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Pseudo-local property of gravity water waves system
Quang-Huy Nguyen

ABSTRACT. By proving a weighted contraction estimate for the flow of gravity
water waves, we show that this nonlocal system is in fact pseudo-local in the
following sense: locally in time, the dynamic far away from a given bounded
region has a small effect on that region (again, in a sense that we will make
precise in the article). Our estimate on the flow also implies a new spatial decay
property of the waves.

1. Introduction

1.1. The problem. We consider an incompressible, irrotational, inviscid fluid
moving in a domain €2 underneath a free surface described by 1 and above a bottom
described by a given function 7, which is assumed to be bounded and continuous.
Namely,

Q={(t,z,9) € [0,T] x R x R: mu(x) <y <n(t,z)}.
We also denote by X the free surface and by I' the bottom,
={(t,z,y) €[0,T] x R" x R: y = n(t,x))},
L= {(z,y) e RTx R :y=n.()}.
The velocity filed v admits a potential ¢ : 2 — R such that v =V, y¢ and A, y¢ =0
in Q. We introduce the trace of the potential on the surface
U(t,z) = o(t, z,n(t,x))

and the Dirichlet-Neumann operator
¢
2( ¥
L+ [Van| (8n ‘ z)
= (0yo)(t, x,n(t, x)) — Van(t, x) - (Vao)(t, 2,0, 7).

Then (see [9]) the gravity water waves system in the Zakharov/Craig—Sulem formu-
lation reads as follows

atﬁ = G(’I’])¢,

1
Op = =5 |Vatp* +

(1.1)

(1.2) 1 (Van - Vath + G(n)y)?

2 1+ Va2

—gn

where ¢ is the acceleration of gravity.
Following [1] we shall consider the vertical and horizontal components of the velocity
on the free surface as unknowns which can be expressed in terms of n and :

Von Vot + G
(13 B=(y)ls="" ;@xmg(”)w, V = (0)|s = Vath — BVan.

Recall also that the Taylor coefficient a = —%—1; | 5 can be defined in terms of

n,v¢, B,V only (see §4.2 in [2] and §4.3.1 in [9]).
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The (local) well-posedness theory for gravity water waves (under the formulation
(1.2) or the others) in Sobolev spaces H*(R?) has been studied by many authors,
for example Yosihara [17], Wu [14, 15], Lannes [8]; we refer to the recent book of
Lannes [9] for a comprehensive survey of the subject. In these works, the waves were
assumed to be of infinite extend (and vanish at infinity), that is, there is no restric-
tion on the horizontal direction. However, in reality water waves always propagate
in some bounded container (a lake, an ocean, etc) and hence there will be contacts at
the ”vertical boundary” of the container. A natural question then arises: (Q) can we
justify the R%-approximation? More precisely, if (1.2) is a good model then it has to
satisfy in certain sense the following property: the dynamic at ”infinity” has a small
effect on bounded regions. Since (1.2) appears to be nonlocal (due to the presence
of the Dirichlet-Neumann operator) it is not clear that the above replacement at
"infinity” is harmless. We should mention that in the special case of a canal or a
rectangle basin where the walls are right vertical, the local theory was considered by
Alazard-Burg-Zuily [1], Kinsey-Wu [7], Wu [16]. Our goal in the present paper is to
give the following answer to question (Q). Considering a bounded reference domain,
we shall prove that in some sense, far away from this reference domain, the dynamic
there has a small effect on the reference domain, and the farther it is the smaller the
effect is. In other words, this proves that the gravity water waves system enjoys the
"pseudo-local property” (the terminology ”pseudo” will be clear in our explaination
below).

1.2. Main results. We recall first the definition of uniformly local Sobolev

spaces (or Kato’s sapces) introduced by Kato in [6].
DEFINITION 1.1. Let x € C®(R%) with suppx C [~1,1]%,x = 1 near -1, 1]¢
such that

(1.4) Z Xo(x) =1, VzeRY y,(z) = x(z—q).
qEZ?

For s € R define H%;(R?) the space of distributions u € H (R?) such that

=
=

[ullgs (may = sup [[xqull s may < +o0.
qc€Zd

This definition is independent of the choice of y € C§°(R?) satisfying (1.4) (see
Lemma 7.1 in [1]).

NOTATION 1.2. We set for all 0 € R,

1
o _ 77°t3
ul — Hul

(R) x 17" (RY) x H(RY) x HE(RY),
W7 = W2 (RY) x W 3%(RY) x WO(R?) x W(RY).
Denote also by U = (1,9, B, V') the unknown of system (1.2) and by U° = (n°,4°, B®, V)
its initial value.
The Cauchy theory proved in [1] reads as follows
THEOREM 1.3. Let s > 1+ % and U° € H:, with

(1.5) inf (n°(z) — ne(x)) > 2k >0, inf a(0,z) > 2c> 0.
rzceR4 zeR4

Then there exists T > 0 such that the Cauchy problem for (1.2) with datum U° has

a unique solution

U € L*([0,T), H5,) nCO([0, T], HT)), Vr<s
2



and

1.6 inf inf [n(t, ) — ne(z)] > h, inf inf a(t,z) > c.
(1.6) tel[%,T}:plean[n( x) —nu(x)] > tel[r&mleana( r)>c

Moreover, for given h, ¢ > 0 the existence time T can be chosen uniformly for data

belonging to a bounded set of H,;.

Conditions (1.5) mean that initially, the free surface is away from the bottom and
the Taylor coefficient is positively away from 0. Then the conclusion (1.6) asserts
that these properties are propagated by the waves, locally in time. We shall always
consider in the sequel solutions of (1.2) obeying these properties, which for the sake
of simplicity is denoted by
(1.7)

Psr(h,c) :={U = (n,¢,B,V) € L*([0,T], H;,;) solution to (1.2), satisfying (1.6)
and Ul;—o satisfies (1.5)}.

Our main result concerning the solution map of the gravity water waves is stated in
the following theorem.

THEOREM 1.4. Let s > 1+d/2, T > 0 and two positive constants h,c. Then
for every A € R there exists a function K : R™ x RT — R nondecreasing in each
argument, such that

(1.8) (YU — UQ)HC([O,T],HF) < K(My, M) ||() (U — U2)|t:0\|7{f51
for all Uy, Uz € Psr(h,c), provided that the right-hand side is finite, where
As a consequence, we have

COROLLARY 1.5. Let s > 14 d/2; h,c > 0 and A be a bounded set in H,.
Denote by T the uniform existence time of solutions to (1.2) in Psr(h,c) with data
in A. Then there exists 0 < Ty < T such that the following property holds:
for every A € R one can find a constant C' > 0 such that

(19) ||<>>\(U1 - UQ)HC([O,Tl],'HfEl) S CH<>)\(U1 - U2)|t=0”’}.[i71?
for allU; € Psr(h,c) with Ujli—o € A and provided that the right-hand side is finite.
In Corollary 1.5 if we take Us|i—o = 0 and use the Sobolev embeddings (see
Proposition 2.2, [1])
d

d
T (RY) — WrEoRY), > 3 "5 N,

we derive

COROLLARY 1.6. Let s > d/2 and h,c > 0. Then for any bounded set A in H,,
there exists a time T' > 0 such that:
for every A € R one can find a constant C' > 0 such that

(1.10) H<'>/\UHC([07T]7HZ?1) < CH<'>)\U‘1€:0HH51
for allU € Py (h,c) with Uli—g € A and provided that the right-hand side is finite.
Moreover, if s >r > 1+ % and r — % ¢ N it follows that

gy < CH<'>AU’t:0”H;"El'

A
(111) ”<.> UHC([O,T],WT7177
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REMARK 1.7. 1. Of course, if A < 0 then the right-hand sides of (1.8), (1.9), (1.10), (1.11)

are automatically finite.
2. For the Camassa-Holm equation, an approximate model in shallow water waves

regime, it was proved in [12] with A > 1/2 that
A A
1L+ 2) | oo yroe S 11+ 2) =000

1.3. Interpretation of the results. 1. The Zakharov system (1.2) appears
to be nonlocal, which comes from the fact that the Dirichlet-Neumann operator
defined by (1.1) is nonlocal. This can be seen more concretely by considering the
case of fluid domain with infinite depth (i.e. T' = )) and free surface at rest (i.e.
n = 0). Then, the Dirichlet-Neumann operators is G(0) = | D,|. However, Corollary
1.5 shows that the system is in fact still weakly local as explained below.

