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A Simplified Formulation for Rough Surface
Cross-Polarized Backscattering Under the
Second-Order Small-Slope Approximation

Charles-Antoine Guérin and Joel T. Johnson, Fellow, IEEE

Abstract—We present simplified expressions for the cross-
polarized backscatter of a randomly rough surface predicted by
the second-order small-slope approximation (SSA2). The simplifi-
cation is based on appropriate polynomial approximations of the
SSA2 kernel function. We obtain numerically efficient expressions
for the cross-polarized backscattering amplitude of a deterministic
surface in the form of a single space integral involving only the
surface elevation and the second (mixed) derivative of the surface
elevation. The ensemble average normalized radar cross section
is then derived under a Gaussian random process assumption for
the surface. The resulting expression has the form of a Kirchhoff
integral involving the roughness correlation function and its
second- and fourth-order cross-derivatives. Further simplification
is achieved for off-nadir observations using a high-frequency ap-
proximation; the result is an analytical formula involving only the
resonant curvature and the radar-filtered mean square slope in the
out-of-plane direction. A numerical validation of the simplified ex-
pressions is provided by comparison with exact SSA2 predictions
in representative test cases. The dependence of cross-polarized
backscattering on the incidence angle as well as wind speed and
direction is then investigated for the case of a directional sea
surface model. At near nadir incidence, a clear maximum in
azimuth of the cross-polarized backscatter is observed for radar
look directions 45◦ from the wind direction.

Index Terms—Cross-polarization, microwave remote sensing,
sea surface scattering.

I. INTRODUCTION

THE use of the cross-polarized backscattering coefficient
of the ocean is of increasing recent interest, as it has been

found to be a useful proxy for wind speed, especially in high
sea states [1]–[3]. However, the interpretation and modeling of
rough surface cross-polarized backscattering is still challenging
as it involves multiple scattering as well as out-of-plane tilt-
ing effects which cannot be simultaneously accounted for by
simple analytical models [4]. Today, one of the few scattering
models capable of predicting cross-polarized backscatter is
the second-order small-slope approximation (SSA2) [5]–[8].
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Computation of SSA2 cross-polarized backscatter predictions,
however, remains difficult and computationally demanding be-
cause it requires integrations in both the space (over the surface
correlation function) and wavenumber (over the surface power
spectrum multiplied with an SSA2 “kernel” function) domains,
with a slowly decreasing and oscillating integrand in space.

One decade ago, it was shown that the copolarized computa-
tion of the SSA2 can be drastically simplified in the so-called
high-frequency approximation [9], under which a quadratic
approximation of the SSA2 kernel function makes it possible to
perform the integration in wavenumber analytically. In this pa-
per, we pursue a similar approach for cross-polarized backscat-
tering to again obtain an approximation of the full SSA2 that
involves only a single Kirchhoff-type integral in space. To
obtain more accurate predictions, differing approximations are
used depending on whether the incidence angle is close to or
away from nadir. In the latter case, we further show that an
additional high-frequency approximation can be used to reduce
the results to an elementary analytical formula involving the
surface spectrum at the Bragg resonant wavenumber and the
surface mean square slope. We validate the method by compar-
ison with a set of exact SSA2 computations for representative
test cases and examine the dependence of the results on wind
speed and direction.

This paper is organized as follows. General formulas and
notations for the SSA2 technique are recalled in Section II,
and the approximation of the SSA2 integral for cross-polarized
backscatter is developed in Section III. The corresponding
ensemble averaged normalized radar cross section (NRCS) is
obtained in Section IV under the assumption of a Gaussian
random process surface. High-frequency approximation of the
off-nadir NRCS is then described in Section V, and validation
tests and numerical illustrations are provided in Section VI.

