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Pseudo-local property of gravity water waves system

Quang-Huy Nguyen

Abstract. By proving a weighted contraction estimate for the flow of gravity
water waves, we show that this nonlocal system is in fact pseudo-local in the
following sense: locally in time, the dynamic far away from a given bounded
region has a small effect on that region (again, in a sense that we will make
precise in the article). Our estimate on the flow also implies a new spatial decay
property of the waves.

1. Introduction

1.1. The problem. We consider an incompressible, irrotational, inviscid fluid
moving in a domain Ω underneath a free surface described by η and above a bottom
described by a given function η∗, which is assumed to be bounded and continuous.
Namely,

Ω = {(t, x, y) ∈ [0, T ]×Rd ×R : η∗(x) < y < η(t, x)}.
We also denote by Σ the free surface and by Γ the bottom,

Σ = {(t, x, y) ∈ [0, T ]×Rd ×R : y = η(t, x))},

Γ = {(x, y) ∈ Rd ×R : y = η∗(x)}.
The velocity filed v admits a potential φ : Ω→ R such that v = ∇x,yφ and ∆x,yφ = 0
in Ω. We introduce the trace of the potential on the surface

ψ(t, x) = φ(t, x, η(t, x))

and the Dirichlet-Neumann operator

(1.1)
G(η)ψ =

√
1 + |∇xη|2

(∂φ
∂n


Σ

)
= (∂yφ)(t, x, η(t, x))−∇xη(t, x) · (∇xφ)(t, x, η(t, x)).

Then (see [9]) the gravity water waves system in the Zakharov/Craig–Sulem formu-
lation reads as follows

(1.2)


∂tη = G(η)ψ,

∂tψ = −1

2
|∇xψ|2 +

1

2

(∇xη · ∇xψ +G(η)ψ)2

1 + |∇xη|2
− gη

where g is the acceleration of gravity.
Following [1] we shall consider the vertical and horizontal components of the velocity
on the free surface as unknowns which can be expressed in terms of η and ψ:

(1.3) B = (vy)|Σ =
∇xη · ∇xψ +G(η)ψ

1 + |∇xη|2
, V = (vx)|Σ = ∇xψ −B∇xη.

Recall also that the Taylor coefficient a = −∂P
∂y


Σ

can be defined in terms of

η, ψ,B, V only (see §4.2 in [2] and §4.3.1 in [9]).
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The (local) well-posedness theory for gravity water waves (under the formulation
(1.2) or the others) in Sobolev spaces Hs(Rd) has been studied by many authors,
for example Yosihara [17], Wu [14, 15], Lannes [8]; we refer to the recent book of
Lannes [9] for a comprehensive survey of the subject. In these works, the waves were
assumed to be of infinite extend (and vanish at infinity), that is, there is no restric-
tion on the horizontal direction. However, in reality water waves always propagate
in some bounded container (a lake, an ocean, etc) and hence there will be contacts at
the ”vertical boundary” of the container. A natural question then arises: (Q) can we
justify the Rd-approximation? More precisely, if (1.2) is a good model then it has to
satisfy in certain sense the following property: the dynamic at ”infinity” has a small
effect on bounded regions. Since (1.2) appears to be nonlocal (due to the presence
of the Dirichlet-Neumann operator) it is not clear that the above replacement at
”infinity” is harmless. We should mention that in the special case of a canal or a
rectangle basin where the walls are right vertical, the local theory was considered by
Alazard-Burq-Zuily [1], Kinsey-Wu [7], Wu [16]. Our goal in the present paper is to
give the following answer to question (Q). Considering a bounded reference domain,
we shall prove that in some sense, far away from this reference domain, the dynamic
there has a small effect on the reference domain, and the farther it is the smaller the
effect is. In other words, this proves that the gravity water waves system enjoys the
”pseudo-local property” (the terminology ”pseudo” will be clear in our explaination
below).

1.2. Main results. We recall first the definition of uniformly local Sobolev
spaces (or Kato’s sapces) introduced by Kato in [6].

Definition 1.1. Let χ ∈ C∞(Rd) with suppχ ⊂ [−1, 1]d, χ = 1 near [−1
4 ,

1
4 ]d

such that

(1.4)
∑
q∈Zd

χq(x) = 1, ∀x ∈ Rd, χq(x) = χ(x− q).

For s ∈ R define Hs
ul(R

d) the space of distributions u ∈ Hs
loc(R

d) such that

‖u‖Hs
ul(R

d) := sup
q∈Zd

‖χqu‖Hs(Rd) < +∞.

This definition is independent of the choice of χ ∈ C∞0 (Rd) satisfying (1.4) (see
Lemma 7.1 in [1]).

Notation 1.2. We set for all σ ∈ R,

Hσul = H
σ+ 1

2
ul (Rd)×Hσ+ 1

2
ul (Rd)×Hσ

ul(R
d)×Hσ

ul(R
d),

Wσ = W σ+ 1
2
,∞(Rd)×W σ+ 1

2
,∞(Rd)×W σ,∞(Rd)×W σ,∞(Rd).

Denote also by U = (η, ψ,B, V ) the unknown of system (1.2) and by U0 = (η0, ψ0, B0, V 0)
its initial value.

The Cauchy theory proved in [1] reads as follows

Theorem 1.3. Let s > 1 + d
2 and U0 ∈ Hs

ul with

(1.5) inf
x∈Rd

(η0(x)− η∗(x)) ≥ 2h > 0, inf
x∈Rd

a(0, x) ≥ 2c > 0.

Then there exists T > 0 such that the Cauchy problem for (1.2) with datum U0 has
a unique solution

U ∈ L∞([0, T ],Hs
ul) ∩ C0([0, T ],Hrul), ∀r < s
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and

(1.6) inf
t∈[0,T ]

inf
x∈Rd

[η(t, x)− η∗(x)] ≥ h, inf
t∈[0,T ]

inf
x∈Rd

a(t, x) ≥ c.

Moreover, for given h, c > 0 the existence time T can be chosen uniformly for data
belonging to a bounded set of Hs

ul.

Conditions (1.5) mean that initially, the free surface is away from the bottom and
the Taylor coefficient is positively away from 0. Then the conclusion (1.6) asserts
that these properties are propagated by the waves, locally in time. We shall always
consider in the sequel solutions of (1.2) obeying these properties, which for the sake
of simplicity is denoted by

(1.7)
Ps,T (h, c) := {U = (η, ψ,B, V ) ∈ L∞([0, T ],Hs

ul) solution to (1.2), satisfying (1.6)

and U |t=0 satisfies (1.5)}.

Our main result concerning the solution map of the gravity water waves is stated in
the following theorem.

Theorem 1.4. Let s > 1 + d/2, T > 0 and two positive constants h, c. Then
for every λ ∈ R there exists a function K : R+ ×R+ → R+ nondecreasing in each
argument, such that

(1.8) ‖〈·〉λ(U1 − U2)‖C([0,T ],Hs−1
ul ) ≤ K(M1,M2)‖〈·〉λ(U1 − U2)|t=0‖Hs−1

ul

for all U1, U2 ∈ Ps,T (h, c), provided that the right-hand side is finite, where

Mj := ‖Uj‖L∞([0,T ],Hs
ul)
< +∞, j = 1, 2.

As a consequence, we have

Corollary 1.5. Let s > 1 + d/2; h, c > 0 and A be a bounded set in Hs
ul.

Denote by T the uniform existence time of solutions to (1.2) in Ps,T (h, c) with data
in A. Then there exists 0 < T1 ≤ T such that the following property holds:
for every λ ∈ R one can find a constant C > 0 such that

(1.9) ‖〈·〉λ(U1 − U2)‖C([0,T1],Hs−1
ul ) ≤ C‖〈·〉

λ(U1 − U2)|t=0‖Hs−1
ul
,

for all Uj ∈ Ps,T (h, c) with Uj |t=0 ∈ A and provided that the right-hand side is finite.

In Corollary 1.5 if we take U2|t=0 = 0 and use the Sobolev embeddings (see
Proposition 2.2, [1])

Hr
ul(R

d) ↪→W r− d
2
,∞(Rd), r >

d

2
, r − d

2
/∈ N,

we derive

Corollary 1.6. Let s > d/2 and h, c > 0. Then for any bounded set A in Hs
ul,

there exists a time T > 0 such that:
for every λ ∈ R one can find a constant C > 0 such that

(1.10) ‖〈·〉λU‖C([0,T ],Hs−1
ul ) ≤ C‖〈·〉

λU |t=0‖Hs−1
ul

for all U ∈ Ps,T (h, c) with U |t=0 ∈ A and provided that the right-hand side is finite.

Moreover, if s ≥ r > 1 + d
2 and r − d

2 /∈ N it follows that

(1.11) ‖〈·〉λU‖
C([0,T ],Wr−1− d2 )

≤ C‖〈·〉λU |t=0‖Hs−1
ul
.
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Remark 1.7. 1. Of course, if λ ≤ 0 then the right-hand sides of (1.8), (1.9), (1.10), (1.11)
are automatically finite.
2. For the Camassa-Holm equation, an approximate model in shallow water waves
regime, it was proved in [12] with λ > 1/2 that

‖(1 + x)λu‖
L∞t W

1,∞
x
. ‖(1 + x)λu|t=0‖W 1,∞

x
.

1.3. Interpretation of the results. 1. The Zakharov system (1.2) appears
to be nonlocal, which comes from the fact that the Dirichlet-Neumann operator
defined by (1.1) is nonlocal. This can be seen more concretely by considering the
case of fluid domain with infinite depth (i.e. Γ = ∅) and free surface at rest (i.e.
η = 0). Then, the Dirichlet-Neumann operators is G(0) = |Dx|. However, Corollary
1.5 shows that the system is in fact still weakly local as explained below.

Take s > 1+d/2. Let’s restrict ourselves to a bounded set A of Hs
ul and suppose

that we are observing a bounded domain, which by translation can be assumed to
be centered at the origin, say O = B(0, 1). Let U0,1, U0,2 be two data in A such that

they are identical in a ball B(0, R) and have difference in Hs−1
ul of size 1 outside this

ball, where R > 1 is a given distance. Take a ”window” φ around our observation
region O, that is, φ ∈ C∞0 (B(0, 3/2)) and φ ≡ 1 in O. Then by the estimate (1.9)
we have for some T = T (A) > 0 and any N > 0

‖φ(U1 − U2)‖C([0,T ],Hs−1
ul ) ≤ CN‖〈·〉

−N (U1 − U2)‖C([0,T ],Hs−1
ul )

≤ CN‖〈·〉−N (U1 − U2)‖C([0,T ],Hs−1
ul )

≤ CN,A‖〈·〉−N (U0,1 − U0,2)‖Hs−1
ul
≤ CN,AR−N .