Take s > 14d/2. Let’s restrict ourselves to a bounded set A of ¢, and suppose
that we are observing a bounded domain, which by translation can be assumed to
be centered at the origin, say O = B(0,1). Let Uy 1, Up2 be two data in A such that
they are identical in a ball B(0, R) and have difference in ’Hfjl of size 1 outside this
ball, where R > 1 is a given distance. Take a ”"window” ¢ around our observation
region O, that is, ¢ € C5°(B(0,3/2)) and ¢ =1 in O. Then by the estimate (1.9)
we have for some T'=T'(A) > 0 and any N >0

le@ = V)l oqo,ri gty < OW I (O = Ul oo,y
< On|() N1 - Ua)ll oo,

< CN7A||<~>7N(U071 — U()Q)H?_[Zl < CN,ARiN.

Uo,2 11
Uoa
_R 1 1 R
t=0
L-*“'/ yy
/ 11 /
1
RN

Therefore, under the dynamic governed by system (1.2), a difference of size 1 outside

the ball B(0, R) of initial data leads to a difference of size R~ of two solutions in

the bounded domain B(0,1) (see the figures above). When R — +o00, the difference
4



of two solutions tends to 0 at a rate faster than any polynomial. In other words,
to some extent, what happens far away has small effect on a given bounded region;
moreover this effect becomes smaller and smaller when the distance increases to
+o00. This gives us a weakly local property of gravity water waves. This property is
indeed dictated by the polynomial decay off the diagonal of the kernel of differential
operators in suitable classes, as we shall explain in point 3. below.

2. As a consequence of Corollary 1.6, the estimate (1.11) with A > 0 provides
a spatial decay property for solutions. In classical Sobolev spaces, solutions always
vanish at infinity. On the other hand, Theorem 1.3 gives the existence of solutions
in Kato’s spaces which can be neither decaying nor periodic. The estimate (1.11)
however gives a conclusion for the intermediate case: as long as the datum decays
at some algebraic rate (which, physically, is more natural than exponential decay)
in Kato’s space, the solution decays also, and moreover, at the same rate.

3. Let us explain why the polynomial growth weight (2)” is a reasonable choice
in our result. For this purpose, a good way is to look at the linearization of system
(1.2) around the rest state (n,¢) = (0,0) (take g = 1):

(1.12) { gzljfil?é) =0,
or equivalently, with u :=n + i|DI|%1/;,

Oyu+ i|Dg|2u = 0.
Given a datum ug at time ¢t = 0, this linearized equation has the explicit solution

] 1
u(t,z) = e*”mz'?uo(a:) = p(t, Dy )up,

where the symbol p reads p(t,§) = —it|§]%. Then for A € R and 0 < T < oo, we
seek for the following estimate

(1.13) 1) ulleqo.mas,) < CICY uollas, -
Modifying p at 0 using a suitable cut-off function, we have that p satisfies
(1.14) 02p(t,€)] < Call+€)72%, Va e N9, (1,€) € [0,T] x R%,

which is usually denoted by p € S9 o An adaptation of the proof of Proposition 5.3
27

then implies the estimate (1.13). For simplicity let us consider s = 0, we need to
show for any fixed k € Z¢

(1.15) A= S P ()7 s ARY) - LA(RY)

q
with norm bounded uniformly in k. Due to the presence of y; it suffices to prove
A L2(RY) — L*(R%). To this end, we call K(x,%) the kernel of the pseudo-
differential operator P then the kernel of A; is

> (@ w(@) K (2, 9)xq) () ~ D> (kYK (K, q){q) ™,
q q
where the absolute value of each term in the above series is bounded by (k —
¢)M|K (k,q)|. On the other hand, from the decay property (1.14) of 8§‘p, the kernel
K satisfies
|K(k,q)| < Onlk—q| ™™, Vk #q.
Therefore, for the sequence (1.15) to be convergent, it is reasonable to choose the

polynomial weights as above. This argument suggests that the weighted estimate
5



(1.13) is rather unlikely to hold for the water wave model with surface tension, in
which case the propagator is given by

, 3
u(t, ) = e P12y (2).
.3
This is a pseudo-differential operator with symbol p(t,§) = e "% whose deriva-
tives do not decay but growth in & — 4oo. This reflects the infinite speed of
propagation of the gravity-capillary waves.

1.4. Plan of the proof. To prove Theorem 1.4 we follow essentially the scheme
in [1]. The first task is to adapt the paradifferential machinery to Kato’s spaces with
weights. This is done in Appendix 5, which can be of independent interest for other
studies in this framework. Having this in hand, compare to [1] (and also [2]) the main
ingredient for the proof of Theorem 1.4 reduces to the study of bound estimates, par-
alinearization and contraction estimate for the Dirichlet-Neumann operator. These
are done in section 2 and 3 below, respectively.

Acknowledgment. This work was partially supported by the labex LMH through
the grant no ANR-11-LABX-0056-LMH in the ”Programme des Investissements
d’Avenir”. I would like to send my deepest thanks to my advisor, Prof. Nicolas
Burq for his great guidance with many fruitful discussions and constant encourage-
ment during this work.

2. A weighted description for the Dirichlet-Neumann operator

2.1. Definition of the Dirichlet-Neumann operator. In this sections, we
drop the time dependence of the domain and work on the domain of the form

(2.1) Q= {(z,y) e R 1o (2) <y < ()}

where 7, is a fixed bounded continuous function on R? and n € WhH>*(R%). We
assume that € contains a fixed strip

(2:2) O = {(z,y) e R i p(a) —h <y <n(2)}.

2.1.1. Straightening the boundary. We recall here the change of variables intro-
duced in [2] (see section 3.1.1) to flatten the domain with free boundary (which
is in turn inspired by Lannes [8]). Consider the map (z,z) — (z,p(z,2)) from
Q := R x (—1,0) to Qp, determined by

(2.3) p(z,2) = (1+ 2)e?*Pelp(z) — 2 [67(1+Z)5<DI>’)7($) —h| if (z,2) €.

For § small enough this map is a Lipschitz-diffeomorphism from Q to Qp,.

NoTATION 2.1. For any function f defined on 2, we set

(2.4) f(x,2) = f(z,p(z, 2))
then
O (o, 2) = 2. (. 2) o= Al 2)
(2.5) 9y O=p
Vaf(z, p(z,2)) = (sz— Z;i)azf)(x,z) = Agf(x,z).

6



1
2.1.2. Definition of the Dirichlet-Neumann operator G(n). Let 1) € Hil(Rd), we
recall how G(n)v is defined (section 3.1, [1]).