II. SSA2 SCATTERING AMPLITUDE

The sea surface is described by a centered random function
z = η(x, y) in a Cartesian coordinate system with the z-axis
directed upward. The surface is illuminated from above by an
incident monochromatic plane wave (e−iωt time dependence)
with impinging wave vector K0 = (k0,−q0) and scattered
with outgoing wave vector K = (k,+q). The upper medium is
air described with vacuum wavenumber K . The lower medium
is described by a homogeneous complex relative permittivity ε
and a complex wavenumber K ′ =

√
εK . The horizontal axis is
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chosen in such a way that the radar look direction is along x
(k0 ‖ x). The SSA2 scattering amplitude [5]–[8] is then

S2=S1−
i

Qz

1

(2π)2

∫
drdξe−iQH ·re−iQzηeiξ·r η̂(ξ)M(k,k0, ξ)

(II.1)

where S1 is the first-order scattering amplitude (SSA1)

S1 =
1

Qz
B1

1

(2π)2

∫
dre−iQH ·re−iQzη (II.2)

and η̂(ξ) is the Fourier transform of roughness

η̂(ξ) =
1

(2π)2

∫
dre−iξ·rη(r). (II.3)

We have used the standard conventions (e.g., [4]) for the
horizontal (QH = k − k0) and vertical (Qz = q + q0) compo-
nents of the Ewald vector Q = K −K0. The involved kernels
are, respectively, the first- and second-order Bragg kernels
B1(k,k0) and B2(k,k0, ξ), respectively, and a combination of
the latter

M(k,k0, ξ) =
1

2
(B2(k,k0,k − ξ) + B2(k,k0,k0 + ξ)

−2QzB1(k,k0)) . (II.4)

We refer to [7] for the explicit expressions of these kernels
(which must be, however, corrected for a conventional factor
qq0 due to a different definition of the scattering amplitude).
One of the difficulties in the numerical computation of exact
SSA2 predictions is the presence of terms of the type qξ =√

K2 − ξ2 and q′ξ =
√
εK2 − ξ2 in the denominator of the

kernel M which produce sharp maxima in wavenumber space.

III. BACKSCATTERING CROSS-POLARIZED COEFFICIENTS

We will now focus on the particular but important back-
scattering configuration (k = −k0, q = q0). For simplicity, we
adopt the notations M12(ξ) and (B2)12(ξ) to represent the
cross-polarized components of M(−k0,k0, ξ) and B2(−k0,
k0, ξ), respectively.

It is well known that the cross-polarized components of the
first-order Bragg tensor vanish for backscattering. Hence, the
cross-polarized component (S2)12 of SSA2 is merely given by
its second-order contribution in (II.1) with

M12(ξ) =
1

2
((B2)12(−k0 − ξ) + (B2)12(k0 + ξ)) . (III.5)

The expression for the B2 kernel for backscattering is given by
([5] and [7], corrected for a conventional factor q20)

(B2)12(ξ) = 2q0A0ẑ[ξ, k̂0]

×
(

ε− 1

εqξ + qξ
q′0(k̂0 · ξ)− ε

qξ + q′ξ
εqξ + q′ξ

k0

)
(III.6)

with

A0 =
(ε− 1)q0K

(εq0 + q′0) (q0 + q′0)
(III.7)

and z[ξ, k̂0] denoting the vertical component of the cross prod-
uct between ξ and k̂0, i.e., ẑ · (ξ × k0). Due to cancellations
when the two (B2)12 terms (which have arguments of equal
amplitude but opposite direction) in (III.5) are summed, we
obtain

M12(ξ) =
2q0q

′
0(ε− 1)A0

εq(k0+ξ) + q′(k0+ξ)

ẑ[ξ, k̂0]
(
k0 + (k̂0ξ)

)
.

(III.8)

To reduce the complexity of the SSA2 integral, we seek an
accurate polynomial approximation of this kernel. For this, we
distinguish the nadir and off-nadir incidence angles.

A. Off-Nadir Approximation

The M12(ξ) kernel function in (II.1) multiplies η̂(ξ) in a
Fourier transform over ξ. An expansion of M12(ξ) that assumes
small amplitude for ξ appears appropriate for surfaces whose
roughness occurs primarily on length scales long compared to
the electromagnetic wavelength (i.e., assuming η̂(ξ) is larger
for small ξ amplitudes). Due to the known importance of
Bragg scattering effects for the sea surface, an approximation
of small ξ would seem undesirable in computing off-nadir sea
backscatter. However, it will be shown in what follows that this
approximation of the kernel function, when applied to the entire
range of ξ values, yields an acceptable approximation of the
complete SSA2 sea surface cross-polarized backscatter for off-
nadir angles.