−1 R−R 1

1

U0,1

t = 0

U0,2
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−1

Therefore, under the dynamic governed by system (1.2), a difference of size 1 outside
the ball B(0, R) of initial data leads to a difference of size R−N of two solutions in
the bounded domain B(0, 1) (see the figures above). When R→ +∞, the difference
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of two solutions tends to 0 at a rate faster than any polynomial. In other words,
to some extent, what happens far away has small effect on a given bounded region;
moreover this effect becomes smaller and smaller when the distance increases to
+∞. This gives us a weakly local property of gravity water waves. This property is
indeed dictated by the polynomial decay off the diagonal of the kernel of differential
operators in suitable classes, as we shall explain in point 3. below.

2. As a consequence of Corollary 1.6, the estimate (1.11) with λ > 0 provides
a spatial decay property for solutions. In classical Sobolev spaces, solutions always
vanish at infinity. On the other hand, Theorem 1.3 gives the existence of solutions
in Kato’s spaces which can be neither decaying nor periodic. The estimate (1.11)
however gives a conclusion for the intermediate case: as long as the datum decays
at some algebraic rate (which, physically, is more natural than exponential decay)
in Kato’s space, the solution decays also, and moreover, at the same rate.

3. Let us explain why the polynomial growth weight 〈x〉λ is a reasonable choice
in our result. For this purpose, a good way is to look at the linearization of system
(1.2) around the rest state (η, ψ) = (0, 0) (take g = 1):

(1.12)

{
∂tη − |Dx|ψ = 0,

∂tψ + η = 0

or equivalently, with u := η + i|Dx|
1
2ψ,

∂tu+ i|Dx|
1
2u = 0.

Given a datum u0 at time t = 0, this linearized equation has the explicit solution

u(t, x) = e−it|Dx|
1
2 u0(x) = p(t,Dx)u0,

where the symbol p reads p(t, ξ) = −it|ξ|
1
2 . Then for λ ∈ R and 0 < T < ∞, we

seek for the following estimate

(1.13) ‖〈·〉λu‖C([0,T ];Hs
ul)
≤ C‖〈·〉λu0‖Hs

ul
.

Modifying p at 0 using a suitable cut-off function, we have that p satisfies

(1.14) |∂αξ p(t, ξ)| ≤ Cα(1 + ξ)−
1
2
|α|, ∀α ∈ Nd, (t, ξ) ∈ [0, T ]×Rd,

which is usually denoted by p ∈ S0
1
2
,0

. An adaptation of the proof of Proposition 5.3

then implies the estimate (1.13). For simplicity let us consider s = 0, we need to
show for any fixed k ∈ Zd

(1.15) Ak :=
∑
q

〈·〉λχkPχq〈·〉−λ : L2(Rd)→ L2(Rd)

with norm bounded uniformly in k. Due to the presence of χk it suffices to prove
A : L2(Rd) → L∞(Rd). To this end, we call K(x, y) the kernel of the pseudo-
differential operator P then the kernel of Ak is∑

q

〈x〉λχk(x)K(x, y)χq(y)〈y〉−λ ∼
∑
q

〈k〉λK(k, q)〈q〉−λ,

where the absolute value of each term in the above series is bounded by 〈k −
q〉|λ||K(k, q)|. On the other hand, from the decay property (1.14) of ∂αξ p, the kernel
K satisfies

|K(k, q)| ≤ CN |k − q|−N , ∀k 6= q.

Therefore, for the sequence (1.15) to be convergent, it is reasonable to choose the
polynomial weights as above. This argument suggests that the weighted estimate
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(1.13) is rather unlikely to hold for the water wave model with surface tension, in
which case the propagator is given by

u(t, x) = e−it|Dx|
3
2 u0(x).

This is a pseudo-differential operator with symbol p(t, ξ) = e−it|ξ|
3
2 , whose deriva-

tives do not decay but growth in ξ → +∞. This reflects the infinite speed of
propagation of the gravity-capillary waves.

1.4. Plan of the proof. To prove Theorem 1.4 we follow essentially the scheme
in [1]. The first task is to adapt the paradifferential machinery to Kato’s spaces with
weights. This is done in Appendix 5, which can be of independent interest for other
studies in this framework. Having this in hand, compare to [1] (and also [2]) the main
ingredient for the proof of Theorem 1.4 reduces to the study of bound estimates, par-
alinearization and contraction estimate for the Dirichlet-Neumann operator. These
are done in section 2 and 3 below, respectively.

Acknowledgment. This work was partially supported by the labex LMH through
the grant no ANR-11-LABX-0056-LMH in the ”Programme des Investissements
d’Avenir”. I would like to send my deepest thanks to my advisor, Prof. Nicolas
Burq for his great guidance with many fruitful discussions and constant encourage-
ment during this work.

2. A weighted description for the Dirichlet-Neumann operator

2.1. Definition of the Dirichlet-Neumann operator. In this sections, we
drop the time dependence of the domain and work on the domain of the form

(2.1) Ω = {(x, y) ∈ Rd+1 : η∗(x) < y < η(x)}

where η∗ is a fixed bounded continuous function on Rd and η ∈ W 1,∞(Rd). We
assume that Ω contains a fixed strip

(2.2) Ωh := {(x, y) ∈ Rd+1 : η(x)− h ≤ y < η(x)}.

2.1.1. Straightening the boundary. We recall here the change of variables intro-
duced in [2] (see section 3.1.1) to flatten the domain with free boundary (which
is in turn inspired by Lannes [8]). Consider the map (x, z) 7→ (x, ρ(x, z)) from

Ω̃ := Rd × (−1, 0) to Ωh determined by

(2.3) ρ(x, z) = (1 + z)eδz〈Dx〉η(x)− z
[
e−(1+z)δ〈Dx〉η(x)− h

]
if (x, z) ∈ Ω̃.

For δ small enough this map is a Lipschitz-diffeomorphism from Ω̃ to Ωh.

Notation 2.1. For any function f defined on Ω, we set

(2.4) f̃(x, z) = f(x, ρ(x, z))

then

(2.5)


∂f

∂y
(x, ρ(x, z)) =

1

∂zρ
∂z f̃(x, z) := Λ1f̃(x, z)

∇xf(x, ρ(x, z)) =
(
∇xf̃ −

∇xρ
∂zρ

∂z f̃
)
(x, z) := Λ2f̃(x, z).
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2.1.2. Definition of the Dirichlet-Neumann operator G(η). Let ψ ∈ H
1
2
ul(R

d), we
recall how G(η)ψ is defined (section 3.1, [1]).

For every q ∈ Zd, set ψq = χqψ ∈ H
1
2 (Rd) then one can find ψ

q
∈ H1(Ω) such that

ψ
q
|y=η(x) = ψq(x) and

(i) suppψ
q
⊂ {(x, y) : |x− q| ≤ 2, η(x)− h ≤ y ≤ η(x)}

(ii) ‖ψ
q
‖H1(Ω) ≤ F(‖η‖W 1,∞(Rd))‖ψq‖H 1

2 (Rd)
.

Let uq ∈ H1,0(Ω) :=
{
v ∈ H1(Ω), v|Σ = 0

}
be the unique variational solution, to

equation ∆x,yuq = −∆x,yψq, which is characterized by

(2.6)

∫∫
Ω
∇x,yuq(x, y) · ∇x,yθ(x, y)dxdy = −

∫∫
Ω
∇x,yψq(x, y) · ∇x,yθ(x, y)dxdy

for all θ ∈ H1,0(Ω). The series u :=
∑

q∈Zd uq is then convergent in

H1,0
ul (Ω) :=

{
v : sup

q∈Zd
‖χqv‖H1(Ω) < +∞ and v|Σ = 0

}
.

Finally, u+ ψ :=
∑

q∈Z uq +
∑

q∈Z ψq solves uniquely the elliptic problem

(2.7) ∆x,yΦ = 0 in Ω, Φ|Σ = ψ,
∂Φ

∂ν
|Γ = 0,

(in the variational sense) and the Dirichlet-Neumann operator is defined by

(2.8)
G(η)ψ(x) = (1 + |∇xη|2)

1
2
∂Φ

∂n
|Σ =

(∂Φ

∂y
−∇xη · ∇xΦ

)
|Σ

=
(
Λ1Φ̃−∇xη · Λ2Φ̃

)
|z=0 =

(
Λ1Φ̃−∇xρ · Λ2Φ̃

)
|z=0.

2.2. Elliptic regularity with weights. We observe that if u is a solution of
the elliptic equation ∆u = 0 on Ω and ũ is its image via the diffeomorphism (2.3)
then

(Λ2
1 + Λ2

2)ũ = 0,

which is equivalent to (see equation 3.16, [2])

(2.9) (∂2
z + α∆x + β · ∇x∂z − γ∂z)ũ = 0,

where

(2.10) α :=
(∂zρ)2

1 + |∇ρ|2
, β := −2

∂zρ∇xρ
1 + |∇xρ|2

, γ :=
1

∂zρ

(
∂2
zρ+α∆xρ+β ·∇x∂zρ

)
.

These coefficients are estimated by

Lemma 2.2 ([1, Lemma 4.17]). Let J = (−1, 0). There exists F : R+ → R+

non decreasing such that (see Definition (5.1) for the definition of Xµ
ul)

‖α‖
X

s− 1
2

ul (J)
+ ‖β‖

X
s− 1

2
ul (J)

+ ‖γ‖
X

s− 3
2

ul (J)
≤ F

(
‖η‖

H
s+1

2
ul

)
.

Let us denote by L the linear differential operator

(2.11) L = ∂2
z + α∆x + β · ∇x∂z

and consider the following inhomogeneous initial value problem

(2.12)

{
(L − γ∂z)ũ = F in Rd × J,
ũ|z=0 = ψ.

7



Definition 2.3. Let w : Rd → R be a function such that w(x) 6= 0, ∀x ∈ R and
define {

r1 := ∇w−1

w−1 , r
′
1 := ∇w

w ,

r2 := ∆w−1

w−1 , r
′
2 := ∆w

w .

We say that w belongs to the classW of acceptable weights if ri, r
′
i are in C∞b (Rd), i =

1, 2.

Example 2.4. For any t, s ∈ R, the functions et〈x〉, 〈x〉s, et〈x〉〈x〉s are in class
W.

Now we fix a wieght w ∈ W and set ṽ = wũ. A simple computation shows that
ṽ satisfies

Lṽ + (β · r1 − γ)∂z ṽ + αr2ṽ + 2αr1 · ∇ṽ = wF.

Next, set ṽk = χkṽ, then

(2.13) Lṽk = χkwF + F0 + F1

where{
F0 = α∆χkṽ + 2α∇χk · ∇xṽ + β · ∇xχk∂z ṽ − χkβ · r1∂z ṽ − χkαr2ṽ − 2χkαr1 · ∇ṽ,
F1 = χkγ∂z ṽ.

