ .

It follows that

(A.6)

|Dα
xBk,q(x)| ≤ ‖Dα

xK(x, ·)‖H−(s+m)‖χqu‖Hs+m

≤ C

〈k − q〉N
w(k)‖χqu‖Hs+m

≤ C

〈k − q〉N
w(k)w(q)−1‖χqwu‖Hs+m

≤ C

〈k − q〉N
〈k − q〉%‖wu‖Hs+m

ul

≤ C

〈k − q〉d+1
‖wu‖Hs+m

ul

which proves (A.3). �

In a particular case the proof above gives the following more precise result.

Proposition A.6. Let m ∈ R, and w ∈ Wpo(%), % ≥ 0. Let h(ξ) = h̃
( ξ
|ξ|
)
|ξ|mψ(ξ)

with h̃ ∈ C∞(Sd−1), and

(A.7) ψ ∈ C∞(Rd), ψ(ξ) = 1 if |ξ| ≥ 1, ψ(ξ) = 0 if |ξ| ≤ 1

2
.

Then for every s ∈ R and

(A.8) r > dme+ dse+ d−(m+ s)e+ d%e+
3d

2
+ 1,

there exists a constant C such that

‖wh(Dx)u‖Hs
ul(R

d) ≤ C‖h̃‖Hr(Sd−1)‖wu‖Hs+m
ul (Rd),

provided that the right-hand side is finite.
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Remark that the condition on r above comes from the choice of N in (A.5), plus
d
2 +ε derivatives from Sobolev embeddings. Next, tracking the proof of Lemma 7.10
in [1] and Proposition A.5 above, we easily obtain the following proposition.

Proposition A.7. Let r > 0, and m ∈ R and w ∈ Wpo(%), % ≥ 0 . Let

p ∈ Sr1,0(Rd), a ∈ Sm1,0(Rd) be two symbols with constant coefficients. We assume

that there exists c0 > 0 such that for all ξ ∈ Rd we have p(ξ) ≥ c0|ξ|r. Then for all
s ∈ R and I = [0, T ], one can find a positive constant C such that

(A.9) ‖we−tp(D)a(D)u‖L∞(I,Hs)ul + ‖we−tp(D)a(D)u‖
L2(I,Hs+ r2 )ul

≤ C‖wu‖Hs+m
ul

,

provided that the right-hand side is finite.

A.2. Para-differential calculus with weights. Assuming the theory of para-
differential calculus for classical Sobolev spaces (see [14]) and for uniformly local
Sobolev spaces (see [1]), we present in this section such a theory with the presence
of weights.
Given m ∈ R, ρ ≥ 0 we denote by Γmρ (Rd) the class of symbols of order m and by
Ta the associated para-differential operator as in Definition 7.15, [1]. In particular,

Γ̇mρ (Rd) denotes the subspace of Γmρ (Rd) which consists of symbols a(x, ξ) homoge-
neous of degree m with respect to ξ.
To deal with the weights in the class Wpo(%), for any symbol a ∈ Γmρ and any real
number s, let us define the semi-norm

(A.10) Mm
ρ (a, s)% = sup

|α|≤I(d,m,s)%
sup
|ξ|≥ 1

2

‖(1 + |ξ|)|α|−m∂αξ a(·, ξ)‖W ρ,∞(Rd),

where I(d,m, s)% is the smallest even integer strictly greater than

(A.11) dme+ dse+ d−(m+ s)e+ d%e+
5d

2
+ 2.

If a is a symbol independent of ξ, the associated operator Ta is called a paraproduct
and we have the formal decomposition of Bony

au = Tau+ Tua+R(a, u).

A.2.1. Symbolic calculus. The following technical lemmas will be used in proving
results on symbolic calculus.

Lemma A.8. Let µ ∈ R, w ∈ Wpo(%), % ≥ 0 and N ≥ % + d + 1. Then there
exists C > 0 such that

(A.12) sup
x∈Rd

‖w(x)〈x− ·〉−Nu‖Hµ(Rd) ≤ C‖wu‖Hµ
ul(R

d)

provided that the right hand side is finite.

Proof. We write

w(x)〈x− y〉−Nχq(y)u(y) = w(x)w(y)−1 1

〈x− q〉N
〈x− q〉N

〈x− y〉N
χ̃q(y)w(y)χq(y)u(y).