For every q € Z%, set 1, = x,0 € H%(Rd) then one can find yq € H'(Q) such that
Qq|y=n(r) = ¢q(x) and

(1) suppy C{(z,y): |z —ql <2,n(z) —h <y <n(x)}

(@) ¢, HHl ) < Flllnllwrcoma) gl 3

Let ug € HY(Q) := {v € H'(Q), v[y =0} be the unique variational solution, to
equation Ay yu, = —Ag 41y, which is characterized by

H? (Rd)

(2.6) //Q Vaytq(z,y) - Vi 0(x,y)dedy = — //Q V$7yyq(x,y) - Vay0(z,y)dzdy

for all # € H0(Q). The series u := > _qezd Ug is then convergent in

HiiO(Q) = {v : sup quv||H1(Q) < 400 and v|y = 0}
q€Z

Finally, u + 1 := > gz gt quz @q solves uniquely the elliptic problem

0P
(2.7) Ay y®=0inQ, Py =1, 5]1* =0,
(in the variational sense) and the Dirichlet-Neumann operator is defined by
oe 0o
Gyi(@) = (14 |Van?)2 5= s = (5 = Van - Va®)l5
oy GOV = (V) s = (G = Y V.8)|

= (AlZI; - Vx77 ’ AQEIV)) ’z=0 = (AIEIV) - v:r:p : AQEIV)) ‘z:O-

2.2. Elliptic regularity with weights. We observe that if u is a solution of
the elliptic equation Au = 0 on  and u is its image via the diffeomorphism (2.3)
then

(AT + AZ)u =0,

which is equivalent to (see equation 3.16, [2])

(2.9) (02 +alA, + B -V,0, —v0,)u =0,
where
(8Zp) azpva:p ]- 2
2.10 = —— =-2—_"_ = 15) A, -V20.p).
(2.10) a B v aZp( Cp+alep+f p)

T 1+ Va2

These coefficients are estimated by

LEMMA 2.2 ([1, Lemma 4.17]). Let J = (—=1,0). There exists F : RT — R*
non decreasing such that (see Definition (5.1) for the definition of X")

ol o + o + 3 <F il ).
L L P o T P P (LI ey

Let us denote by £ the linear differential operator
(2.11) L=0>+alA,+ B-V,0.
and consider the following inhomogeneous initial value problem
{(ﬁ—v@z)ﬂ:F in R% x J,

2.12
( ) a’z:O = 1;[)



DEFINITION 2.3. Let w : RY — R be a function such that w(z) # 0,Vx € R and

define
. Vw! /. Yuw
{Tl e N R IRy

—AwTl s Aw
Tro = w—-1 Ty 1= W -

We say that w belongs to the class W of acceptable weights if r;, v} are in Cp° (RY), i =
1,2.

EXAMPLE 2.4. For any t,s € R, the functions e!®) (z)°, !®)(2)% are in class
W.

Now we fix a wieght w € W and set v = wu. A simple computation shows that
v satisfies
LU+ (811 —7)0.0+ arev + 2ary - Vo = wF.

Next, set U = xx0, then
where

Fy = aAxiv +2aVxg - Vv + 8- Vexe0,0 — Xk - 10,0 — xparst — 2xiary - VU,

Fy = xx0:v.
Notice that since 71,72 are in C$°(R?) the proof of Lemma 3.18 in [1] still works
and we have

LEMMA 2.5. Let J = (—1,0). There exists F : RT — R™ non decreasing such
thatforf% <og<s-1 with0+% <s-—1

1
D IBillyors gy < FUnll g IVa20lxg, 0
j:O ul

(see Definition 5.1 for the definition of Y* ), where F depends on w only through the
semi-norms of ri, i, i = 1,2 (in C°(RY)).

Now, applying Proposition 3.19, 3.20 and 3.16 in [1] leads to an elliptic regularity
theorem with weights:

THEOREM 2.6. Let w € W,J = (—1,0). Let u be a solution of the problem
1
(2.12) and set U = wu. For —3 <o <s—1letn € HZ;FQ(Rd) satisfying (2.2),
wy € HH(RY), F € Y(J) and

(2.14) V23] < +oc.

XaE )
Then for every z €] — 1,0[ there exists F : R™ — R non decreasing, depending
only on (s,d) and the semi-norms of r;, 7,i=1,2 (in C{°(RY)) such that

||v$,26”X51(2070) < f(HnHHH—%){qu’/)HHSfLI + HQUFHYJZ(J) + HV%Z%HX_%(J)}

ul ul

Consequently,

09 ) < () {00l + Pl + BVl _y )
ul

ul

REMARK 2.7. We remark that in all the results stated below, the function F
depend on w only through the semi-norms of r; and 7}, i = 1,2 in Cp° (Rd).

=

To apply Theorem 2.6 we need the following estimate in the low norm Xu_l . For
the proof of this, let us recall the following classical interpolation result

8



LEMMA 2.8 ([10, Theorem 30]). LetJ = (—1,0) and o € R. Let f € L2(J, H "2 (R%))
be such that 0, f € L2(J, H"_%(Rd)). Then f € C9([—1,0], H° (R%)) and there exists
an absolute constant C' > 0 such that

[ fllco (1,00, 5o (RAY) < C\|f||L§(J7Ha+%(Rd + C|0. f”L2 (LH -} (RaY)’

PROPOSITION 2.9. Let J = (—1,0), XA € R and ® be the unique solution to (2.7).
Then, there exists a non decreasing function F : R™ — R™ such that

2.15 AV, P <
(2.15) [ (x)*V H - 5o F([Inll Hg )H< ) w”Hfz(Rd

PROOF. We proceed in two steps.
Step 1. By Lemma 3.6 in [1] one can find a non decreasing function F; : Rt — R™*
such that for all p > 0 satisfying

(2.16) pF1([nll poe (mray) <1
there exists F : Rt — R* non decreasing such that for all ¢ € Z¢ we have

(217) € gl 20y < F el 3 g

Using properties (i) and (i7) above of w (see section 3.1.2), we see that (2.17) also
holds for u, replaced by yq for any p > 0 and thus (2.17) is true for u, replaced by
D, = uy —I—EI, ie.,

e~V 0. @g | () < F(lInllwrce a1l 3

HZ(Rd)
for any p > 0 satisfying (2.16).
Using the diffeomorphism (2.3) we deduce that
(2.18) |eH =NV 0@y | L2 2Ry < Fllnllwrema)llvall 43 gay-

On the support of xg, we have (z)e*=0 ~ (k) e+~ Hence
HXk<x>)\V:C,Z(A15qHLQ(J,LQ(Rd)) < <k>/\67“<k7q>]:(||77||W17°°(Rd))WqHH%(Rd)v
from which it follows that

|’Xk(»’v>AVx,z‘I’HLQ(J,L2(Rd) < Z Xk (@ )\V%ZCT)QHLQ(J,LQ(Rd))
<Z Aemnik=a) F (”U”WLOO(Rd))Hl/)qHH%(Rd)
<Z eI F (|l a.co ray) (@) () Yall 43 gy
<Z P (e ) ) ol

Therefore, we obtain

(2.19) HXk<x>)\vx,z(5HLQ(J,LQ(Rd)) < -7:(||77”W17°<>(Rd))”< > ¢HH2(Rd
l

Step 2. To complete the proof of this lemma, it remains to show for any k € Z? that

petar-dmay < FUla o)l s

9

(2.20) XKWV,



where w = ().