Notice that since r1, r2 are in C∞b (Rd) the proof of Lemma 3.18 in [1] still works
and we have

Lemma 2.5. Let J = (−1, 0). There exists F : R+ → R+ non decreasing such
that for −1

2 ≤ σ ≤ s − 1 with σ + 1
2 ≤ s − 1

1∑
j=0

‖Fj‖
Y σ+

1
2 (J)
≤ F

(
‖η‖

H
s+1

2
ul

)
‖∇x,z ṽ‖Xσ

ul(J).

(see Definition 5.1 for the definition of Y µ), where F depends on w only through the
semi-norms of ri, r

′
i, i = 1, 2 (in C∞b (Rd)).

Now, applying Proposition 3.19, 3.20 and 3.16 in [1] leads to an elliptic regularity
theorem with weights:

Theorem 2.6. Let w ∈ W, J = (−1, 0). Let ũ be a solution of the problem

(2.12) and set ṽ = wũ. For −1
2 ≤ σ ≤ s − 1 let η ∈ H

s+ 1
2

ul (Rd) satisfying (2.2),

wψ ∈ Hσ+1
ul (Rd), F ∈ Y σ

ul(J) and

(2.14) ‖∇x,z ṽ‖
X
− 1

2
ul (J)

< +∞.

Then for every z ∈] − 1, 0[ there exists F : R+ → R+ non decreasing, depending
only on (s, d) and the semi-norms of ri, r

′
i, i = 1, 2 (in C∞b (Rd)) such that

‖∇x,z ṽ‖Xσ
ul(z0,0) ≤ F

(
‖η‖

H
s+1

2
ul

){
‖wψ‖Hσ+1

ul
+ ‖wF‖Y σul(J) + ‖∇x,z ṽ‖

X
− 1

2
ul (J)

}
.

Consequently,

‖w∇x,zũ‖Xσ
ul(z0,0) ≤ F

(
‖η‖

H
s+1

2
ul

){
‖wψ‖Hσ+1

ul
+ ‖wF‖Y σul(J) + ‖w∇x,zũ‖

X
− 1

2
ul (J)

}
.

Remark 2.7. We remark that in all the results stated below, the function F
depend on w only through the semi-norms of ri and r′i, i = 1, 2 in C∞b (Rd).

To apply Theorem 2.6 we need the following estimate in the low norm X
− 1

2
ul . For

the proof of this, let us recall the following classical interpolation result
8



Lemma 2.8 ([10, Theorem 30]). Let J = (−1, 0) and σ ∈ R. Let f ∈ L2
z(J,H

σ+ 1
2 (Rd))

be such that ∂zf ∈ L2
z(J,H

σ− 1
2 (Rd)). Then f ∈ C0

z ([−1, 0], Hσ(Rd)) and there exists
an absolute constant C > 0 such that

‖f‖C0
z ([−1,0],Hσ(Rd)) ≤ C‖f‖L2

z(J,Hσ+1
2 (Rd))

+ C‖∂zf‖
L2
z(J,Hσ− 1

2 (Rd))
.

Proposition 2.9. Let J = (−1, 0), λ ∈ R and Φ be the unique solution to (2.7).
Then, there exists a non decreasing function F : R+ → R+ such that

(2.15) ‖〈x〉λ∇x,zΦ̃‖
X
− 1

2
ul (J)

≤ F(‖η‖
H

s+1
2

ul (Rd)
)‖〈x〉λψ‖

H
1
2
ul(R

d)
.

Proof. We proceed in two steps.
Step 1. By Lemma 3.6 in [1] one can find a non decreasing function F1 : R+ → R+

such that for all µ > 0 satisfying

(2.16) µF1(‖η‖L∞(Rd)) ≤ 1

there exists F : R+ → R+ non decreasing such that for all q ∈ Zd we have

(2.17) ‖eµ〈x−q〉∇x,yuq‖L2(Ω) ≤ F(‖η‖W 1,∞(Rd))‖ψq‖H 1
2 (Rd)

.

Using properties (i) and (ii) above of ψ
q

(see section 3.1.2), we see that (2.17) also

holds for uq replaced by ψ
q

for any µ > 0 and thus (2.17) is true for uq replaced by

Φq = uq + ψ
q
, i.e.,

‖eµ〈x−q〉∇x,zΦq‖L2(Ω) ≤ F(‖η‖W 1,∞(Rd))‖ψq‖H 1
2 (Rd)

for any µ > 0 satisfying (2.16).
Using the diffeomorphism (2.3) we deduce that

(2.18) ‖eµ〈x−q〉∇x,zΦ̃q‖L2(J,L2(Rd)) ≤ F(‖η‖W 1,∞(Rd))‖ψq‖H 1
2 (Rd)

.

On the support of χk, we have 〈x〉λeµ〈x−q〉 ∼ 〈k〉λeµ〈k−q〉. Hence

‖χk〈x〉λ∇x,zΦ̃q‖L2(J,L2(Rd)) ≤ 〈k〉λe−µ〈k−q〉F(‖η‖W 1,∞(Rd))‖ψq‖H 1
2 (Rd)

,

from which it follows that

‖χk〈x〉λ∇x,zΦ̃‖L2(J,L2(Rd)) ≤
∑
q

‖χk〈x〉λ∇x,zΦ̃q‖L2(J,L2(Rd))

≤
∑
q

〈k〉λe−µ〈k−q〉F(‖η‖W 1,∞(Rd))‖ψq‖H 1
2 (Rd)

≤
∑
q

〈k〉λe−µ〈k−q〉F(‖η‖W 1,∞(Rd))〈q〉−λ‖〈x〉λψq‖H 1
2 (Rd)

≤
∑
q

〈k − q〉|λ|e−µ〈k−q〉F(‖η‖W 1,∞(Rd))‖〈x〉λψq‖H 1
2 (Rd)

.

Therefore, we obtain

(2.19) ‖χk〈x〉λ∇x,zΦ̃‖L2(J,L2(Rd)) ≤ F(‖η‖W 1,∞(Rd))‖〈x〉λψ‖
H

1
2
ul(R

d)
.

Step 2. To complete the proof of this lemma, it remains to show for any k ∈ Zd that

(2.20) ‖χkw∇x,zΦ̃‖
L∞(J,H−

1
2 (Rd))

≤ F(‖η‖W 1,∞(Rd))‖wψ‖
H

1
2
ul(R

d)
,
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where w = 〈x〉λ.
By the interpolation Lemma 2.8

‖wχk∇xΦ̃q‖
L∞(J,H−

1
2 )
≤ ‖wχk∇xΦ̃q‖L2(J,L2) + ‖wχk∂z∇xΦ̃q‖L2(J,H−1).

The second term on the right-hand side is estimated by (2.19), so we need to estimate

M := ‖wχk∇x∂zΦ̃q‖L2(J,H−1).

Notice that for any acceptable weight ω ∈ W, there holds with χ̃ ∈ C∞0 (Rd) and
χ̃ = 1 on suppχ that

‖ωχk∇xf‖Hs(Rd) ≤ ‖∇(ωχkf)‖Hs(Rd) + ‖ω∇xχkf‖Hs(R)d + ‖∇xωχkf‖Hs(Rd)

≤ ‖χkωf‖Hs+1(Rd) + ‖ω∇xχkf‖Hs(Rd) + ‖r′1χ̃k‖Hs‖χkωf‖Hs(Rd)

where r′1 = ∇ω
ω as in Definition 2.3. This implies

‖ωχk∇xf‖L2(J,Hs(Rd)) ≤ C‖ωf‖L2(J,Hs+1(Rd))ul
.

Applying this estimate and (2.19) yields

M ≤ C‖〈x〉λ∂zΦ̃q‖L2(J,L2)ul ≤ F(‖η‖
H

s+1
2

ul

)‖wψq‖
H

1
2
.

Finally, to obtain (2.20) we shall prove

(2.21) ‖w∂zΦ̃q‖
L∞(J,H−

1
2 )ul
≤ F(‖η‖

H
s+1

2
ul

)‖wψq‖
H

1
2
.

Again, by interpolation,

‖wχk∂zΦ̃q‖
L∞(J,H−

1
2 )
≤ ‖wχk∂zΦ̃q‖L2(J,L2) + ‖wχk∂2

z Φ̃q‖L2(J,H−1).

It remains to estimate A := ‖wχk∂2
z Φ̃q‖L2(J,H−1). Taking into account the fact that

Φ̃q satisfies equation (2.9), we have

A ≤ A1 +A2 +A3,

where by the product rule, Lemma 2.2 and (2.19),

A1 = ‖χkwα∆Φ̃q‖L2(J,H−1) ≤ ‖α‖L∞(J,Hs− 1
2 )ul
‖w∆Φ̃q‖L2(J,H−1)ul ≤ RHS,

A2 = ‖χkwβ∂z∇xΦ̃q‖L2(J,H−1) ≤ ‖β‖L∞(J,Hs− 1
2 )ul
‖w∂z∇xΦ̃‖L2(J,H−1)ul ≤ RHS,

A3 = ‖χkwγ∂zΦ̃q‖L2(J,H−1) ≤ ‖γ‖L∞(J,Hs− 3
2 )ul
‖w∂zΦ̃q‖L2(J,L2)ul ≤ RHS,

where RHS denotes the right-hand side of (2.19). The proof of Proposition 2.9 is
complete. �

Combining Proposition 2.9 , Theorem 2.6 and the Poincaré inequality we obtain

a weighted estimate for Φ̃ and its gradient.

Corollary 2.10. Let λ ∈ R and Φ̃ be the solution to (2.7). For −1
2 ≤ σ ≤ s−1

assume that η ∈ Hs+ 1
2

ul (Rd) satisfying (2.2) and 〈x〉λψ ∈ Hσ+1
ul (Rd). Then for any

z0 ∈ (−1, 0) there exists F : R+ → R+ non decreasing such that

‖〈x〉λΦ̃‖Xσ+1
ul (z0,0) + ‖〈x〉λ∇x,zΦ̃‖Xσ

ul(z0,0) ≤ F
(
‖η‖

H
s+1

2
ul

)
‖〈x〉λψ‖Hσ+1

ul
.

Using Corollary 2.10 one can follows the proof of Theorem 3.10, [1] to derive
the following weighted estimate for the Dirichlet-Neumann operator, which can be
of independent interest.
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Corollary 2.11. Let λ ∈ R. For −1
2 ≤ σ ≤ s − 1 assume that η ∈ Hs+ 1

2
ul (Rd)

satisfying (2.2) and 〈x〉λψ ∈ Hσ+1
ul (Rd). Then there exists F : R+ → R+ non

decreasing such that

‖〈x〉λG(η)ψ‖Hσ
ul
≤ F

(
‖η‖

H
s+1

2
ul

)
‖〈x〉λψ‖Hσ+1

ul
.

