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Edge-preserving nonnegative deconvolution of
hyperspectral fluorescence microscopy images
Simon Henrot, Charles Soussen, Member, IEEE, Saı̈d Moussaoui, and David Brie, Member, IEEE

Abstract—In many hyperspectral image restoration problems,
some prior information is available, such as the spatial and/or
spectral regularity of the solution. Additionally, a nonnegativ-
ity constraint must often be imposed to provide a physically
meaningful estimate. The restored image is then obtained as
the constrained minimizer of a penalized convex criterion. In
this paper, we propose a fast algorithm for edge-preserving
hyperspectral image restoration.

Index Terms—Deconvolution, Hyperspectral imaging, Con-
strained convex optimization, Half-quadratic criterion

I. INTRODUCTION

In many imaging situations, the data are blurred during
the acquisition process; for instance, microscopy images are
corrupted by diffraction-limited blur arising from the finite
aperture of the objective. Under the common assumption of
linear space-invariant blur, the direct problem models the
observed image as the two-dimensional (2D) convolution of
the true underlying light distribution and the microscope point-
spread function. Solving the inverse problem of deconvolution
leads to restored images with higher resolution and signal-to-
noise ratio, a crucial processing step in fields as diverse as
biomedical imaging [1], astronomy [2] or geophysics [3]. In
this paper, we focus on a specific fluorescence microscopy
problem, although ideas developed within are readily ap-
plicable to other applications. The problem of interest is
the deconvolution of hyperspectral images, which capture a
spatial scene at many overlapping spectral bands (channels)
and thus requires an efficient restoration strategy. It is worth
noting here that in addition to enhancing interpretation of the
data, deconvolution of hyperspectral images has recently been
shown to improve hyperspectral unmixing [4], [5].

From a physical standpoint, the intensity of each pixel is
obtained by counting individual photons incident on a detector,
e.g. a charged coupled device cell. Hence, the image is
known to be nonnegative, which adds another constraint to the
restoration process. In a deterministic framework, the image
estimate is usually obtained as the minimizer of a penalized
convex objective criterion, computed as the weighted sum
of: 1) a quadratic data-fidelity term, measuring the goodness
of fit between the observed data and the blurred candidate;
2) a convex regularization term which incorporates prior
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knowledge on the solution, e.g. spatial and spectral regularity.
In [6], we proposed to use quadratic (�2) regularization func-
tions to reconstruct spatially and spectrally smooth images,
leading to a closed-form minimizer of the criterion. Denoting
by N the number of pixels and L the number of spectral
bands in the hyperspectral data, straightforward computation
of the solution would require a costly LN × LN matrix
inversion. The proposed method instead exploits the properties
of 2D convolution operations to operate in the Fourier domain,
requiring only L× L matrix inversions.

Unfortunately, this approach is not suitable to preserve
sharp structures in the restored images, such as edges. Edge-
preserving restoration may be achieved by selecting a convex,
non-quadratic function instead of the �2 regularizer. Popu-
lar alternatives include both non-differentiable (e.g., � 1) and
differentiable (e.g., a piecewise �2 − �1 penalty) functions.
The resulting non-quadratic criterion no longer has a closed-
form minimizer, and one needs to resort to numerical iterative
methods to carry out the optimization. The problem arises
in many applications and minimization of such objective
functions received particular attention in the last decade [7]–
[9].

Many iterative schemes (e.g. conjuguate gradient methods)
are based on line-search procedures, which involve a stepsize
parameter selection problem at each iteration. In this paper, we
aim instead at recovering closed-form expressions at each iter-
ation of the algorithm, and exploiting the fast Fourier domain
structure of [6] to compute these solutions. To the best of our
knowledge, no hyperspectral deconvolution algorithm accounts
for both spatial and spectral regularity prior information and
nonnegativity in a fast manner. Thus, we choose instead to
compare various implementations of the proposed approach,
using state-of-the art non-quadratic minimization techniques.
Among the relevant techniques in the literature, we focus on

• majorization-minimization strategies, with quadratic ma-
jorizing approximations also known as Half-Quadratic
(HQ) methods in the field of image processing [10], [11];

• the Alternative Direction Method of Multipliers
(ADMM) [12], which falls in the general framework of
proximal methods [13].

We note that in addition to lending themselves to the Fourier
domain approach, these methods have been successfully used
in image restoration [14]–[18].

We mention here that this work is an extension of ideas
presented in [19]. Specifically, this paper proposes two main
contributions in addition to those presented in [19] : 1) the
use of proximal methods to account for non-differentiable
objective functions; 2) experiments on real fluorescence data.
The following is organized as follows. In section II, the
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imaging model is introduced and the problem is formulated
in the framework of constrained optimization. Section III
deals with the restoration of hyperspectral data using HQ
and proximal methods. Experimental results and empirical
discussions on the convergence of the algorithms are presented
in section IV. Finally, we conclude in section V.