Accordingly, we assume (ξ � K) along with ‖k0 + ξ‖ <
K , which holds at moderate incidence (k0 � K) and suffi-
ciently high wavenumber. Performing a Taylor expansion of the
qξ and q′ξ variables about the origin, we obtain

1

εq(k0+ξ) + q′(k0+ξ)

� 1

εK +K ′ ×
(
1+γ

(
1

2

k20
K2

+
k0 · ξ
K2

))
(III.9)

with

γ =
ε3/2 + 1

ε3/2 + ε
. (III.10)

This implies that the kernel M12 can be approximated by a
second-order polynomial of the variable ξ

M12(ξ) � αẑ[ξ, k̂0] + βẑ[ξ, k̂0](k̂0ξ) (III.11)

with

α =
2q0q

′
0(ε− 1)

εK +K ′ A0k0

(
1 +

γk20
2K2

)
β =

2q0q
′
0(ε− 1)

εK +K ′ A0

(
1 +

3γk20
2K2

)
. (III.12)

The first term in (III.11) is linear in ξ. Any linear term in ξ in
the SSA2 integral (II.1) corresponds to a gradient of roughness

∇η(r) = i

∫
dξeiξ·rξη̂(ξ). (III.13)
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Any gradient of roughness involved in the Kirchhoff integral
can be integrated by parts∫

(∇η)e−iQH ·re−iQzη=−QH

Qz

∫
e−iQH ·re−iQzη. (III.14)

Hence, ẑ[ξ, k̂0] can be replaced by ẑ[(QH/Qz), k̂0] = 0, so
that there is no contribution of the α term of the kernel to the
Kirchhoff integral.

The leading term is therefore the β term. Without loss of
generality, we can assume that k0 is directed along the x-axis,
i.e., k̂0 = x̂, so that the quadratic factor in the cross-polarization
kernel reduces to

ẑ[ξ, k̂0](k̂0 · ξ) = −ξxξy. (III.15)

Using this approximation, the integration over ξ in (II.1) can
now be performed following (III.13), and the result is inserted
into (II.1) to obtain

(S2)12 = Gγ
1

(2π)2

∫
dr ∂xyη(r)e

−iQH ·re−iQzη (III.16)

with

Gγ = −i
(ε− 1)2

ε+
√
ε

q0q
′
0

(εq0 + q′0) (q0 + q′0)

(
1 +

3γk20
2K2

)
.

(III.17)

Note that, in the limit of a perfectly conducting surface (ε →
+∞), this coefficient reduces to

G1 = −i

(
1 +

3k20
2K2

)
. (III.18)

B. Nadir Case

For near-nadir angles where the condition ξ � k0 is no
longer valid, it is difficult to obtain a polynomial approximation
for the kernel M12. Instead, we use the approximation

1

εq(k0+ξ) + q′(k0+ξ)

� 1

εqξ + q′ξ
(III.19)

which is exact for k0 = 0 (nadir incidence). We then obtain

M12(ξ) �
2q0q

′
0(ε− 1)A0

εqξ + q′ξ
ẑ[ξ, k̂0](k̂0ξ). (III.20)

This expression is similar to the previous polynomial expres-
sion (III.11) with γ = 0 and α = 0. However, the presence
of qξ and q′ξ in the denominator complicates the integration
over ξ. This issue can be addressed by introducing a modified
roughness function η̃ defined by the Fourier transform

̂̃η(ξ) = εK +K ′

εqξ + q′ξ
η̂(ξ). (III.21)

Using the modified roughness, the cross-polarized scattering
amplitude is found analogously to the previous case as

(S2)12 = G0
1

(2π)2

∫
dr ∂xyη̃(r)e

−iQH ·re−iQzη (III.22)

where G0 is equal to Gγ in (III.16) with γ = 0 (e.g., in
the perfectly conducting case, G0 = −i). Both approximations
(III.19) and (III.22) are exact at nadir (k0 = 0).

IV. STATISTICAL EXPRESSION

The preceding section provided formulations for a determin-
istic surface. We now compute the ensemble average cross-
polarized backscattering cross section assuming a Gaussian
random process surface, both for the nadir and nonnadir cases.