By the interpolation Lemma 2.8

[wx Vo Pqll < NwxeVa®qllr2(s,22) + [wxk0: Vi@l 20751y

Loo(JH™2)
The second term on the right-hand side is estimated by (2.19), so we need to estimate
M = Hkavx(?Z(I)qHLQ(J,H_l)'

Notice that for any acceptable weight w € W, there holds with ¥ € C§°(R?) and
X = 1 on supp x that
lwoxkVefllasmey < [IV(xeH)lmsmay + |w0Vaxef | gs@mye + 1Vewx | ms@ay

< lxew fll s ey + 1WVexaf ey + 17 Xe s I xew £l gsrea)

Vw

where 1] = as in Definition 2.3. This implies

lwxk Va2 msmay < Clwfll2 w1 Ry

Applying this estimate and (2.19) yields
M < Cl|(2)10: Pl 12(s.2),, < Fnll ey llwtgll ;4

ul

Finally, to obtain (2.20) we shall prove

(2:21) 1008l -8y, S T s il

Again, by interpolation,

[wX0: P4l 3y < lwxk0:®qll 22y + lwxxdZ®qll L2501

Lee(J,H™
It remains to estimate A := ”kaagéqHIﬁ(J,Hfl). Taking into account the fact that
®, satisfies equation (2.9), we have

A< Ay + Ag + As,
where by the product rule, Lemma 2.2 and (2.19),

Ar = [Ixrwalqll 21y < llol IIwa le2(s,m-1,, < RHS,

JH3),
Ay = |IxxwBOV oyl r2(g -1y < HﬁHLoo - Hwa Va®| 120y 51y, < RHS,
Az = |xswy0:@q 21 5-1) < HVHLoo L, ||w8 O 127 12),, < RHS,

where RHS denotes the right-hand side of (2.19). The proof of Proposition 2.9 is
complete. O

Combining Proposition 2.9 , Theorem 2.6 and the Poincaré inequality we obtain
a weighted estimate for ® and its gradient.

COROLLARY 2.10. Let A € R and ® be the solution to (2.7). For —% <o<s-—1

1
assume that n € HZ?Q(Rd) satisfying (2.2) and (x)*p € HSPHR®). Then for any
20 € (—1,0) there exists F : RT — R non decreasing such that

P Bl + 18P Vo Bl oy < PO g s
ul

Using Corollary 2.10 one can follows the proof of Theorem 3.10, [1] to derive
the following weighted estimate for the Dirichlet-Neumann operator, which can be
of independent interest.
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1
COROLLARY 2.11. Let A € R. For —% <o <s—1 assume that n € HZ;_Q (RY)
satisfying (2.2) and (x)*p € HSH(R?). Then there exists F : RT — R* non
decreasing such that
K2) G )l < f(||ﬁ||H5+%)||<$>A¢||Hgl+1~
ul

2.3. Paralinearization of the Dirichlet—Neumann operator. We denote
by x the principal symbol of the Dirichlet-Neumann operator:

k= ((1+ |VanP)ER = (Van - €))7

and define the remainder

(2.22) Ry =Gy —Ty.

Our aim in this section is to prove the following weighted version of Theorem 3.11
in [1].

THEOREM 2.12. Let A € R, then there exists F : RT™ — R non decreasing such

1
that for 0 <t <s— %, ne HZ;FQ (RY) satisfying (2.2) we have

(@) Rn)o | e, < f(IInIIHj%)||<$>W [

ul

. t+3
provided that wi € H , *

ul

(RY).

PROOF. Let us fix a real number ¢t € [0,s — %] By definition of the Dirichlet-
Neumann operator, one has
~ ~ 1+1|V 2
Gy =hd.® —hy-Vo@| _, hi= M7 hy = Vzp.

0.p

Let A and a be the two symbols of class T'} (R x J) given in Lemma 3.20, [1]. We
2
set

gk = (az - TA)(ka(i)ﬂ h]"ZZO = hg) .] = 1727 A’ZZU = AO) a‘z:o = ap.

Then we can write
(2.23)

XkwG (M) = hY(0:(xxw®)) z=0 — xrwh§ Vot

= 19 (xkw®)) | =0 — xkh3 Vi (wih) + xxh3¥Vw

= hgk|s=0 + h{[Ta, Xk (W) + xp (T, — h - V) (wip) + xxhay V.
Let x € Cgo(Rd) and Y = 1 on supp X, we have

xkwG(n)y = Bi + Ba,
where
By = Xeh{gk|:=0 + Xeh{[Tag, xi] (W) + xk (R{Tay — hY - V) (wip), Ba = xxhpVw.
The proof of Theorem 4.11, [1] shows that
By = xxTi(wy) + R

with the remainder R satisfies

IRl < F (Ul eyl
11



On the other hand, since h9 € H*~ (Rd)ul with norm bounded by .7:(H77H +3) and
ul

t<s-— % the product rule yields
(224) | Bellae = [xuh3yVwllge = [xxhydwri] e < F (|l 5+2)||w1/1HHt ‘

This completes the proof of Theorem 2.12. O

2.4. A weighted estimate for ®. We use the elliptic regularity theorem 2.6
to prove a weighted estimate for ®—solution to (2.7), which will be used later in
proving contraction estimate for Dirichlet-Neumann operator.

LEMMA 2.13. Let A € R. With 1 > 0 satisfying (2.16) and ®4, 14 as in section
2.1.2 there exists a non—decreasmg function F independent of q such that

Z [[(z Bl qu:sz<1> ||L°°(J><Rd < F([Inl g'*‘2)||< > ¢qHHS‘
keZd ul

PROOF. Set w = (z)*, A\ € R. We remark that wy, € H*(R?) for every q € Z¢
provided that ¢ € HS,(RY). It is clear that

Hwe% <x_q>Xsz,z(T)q ||L<>o(J><Rd) < e 1tk ||we3M/4<x_q> VI:Z(T)Q ||L°°(J><Rd)'

Consider the weight (x}’\e?’“/ 4z=a) ¢ W which has semi-norms independent of g.
Applying Theorem 2.6 to ®, (with ¢ = s — 1) and taking into account Remark 2.7
, we may estimate

o -
Z |we2® q>kaa:,z(I)QHL°°(J><Rd)
kezd

< Z e~ i th—a) ||we3“/4<x_q>vx,z‘i>q | Lo (7xR9)
keZd

< ||we3“/4<x7q>vx,z‘i)q||L°°(J,HS—1(Rd))ul

< F(lnl, e ){Hwe3“/“ qwquH;lee?’“/““”q>vx7ﬁ>q\X;m}
ul

: 3u/4(z—q) &
< F(HnHHﬁ) {lovalie + puesnire=ov, gy y 1.

Remark that in the first inequality, we have used the trivial fact that », 4 e~ 1(k=a)
is finite and independent of q.
To complete the proof we need to prove that

3p/4(z—q) P
(2:25) w0V Bl g < Tl ey 0ty

However, using interpolation inequality as in step 2 of the proof of Proposition 2.9,
it suffices to show that

(2.26) lwe® A0, @ql| 25 2),, < f(ll??lleT%)lllU%ﬁqllH%
Indeed, by virtue of (2.18) one can estimate )
Ixp(a) e 0T, By 22y S € FPD ) xpe Vo By | 21
S e 5P P F(lnllwroe) Ixg¥l
S e8P0 () @) F(Inflwre) @) Xg 4
<

Fllnllwoe) ) xqtell 3
12



which is the desired bound. O

3. Weighted contraction for the Dirichlet-Neumann operator

The main ingredient in proving contraction for the Dirichlet-Neumann operator
is the contraction estimate for solutions to the elliptic problem (2.7). The key idea
then is to compare the two variational solutions after changing the variable ®; to &)j
as in (2.4). However, after straightening the fluid domains by the diffeomorphism
(2.3), the new domains will depend on their upper surface. To overcome this, we
use a slightly different diffeomorphism as follows.

Given 1, € C)(RY) and h > 0, there exists 77 € C£°(R?) such that

(3.1) ne(z) < 1(x) < ne(x) + g, vz € RY.