2.3. Paralinearization of the Dirichlet–Neumann operator. We denote
by κ the principal symbol of the Dirichlet-Neumann operator:

κ =
(
(1 + |∇xη|2)|ξ|2 − (∇xη · ξ)2

) 1
2

and define the remainder

(2.22) R(η)ψ := G(η)ψ − Tκψ.

Our aim in this section is to prove the following weighted version of Theorem 3.11
in [1].

Theorem 2.12. Let λ ∈ R, then there exists F : R+ → R+ non decreasing such

that for 0 ≤ t ≤ s − 1
2 , η ∈ H

s+ 1
2

ul (Rd) satisfying (2.2) we have

‖〈x〉λR(η)ψ‖Ht
ul
≤ F

(
‖η‖

H
s+1

2
ul

)
‖〈x〉λψ ‖

H
t+1

2
ul

provided that wψ ∈ Ht+ 1
2

ul (Rd).

Proof. Let us fix a real number t ∈ [0, s − 1
2 ]. By definition of the Dirichlet-

Neumann operator, one has

G(η)ψ = h1∂zΦ̃− h2 · ∇xΦ̃

z=0

, h1 =
1 + |∇xρ|2

∂zρ
, h2 = ∇xρ.

Let A and a be the two symbols of class Γ1
1
2

(Rd × J) given in Lemma 3.20, [1]. We

set

g̃k = (∂z − TA)(χkwΦ̃), hj |z=0 = h0
j , j = 1, 2, A|z=0 = A0, a|z=0 = a0.

Then we can write
(2.23)

χkwG(η)ψ = h0
1(∂z(χkwΦ̃))|z=0 − χkwh0

2∇xψ

= h0
1(∂z(χkwΦ̃))|z=0 − χkh0

2∇x(wψ) + χkh
0
2ψ∇w

= h0
1g̃k|z=0 + h0

1[TA0 , χk](wψ) + χk
(
h0

1TA0 − h0
2 · ∇

)
(wψ) + χkh

0
2ψ∇w.

Let χ̃ ∈ C∞0 (Rd) and χ̃ = 1 on suppχ, we have

χkwG(η)ψ = B1 +B2,

where

B1 = χ̃kh
0
1g̃k|z=0 + χ̃kh

0
1[TA0 , χk](wψ) +χk

(
h0

1TA0 −h0
2 ·∇

)
(wψ), B2 = χkh

0
2ψ∇w.

The proof of Theorem 4.11, [1] shows that

B1 = χkTκ(wψ) +R

with the remainder R satisfies

‖R‖Ht ≤ F
(
‖η‖

H
s+1

2
ul

)‖wψ‖
H
t+1

2
ul

.
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On the other hand, since h0
2 ∈ Hs− 1

2 (Rd)ul with norm bounded by F(‖η‖
H

s+1
2

ul

) and

t ≤ s − 1
2 the product rule yields

(2.24) ‖B2‖Ht = ‖χkh0
2ψ∇w‖Ht = ‖χkh0

2ψwr
′
1‖Ht ≤ F

(
‖η‖

H
s+1

2
ul

)
‖wψ‖Ht

ul
.

This completes the proof of Theorem 2.12. �

2.4. A weighted estimate for Φ. We use the elliptic regularity theorem 2.6
to prove a weighted estimate for Φ–solution to (2.7), which will be used later in
proving contraction estimate for Dirichlet-Neumann operator.

Lemma 2.13. Let λ ∈ R. With µ > 0 satisfying (2.16) and Φq, ψq as in section
2.1.2 there exists a non-decreasing function F independent of q such that∑

k∈Zd
‖〈x〉λe

µ
2
〈x−q〉χk∇x,zΦ̃q‖L∞(J×Rd) ≤ F(‖η‖

H
s+1

2
ul

)‖〈x〉λψq‖Hs .

Proof. Set w = 〈x〉λ, λ ∈ R. We remark that wψq ∈ Hs(Rd) for every q ∈ Zd

provided that ψ ∈ Hs
ul(R

d). It is clear that

‖we
µ
2
〈x−q〉χk∇x,zΦ̃q‖L∞(J×Rd) ≤ e−

µ
4
〈k−q〉‖we3µ/4〈x−q〉∇x,zΦ̃q‖L∞(J×Rd).

Consider the weight 〈x〉λe3µ/4〈x−q〉 ∈ W which has semi-norms independent of q.
Applying Theorem 2.6 to Φq (with σ = s − 1) and taking into account Remark 2.7
, we may estimate∑

k∈Zd
‖we

µ
2
〈x−q〉χk∇x,zΦ̃q‖L∞(J×Rd)

≤
∑
k∈Zd

e−
µ
4
〈k−q〉‖we3µ/4〈x−q〉∇x,zΦ̃q‖L∞(J×Rd)

≤ ‖we3µ/4〈x−q〉∇x,zΦ̃q‖L∞(J,Hs−1(Rd))ul

≤ F(‖η‖
H

s+1
2

ul

)

{
‖we3µ/4〈x−q〉ψq‖Hs

ul
+ ‖we3µ/4〈x−q〉∇x,zΦ̃q‖

X
− 1

2
ul (J)

}
≤ F(‖η‖

H
s+1

2
ul

)

{
‖wψq‖Hs + ‖we3µ/4〈x−q〉∇x,zΦ̃q‖

X
− 1

2
ul (J)

}
.

Remark that in the first inequality, we have used the trivial fact that
∑

k∈Zd e
−µ

4
〈k−q〉

is finite and independent of q.
To complete the proof we need to prove that

(2.25) ‖we3µ/4〈x−q〉∇x,zΦ̃q‖
X
− 1

2
ul (J)

≤ F(‖η‖
H

s+1
2

ul

)‖wψq‖
H

1
2
.

However, using interpolation inequality as in step 2 of the proof of Proposition 2.9,
it suffices to show that

(2.26) ‖we3µ/4〈x−q〉∇x,zΦ̃q‖L2(J,L2)ul ≤ F(‖η‖
H

s+1
2

ul

)‖wψq‖
H

1
2
.

Indeed, by virtue of (2.18) one can estimate

‖χp〈x〉λe
3µ
4
〈x−q〉∇x,zΦ̃q‖L2(J,L2) . e

−µ
4
〈p−q〉〈p〉λ‖χpeµ〈x−q〉∇x,zΦ̃q‖L2(J,L2)

. e−
µ
4
〈p−q〉〈p〉λF(‖η‖W 1,∞)‖χqψ‖

H
1
2

. e−
µ
4
〈p−q〉〈p〉λ〈q〉−λF(‖η‖W 1,∞)‖〈x〉λχqψ‖

H
1
2

. F(‖η‖W 1,∞)‖〈x〉λχqψ‖
H

1
2
,
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which is the desired bound. �

3. Weighted contraction for the Dirichlet-Neumann operator

The main ingredient in proving contraction for the Dirichlet-Neumann operator
is the contraction estimate for solutions to the elliptic problem (2.7). The key idea

then is to compare the two variational solutions after changing the variable Φj to Φ̃j

as in (2.4). However, after straightening the fluid domains by the diffeomorphism
(2.3), the new domains will depend on their upper surface. To overcome this, we
use a slightly different diffeomorphism as follows.
Given η∗ ∈ C0

b (Rd) and h > 0, there exists η̃ ∈ C∞b (Rd) such that

(3.1) η∗(x) < η̃(x) < η∗(x) +
h

3
, ∀x ∈ Rd.

Then, because ηj > η∗ + h we set
Ω1,j = {(x, y) : x ∈ Rd, ηj(x)− h

3 < y < ηj(x)},
Ω2,j = {(x, y) : x ∈ Rd, η̃(x) ≤ y ≤ ηj(x)− h

3},
Ω3,j = {(x, y) : x ∈ Rd, η∗(x) < y < η̃(x)},
Ωj = Ω1,j ∪ Ω2,j ∪ Ω3,j ,

and 
Ω̃1 = Rd

x × (−1, 0)z,

Ω̃2 = Rd
x × [−2,−1]z,

Ω̃3 = {(x, z) ∈ Rd × (−∞− 2) : z + 2 + η̃(x) > η∗(x)},
Ω̃ = Ω̃1 ∪ Ω̃2 ∪ Ω̃3.

Remark that Ω̃ depends on η∗, h but not on ηj . Thus, we can define
(3.2)

ρj(x, z) =


ρ1,j(x, z) = (1 + z)eδz〈Dx〉ηj(x)− z

[
e−(1+z)δ〈Dx〉ηj(x)− h

3

]
, in Ω̃1,

ρ2,j(x, z) = (2 + z)
[
eδ(z+1)〈Dx〉ηj(x)− h

3

]
− (1 + z)η̃, in Ω̃2,

ρ3,j(x, z) = z + 2 + η̃(x), in Ω̃3.

Lemma 3.1. The mappings (x, z) 7→ (x, ρj(x, z)) are Lipschitz diffeomorphisms

from Ω̃ to Ωj.

Proof. Observe first that ρk,j are Lipschitz for k = 1, 2, 3; j = 1, 2. Clearly,

(x, z) 7→ (x, ρ3,j(x, z)) are diffeomorphisms from Ω̃3 to Ω3,j . The same property
holds for ρ1,j as in (2.3). We now prove it for ρ2,j . Notice first that

ρ2,j(−1, x) = ηj −
h

3
, ρ2,j(−2, x) = η̃.

Compute now

∂zρ2,j = eδ(z+1)〈Dx〉ηj(x)− h

3
− (2 + z)δeδ(z+1)〈Dx〉〈Dx〉ηj − η̃

= eδ(z+1)〈Dx〉ηj(x)− ηj(x)− (2 + z)δeδ(z+1)〈Dx〉〈Dx〉ηj + ηj(x)− η̃ − h

3
.

By writing eδ(z+1)〈Dx〉ηj − ηj = δ(z + 1)
∫ 1

0 e
rδ(z+1)〈Dx〉〈Dx〉ηjdr we deduce that∥∥∥eδ(z+1)〈Dx〉ηj − ηj

∥∥∥
L∞(Rd)

+
∥∥∥(2 + z)δeδ(z+1)〈Dx〉〈Dx〉ηj

∥∥∥
L∞(Rd)

≤ Cδ ‖ηj‖W 1,∞(Rd) ≤
h

6
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for δ > 0 small enough. On the other hand, thanks to (2.2) and (3.1) it holds that

ηj − η̃ −
h

3
= (ηj − η∗) + (η∗ − η̃)− h

3
> h− h

3
− h

3
=
h

3

and thus ∂zρ2,j ≥ h
3 −

h
6 = h

6 in Ω̃2. Therefore, we can conclude that (x, z) 7→
(x, ρ2,j(x, z)) are diffeomorphisms from Ω̃2 to Ω2,j . �

With the functions ρj above we denote for every f : Ω→ R

(3.3) f̃j(x, z) = f(x, ρj(x, z))

and as in (2.5) we define the differential operators Λj = (Λj1,Λ
j
2). Hereafter, J =

(−2, 0).