A. Off-Nadir Case

Using standard techniques, we obtain

σ12,offnad = |Gγ |2
1

π

∫
dr e−iQH ·r

×
〈
∂xyη(r)∂xyη(0)e

−iQz(η(r)−η(0))
〉

(IV.23)

where the brackets 〈�〉 denote the ensemble average. Stan-
dard manipulations on Gaussian processes (see the Appendix)
lead to〈
∂xyη(r)∂xyη(0)e

−iQz(η(r)−η(0))
〉

=
(
∂xxyyρ(r) +Q2

z [∂xyρ(0)−∂xyρ(r)]
2
)
e−Q2

z(ρ(0)−ρ(r))

(IV.24)

for this correlator, where ρ is the autocorrelation function of
elevation

ρ(r) = 〈η(r)η(0)〉 (IV.25)

that is the inverse Fourier transform of the power spectrum of
elevation

ρ(r) =

∫
dξ Γ(ξ)e−ik·ξ. (IV.26)

The cross-polarized off-nadir cross section therefore takes the
final form

σ12,offnad = |Gγ |2
1

π

∫
dr e−iQH ·re−Q2

z(ρ(0)−ρ(r))

×
(
∂xxyyρ(r) +Q2

z [∂xyρ(0)− ∂xyρ(r)]
2
)
. (IV.27)

B. Nadir Case

The derivation of the NRCS from the scattering amplitude
(III.22) is analogous

σ12 = |G0|2
1

π

∫
dr e−iQH ·r

×
〈
∂xyη̃(r)∂xy η̃(0)e

−iQz(η(r)−η(0))
〉
. (IV.28)

The correlator 〈�〉 is now given (see the Appendix) by(
∂xxyy ˜̃ρ(r) +Q2

z |∂xyρ̃(0)− ∂xyρ̃(r)|2
)
× e−Q2

z(ρ(0)−ρ(r))

(IV.29)
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where ˜̃ρ is the autocorrelation function associated to the mod-
ified roughness η̃ and ρ̃ is the cross-covariance function of η
and η̃

˜̃ρ(r) =

∫
dξ

∣∣∣∣∣εK +K ′

εqξ + q′ξ

∣∣∣∣∣
2

Γ(ξ)e−ik·ξ

ρ̃(r) =

∫
dξ

εK +K ′

εqξ + q′ξ
Γ(ξ)e−ik·ξ. (IV.30)

Note that ρ̃ is complex. Altogether, this leads to the following
expression for the cross-polarized cross section at nadir:

σ12,nad = |G0|2
1

π

∫
dr e−iQH ·re−Q2

z(ρ(0)−ρ(r))

×
(
∂xxyy ˜̃ρ(r) +Q2

z |∂xyρ̃(0)− ∂xyρ̃(r)|2
)
. (IV.31)

C. General Case

The previous sections provide approximations for the near-
nadir and off-nadir regions. We propose a combination of these
approximations for use at general angles as

σ12=σ12,nad exp(−a tan2 θ)+(1−exp(−a tan2 θ))σ12,offnad

(IV.32)

for a specified a which controls the angular width of the tran-
sition region between the two approximations. In the numerical
results shown, we have chosen the value a = 25 which limits
the nadir correction to about 20◦. The expressions for σ12,nad

and σ12,offnad can be evaluated numerically at the cost of a
single Kirchhoff integral, as opposed to the previous fourfold
integration required for the SSA2. This simplification is the
main result of this paper.

V. OFF-NADIR HIGH-FREQUENCY APPROXIMATION

Further simplification can be achieved in the high-frequency
regime (that is for large K) in the off-nadir domain using a
technique which was first introduced in [10] and termed the
“Kirchhoff filtering formula.” The squared term in (IV.24) has
a quadratic dependence ∼ r2 about the origin, while |∂xxyyρ|
is maximum at zero. At high frequency where the effective
integration domain is a small interval around zero, the former
term is thus negligible, and it will be ignored in the integral
(IV.27). This is confirmed by numerical evidence. Now denote

F (r) = e−Q2
z(ρ0−ρ(r)). (V.33)