Then, because 7; > 1, + h we set

My ={(=, ) z e RY, nj(e) — § <y <ny(2)},
Qo ={(x,y) ;2 € RY, fj(z) <y <myz) — 4},
Qg5 ={(=, ) v € RY, n.(x) <y <7(2)},

Qj =M UQQJ Ung,

and
Q1 =RIx(-1,0)s,
QZ — Rd [ ) _1]27
Q3 = {(a; z) ERI X (o0 —2): 2+ 2+7(x) > n.(2)},
Q = Ql U QQ U Qg
Remark that depends on 7, h but not on 7;. Thus, we can define
(3.2)
pri(,2) = (14 2)e?*Peln(x) — 2 [e U+ Pedyi(a) — 5], in
pi(@,2) = po(w,2) = (24 2) [SEHDDI (2) ~ B] — (14 2)f, in O,
p3j(x,z2) =z+2+7n(z), in Qs.
LEMMA 3.1. The mappings (x,z) — (x, p;j(x, z)) are Lipschitz diffeomorphisms
from € to ;.
PROOF. Observe first that py ; are Lipschitz for k = 1,2,3; 57 = 1,2. Clearly,

(x,2) = (x,p3,(z,2)) are diffeomorphisms from Qs to Q3. The same property
holds for py; as in (2.3). We now prove it for p ;. Notice first that

p2,i(—1,2) =mn; — p2i(=2,2) =1.

h
3 )
Compute now

0.paj = 66(Z+1)<Dz>77j(fr) _ g — (24 Z)éeé(z+l)<Dz><Dx>7]j -7

= DD, () = (o) — (24 20PN D, ), + () = 7 5.

w|

By writing e®GHDPa)p, —p: = §(z + 1 fl ro(z+1{P2) (D, Vn;dr we deduce that

He5<z+1><Dz> i H (2 + 2)55HVD=) (D vy H

i

h
<Co H77j||W1,oo(Rd) < 6

Lo°(R4)
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for § > 0 small enough. On the other hand, thanks to (2.2) and (3.1) it holds that
h h h h h
P> — L — 1 . — _f>h_f_f _
m =0 =g =0 = n) + (0 —7) — 3 3 33
and thus 0,pa; > h - % = % in Qy. Therefore, we can conclude that (z,z) —
(x, p2,j(z, 2)) are dlffeomorphisms from Qs to Qo ;. O

With the functions p; above we denote for every f: ) — R

and as in (2.5) we define the differential operators A/ = (A{,Ag). Hereafter, J =
(_27 0)
LEMMA 3.2. We have A — A? = 00, = (p1, 92)0. with p =0 for z < —2 and

G4 lwplpgrmo., < FUoml oy o)l =m)l .

ul ul ul

PROOF. By definition, one gets

_ 0z(p2 — p1)
P1= (7 7
azpl&zp?
on — _Valpz—p1) pr282(p2 — p1)
0.p1 0.p10-p2
so in 3, p = 0. To obtain (3.4) one writes
lweoll L2 2may), < lwellre-1.0),2m))., T lwellL2—2,-1),22R)).

to use definition (3.2), the fact that 7 € C;°(R?) and the 3-smoothing effect of the
Poisson kernel, which is Lemma 5.5 applied with r = 1. ]

Let us recall here the Poincare inequality proved in [1] (cf. Remark 3.2)
LEMMA 3.3. Let
HY(Q;) = {u € L*(Q)) : Voyu € L*(Q;) and Uly—p;(z) = 0}

Then there ezists a constant C > 0 depending on ||n]| oo (gay + 104l 0o (ra) Such that

// x)|u(z,y)] d:zdy<C// x)| Vg yu(z,y)|dedy

for alluw € HYO(Q;), a € C°(RY), a >0 and C is independent of a.

1
THEOREM 3.4. Let ¢; € HjI(Rd) and ®;,5 = 1,2 be the unique solution in
HL(Q;) of the problem

| 00,
Aw,yq)j =0 in €, fbj‘z = T/Jj, TIJJ‘F =0.

Setn =mn1 —mn2, ¥ =11 — o, d = &, — Oy where &)j is the image of ®; as in (3.3).

Then for every X € R, w = (:)* there exists a nonnegative function F such that

(3.5)
¥y < F Ul g ey) (Tl ol + ool ).

ul ul ul
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For the proof of this result, we shall apply Lemma 2.13 for &)q. However, <I>q
here is the image of ®, via the diffeomorphism corresponding to one of p; defined
by (3.2) instead of (2.3). We want the same result as Lemma 2.13 in this situation.
To have this, we notice that on J = (—2,0), p; is comprised of two functions p ;
for z € (—1,0) and py; for z € (—2,—1]. The function p;; possesses the same
properties as p does and so does po ; since 1) € Cp° C H77. Therefore, we obtain

LEMMA 3.5. Let A € R, w = <))‘ and @4, Viq, 7= 1,2, q € Z as in section
2.1.2. There exists F1 non-decreasing such that: if 0 < /L.Fl(”njHHsl) <1 then one
can find a non-decreasing function F independent of q such that

)\ “ & A
> (@) 2D Vo @ gl e (sxra) < FUnslloe ) a) gl a2
keZd ul

PROOF. (of Theorem 3.4) For simplicity in notations we shall denote F =
F(llmll s+% el e 1) which may change from line to line. We proceed in the

ul

followmg steps.
Step 1. Let @, = ujq + 1!1 ia where u; 4 is the variational solution characterized by

(2.6). After changing the variables, (2.6) becomes
/~Aj5j7qu9deX =0, V9e HY(Q), j=1,2

with the Jacobian J; = |0,p;| = 0.p; (0.p; is a.e. positive in Q).

Set <I> =, a CI’Z,q? %q = %1@

0 = 209 ($, — @q) e HY(Q)

1. and choose
2,

where g. = 7 +<:<x a) 7 It follows that
~ 3
'/AléquejldX‘ <> A
Q -
7j=1

= [5[(A' = A%) By (A0 |dX,

= [ [A%@2,4 (A — A%)0.71|dX,

A = [5|A2Dy ,A%0(J) — Jo)|dX.
By Lemma (3.2) we know that A—A2=0in Qg Likewise, J1—Jo = 0,p1—0,p2 =0
in (23 Consequently, with Qo = R% x J we have Aj, 7 = 1,2,3 are equal to the

corresponding integrals over Qg.
Step 2. (Estimate for Ay) First of all, we remark that

(3.6) N (e209:U) = 9 AU + (0,U)20e*% V..

Using Lemma 3.2 and formula (3.6) with j =1, U = &, — ¢ one can write

A = /~ €29 |0, By, A (B — ¢ )T1]dX + 26 /~ €29 |V 9. 020 P3,4(®g — &, ) T1|dX
Qo QO
= A1+ A
Since ||Jj]| ;o < F, we may estimate

Al,l < F . 62595|@8z&)2,q/\1(&)q_;Lq)‘dX
Qo o

Flpe®9 0,0,

IN

all 2@y €79 AN (g = ¥ ) 2(c1y)-
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On the other hand, there holds

A1 foll e remay < O IXkfixefoll iz 2 ray

(3.7) g
< |fill 22y Z Xk f2ll oo (g xRAY-
k
Now we choose § > 0 such that
1
39 SFIml ) < 5

then the condition of Lemma 3.5 is fulfilled with p = 26. It then follows from (3.7)
and Lemma 3.2 that

lpe®0. 02 ]| 12 g, < lwpw ™00,

L2(J,L*(R))

(3.9) < Nwpllz2 (2 me).0 Zk: kw00 B g | ooy ma)
< fllwnHHu%l [ ™ o gl s
Therefore,
A1 < F|leb9 AN (B, — @q)nm(ﬁo)\|wn||H%le—1¢2yq s
For A; we have
Ap < 25fue<596ma,z@,q|yL2@O)||e<59£(<5q — @qﬂle@O)-

The first L?-norm on the right-hand side is already estimated by (3.9). For the
second term on the right-hand side, one applies the Poincare inequality in Lemma
3.3 and changes the variables to derive

(3.10)
||e(595 (q)q _ %q)HLQ(ﬁo) < ./—"”efséisaz(q)q — gq)”LQ(ﬁ) < .7:||e5gsA1(<I>q - %q)HL%SNZ)

from which we deduce that A > satisfies the same estimate as A1 does and hence,
so does Ay, i.e.,

(3.11) Ay < Flle®= AN (B, — %q)HLZ)@O)HwWHH% w4 || 125

ul

Step 3. (Estimates for Az, As) By Lemma 3.4 we have
1 A2\0 — 0209:9 (& _ o
(AL =A%) = pe0. (B, — D).
It follows that

Az < Fllpe® A®o ]| 2 167 0= (@ = &)l 121,

Using the definition of A% and the same method as in (3.9) one obtains that the first
term is also bounded by the right-hand side of (3.9). On the other hand, it is easy
to see the second term is bounded by F He‘ngAI(CAISq - @q)“ L2(80)" Therefore, As also
satisfies the bound (3.11).