Since the function y 7→ 〈x−q〉N
〈x−y〉N χ̃q(y) belongs to W∞,∞(Rd) with semi-norms uni-

formly bounded (independently of x and q), we deduce that

‖w(x)〈x− ·〉−Nu‖Hµ(Rd) ≤
∑
q∈Zd

w(x)‖〈x− ·〉−Nχqu‖Hµ ≤ CN
∑
q∈Zd

w(x)w(q)−1

〈x− q〉N
‖wu‖Hµ

ul

≤ CN
∑
q∈Zd

〈x− q〉ρ

〈x− q〉N
‖wu‖Hµ

ul
≤ C ′N‖wu‖Hµ

ul
.
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Combining this lemma and the proof of Lemma 7.13, [1], we obtain

Lemma A.9. Let w ∈ Wpo(%), % ≥ 0. Let χ ∈ C∞0 (Rd) and χ̃ ∈ C∞0 (Rd) be

equal to one on the support of χ. Let ψ, θ ∈ S(Rd). For every m,σ ∈ R there exists
a constant C > 0 such that
(A.13)∑

j≥−1

‖wχkψ(2−jD)((1− χ̃k)u)θ(2−jD)v‖Hm(Rd) ≤ C‖wu‖Hσ
ul(R

d)‖v‖L∞(Rd).

For every m,σ, t ∈ R one can find a constant C > 0 such that
(A.14)∑

j≥−1

‖wχkψ(2−jD)((1− χ̃k)u)θ(2−jD)v‖Hm(Rd) ≤ C‖wu‖Hσ
ul(R

d)‖v‖Ht
ul(R

d)

and
(A.15)∑
j≥−1

‖wχkψ(2−jD)((1− χ̃k)u)θ(2−jD)χ̃kv‖Hm(Rd) ≤ C‖wu‖Hσ
ul(R

d)‖χ̃kv‖Ht(Rd).

Remark A.10. It follows easily from the proof of the above lemma that the
same estimates as in (A.13), (A.14) and (A.15) hold if on the left-hand sides 2−j

is replaced by 2−j−j0 where j0 ∈ Z is fixed. We shall use this remark to deal with
paraproduct estimates.

It turns out that the symbolic calculus with weights possesses the same features
as in the usual setting.

Theorem A.11. Let m,m′ ∈ R, ρ ≥ 0 and w ∈ Wpo(%), % ≥ 0.

(i) If a ∈ Γm0 (Rd), then for all µ ∈ R, there exist a constant C > 0 such that

‖wTau‖Hµ
ul(R

d) ≤ CMm
0 (a, µ)%‖wu‖Hµ+m

ul (Rd).

(ii) If a ∈ Γmρ (Rd), b ∈ Γm
′

ρ (Rd) then, for all µ ∈ R, there exist a constant C > 0
such that

‖w(TaTb − Ta]b)u‖Hµ
ul(R

d)

≤ C
(
Mm
ρ (a, µ)%M

m′
0 (b, µ)% +Mm

0 (a, µ)%M
m′
ρ (b, µ)%

)
‖wu‖

Hµ+m+m′−ρ
ul (Rd)

with

a]b :=
∑
|α|<ρ

(−i)|α|

α!
∂αξ a(x, ξ)∂αx b(x, ξ).

(iii) Let a ∈ Γmρ (Rd) and denote by T ∗a the adjoint operator of Ta and by a∗ the
complex conjugate of a (in case a is a matrix, a∗ is its conjugate transpose). Then
for all µ ∈ R there exists a constant C > 0 such that

‖w(T ∗a − Tb)u‖Hµ
ul(R

d) ≤ CMm
ρ (a, µ)%‖wu‖Hµ+m−ρ

ul (Rd).

with

b =
∑
|α|<ρ

(−i)|α|

α!
∂αξ ∂

α
x a
∗(x, ξ).

Proof. We give the proof for the first assertion only since these three points are
proved along the same lines. For simplicity we shall consider symbols in Γ̇mρ (Rd).
Step 1. Consider first the case where a is a bounded function and write

χkwTau = χkwTa(χ̃ku) + χkwTa((1− χ̃k)u).
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The classical theory gives

‖χkwTa(χ̃ku)‖Hµ ≤ Cw(k)‖a‖L∞‖χ̃ku‖Hµ ≤ Cw(k)‖a‖L∞w(k)−1‖χ̃kwu‖Hµ

≤ C‖a‖L∞‖wu‖Hµ
ul
.

The estimate for the second term follows immediately from (A.13).

Step 2. Next we consider the case a(x, ξ) = b(x)h(ξ) where h(ξ) = |ξ|mh̃
( ξ
|ξ|
)

with

h̃ ∈ C∞(Sd−1). Then directly from the definition we have Ta = Tb(ψh)(Dx), where
the cut-off ψ is given by (A.7). The desired estimate in (i) follows from Step 1 and
Proposition A.6.