Then, by the convolution theorem, we may rewrite

σ12=4π |Gγ |2
∫
dξxdξyF̂ (QH−ξ)ξ2xξ

2
yΓ(ξx, ξy) (V.34)

or equivalently

σ12=4π |Gγ |2
∫
dξxdξyF̂ (QH−ξ)

ξ2x
ξ2

ξ2y
ξ2

B(ξx, ξy) (V.35)

where B(ξ) = ξ4Γ(ξ) is the curvature spectrum. The function
F̂ is a Kirchhoff integral, hence a positive and rapidly de-
creasing function with its maximum at the origin which acts
as a sharp filter around the Bragg frequency QH . To push
the calculation further, we approximate the function F by a
Gaussian shape F0 about the origin

F (r) � F0(r) = exp

(
−1

2

(
mssxx

2 +mssyy
2
))

(V.36)

where the shape parameters mssx/y are optimized in order to

provide a good match of the respective Fourier transforms F̂ (ξ)

and F̂0(ξ) at ξ = QH . As it is well known from the geometrical
optics approximation, the shape parameters are on the order of
the radar-filtered directional mss

mssx/y =

∫
ξ≤K

dξxdξyξ
2
x/yΓ(ξ). (V.37)

On the other hand, B(ξ), ξ2x, and ξ2 are slowly varying
functions which can thus be approximated by their value at
(ξx, ξy) = (QH , 0) in the integral, provided the filter is sharp
enough to cutoff spatial frequencies which are below the
spectral peak wavenumber. We therefore have the following
approximation:

σ12∼4π |Gγ |2Q−2
H B(QH)

∫
dξxdξyF̂0(QH−ξ)ξ2y (V.38)

obtained by operating the replacements ξ2x/ξ
2 → 1 and

ξ2y/ξ
2 → ξ2y/Q

2
H in the previous integral. Since QH · y = 0,

we have with a simple change of variables ξ → QH − ξ

σ12 = 4π |Gγ |2Q−2
H B(QH)

∫
dξxdξyF̂0(ξ)ξ

2
y (V.39)

which leads in the end to

σ12 = 4π|Gγ |2cotan2(θi) Q4
HΓ(QH)mssy (V.40)

where mssy is the radar-filtered mean square slope in the direc-
tion perpendicular to the incident wave direction. The simple
formula (IV.40) is the second main result of this paper. The
explicit appearance of the cross slope shows the importance of
the out of the incidence plane tilting in the generation of cross-
polarized power. The result represents a combination of Bragg
scatter effects [due to the presence of Γ(QH)] and “long wave
tilting” (due to the presence of mssy) and can be interpreted
as an approximation of the “two-scale” theory of sea surface
scattering in which it is assumed that long wave slopes are
small and that the sea curvature spectrum is slowly varying in
the vicinity of the Bragg wavenumber. Upon inspection of the
different approximations which have been used in deriving this
simple analytical formula, we see that it is expected to hold in
the high-frequency regime (that is for large Rayleigh parameter
Qz

√
ρ0) and at off-nadir incidence.
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Fig. 1. Approximated SSA2 cross-polarized NRCS according to formula
(IV.32) (G&J) and comparison with the exact SSA2 at different EM bands.
The sea state is described by an isotropic Elfouhaily spectrum at 7 m/s.

VI. NUMERICAL TESTS

The simplified formula (IV.32) has been implemented and
compared with an exact SSA2 computation in the case of
an Elfouhaily sea surface spectrum [11]. The technique of
implementation of the full SSA2 integral has been described
in detail elsewhere [12]. The particular method used for the
full SSA2 computation requires increasing memory storage
as the spatial integral size increases (that is wind speed) and
requires sampling on the scale of the electromagnetic wave-
length. Therefore, the comparisons were limited to moderate
wind speeds. For example, with a 64-GB-RAM computer, we
could run 7-m/s wind speed in L, C, and Ku bands. Using the
maximum available memory and a much longer computational
time, we pushed the calculation to 5-m/s wind speed in Ka band
and also ran a 10-m/s wind speed case at X band.