Lemma 3.2. We have Λ1 − Λ2 = ℘∂z = (℘1, ℘2)∂z with ℘ = 0 for z < −2 and

(3.4) ‖w℘‖L2(J,L2(Rd))ul
≤ F(‖(η1, η2)‖

H
s+1

2
ul ×H

s+1
2

ul

)‖w(η1 − η2)‖
H

1
2
ul

.

Proof. By definition, one gets

℘1 =
∂z(ρ2 − ρ1)

∂zρ1∂zρ2
,

℘2 = −∇x(ρ2 − ρ1)

∂zρ1
−∇xρ2

∂z(ρ2 − ρ1)

∂zρ1∂zρ2

so in Ω̃3, ℘ = 0. To obtain (3.4) one writes

‖w℘‖L2(J,L2(Rd))ul
≤ ‖w℘‖L2((−1,0),L2(Rd))ul

+ ‖w℘‖L2((−2,−1),L2(Rd))ul

to use definition (3.2), the fact that η̃ ∈ C∞b (Rd) and the 1
2 -smoothing effect of the

Poisson kernel, which is Lemma 5.5 applied with r = 1. �

Let us recall here the Poincare inequality proved in [1] (cf. Remark 3.2)

Lemma 3.3. Let

H1,0(Ωj) = {u ∈ L2(Ωj) : ∇x,yu ∈ L2(Ωj) and u|y=ηj(x) = 0}.

Then there exists a constant C > 0 depending on ‖η‖L∞(Rd) + ‖η∗‖L∞(Rd) such that∫∫
Ωj

α(x)|u(x, y)|2dxdy ≤ C
∫∫

Ωj

α(x)|∇x,yu(x, y)|dxdy

for all u ∈ H1,0(Ωj), α ∈ C∞b (Rd), α ≥ 0 and C is independent of α.

Theorem 3.4. Let ψj ∈ H
1
2
ul(R

d) and Φj , j = 1, 2 be the unique solution in
H1
ul(Ωj) of the problem

∆x,yΦj = 0 in Ω, Φj |Σ = ψj ,
∂Φj

∂ν
|Γ = 0.

Set η = η1− η2, ψ = ψ1−ψ2, Φ̃ = Φ̃1− Φ̃2 where Φ̃j is the image of Φj as in (3.3).

Then for every λ ∈ R, w = 〈·〉λ there exists a nonnegative function F such that
(3.5)

‖w∇x,zΦ̃‖
X
− 1

2
ul (J)

≤ F(‖(η1, η2)‖
H

s+1
2

ul ×H
s+1

2
ul

)

(
‖wη‖

H
s− 1

2
ul

‖ψ2‖Hs
ul

+ ‖wψ‖
H

1
2
ul

)
.
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For the proof of this result, we shall apply Lemma 2.13 for Φ̃q. However, Φ̃q

here is the image of Φq via the diffeomorphism corresponding to one of ρj defined
by (3.2) instead of (2.3). We want the same result as Lemma 2.13 in this situation.
To have this, we notice that on J = (−2, 0), ρj is comprised of two functions ρ1,j

for z ∈ (−1, 0) and ρ2,j for z ∈ (−2,−1]. The function ρ1,j possesses the same
properties as ρ does and so does ρ2,j since η̃ ∈ C∞b ⊂ H∞ul . Therefore, we obtain

Lemma 3.5. Let λ ∈ R, w = 〈·〉λ and Φj,q, ψj,q, j = 1, 2, q ∈ Z as in section
2.1.2. There exists F1 non-decreasing such that: if 0 < µF1(‖ηj‖Hs

ul
) ≤ 1 then one

can find a non-decreasing function F independent of q such that∑
k∈Zd

‖〈x〉λe
µ
2
〈x−q〉χk∇x,zΦ̃j,q‖L∞(J×Rd) ≤ F(‖ηj‖

H
s+1

2
ul

)‖〈x〉λψj,q‖Hs .

Proof. (of Theorem 3.4) For simplicity in notations we shall denote F =
F(‖η1‖

H
s+1

2
ul

, ‖η2‖
H

s+1
2

ul

) which may change from line to line. We proceed in the

following steps.
Step 1. Let Φj,q = uj,q + ψ

j,q
where uj,q is the variational solution characterized by

(2.6). After changing the variables, (2.6) becomes∫
Ω̃

ΛjΦ̃j,qΛ
jθJjdX = 0, ∀θ ∈ H1,0(Ω̃), j = 1, 2

with the Jacobian Jj = |∂zρj | = ∂zρj (∂zρj is a.e. positive in Ω̃).

Set Φ̃q = Φ̃1,q − Φ̃2,q, ψq = ψ
1,q
− ψ

2,q
and choose

θ = e2δgε(Φ̃q − ψ̃q) ∈ H
1,0(Ω̃)

where gε = 〈x−q〉
1+ε〈x−q〉 . It follows that∣∣∣∣∫

Ω̃
Λ1Φ̃qΛ

1θJ1dX

∣∣∣∣ ≤ 3∑
j=1

Aj ,
A1 =

∫
Ω̃
|(Λ1 − Λ2)Φ̃2,qΛ

1θJ1|dX,
A2 =

∫
Ω̃
|Λ2Φ̃2,q(Λ

1 − Λ2)θJ1|dX,
A3 =

∫
Ω̃
|Λ2Φ̃2,qΛ

2θ(J1 − J2)|dX.
By Lemma (3.2) we know that Λ1−Λ2 = 0 in Ω̃3. Likewise, J1−J2 = ∂zρ1−∂zρ2 = 0

in Ω̃3. Consequently, with Ω̃0 = Rd × J we have Aj , j = 1, 2, 3 are equal to the

corresponding integrals over Ω̃0.
Step 2. (Estimate for A1) First of all, we remark that

(3.6) Λj(e2δgεU) = e2δgεΛjU + (0, U)2δe2δgε∇gε.

Using Lemma 3.2 and formula (3.6) with j = 1, U = Φ̃q − ψ̃q one can write

A1 =

∫
Ω̃0

e2δgε |℘∂zΦ̃2,qΛ
1(Φ̃q − ψ̃q)J1|dX + 2δ

∫
Ω̃0

e2δgε |∇gε℘2∂zΦ̃2,q(Φ̃q − ψ̃q)J1|dX

:= A1,1 +A1,2.

Since ‖Jj‖L∞x,z ≤ F , we may estimate

A1,1 ≤ F
∫

Ω̃0

e2δgε |℘∂zΦ̃2,qΛ
1(Φ̃q − ψ̃q)|dX

≤ F‖℘eδgε∂zΦ̃2,q‖L2(Ω̃0)
‖eδgεΛ1(Φ̃q − ψ̃q)‖L2(Ω̃0)

.
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On the other hand, there holds

(3.7)

‖f1f2‖L2(J,L2(Rd)) ≤
∑
k

‖χ̃kf1χkf2‖L2(J,L2(Rd))

≤ ‖f1‖L2(J,L2(Rd)ul)

∑
k

‖χkf2‖L∞(J×Rd).

Now we choose δ > 0 such that

(3.8) δF1(‖η2‖
H

s+1
2

ul

) ≤ 1

2

then the condition of Lemma 3.5 is fulfilled with µ = 2δ. It then follows from (3.7)
and Lemma 3.2 that

(3.9)

‖℘eδgε∂zΦ̃2,q‖L2(Ω̃0)
≤ ‖w℘w−1eδ〈x−q〉∂zΦ̃2,q‖L2(J,L2(Rd))

≤ ‖w℘‖L2(J,L2(Rd)ul)

∑
k

‖χkw−1eδ〈x−q〉∂zΦ̃2,q‖L∞(J×Rd)

≤ F‖wη‖
H

1
2
ul

‖w−1ψ2,q‖Hs .

Therefore,

A1,1 ≤ F‖eδgεΛ1(Φ̃q − ψ̃q)‖L2(Ω̃0)
‖wη‖

H
1
2
ul

‖w−1ψ2,q‖Hs .

For A1,2 we have

A1,2 ≤ 2δF‖eδgε℘2∂zΦ̃2,q‖L2(Ω̃0)
‖eδgε(Φ̃q − ψ̃q)‖L2(Ω̃0)

.

The first L2-norm on the right-hand side is already estimated by (3.9). For the
second term on the right-hand side, one applies the Poincare inequality in Lemma
3.3 and changes the variables to derive
(3.10)

‖eδgε(Φ̃q − ψ̃q)‖L2(Ω̃0)
≤ F‖eδgε∂z(Φ̃q − ψ̃q)‖L2(Ω̃)

≤ F‖eδgεΛ1(Φ̃q − ψ̃q)‖L2(Ω̃)

from which we deduce that A1,2 satisfies the same estimate as A1,1 does and hence,
so does A1, i.e.,

(3.11) A1 ≤ F‖eδgεΛ1(Φ̃q − ψ̃q)‖L2(Ω̃0)
‖wη‖

H
1
2
ul

‖w−1ψ2,q‖Hs .

Step 3. (Estimates for A2, A3) By Lemma 3.4 we have

(Λ1 − Λ2)θ = ℘e2δgε∂z(Φ̃q − ψ̃q).

It follows that

A2 ≤ F‖℘eδgεΛ2Φ̃2,q‖L2(Ω̃0)
‖eδgε∂z(Φ̃q − ψ̃q)‖L2(Ω̃0)

.

Using the definition of Λ2 and the same method as in (3.9) one obtains that the first
term is also bounded by the right-hand side of (3.9). On the other hand, it is easy

to see the second term is bounded by F‖eδgεΛ1(Φ̃q − ψ̃q)‖L2(Ω̃0)
. Therefore, A2 also

satisfies the bound (3.11).
For A3 one uses the formula (3.6) to get A3 ≤ A3,1 +A3,2 with

A3,1 =

∫
Ω̃0

e2δgε |Λ2Φ̃2,qΛ
2(Φ̃q − ψ̃q)(J1 − J2)|dX,

A3,2 = δ

∫
Ω̃0

e2δgε |∇gεΛ2
2Φ̃2,q(Φ̃q − ψ̃q)(J1 − J2)|dX.
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First, A3,2 is estimated by ‖(J1 − J2)eδgεΛ2Φ̃2,q‖L2(Ω̃0)
‖eδgε(Φ̃q − ψ̃

q
)‖
L2(Ω̃0)

. The

second term is estimated by (3.10) and the first term is estimated as in (3.9) with
℘ replaced by J1 − J2 which satisfies ‖w(J1 − J2)‖L2(J,L2

ul)
≤ F‖wη‖

H
1
2
ul

. Similarly,

A3,1 ≤ ‖(J1 − J2)eδgεΛ2Φ̃2,q‖L2(Ω̃0)
‖eδgεΛ2(Φ̃q − ψ̃q)‖L2(Ω̃0)

.