Step 3. Finally, for the general case we introduce (h̃ν)ν∈N∗ an orthonormal basis of
L2(Sd−1) consisting of eigenfunctions of the (self adjoint) Laplace Beltrami operator

∆ω = ∆Sd−1 on L2(Sd−1) i.e. ∆ωh̃ν = λ2
ν h̃ν . Setting hν = |ξ|mh̃(ω), ω = ξ

|ξ| when

ξ 6= 0, we can write

a(x, ξ) =
∑
ν∈N∗

bν(x)hν(ξ) where bν(x) =

∫
Sd−1

a(x, ω)h̃ν(ω)dω.

With I = I(d,m, µ)% we have

λIνbν(x) =

∫
Sd−1

∆
I
2
ωa(x, ω)h̃ν(ω)dω,

which gives

(A.16) ‖bν‖L∞(Rd) ≤ Cλ−Iν Mm
0 (a, µ)%.

By definition of I, we can find an integer r such that

dme+ dµe+ d−(m+ µ)e+ d%e+
3d

2
+ 1 < r < I − d.

By the Weyl formula we know that λν ∼ cν
1
d . In addition, there exists a positive

constant K such that for all ν ≥ 1

(A.17) ‖h̃ν‖Hr(Sd−1) ≤ Kλrν .

Now using the steps above and Proposition A.6 we obtain (ψ is given by (A.7))

‖wTau‖Hµ
ul
≤
∑
ν≥1

‖Tbν (ψhν)(Dx)u‖Hµ
ul

≤ C
∑
ν≥1

‖bν‖L∞(Rd)‖h̃ν‖Hr(Sd−1)‖wu‖Hµ+m
ul

.Mm
0 (a, µ)%‖wu‖Hµ+m

ul

∑
ν≥1

ν
−I+r
d

.Mm
0 (a, µ)%‖wu‖Hµ+m

ul
.

�

A.2.2. Paraproducts.

Proposition A.12. Let w ∈ Wpo(%), % ≥ 0. Let s0, s1, s2 ∈ R satisfying s0 ≤ s2
and s0 < s1 + s2 − d

2 . Then there exists C > 0 such that

‖wTau‖Hs0
ul
≤ C min

{
‖a‖Hs1

ul
‖wu‖Hs2

ul
, ‖wa‖Hs1

ul
‖u‖Hs2

ul

}
.
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Proof. We write

(A.18) χkwTau = χkwTa(1− χ̃k)u+ χkwTχ̃kaχ̃ku+ χkwT(1−χ̃k)aχ̃ku.

By the classical result, we have
(A.19)
‖χkwTχ̃kaχ̃ku‖Hs0 . w(k)‖Tχ̃kaχ̃ku‖Hs0 . w(k)‖χ̃ka‖Hs1‖χ̃ku‖Hs2 . ‖a‖Hs1

ul
‖wu‖Hs2

ul
.

On the other hand, applying (A.14) gives

‖χkwTa(1− χ̃k)u‖Hs0 . ‖a‖Hs1
ul
‖wu‖Hs2

ul

and it follows form (A.15) (applied with w ≡ 1) that

‖χkwT(1−χ̃k)aχ̃ku‖Hs0 . w(k)‖χkT(1−χ̃k)aχ̃ku‖Hs0

. w(k)‖a‖Hs1
ul
‖χ̃ku‖Hs2 . ‖a‖Hs1

ul
‖wu‖Hs2

ul
.

Consequently, we obtain

‖wTau‖Hs0
ul
≤ C‖a‖Hs1

ul
‖wu‖Hs2

ul
.

Now if instead of (A.2.2), we decompose

χkwTau = χkwT(1−χ̃k)au+ χkwTχ̃kaχ̃ku+ χkwTχ̃ka(1− χ̃k)u
then we get

‖wTau‖Hs0
ul
≤ C‖wa‖Hs1

ul
‖u‖Hs2

ul
.

The proof is complete. �

Proposition A.13. Let w ∈ Wpo(%), % ≥ 0 and two functions a ∈ Hs1
ul (R

d), u ∈
Hs2
ul (R

d).
(i) If s1 + s2 > 0 then

(A.20) ‖wR(a, u)‖
H

s1+s2−
d
2

ul (Rd)
≤ C‖a‖Hs1

ul(R
d)‖wu‖Hs2

ul(R
d).

(ii) If s1 + s2 > 0, s0 ≤ s1 and s0 < s1 + s2 − d
2 then there exists a constant C > 0

such that

‖w(a− Ta)u‖Hs0
ul(R

d) ≤ C min
{
‖a‖Hs1

ul(R
d)‖wu‖Hs2

ul(R
d), ‖wa‖Hs1

ul(R
d)‖u‖Hs2

ul(R
d)

}
.