A. Isotropic Spectra

Fig. 1 compares the full and simplified SSA2 cross-polarized
NRCS versus incidence angle for an isotropic Elfouhaily spec-
trum at 7-m/s wind speed. L band (λEM = 23.8 cm, ε =
75 + i61), C band (λEM = 6 cm, ε = 67 + i36), and Ku band
(λEM = 2.143 cm, ε = 42 + i39.5) frequencies are included.
The agreement is found excellent over a wide range of inci-
dence angles spanning from nadir to about 60◦.

Fig. 2 illustrates similar comparisons for an isotropic
Elfouhaily spectrum at 10-m/s wind speed in X band (λEM =
3 cm, ε = 60.63 + i44.97). To clarify the respective contribu-
tions of the “nadir” and “off nadir” parts, we have plotted the
results of formulas (IV.31) and (IV.27) separately and show
that an appropriate combination of both is necessary to remain
accurate over a wide range of incidence angles.

Fig. 3 shows the high-frequency off-nadir approximation
(V.40) for the L, Ku, and Ka bands (λEM = 8 mm, ε = 15 +
i26) for the same spectrum at 7 m/s (L and Ku bands) and
5 m/s (Ka band). The exact SSA2 calculation is superimposed.
The analytical approximation of SSA2 is found in overall very
good agreement with the latter beyond 30◦ incidence and is
increasingly accurate at higher radar frequencies.

Fig. 2. Approximated SSA2 cross-polarized NRCS according to formulas
(IV.32) (G&J) and comparison with the exact SSA2 in X band. Superimposed
are the contributions of the nadir (IV.31) and off-nadir (IV.27) formulas. The
sea state is described by an isotropic Elfouhaily spectrum at 10 m/s.

Fig. 3. Approximation of SSA2 cross-polarized NRCS according to the ana-
lytical approximation (V.40) (SSA2-A) and comparison with the exact SSA2 in
different bands. The sea state is described by an isotropic Elfouhaily spectrum
at 7 m/s in L and Ku bands and 5 m/s in Ka band.

B. Anisotropic Spectra

The dependence on both wind speed and direction has also
been investigated with a directional Elfouhaily spectrum (see
the Appendix). A comparison with the exact SSA2 calculations
presented in [8] is displayed in Fig. 4 for a wind speed of
15 m/s in X band. The method of performing the exact SSA2
computations in this reference allows higher wind speeds to be
considered. A good agreement is found both at nadir and larger
incidence angles with a maximum of 1-dB error at intermediate
incidence angles.

Fig. 5 plots the predicted NRCS as a function of wind
speed for the upwind, crosswind, and 45◦ azimuth direction
for both nadir and 45◦ incidence angle. At nadir, a maximum
of the cross-polarized NRCS is found for azimuth angle 45◦

with respect to the radar polarization vector. At 45◦ incidence,
the qualitative behaviors are similar to the copolarized case,
with a maximum in up/downwind direction and a minimum in
crosswind direction.
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Fig. 4. Approximated SSA2 cross-polarized NRCS according to formula
(IV.32) (G & J) and comparison with the exact SSA2 X band data from [8]
(V & Z„ courtesy of V. Zavorotny and A. Voronovich). The sea state is
described by a directional Elfouhaily spectrum at 15 m/s.

Fig. 5. Approximated SSA2 cross-polarized NRCS according to formula
(IV.32) (G & J) as a function of wind speed for two incidences (0 and 45◦).
The sea state is described by a directional Elfouhaily spectrum.

VII. CONCLUSION

We have derived a simplified formulation for rough sur-
face cross-polarized backscattering under the SSA2 analytical
model. This makes the SSA2 more tractable for numerical
applications, at the price of an approximation which has been
found reasonable for a variety of wind speeds and electro-
magnetic frequencies at nongrazing incidence angles, particu-
larly for near-nadir and moderately large incidence angles of
30–60◦. For Ka band frequencies and higher, an additional
approximation was found, which involved only the resonant
Bragg frequency of the sea surface spectrum and its cross-plane
mss, which unveils the specific contribution of the out-of-plane
tilting in the cross-polarization mechanism away from nadir.
Further tests and comparisons are necessary to fully assess
these first findings, and they will be continued in the future.
Although the examples illustrated focused on cross-polarized
backscatter from the sea surface, the simplified formulas devel-
oped can also be applied for other surface types and in other
applications.