We only need to study the second term on the right-hand side. With u := Φ̃q − ψ̃q
one has Λ2

1u = ∂zρ1
∂zρ2

Λ1
1u which implies ‖eδgεΛ2

1u‖L2(Ω̃0)
≤ F‖eδgεΛ1

1u‖L2(Ω̃0)
. On the

other hand,

Λ2
2u = ∇xu−

∇xρ2

∂zρ2
∂zu = Λ1

2u+

(
∇xρ1

∂zρ1
− ∇xρ2

∂zρ2

)
∂zρ1

(
1

∂zρ1
∂zu

)
.

Hence, ‖eδgεΛ2
2u‖L2(Ω̃0)

≤ F‖eδgεΛ1u‖
L2(Ω̃0)

and ‖eδgεΛ2u‖
L2(Ω̃0)

≤ F‖eδgεΛ1u‖
L2(Ω̃0)

.

In conclusion, we have proved that: for any (small) δ > 0 satisfying (3.8), there holds∣∣∣∣∫
Ω̃

Λ1Φ̃qΛ
1θJ1dX

∣∣∣∣ ≤ F‖eδgεΛ1(Φ̃q − ψ̃q)‖L2(Ω̃0)
‖wη‖

H
1
2
ul

‖w−1ψ2,q‖Hs .(3.12)

Step 4. Next, in view of (3.6) we write

(3.13)

∫
Ω̃

Λ1Φ̃qΛ
1θJ1dX

=

∫
Ω̃
e2δgεΛ1Φ̃qΛ

1(Φ̃q − ψ̃q)J1dX + 2δ

∫
Ω̃

Λ1
2Φ̃q.(Φ̃q − ψ̃q)e

2δgε∇gεJ1dX

=

∫
Ω̃
e2δgε |Λ1(Φ̃q − ψ̃q)|

2J1dX +

∫
Ω̃
e2δgεΛ1ψ̃

q
Λ1(Φ̃q − ψ̃q)J1dX

+ 2δ

∫
Ω̃

Λ1
2(Φ̃q − ψ̃q)(Φ̃q − ψ̃q)e

2δgε∇gεJ1dX

+ 2δ

∫
Ω̃

Λ1
2ψ̃q(Φ̃q − ψ̃q)e

2δgε∇gεJ1dX := B1 +B2 +B3 +B4.

From the estimate (3.10) one has

(3.14) |B3| ≤ δF2(‖η1‖
H

s+1
2

ul

)‖eδgεΛ1(Φ̃q − ψ̃q)‖
2
L2(Ω̃)

where F2 : R+ → R+ is a non decreasing function. Likewise,

(3.15) |B4| ≤ δF2(‖η1‖
H

s+1
2

ul

)‖eδgεΛ1ψ̃
q
‖
L2(Ω̃)

‖Λ1(Φ̃q − ψ̃q)e
δgε‖

L2(Ω̃)
.

Finally, it is clear that

(3.16) |B2| ≤ F2(‖η1‖
H

s+1
2

ul

)‖eδgεΛ1ψ̃
q
‖
L2(Ω̃)

‖Λ1(Φ̃q − ψ̃q)e
δgε‖

L2(Ω̃)
.

Now, remark that there exits a constant c0 depend only on h such that |J1| ≥ c0.
Choose δ > 0 satisfying

(3.17) δ

{
F1(‖η2‖

H
s+1

2
ul

) + F2(‖η1‖
H

s+1
2

ul

)

}
= min(

c0

2
,
1

2
).

A combination of (3.12)-(3.16) yields∥∥∥eδgεΛ1(Φ̃q − ψ̃q)
∥∥∥
L2(Ω̃)

≤ F
{
‖wη‖

H
1
2
ul

‖w−1ψ2,q‖Hs + ‖eδgεΛ1ψ̃
q
‖
L2(Ω̃)

}
.
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Step 5. Now, letting ε → 0 and taking into account properties (i), (ii) of ψ
q

in

section 2.1.2 lead to

(3.18)
‖eδ〈x−q〉Λ1Φ̃q‖L2(Ω̃)

≤ F
{
‖wη‖H1

ul
‖w−1ψ2,q‖Hs + ‖eδ〈x−q〉Λ1ψ̃

q
‖
L2(Ω̃)

}
≤ F

{
‖wη‖H1

ul
‖w−1ψ2,q‖Hs + ‖ψq‖

H
1
2

}
.

Hence

‖eδ〈x−q〉∇x,zΦ̃q‖L2(Ω̃)
≤ F

{
‖wη‖H1

ul
‖w−1ψ2,q‖Hs + ‖ψq‖

H
1
2

}
.

Consequently,
(3.19)

‖χpw∇x,zΦ̃q‖L2(J,L2(Rd)) ≤ e−δ〈p−q〉〈p〉λF
{
‖wη‖

H
1
2
ul

‖w−1ψ2,q‖Hs + ‖ψq‖
H

1
2 (Ω)

}
≤ e−δ〈p−q〉〈p〉λ〈q〉−λF

{
‖wη‖

H
1
2
ul

‖ψ2,qq‖Hs + ‖wψq‖
H

1
2

}
.

Finally, we get

(3.20)

‖χpw∇x,zΦ̃‖L2(J,L2(Rd)) ≤
∑
q

‖χpw∇x,zΦ̃q‖L2(J,L2(Rd))

≤ F
{
‖wη‖

H
1
2
ul

‖ψ2‖Hs
ul

+ ‖wψ‖
H

1
2
ul

}
.

Step 6. It remains to prove that ‖χpw∇x,zΦ̃‖
L∞(J,H−

1
2 (Rd))

is bounded by the right

hand side of (3.5).

The estimate of ‖χpw∇xΦ̃‖
L∞(J,H−

1
2 (Rd))

follows from (3.20) and the interpo-

lation Lemma 2.8. By the same lemma, for ‖χpw∂zΦ̃‖
L∞(J,H−

1
2 (Rd))

it remains to

estimate

‖χpw∂2
z Φ̃‖L2(J,H−1(Rd)).

For this purpose we use equation (3.24) below, satiesfied by Φ̃ to have
(3.21)

‖χpw∂2
z Φ̃‖L2(J,H−1(Rd)) ≤‖χpwα1∆Φ̃‖L2(J,H−1(Rd)) + ‖χpwβ1.∇∂zΦ̃‖L2(J,H−1(Rd))

+ ‖χpwγ1∂zΦ̃‖L2(J,H−1(Rd)) + ‖χpwF‖L2(J,H−1(Rd)).

Because −1 < s − 2, the estimate (3.26) applied with f = ψ2 implies the desired
estimate for ‖χpwF‖L2(J,H−1(Rd)). Concerning the other terms, the product rule

(2.13), [2] gives

(3.22)

‖χpwα1∆Φ̃‖L2(J,H−1) ≤ ‖χpwα1‖
L∞(J,Hs− 1

2 )
‖∆Φ̃‖L2(J,H−1)

‖χpwβ1 · ∇∂zΦ̃‖L2(J,H−1) ≤ ‖χpwβ1‖
L∞(J,Hs− 1

2 )
‖∇∂zΦ̃‖L2(J,H−1)

‖χpwγ1∂zΦ̃‖L2(J,H−1) ≤ ‖χpwγ1‖
L∞(J,Hs− 3

2 )
‖∂zΦ̃‖L2(J,L2).

Then, thanks to (3.20) we are left with the estimates for the first term on the right-
hand side of the above inequalities. Again, this is done along the same line as in the
proof of Lemma 2.2 noticing that η̃ ∈ C∞b ⊂ H∞ul . This completes the proof. �

We are now in position to derive the weighted estimate for the Dirichlet-Neumann
operator:
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Theorem 3.6. Assume that s > 1 + d
2 . Then for every λ ∈ R, w = 〈·〉λ

there exists F : R+ → R+ non decreasing such that for all η1, η2 ∈ H
s+ 1

2
ul (Rd) and

f ∈ Hs
ul(R

d) we have

‖w[G(η1)−G(η2)]f‖
H

s− 3
2

ul

≤ F(‖(η1, η2)‖
H

s+1
2

ul ×H
s+1

2
ul

)‖w(η1 − η2)‖
H

s− 1
2

ul

‖f‖Hs
ul
.

Proof. We have by definition

(3.23) G(ηj)f =

(
1 + |∇xρj |2

∂zρj
∂zΦ̃j −∇xρj∇xΦ̃j

)
z=0

.

Set Φ̃ = Φ̃1 − Φ̃2 then

(3.24)
(
∂2
z + α1∆z + β1 · ∇∂z − γ1∂z

)
Φ̃ = F

where

F = {(α2 − α1)∆x + (β2 − β1) · ∇∂z − (γ2 − γ1)∂z} Φ̃2.

We fix z0 ∈ (−1, 0) and set I0 = (z0, 0). We first prove that

(3.25) ‖w∇x,zΦ̃‖
X

s− 3
2

ul (I0)
≤ F(‖(η1, η2)‖

H
s+1

2
ul ×H

s+1
2

ul

)‖w(η1 − η2)‖
H

s− 1
2

ul

‖f‖Hs
ul
.

Thanks to Proposition 5.5 and the product rule we see easily that

(3.26) ‖wF‖L2(J,Hs−2)ul ≤ F(‖(η1, η2)‖
H

s+1
2

ul ×H
s+1

2
ul

)‖w(η1 − η2)‖
H

s− 1
2

ul

‖f‖Hs
ul
.

Since Φ̃|z=0 = 0, with the aid of Theorem 2.6 (which is applicable since ρ1,j and
ρ in (2.3) have exactly the same form), the proof of (3.25) reduces to estimate

‖w∇x,zΦ̃‖
X
− 1

2
ul (I0)

. This is a consequence of Theorem 3.4 applied with ψ1 = ψ2 = f

and the fact that I0 ⊂ J .
Next, to obtain the bound for ‖∇x,zΦ̃‖

H
s− 3

2
ul

at z = 0 we shall use the argument in

step 5. of the proof of Theorem 3.4 (by virtue of Lemma 2.8). Then, we only need

to estimate ‖∂2
z Φ̃‖L2(I0,H

s−2
ul ), which follows by using equation (3.24). Finally, using

(3.23) and Proposition 5.3, we conclude the proof of Theorem 3.6. �

Remark 3.7. Theorem 3.4 is also a crucial ingredient in proving contraction
of the remainder R appearing in the reformulation of water waves system-equation
(4.4) in Proposition 4.2, [1]. Notice that our estimate (3.5) is sufficient for this
purpose because

‖w(ψ1 − ψ2)‖
H

1
2
ul

≤ ‖w(ψ1 − ψ2)‖Hs−1
ul

owing to the fact that s > 1 + d
2 .