For As3 one uses the formula (3.6) to get A3 < A3 + A3 with
Ay = /~ €29 N2, A2(B, — § )(J1 — Jo)|dX,
Qo

’ —q

Agp =6 | €% |Vg.A3do (@ — ¥ )(J1 — J2)|dX.
Qo
16



First, Aso is estimated by |(J1 — J2)€595A2(I)2’QHL2(§0)Heégf(@q - yq)HLQ(ﬁO). The

second term is estimated by (3.10) and the first term is estimated as in (3.9) with

o replaced by J; — Jy which satisfies ||w(J; — J2)||L2(JL2l) < Fllwnl|| y. Similarly,
) u H

ul

Agy < ([ = ) A2 g o 179 A% By — &) |2 -

We only need to study the second term on the right-hand side. With u := &Dq — @q
one has Afu = gz—ﬁ;A%u which implies Heéng%uHLg(ﬁo) < f\]eéng%uHLg(ﬁO). On the

other hand,

Vep2 Vaepr  Vape 1
Au=V,u— Ou=Au+ < - 0, —0,u | .
2t YT T T o T 0 ) P o

Hence, |]6595A§UHL2(§O) < .F]]e‘sngluHLQ(ﬁo) and H6595A2UHL2(50) < FHe‘sngluHLz(ﬁo).
In conclusion, we have proved that: for any (small) § > 0 satisfying (3.8), there holds

(3.12)

/ﬁAléquejldX‘ < -/—"”6695/\1((1;(1 *iq)HLQ(flo)”wnHH% w4 g || 175

ul

Step 4. Next, in view of (3.6) we write
/ A AT dX
Q
— /~ €209: N1 AL (D, — @q)JldX +20 /~ AL, (D, — @q )e¥9:V g, J1dX
Q Q
(3.13) = /@ *% A (@ — & )P T1dX + /ﬁ 29N AN(@g = ¢ ) JidX
+ 25/~ Ay (Dg =) (@ — ¥ )™ Vg T1dX
Q
+ 25/V A%éq(&)q — @q)eQ‘snggngdX = B1 + By + Bg + By.
Q
From the estimate (3.10) one has

(3.14) (B3| < 6Fa(llmll o)€M (Bg = )7,

ul

where 55 : RT™ — R is a non decreasing function. Likewise,

(3.15) 1Bl < 0Tl e A1l 1A B = D)% 25

ul

Finally, it is clear that
(3.16) Bl < Fallml e e A,y I (B = )™

Now, remark that there exits a constant ¢y depend only on h such that |J;| > co.
Choose § > 0 satistying

.oco 1
317 AUl )+ Pl ) b = min( ).

A combination of (3.12)-(3.16) yields

[EENCIE]

—q

-1 8ge A1, ~
msr{uwnnﬁuw Yaqllae + e A%Hmm}-

ul
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Step 5. Now, letting ¢ — 0 and taking into account properties (i), (ii) of yq in
section 2.1.2 lead to

e DAy |0y < F {lwmlln w0 gl + 1"V, o }

(3.18) )
< F{lwnll s o~ b llar + Il 3}
Hence
||€5(I—Q>V:p,z(bq||L2(ﬁ) S I{HwnHHile_lwquHs —+ Hq’quH% } .
Consequently,
(3.19)

e+ Wl |

< ¢~0(p—a) <p>A<q>Af{HwnHH% 1¥24lls + ”wquH% } .

ul

¥yl < €0 G { ol o
ul

Finally, we get

IXpw Ve, @l 120 2 RA)) < Z IXpw Ve, Pqll 125, 12(R4)
q

< f{llwnllH; lallas, + IIszHHél} |

ul

(3.20)

Step 6. It remains to prove that ||Xpwvx,j>||Lm(JH_%(Rd)) is bounded by the right
hand side of (3.5).

The estimate of ||Xpwvﬁ>\| follows from (3.20) and the interpo-

Lo (J,H™ 2 (R4)) N
lation Lemma 2.8. By the same lemma, for ||xpw82<1>||Loo(JH_%(Rd)) it remains to
estimate 7

HXpwagq)HH(J,H*l(Rd))-
For this purpose we use equation (3.24) below, satiesfied by ® to have
(3.21)
IXpwd2®| 125 -1 (Ray) < IXpwar AP 20y -1 (ray) + [XpwB1- VO R 27 r-1(Ra))

+ Ixpwy10:® L2 (g -1 (re)) + XpWF || L2051 (R4 -

Because —1 < s — 2, the estimate (3.26) applied with f = 12 implies the desired
estimate for ||x,wF|| r2(J,H-1(R4))- Concerning the other terms, the product rule
(2.13), [2] gives

Iowar A8l 12y < el oy 188l 2

(3.22) I xpwpi - VazE)HLQ(J,H—l) < ”Xpwﬁl||LOO(J7HS—%)||vaz&)HL2(J,H—1)

Dpwm10: @l 21y < pwmll o ) - 10: @220 22).

Then, thanks to (3.20) we are left with the estimates for the first term on the right-
hand side of the above inequalities. Again, this is done along the same line as in the
proof of Lemma 2.2 noticing that € C;* C H27. This completes the proof. O

We are now in position to derive the weighted estimate for the Dirichlet-Neumann

operator:
18



THEOREM 3.6. Assume that s > 1+ %. Then for every X € R, w = (-}
1
there exists F : RT — R non decreasing such that for all 1,12 € HZ;FQ (RY) and
f € H5,(R%) we have

lwlG(m) = G)lfNl—g < F(lItm,m2)] wp)llwm — )II -3 Sl

Hs+2 <HT

PrOOF. We have by definition

(3.23) Glny)f = (”gvpp'a% Vv ) |
Set ® = &, — ®5 then

(3.24) (02 + 1A; + 1 - VO = 710.) & = F
where

F = {(az — a1)As + (B2 = B1) - VO — (32 — 1)0:} ®a.
We fix zp € (—1,0) and set Iy = (20,0). We first prove that

325 NoVae®l g S FUOm g ) 0Om =)y 1

Thanks to Proposition 5.5 and the product rule we see easily that

(326)  NwFllz2(sms-2),, < FUOmm)l oy org)lwlm = 772)H g 1 N,
ul ul

Since 5| 2=0 = 0, with the aid of Theorem 2.6 (which is applicable since p; ; and
p in (2.3) have exactly the same form), the proof of (3.25) reduces to estimate

|lwVy, Z<I>|| ( ; . This is a consequence of Theorem 3.4 applied with ¥; = 9 = f
1o

and the fact that Iy C J.
Next, to obtain the bound for ||V, Z<I>||

_3 at z = 0 we shall use the argument in

step 5. of the proof of Theorem 3.4 (by Vlrtue of Lemma 2.8). Then, we only need
to estimate ||02d|| L2(Io,H'7?)’ which follows by using equation (3.24). Finally, using
(3.23) and Proposition 5.3, we conclude the proof of Theorem 3.6. O

REMARK 3.7. Theorem 3.4 is also a crucial ingredient in proving contraction
of the remainder R appearing in the reformulation of water waves system-equation
(4.4) in Proposition 4.2, [1]. Notice that our estimate (3.5) is sufficient for this
purpose because

[Jw(yr — ¢2)||H% < Jlw(hr = o) a1

ul

owing to the fact that s > 1+ %.