(A.21)

(iii) If s1 + s2 > 0, s0 ≤ s1, s2 and s0 < s1 + s2 − d
2 then there exists a constant

C > 0 such that

‖wau‖Hs0
ul(R

d) ≤ C min
{
‖a‖Hs1

ul(R
d)‖wu‖Hs2

ul(R
d), ‖wa‖Hs1

ul(R
d)‖u‖Hs2

ul(R
d)

}
.(A.22)

Proof. (i) By definition, we have (for some cut-off function ϕ)

R(a, u) =
∑
j≥−1

∑
|k−j|≤1

ϕ(2−jD)a · ϕ(2−kD)u.

We write a = χ̃ka+ (1− χ̃k)a, u = χ̃ku+ (1− χ̃k)u so that

χkwR(a, u) = χkwR(χ̃ka, χ̃ku) + χkwSk(a, u).

The first term is estimated by the same method as (A.19) with the use of Theorem
2.9 (i) in [2]. The remainder wχkSk(a, u) is estimated by using (A.14) and (A.15).
(ii) and (iii) are direct consequences of (i) and Proposition A.12. �

Remark A.14. We remark that with the methods in the proofs above, the
commutator estimate in Lemma 7.20, [1] still holds for uniformly local Sobolev
spaces with the weight w ∈ Wpo(%), % ≥ 0.
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A.3. Transport equations. For the sake of completeness we present a weighted
version of Lemma 7.19, [1] on transport equations in uniformly local Sobolev spaces.
The result holds for weights in a large class than W while its proof is a direct con-
sequence of Lemma 7.19, [1].
We denote byW0 the class of all functions w : Rd → (0,∞) such that ∇ww ∈ C

∞
b (Rd).

Lemma A.15. Let I = [0, T ], s0 > 1 + d
2 , µ > 0 and w ∈ W0. Then there

exists F : R+ → R+ non decreasing such that for Vj ∈ L∞(I,Hs0(Rd))ul ∩
L∞(I,Hµ(Rd))ul j = 1, d, wf ∈ L1(I,Hµ(Rd))ul, wu0 ∈ Hµ

ul(R
d) and any solu-

tion u with wu ∈ L∞(I,Hs0(Rd))ul to the problem

(A.23) (∂t + V · ∇)u = f, u|t=0 = u0

we have

(A.24) ‖wu‖L∞(I,Hµ)ul ≤ F
(
T‖V ‖L∞(I,Hs0 )ul

){
‖wu0‖Hµ

ul
+ ‖wf‖L1(I,Hµ)ul

+ sup
k∈Zd

∫ T

0
‖wu(σ)‖Hs0

ul
‖χ̃kV (σ)‖Hµdσ

}
.

Proof. If u is a solution to the transport problem (A.23) then wu is a solution
to

(∂t + V · ∇)(wu) = g, wu|t=0 = u0

with g := f + uV · ∇w = f + uwV · r, r = ∇w
w ∈ C

∞
b (Rd). We are in position to

apply Lemma 7.19, [1] to have

‖wu‖L∞(I,Hµ)ul ≤ F
(
T‖V ‖L∞(I,Hs0 )ul

){
‖wu0‖Hµ

ul
+ ‖wg‖L1(I,Hµ)ul

+ sup
k∈Zd

∫ T

0
‖wu(σ)‖Hs0

ul
‖χ̃kV (σ)‖Hµdσ

}
.

On the other hand, for k ∈ Zd using the product rule (2.16) one has with n large
enough

‖χkwu(σ)V (σ) · r‖Hµ ≤ C‖χ̃kwu(σ)V (σ)‖Hµ‖χkr‖Hn

Since r ∈ C∞b (Rd), ‖χkr‖Hn can be bounded by a constant independent of k. Finally,

applying once again the product rule (2.16) (remark that s0 > 1 + d
2) gives

‖χ̃kwu(σ)V (σ)‖Hµ ≤
∑

|q−k|≤M

‖χqwu(σ)‖Hs0‖χ̃kV (σ)‖Hµ

≤ C‖wu(σ)‖Hs0
ul
‖χ̃kV (σ)‖Hµ .

Consequently,

‖wuV · r‖L1(I,Hµ)ul = sup
k∈Zd

∫ T

0
‖χkwu(σ)V (σ) · r‖Hµdσ

≤ C sup
k∈Zd

∫ T

0
‖wu(σ)‖Hs0

ul
‖χ̃kV (σ)‖Hµdσ,

from which the estimate (A.24) follows. �
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