4. Proof of the main results

4.1. Proof of Theorem 1.4. The contraction estimate in Theorem 1.4 was
proved in [2] (see Theorem 5.1) for classical Sobolev spaces and then in [1] for
Kato’s spaces. Both use the following scheme:

1) study the Drichlet-Neumann operator: bound estimates and paralinearization
2) contraction estimate for the Dirichlet-Neumann operator
3) paralinearization of the difference equations (after reformulation)
4) estimates for the good unknown
5) back to the original unknowns.
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Here, we shall follow the same scheme as above. The first two items are the real
new points in our problem and have been studied in Section 2 and 3. For the last
three items we need a para-differential machinery in Kato’s paces with weights and
this is established in Appendix 5. The key point in this machinery is that: whenever
we estimate S(u, v) in weighted norms, where S is an operator of two variables, we
are always able to shift the weight to u or v. Having this in hand, items 3), 4), 5)
follow line by line those in [1] and [2]: one only need to replace ‖ · ‖Hσ

ul
or ‖ · ‖Hσ by

‖〈x〉λ · ‖Hσ
ul

in the relevant estimates. We conclude the proof.

4.2. Proof of Corollary 1.5. We need to show how (1.8) implies (1.9). To
this end, it suffices to prove that there exist 0 < T1 ≤ T and N > 0 (both are
independent of Uj) such that

(4.1) ‖Uj‖L∞([0,T1],Hs
ul)
≤ N, j = 1, 2.

For simplicity in notations, we shall drop the index j and define

Mσ(τ) = ‖U‖L∞([0,τ ],Hσul)
, ∀τ ∈ [0, T ].

Let us recall the a priori estimate derived in [1]: for any 1 + d/2 < σ ≤ s and T > 0
one can find a non decreasing function F : R+ → R+ such that

(4.2) Ms(T ) ≤ F
(
Mσ(0) + TMσ(T )

)(
Ms(0) + TMs(T )

)
.

Fix s0 ∈
(
1 + d

2 , s
)
. Since U is a solution to the gravity waters system in C0([0, T ],Hs0

ul),
the estimate (4.2) gives for some non decreasing F1 : R+ → R+ (independent of U)

Ms0(τ) ≤ F1(Ms0(0) + τMs0(τ)), ∀τ ∈ [0, T ].

According to Theorem 1.3 the solution U is continuous in time with value in Hs0
ul

since s0 < s. Consequently, Ms0(·) is continuous in τ and the standard argument
then gives the existence of T0 ∈ (0, T ] and N > 0, both are independent of U , such
that

(4.3) Ms0(τ) ≤ N, ∀τ ∈ [0, T0].

Applying again the estimate (4.2) with σ = s0 < s we get for some non-decreasing
function F : R+ → R+ (independent of U)

Ms(τ) ≤ F(Ms0(0) + TMs0(τ)) (Ms(0) + τMs(τ)) , ∀τ ∈ [0, T ].

By (4.3), this implies

Ms(τ) ≤ F(N(1 + T0)) (Ms(0) + τMs(τ)) , ∀τ ∈ [0, T0].

Now, let T1 ∈ (0, T0] satisfying

T1F(N(1 + T0)) ≤ 1

2

one deduces

Ms(T1) ≤ 2F(N(1 + T0))Ms(0),

which concludes the proof.
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5. Appendix: Paradifferential calculus in Kato’s spaces with weights

In this section, we adapt the paradifferential machinery for the presence of
weights which can be of independent interest. The proofs of these results follow
those in [1] but we need to take some care (so we only present the proof whenever
it is necessary). We recall first various spaces which will be used in the sequel.

Definition 5.1. Let p ∈ [1,+∞], J = (z0, 0), z0 < 0 and σ ∈ R.
1. The space Lp(J,Hσ(Rd))ul is defined as the space of measurable functions u from
Jz ×Rd

x to C such that

‖u‖Lp(J,Hσ(Rd))ul
:= sup

q∈Zd
‖χqu‖Lp(J,Hσ(Rd)) < +∞.

2. We set
Xσ
ul(J) = L∞(J,Hσ(Rd))ul ∩ L2(J,Hσ+ 1

2 (Rd))ul

Y σ
ul(J) = L1(J,Hσ(Rd))ul + L2(J,Hσ− 1

2 (Rd))ul

endowed with their natural norms.
The same spaces without subscript ”ul” are defined for classical Sobolev spaces.

Notice that L∞(J,Hσ(Rd))ul = L∞(J,Hσ
ul(R

d)).

Notation 5.2. (i)To avoid repeating, χ̃ denotes a function in C∞0 (Rd) such that
χ̃ = 1 on the support of χ in definition 1.1.
(ii) For t ∈ R, we denote dte the smallest integer strictly greater than or equal t.

5.1. Weighted continuity of pseudo-differential operators. In [1], the
authors proved the continuity of pseudo-differential operators on the framework of
L2 based uniformly local Sobolev spaces. Here, we perform similar results with the
presence of the weight 〈x〉λ. We denote by Sm1,0 the set of symbols p ∈ C∞(Rd×Rd)
such that

|Dα
ξD

β
xp(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|α| ∀α, β ∈ Nd,∀(x, ξ) ∈ Rd ×Rd.

Proposition 5.3. Let P be a pseudo-differential operator whose symbol p belongs
to Sm1,0. Then for any λ, s ∈ R, there exists C > 0 such that

‖〈x〉λPu‖Hs
ul
≤ C‖〈x〉λu‖Hs+m

ul
,

provided that the right hand side is finite.

Proof. We write

(5.1) 〈x〉λχkPu =
∑
|k−q|≤2

〈x〉λχkPχqu+
∑
|k−q|>3

〈x〉λχkPχqu := A+
∑
|k−q|>3

Bk,q.

Since χqu = (χq〈x〉λu)(χ̃q〈x〉−λ) ∈ Hs+m(Rd), we have from the classical theory
that

‖〈x〉λχkPχqu‖Hs ≤ 〈k〉λ‖Pχqu‖Hs ≤ 〈k〉λ‖χqu‖Hs+m ≤ 〈k〉λ〈q〉−λ‖〈x〉λχqu‖Hs+m

≤ 〈k − q〉|λ|‖〈x〉λχqu‖Hs+m ≤ ‖〈x〉λu‖Hs+m
ul

,

provided |k − q| ≤ 2. Thus,

A ≤ C‖〈x〉λu‖Hs+m
ul

.

To bound the second part, we fix n0 ∈ N, n0 ≥ s. We shall prove

(5.2) ‖Dα
xBk,q‖L2(Rd) ≤

C

〈k − q〉d+1
‖u‖Hs+m

ul
, |α| ≤ n0
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which implies the desired estimate for
∑
|k−q|>3Bk,q.

By the presence of χk, ‖Dα
xBk,q‖L2(Rd) ≤ C‖Dα

xBk,q‖L∞(Rd). We have

Dα
xBk,q(x) = 〈Dα

xK(x, ·), χqu〉

with

(5.3) K(x, y) = (2π)−d
∫
Rd

ei(x−y)ξp(x, ξ)dξχk(x)〈x〉λχ̃q(y).

Fix n1 ∈ N, n1 ≥ −(s +m) and β ∈ Nd, |β| ≤ n1. Let γ ∈ Nd be such that |γ| = N
with

(5.4) N ≥ max(m+ n0 + n1 + d+ 1, |λ|+ d+ 1).

Multiplying Dα
xD

β
yK(x, y) by (x− y)γ and integrating by parts with a remark that

|x− y| ≥ δ|k − q| (for some δ > 0) on the support of χk(x)〈x〉λχ̃q(y), we obtain∣∣∣Dα
xD

β
yK(x, y)

∣∣∣ ≤ Cβ,d,λ
〈k − q〉N

〈k〉λ
∑
|β1|≤|β|

∣∣∣∂β1χ̃q(y)
∣∣∣ .

It follows that

(5.5)

|Dα
xBk,q(x)| ≤ ‖Dα

xK(x, ·)‖H−(s+m)‖χqu‖Hs+m

≤ C

〈k − q〉N
〈k〉λ‖χqu‖Hs+m

≤ C

〈k − q〉N
〈k〉λ〈q〉−λ‖χq〈x〉λu‖Hs+m

≤ C

〈k − q〉N
〈k − q〉|λ|‖〈x〉λu‖Hs+m

ul

≤ C

〈k − q〉d+1
‖〈x〉λu‖Hs+m

ul

which proves (5.2). �

In a particular case the proof above gives the following more precise result.

Proposition 5.4. Let m ∈ R, h(ξ) = h̃
( ξ
|ξ|
)
|ξ|mψ(ξ) where h̃ ∈ C∞(Sd−1) and

ψ ∈ C∞(Rd) is such that ψ(ξ) = 1 if |ξ| ≥ 1, ψ(ξ) = 0 if |ξ| ≤ 1
2 . Then for every

λ, s ∈ R and

(5.6) r > dme+ dse+ dm+ se+ d|λ|e+
3d

2
+ 1,

there exists a constant C such that

‖〈x〉λh(Dx)u‖Hs
ul(R

d) ≤ C‖h̃‖Hr(Sd−1)‖〈x〉λu‖Hs+m
ul (Rd).

Remark that the condition on r above comes from the choice of N in (5.4), plus
d/2 + ε derivatives from Sobolev embedding. Next, tracking the proof of Lemma
7.10 in [1] and Proposition 5.3 above, we easily obtain the following proposition.