4. Proof of the main results

4.1. Proof of Theorem 1.4. The contraction estimate in Theorem 1.4 was
proved in [2] (see Theorem 5.1) for classical Sobolev spaces and then in [1] for
Kato’s spaces. Both use the following scheme:

1) study the Drichlet-Neumann operator: bound estimates and paralinearization
2) contraction estimate for the Dirichlet-Neumann operator
3) paralinearization of the difference equations (after reformulation)
4) estimates for the good unknown
5) back to the original unknowns.
19



Here, we shall follow the same scheme as above. The first two items are the real
new points in our problem and have been studied in Section 2 and 3. For the last
three items we need a para-differential machinery in Kato’s paces with weights and
this is established in Appendix 5. The key point in this machinery is that: whenever
we estimate S(u,v) in weighted norms, where S is an operator of two variables, we
are always able to shift the weight to u or v. Having this in hand, items 3),4),5)
follow line by line those in [1] and [2]: one only need to replace || - [|o, or || - ||z by

[[(x) - | e, in the relevant estimates. We conclude the proof.

4.2. Proof of Corollary 1.5. We need to show how (1.8) implies (1.9). To
this end, it suffices to prove that there exist 0 < 73 < T and N > 0 (both are
independent of Uj) such that

(4.1) HUJ’“LOO([O,TQ,H;) <N, j=1,2
For simplicity in notations, we shall drop the index j and define
Mo (1) = |Ul| oo (0,720, » V7 € [0,T1.

Let us recall the a priori estimate derived in [1]: for any 1+d/2 <o <sand T >0
one can find a non decreasing function F : R™ — R™ such that

(4.2) M(T) < F(My(0) + TM(T)) (Ms(0) + TMs(T)).

Fix sy € (1 + %, s). Since U is a solution to the gravity waters system in C°([0, 77, M),
the estimate (4.2) gives for some non decreasing F; : R™ — R™ (independent of U)

My, (1) < F1(Ms,(0) + 7Mg, (7)), V7 €[0,T].

According to Theorem 1.3 the solution U is continuous in time with value in 9
since sp < s. Consequently, Ms,(-) is continuous in 7 and the standard argument
then gives the existence of Ty € (0,7 and N > 0, both are independent of U, such
that

(4.3) M, () < N, Vr € [0, Tp).

Applying again the estimate (4.2) with o = sy < s we get for some non-decreasing
function F : Rt — R (independent of U)

M(1) < F(Mg,(0) + T Mg, (7)) (Ms(0) + 7Ms(7)), V7 € [0,T].
By (4.3), this implies
My(t) < F(N(1+4Tp)) (Ms(0) + 7My(7)), V7 € [0, Tp].

Now, let T7 € (0, Tp] satisfying

1
TF(N(1+Ty)) < 3
one deduces
My(Th) < 2F(N(1 + 1)) Ms(0),

which concludes the proof.
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5. Appendix: Paradifferential calculus in Kato’s spaces with weights

In this section, we adapt the paradifferential machinery for the presence of
weights which can be of independent interest. The proofs of these results follow
those in [1] but we need to take some care (so we only present the proof whenever
it is necessary). We recall first various spaces which will be used in the sequel.

DEFINITION 5.1. Let p € [1,+0o0], J = (20,0),20 < 0 and o € R.
1. The space LP(J, H? (RY)),, is defined as the space of measurable functions u from
J. x RZ to C such that

[ull Lo (g, Ry = 50D [IXqull Lo (s, me mety) < o0
qc€Za

2. We set )
a(J) = L®(J, H7(RY) N L*(J, H7* 2 (R))y
G(T) = LY H (R + L2 (J, HT 2 (R

endowed with their natural norms.

The same spaces without subscript “ul” are defined for classical Sobolev spaces.

Notice that L>(J, H(R%)),, = L*®(J, HS(R?)).

NOTATION 5.2. (i)To avoid repeating, ¥ denotes a function in C§°(R?) such that
X = 1 on the support of y in definition 1.1.
(i7) For t € R, we denote [t] the smallest integer strictly greater than or equal ¢.

5.1. Weighted continuity of pseudo-differential operators. In [1], the
authors proved the continuity of pseudo-differential operators on the framework of
L? based uniformly local Sobolev spaces. Here, we perform similar results with the
presence of the weight (z)*. We denote by ST the set of symbols p € C=(R?%x R%)
such that

1DgDIp(a,€)| < Cap(l+ €)™ Va, 8 € N% V(z,€) € R x R

PROPOSITION 5.3. Let P be a pseudo-differential operator whose symbol p belongs
to STy. Then for any A\, s € R, there exists C' > 0 such that
A A
| Pullz, < Clla) ullgopon,
provided that the right hand side is finite.

Proor. We write

(5.1)  (z)*xxPu= Z () R PXqu + Z () R Pxqu == A+ Z By 4.
lk—q|<2 |k—q|>3 |k—q|>3

Since yqu = (Xq() ) (Xq(x)™) € HF™(R?), we have from the classical theory
that

Kz) e Pxqulls < (R)MPxqullms < G Mxqullpsem < (k)Ma) () xqul grovm
(k= )Ml xqull psim < [[(2) ull grsim,

provided |k — ¢| < 2. Thus,

IN

To bound the second part, we fix ng € N, ng > s. We shall prove

C

(5.2) 1D Brgll £2(ray < WHU”HELW la] < ng
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which implies the desired estimate for Z| k—q|>3 By, 4.
By the presence of X, | D3 Bk gllp2(re) < Cl|Dg B gl oo (ra)- We have

DgBk,q(fv) = (D K(z,"), Xqu)
with

53 Kla,) = (2n)70 [ e, )deno) ) Tylo)

Fix ny € N,ny > —(s+m) and 8 € N% |8| < ny. Let v € N¢ be such that |y| = N
with

(5.4) N >max(m+no+n1 +d+ 1, |\ +d+1).

Multiplying DgDyﬁK(az, y) by (x — y)? and integrating by parts with a remark that
|z — y| > 6|k — q| (for some & > 0) on the support of xx(x)(x)*X,(y), we obtain

C ~
DIDIK (,y)| < 22200 3 077, (y)]
(k—a) 1B11<8]

It follows that
|Dg Brg(z)| < [[Dg K (2, )| gr—sm) [ X gl prs+m

C
< W<k>A|’Xqu||Hs+m

5.5 < e M0 el
< e = M el

¢ A
< WW@ ull gagm

which proves (5.2). O
In a particular case the proof above gives the following more precise result.

PROPOSITION 5.4. Let m € R, h(€) = h()|§[™ (&) where h € C*(841) and

P € C°(R?) is such that (&) = 1 if |€] > 1, (&) = 0 if |¢] < 3. Then for every
A, s€R and

(5.6) r>[m]+[s]+ [m+s]+ [\ + %d +1,

there exists a constant C such that
NP h(Da)ull gz ety < ClRl (s 1) ull oo e

Remark that the condition on r above comes from the choice of N in (5.4), plus
d/2 + € derivatives from Sobolev embedding. Next, tracking the proof of Lemma
7.10 in [1] and Proposition 5.3 above, we easily obtain the following proposition.