APPENDIX

A. Calculation of the Correlators

To obtain (IV.29) (as well as (IV.24) which is a particular
case), we proceed in the following way. We consider the four-
point characteristic function

C(α, β) = 〈e−iQz(η−η0)+iα∂xy η̃+iβ∂xy η̃0〉 (A41)

where the dependence on position r is implicit and the 0
subscript refers to r = 0. We observe that the correlator (IV.29)
is given by

− ∂αβC(α, β)|α=β=0. (A42)

Since the roughness processes η and η̃ are Gaussian, this
amounts to evaluating

C(α, β) = e−
1
2 〈|Qz(η−η0)−α∂xy η̃−β∂xy η̃0|2〉 (A43)

which involves the roughness autocorrelation function (IV.25)
as well as the modified roughness autocorrelation function
˜̃ρ(r) = 〈η̃∗(r)η̃(0)〉 and the cross-correlation function ρ̃(r) =
〈η̃∗(r)η(0)〉 (the latter can be complex). Straightforward calcu-
lations then lead to the expression (IV.29).

B. Implementation of the Kirchhoff Integrals

We propose an efficient numerical implementation of the
integral (IV.27) in the case of biharmonic spectra of the form

Γ(k) = Γ(k, ϕ) = Γ0(k) + Γ2(k) cos(2ϕ− 2ϕw) (A44)

whereϕk is the angle of the vector k with respect to the incident
wave vector direction (which is taken to be the x̂ axis) and
ϕw is the angle of the wind vector with respect to the same
reference. The implementation of the integral (IV.31) is similar
when using the modified spectra described in Section IV-B.

We denote by Bn[f ](u) the Bessel transform of a function f
at nth order, which is explicitly

Bn[Γ](r) =

∞∫
0

dk jn(kr)2πk Γ(k) (A45)

or

Bn[F ](QH) =

∞∫
0

dr jn(QHr)2πr F (r) (A46)

the integration being performed with respect to the space or
wavenumber variable according to the function to which it is
applied. For the following, we recall the useful identities:

(i−n)

2π

2π∫
0

dϕ cos(nϕ) eiu cos(ϕ−ϕ0)=cos(nϕ0)jn(u)

(i−n)

2π

2π∫
0

dϕ sin(nϕ) eiu cos(ϕ−ϕ0)=sin(nϕ0)jn(u). (A47)
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It is then straightforward to derive the following expressions
(with x = r cosϕr, y = r sinϕr):

ρ =B0[Γ0](r)− B2[Γ2](r) cos(2ϕr − 2ϕw)

∂xyρ =
1

2
B2

[
k2Γ0

]
(r) sin(2ϕr)

− 1

4
B0

[
k2Γ2

]
(r) sin(2ϕw)

− 1

4
B4

[
k2Γ2

]
(r) sin(4ϕr − 2ϕw)

∂xxyyρ =
1

8
B0

[
k4Γ0

]
(r) − 1

8
B4[k

4Γ0](r) cos(4ϕr)

− 1

8
B2

[
k4Γ2

]
(r) cos(2ϕr − 2ϕw)

+
1

16
B2

[
k4Γ2

]
(r) cos(2ϕr + 2ϕw)

+
1

16
B6

[
k4Γ2

]
(r) cos(6ϕr − 2ϕw). (A48)

In the case of isotropic spectrum (Γ2 = 0), an efficient cal-
culation of the Kirchhoff integral can be obtained using Bessel
transforms. Using the identities (A47), we obtain

∫
e−iQH ·r(∂xxyyρ)F =

1

8
B0

[
B0

[
k4Γ0

]
F

]
(QH)

− 1

8
B4

[
B4

[
k4Γ0

]
F

]
(QH)∫

e−iQH ·r(∂xyρ)
2F =

1

8
B0

[(
B2

[
k2Γ0

])2
F

]
(QH)

− 1

8
B4

[(
B2

[
k2Γ0

])2
F

]
(QH).

(A49)

In the case of an anisotropic spectrum, the Kirchhoff integral
is calculated with integration in polar coordinates using a
Simpson quadrature rule to accelerate the angular integration.
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