Proposition 5.5. Let r > 0, and λ, m ∈ R. Let p ∈ Sr1,0(Rd), a ∈ Sm1,0(Rd)
be two symbols with constant coefficients. We assume that there exists c0 > 0 such
that for all ξ ∈ Rd we have p(ξ) ≥ c0|ξ|r. Then for all s ∈ R and I = [0, T ], one
can find a positive constant C such that
(5.7)

‖〈x〉λe−tp(D)a(D)u‖L∞(I,Hs)ul + ‖〈x〉λe−tp(D)a(D)u‖
L2(I,Hs+ r2 )ul

≤ C‖〈x〉λu‖Hs+m
ul

.
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5.2. Para-differential calculus with weights. Assuming the theory of para-
differential calculus for classical Sobolev spaces (see [11]) and for uniformly local
Sobolev spaces (see [1]), we present in this section such a theory with the presence
of weights.
Given m ∈ R, ρ ≥ 0 we denote by Γmρ (Rd) the class of symbols of order m and by
Ta the associated para-differential operator as in Definition 7.15, [1]. In particular,

Γ̇mρ (Rd) denotes the subspace of Γmρ (Rd) which consists of symbols a(x, ξ) homoge-
neous of degree m with respect to ξ.
To deal with the weight 〈·〉λ, for any symbol a ∈ Γmρ and s, λ ∈ R, let us define the
semi-norm

(5.8) Mm
ρ (a, s)λ = sup

|α|≤I(d,λ,s,m)
sup
|ξ|≥ 1

2

‖(1 + |ξ|)|α|−m∂αξ a(·, ξ)‖W ρ,∞(Rd),

where Iρ(d,m, s)λ is the smallest even integer strictly greater than

(5.9) dme+ dse+ dm+ se+ d|λ|e+
5d

2
+ 2.

If a is a symbol independent of ξ, the associated operator Ta is called a paraproduct
and we have the formal decomposition of Bony

au = Tau+ Tua+R(a, u).

5.2.1. Symbolic calculus. The following technical lemmas will be used in proving
the results on symbolic calculus.

Lemma 5.6. Let λ, µ ∈ R and N ≥ |λ| + d + 1. Then there exists C > 0 such
that

(5.10) sup
x∈Rd

‖〈x〉λ〈x− ·〉−Nu‖Hµ(Rd) ≤ C‖〈·〉λu‖Hµ
ul(R

d)

provided that the right hand side is finite.

Proof. We write

〈x〉λ〈x− y〉−Nχq(y)u(y) = 〈x〉λ〈y〉−λ 1

〈x− q〉N
〈x− q〉N

〈x− y〉N
χ̃q(y)〈y〉λχq(y)u(y).

Since the function y 7→ 〈x−q〉N
〈x−y〉N χ̃q(y) belongs to W∞,∞(Rd) with semi-norms uni-

formly bounded (independently of x and q), we deduce that

‖〈x〉λ〈x− ·〉−Nu‖Hµ(Rd) ≤
∑
q∈Zd

‖〈x〉λ〈x− ·〉−Nχqu‖Hµ ≤ CN
∑
q∈Zd

〈x〉λ〈q〉−λ

〈x− q〉N
‖〈·〉λu‖Hµ

ul

≤ CN
∑
q∈Zd

〈x− q〉|λ|

〈x− q〉N
‖〈·〉λu‖Hµ

ul
≤ C ′N‖〈·〉λu‖Hµ

ul
.

�

Combining this lemma and the proof of Lemma 7.13, [1], we obtain

Lemma 5.7. Let λ ∈ R and set w = 〈x〉λ. Let χ ∈ C∞0 (Rd) and χ̃ ∈ C∞0 (Rd) be
equal to one on the support of χ. Let ψ, θ ∈ S(Rd). For every m,σ ∈ R there exists
a constant C > 0 such that
(5.11)∑

j≥−1

‖wχkψ(2−jD)((1− χ̃k)u)θ(2−jD)v‖Hm(Rd) ≤ C‖wu‖Hσ
ul(R

d)‖v‖L∞(Rd).
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For every m,σ, t ∈ R one can find a constant C > 0 such that

(5.12)
∑
j≥−1

‖wχkψ(2−jD)((1−χ̃k)u)θ(2−jD)v‖Hm(Rd) ≤ C‖wu‖Hσ
ul(R

d)‖v‖Ht
ul(R

d)

and
(5.13)∑
j≥−1

‖wχkψ(2−jD)((1− χ̃k)u)θ(2−jD)χ̃kv‖Hm(Rd) ≤ C‖wu‖Hσ
ul(R

d)‖χ̃kv‖Ht(Rd).

Remark 5.8. It follows easily from the proof of the above lemma that the same
estimates as in (5.11), (5.12) and (5.13) hold if on the left-hand sides 2−j is replaced
by 2−j−j0 where j0 ∈ Z is fixed. We shall use this remark to deal with paraproduct
estimates.

It turns out that the symbolic calculus with weights possesses the same features
as in the usual setting.

Theorem 5.9. Let m,m′ ∈ R, ρ ≥ 0, λ ∈ R and w = 〈·〉λ.
(i) If a ∈ Γm0 (Rd), then for all µ ∈ R, there exist a constant C > 0 such that

‖wTau‖Hµ
ul(R

d) ≤ CMm
0 (a, µ)λ‖wu‖Hµ+m

ul (Rd).

(ii) If a ∈ Γmρ (Rd), b ∈ Γm
′

ρ (Rd) then, for all µ ∈ R, there exist a constant C > 0
such that

‖w(TaTb − Ta]b)u‖Hµ
ul(R

d)

≤ C
(
Mm
ρ (a, µ)λM

m′
0 (b, µ)λ +Mm

0 (a, µ)λM
m′
ρ (b, µ

)
λ
)‖wu‖

Hµ+m+m′−ρ
ul (Rd)

where

a]b :=
∑
|α|<ρ

(−i)α

α!
∂αξ a(x, ξ)∂αx b(x, ξ).

(iii) Let a ∈ Γmρ (Rd) with ρ ∈ [0, 1] and denote by (Ta)
∗ the adjoint operator of Ta

and by a the complex conjugate of a. Then for all µ ∈ R there exists a constant
C > 0 such that

‖w((Ta)
∗ − Ta)u‖Hµ

ul(R
d) ≤ CMm

ρ (a, µ)λ‖wu‖Hµ+m−ρ
ul (Rd).

Proof. We give the proof for the first assertion only since these three points are
proved along the same lines. For simplicity we shall consider symbols in Γ̇mρ (Rd).
Step 1. Consider first the case where a is a bounded function and write

χkwTau = χkwTa(χ̃ku) + χkwTa((1− χ̃k)u).

The classical theory gives

‖χkwTa(χ̃ku)‖Hµ ≤ C〈k〉λ‖a‖L∞‖χ̃ku‖Hµ ≤ C〈k〉λ‖a‖L∞〈k〉−λ‖χ̃kwu‖Hµ

≤ C‖a‖L∞‖wu‖Hµ
ul
.

The estimate for the second term follows immediately from (5.11).

Step 2. Next we consider the case a(x, ξ) = b(x)h(ξ) where h(ξ) = |ξ|mh̃
( ξ
|ξ|
)

with

h̃ ∈ C∞(Sd−1). Then directly from the definition we have Ta = Tb(ψh)(Dx) and the
desired estimate in (i) follows from Step 1 and Proposition 5.4.

Step 3. Finally, for the general case we introduce (h̃ν)ν∈N∗ an orthonormal basis of
L2(Sd−1) consisting of eigenfunctions of the (self-adjoint) Laplace Beltrami operator
∆ω = ∆Sd−1 on L2(Sd−1) and argue as in the proof of Theorem 7.16, [1]. It is here
where we use the special choice of the number of derivatives in (5.9). �
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5.2.2. Paraproducts.

Proposition 5.10. Let w = 〈·〉λ, λ ∈ R and s0, s1, s2 be such that s0 ≤ s2 and
s0 < s1 + s2 − d

2 . Then there exists C > 0 such that

‖wTau‖Hs0
ul
≤ C min

{
‖a‖Hs1

ul
‖wu‖Hs2

ul
, ‖wa‖Hs1

ul
‖u‖Hs2

ul

}
.

Proof. We write

(5.14) χkwTau = χkwTa(1− χ̃k)u+ χkwTχ̃kaχ̃ku+ χkwT(1−χ̃k)aχ̃ku.

By the classical result, we have
(5.15)

‖χkwTχ̃kaχ̃ku‖Hs0 . 〈k〉λ‖Tχ̃kaχ̃ku‖Hs0 . 〈k〉λ‖χ̃ka‖Hs1‖χ̃ku‖Hs2 . ‖a‖Hs1
ul
‖wu‖Hs2

ul
.

On the other hand, applying (5.12) gives

‖χkwTa(1− χ̃k)u‖Hs0 . ‖a‖Hs1
ul
‖wu‖Hs2

ul

and it follows form (5.13) (applied with λ = 0) that

‖χkwT(1−χ̃k)aχ̃ku‖Hs0 . 〈k〉λ‖χkT(1−χ̃k)aχ̃ku‖Hs0

. 〈k〉λ‖a‖Hs1
ul
‖χ̃ku‖Hs2 . ‖a‖Hs1

ul
‖wu‖Hs2

ul
.

Consequently, we obtain

‖wTau‖Hs0
ul
≤ C‖a‖Hs1

ul
‖wu‖Hs2

ul
.

Now if instead of (5.2.2), we decompose

χkwTau = χkwT(1−χ̃k)au+ χkwTχ̃kaχ̃ku+ χkwTχ̃ka(1− χ̃k)u

then we get

‖wTau‖Hs0
ul
≤ C‖wa‖Hs1

ul
‖u‖Hs2

ul
.

The proof is complete. �

Proposition 5.11. Let w = 〈·〉λ, λ ∈ R and two functions a ∈ Hs1
ul (R

d), u ∈
Hs2
ul (R

d) with s1 + s2 > 0 then we have
(i)

(5.16) ‖wR(a, u)‖
H

s1+s2−
d
2

ul (Rd)
≤ C‖a‖Hs1

ul(R
d)‖wu‖Hs2

ul(R
d).

(ii) If in addition s0 ≤ s1 and s0 < s1 + s2 − d
2 then there exists a constant C > 0

such that

‖w(a− Ta)u‖Hs0
ul(R

d) ≤ C min
{
‖a‖Hs1

ul(R
d)‖wu‖Hs2

ul(R
d), ‖wa‖Hs1

ul(R
d)‖u‖Hs2

ul(R
d)

}
.

(5.17)

Proof. (i) By definition, we have (for some cut-off function ϕ)

R(a, u) =
∑
j≥−1

∑
|k−j|≤1

ϕ(2−jD)a · ϕ(2−kD)u.

We write a = χ̃ka+ (1− χ̃k)a, u = χ̃ku+ (1− χ̃k)u so that

χkwR(a, u) = χkwR(χ̃ka, χ̃ku) + χkwSk(a, u).

The first term is estimated by the same method as (5.15) with the use of Theorem
2.9 (i) in [2]. The remainder wχkSk(a, u) is estimated by using (5.12) and (5.13).
(ii) is a direct consequence of (i) and Proposition 5.10. �
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Remark 5.12. We remark that with the methods in the proofs above, the com-
mutator estimate in Lemma 7.20, [1] still holds for uniformly local Sobolev spaces
with the weight 〈·〉λ.
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