PROPOSITION 5.5. Let 7 > 0, and X\, m € R. Let p € S](R%),a € ST(R?)
be two symbols with constant coefficients. We assume that there exists cg > 0 such
that for all ¢ € RY we have p(&) > co|€|”. Then for all s € R and I = [0,T], one
can find a positive constant C' such that
(5.7)

(@) e PDa(Dyul ot o, + @) e~ Pa(D)
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5.2. Para-differential calculus with weights. Assuming the theory of para-
differential calculus for classical Sobolev spaces (see [11]) and for uniformly local
Sobolev spaces (see [1]), we present in this section such a theory with the presence
of weights.

Given m € R, p > 0 we denote by I']? (R%) the class of symbols of order m and by
T, the associated para-differential operator as in Definition 7.15, [1]. In particular,
f;n(Rd) denotes the subspace of FZ”‘(Rd) which consists of symbols a(z, ) homoge-
neous of degree m with respect to &.

To deal with the weight (-)*, for any symbol a € [} and s, A € R, let us define the
semi-norm

(58)  MPa,9) = sup  sup [[(1+ )" OEA(, ) oo rays
la|<I(d,\,5,m) |§\Z%

where I,(d, m,s)y is the smallest even integer strictly greater than

5d
(5.9) [m] + [s] + [m+s] + [|A]] + 5 t2
If a is a symbol independent of &, the associated operator T is called a paraproduct
and we have the formal decomposition of Bony
au = Tou + Tya + R(a, u).

5.2.1. Symbolic calculus. The following technical lemmas will be used in proving
the results on symbolic calculus.

LEMMA 5.6. Let A\,p € R and N > |X\| +d+ 1. Then there exists C > 0 such
that

(5.10) sup @) Mz = )Nl ey < CIC ull o ey
xe

provided that the right hand side is finite.

Proor. We write

A \=N RS VUG S Ak LA A
(@) (@ —y) " xq(Wuly) = ()" (y) T <x_y>qu(y)<y> Xq(y)u(y).-

gi:;iiﬁ Xq(y) belongs to W°°(R%) with semi-norms uni-

formly bounded (independently of x and ¢), we deduce that

Since the function y

(@) )

)M =) N ull ey < D @) =) "N xqullme < On Y " 1)l e

qeZ? qcZ4

(z — Q>‘)\| A / A
<O 30 =L ulm, < Ol el
qceZ4

Combining this lemma and the proof of Lemma 7.13, [1], we obtain

LEMMA 5.7. Let A € R and set w = (z)*. Let x € C§°(R?) and X € C§°(R?) be
equal to one on the support of x. Let 1,0 € S(RY). For every m,o € R there exists
a constant C' > 0 such that
(5.11)

D lwxst (277 D)(1 = Xi)w)8(27 D)ol g (may < Cllwul o ray 0] oo mery:

j>—1
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For every m,o,t € R one can find a constant C' > 0 such that
(5.12) Z lwxrt (277 D) ((1—=Xk)u)0(277 D)ol g (ray < Cllwull o way vl e, (ra)
j>—1

and
(5.13)

Z [wxrt (277 D)((1 = Xi)u)0(2 7 D)Xkv g (ray < Cllwull e, mayl Xkl e (ra)-
j=-1

REMARK 5.8. It follows easily from the proof of the above lemma that the same
estimates as in (5.11), (5.12) and (5.13) hold if on the left-hand sides 277 is replaced
by 277770 where jo € Z is fixed. We shall use this remark to deal with paraproduct
estimates.

It turns out that the symbolic calculus with weights possesses the same features
as in the usual setting.

THEOREM 5.9. Let m,m' €R, p>0, A€ R and w = (-)*.
(i) If a € TR(RY), then for all u € R, there exist a constant C' > 0 such that

Tl s ety < CME (@, i) 0] oy

(7i) If a € I‘;’I(Rd), be I’Z‘,(Rd) then, for all n € R, there exist a constant C > 0
such that

[w(TaTy — Taﬁb)UHH;jl(Rd)
< O (M (@AM (b )+ M (s pOADES (b 1) Y] - g

where

afb := Z (a? O¢a(x, §)0;b(x, §).
loe|<p
(1i1) Let a € FZL(Rd) with p € [0,1] and denote by (T,)* the adjoint operator of T,
and by @ the complex conjugate of a. Then for all u € R there exists a constant
C > 0 such that

[0 ((Ta)” = Ta)ull ey < CM (@, )l o gy

PROOF. We give the proof for the first assertion only since these three points are
proved along the same lines. For simplicity we shall consider symbols in I'}? (RY).
Step 1. Consider first the case where a is a bounded function and write

xrwTyu = xpwTe(Xru) + xpwTe((1 — Xg)uw).
The classical theory gives

o Ta (Rl < R Mlalloel[Tewlzn < COlallzoe (0~ s
< Clallzellwul s,

The estimate for the second term follows immediately from (5.11).

Step 2. Next we consider the case a(x,§) = b(x)h(§) where h(§) = |§|mﬁ(%) with

h € C®(S™1). Then directly from the definition we have T, = Tj(1)h)(D,) and the
desired estimate in (i) follows from Step 1 and Proposition 5.4.

Step 3. Finally, for the general case we introduce (7L,,)V€N* an orthonormal basis of
L?(S9™1) consisting of eigenfunctions of the (self-adjoint) Laplace Beltrami operator
A, = Aga—1 on L?(S971) and argue as in the proof of Theorem 7.16, [1]. It is here

where we use the special choice of the number of derivatives in (5.9). O
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5.2.2. Paraproducts.
PRrROPOSITION 5.10. Let w = <->)‘, A € R and sy, 81,52 be such that sy < sy and
So < 81+ 89 — %. Then there exists C > 0 such that
Tl o < € min {1l e ol s, el ol | -
Proor. We write
(5.14) xkwTau = XpwTy (1 — Xi)u + XewT o Xkt + XewT(1-5,)a Xk U-

By the classical result, we have
(5.15)

IvkeTx ol S WM TxaTeulliro S ) Keallimn (Kl S lallge lwl .
On the other hand, applying (5.12) gives
IxxwTa(l = Xe)ull o S llall o [lwul g
and it follows form (5.13) (applied with A = 0) that
IxkwT e Xkl a0 S EYMIXeT(—g0a Xkl g0
< (B Mlal s Kol S Nl ol

Consequently, we obtain

Tl g < Cliall s w7
Now if instead of (5.2.2), we decompose

xewTau = XpwT(1—g)et + XewTs, o Xkt + XpwTy,a(1 — Xk)u

then we get

wTallgy < Clhwall g 2.
The proof is complete. O

PROPOSITION 5.11. Let w = ()*, A € R and two functions a € H}(R%),u €
HZ%(Rd) with s1 + sy > 0 then we have
(7)
(5.16) [wR(a, )|

sl+s2—%

ul

R < CHaHHill(Rd)||wuHHZ2;(Rd)'

(#4) If in addition sy < s1 and sy < s1 + s2 — % then there exists a constant C > 0
such that

(5.17)
[w(a = To)ull o ray < C'min { lall g1 (ay llwull g2 (ay s [[wall g1 (a) HU\|H3(Rd)} :
PROOF. (i) By definition, we have (for some cut-off function ¢)
R(a,u) = Z Z ©(277D)a - (27 *D)u.
JZ-1]k—j|<1
We write a = Xra + (1 — Xr)a,u = Xpu + (1 — Xx)u so that
xrwhR(a, u) = xpwR(Xka, Xxw) + XkwSk(a, u).

The first term is estimated by the same method as (5.15) with the use of Theorem
2.9 (i) in [2]. The remainder wyxSk(a,u) is estimated by using (5.12) and (5.13).
(77) is a direct consequence of (i) and Proposition 5.10.
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REMARK 5.12. We remark that with the methods in the proofs above, the com-
mutator estimate in Lemma 7.20, [1] still holds for uniformly local Sobolev spaces
with the weight (-)*.
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