II. PROBLEM STATEMENT

A. Imaging model

Let us consider a hyperspectral image of N pixels, acquired
in L spectral bands using the emission filter of a microscope.
In each band �, the observed image y� is obtained from the
true image x0

� according to

y� = H�x
0
� + n� (1)

where column vectors y� and x0
� are respectively the observed

and true image after lexicographical ordering, H � is the degra-
dation matrix e.g. accounting for diffraction by the aperture
of the objective in microscopy, and n� is an additive noise
term accounting for measurement and model errors, assumed
to be white and independent and identically distributed (i.i.d.)
Gaussian. H� corresponds to the 2D convolution matrix for
the channel point spread function (PSF), which is assumed to
be experimentally measured e.g. using sub-resolution beads in
fluorescence microscopy, or theoretically modeled [20], [21].
Model (1) actually combines various noise sources, such as the
random nature of fluorescence emission (following a Poisson
distribution), background radiation, dark current, calibration
errors and thermal noise [22]. The use of a Gaussian noise
model is a standard approximation when the signal-to-noise
ratio (SNR) is high, justified by the central limit theorem [23],
which is crucial to the optimization procedure discussed below.
For the deconvolution of Poisson noise-corrupted images, see
e.g. [24]–[26]. Denoting the entire observed hyperspectral
image cube by y = [yt

1 . . .y
t
L]

t and the hyperspectral degra-
dation matrix by

H =




H1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 HL


 , (2)

(since spectral bands do not interfere with each other), the
hyperspectral degradation model simply reads:

y = Hx0 + n (3)

The hyperspectral deconvolution problem consists in estimat-
ing the true image x0 given y and H. This problem will
be reduced to a nonnegative optimization problem since the
sought image should present nonnegative pixel values.

B. Problem formulation

The nonnegative restoration problem is formulated as the
constrained minimization problem:

min
x

J (x) s.t. x ≥ 0 (4)

where x is a candidate solution. To tackle the ill-posed nature
of the inverse problem [27], we propose to write criterion
J (x) as the weighted sum of a data-fidelity term and two
regularization terms penalizing large variations in the spatial
and spectral dimensions of the image :

J (x) =
1

2
‖y −Hx‖22 + µsΦs(x) + µλΦλ(x) (5)

where ‖ . ‖2 is the �2 norm, (µs, µλ) and (φs, φλ) are the
regularization parameters and operators in the spatial and
spectral dimensions, respectively denoted by the s and λ
indices. Note that depending on the application, one may
choose to regularize the solution only in a specific dimension,
by setting the other regularization parameter to zero. However,
setting µλ to 0 leads to the resolution of several equivalent
small-size problems in the spatial domain. The generic form
of both operators is given by Φ(x) =

∑
i∼j di,jφ(xi − xj)

where φ is usually called a potential function and
∑

i∼j di,j
denotes a weighted summation over i and j that are in the
same clique according to a spatial or spectral neighborhood
system. For simplicity, we rewrite

Φ(x) =
∑
i

φ({Dx}i)

where {.}i denotes the i-th entry of a vector, and D is the
matrix for the appropriate finite-difference operator. Without
loss of generality, we set Ds as the 2D convolution matrix of
a Laplacian filter (analogous to a second-order derivative) and
Dλ as the matrix corresponding to a first-order difference in
the spectral dimension.

The choice of potential functions φs and φλ significantly
impacts the texture of the reconstructed image : for instance,
retaining a quadratic function (Tikohonov regularization) typ-
ically yields smooth estimates. Because hyperspectral bands
are contiguous and overlapping, this prior is appropriate for
φλ. However, it is not suitable for regularizing the spatial
dimension when the imaged object contains sharp structures.
To prevent an over-smoothing of the estimate, one may instead
choose a convex, non-quadratic potential φs such as the
absolute value, similarly to total variation approaches [8],
[10]. Operator Φs is then simply the �1 norm of Dx. Recalling
the sparsity-enforcing property of the �1 norm (see e.g. [28]),
this strategy favors sparse entries of a filtered version of x.
When the filter D is analogous to a first-order derivative,
the resulting estimate is piecewise-constant, where the spatial
edges (boundaries) between the regions of the image are
preserved. Unfortunately, selecting φs as the modulus means
that the objective function is no longer differentiable. An
alternative is to use so-called �2−�1 potentials such as Huber’s
function whose piecewise definition is

φHuber(t; η) =

{
t2 for |t| < η

η(2|t| − η) otherwise
(6)

where parameter η controls the shape of the function: it is
quadratic near the origin and linear towards infinity. This
relaxed approach is sometimes thought of as more suitable
for natural images, and leads to ’piecewise-smooth’ image
estimates. In the following, we will investigate the restoration
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properties of both �1 and �2−�1 potential functions for spatial
regularization.

The final objective function writes

J (x) =
1

2
‖y−Hx‖22 +

µs

2

∑
i

φs({Dsx}i) + µλ

2
‖Dλx‖22.

(7)

III. OPTIMIZATION

In the original approach of [6], Φs is the �2 norm; since all
terms in (7) are then quadratic, the minimizer has a closed-
form expression involving matrices H, Ds and Dλ. The
efficient resolution is carried out by taking advantage of the
circulant-block-circulant (CBC) structure of 2D convolution
matrices, e.g. for a given wavelength � matrix H � is block-
circulant, with each block being a circulant matrix. 1 A well-
known property of CBC matrices is that they can be diago-
nalized by a 2D Discrete Fourier transform (2D-DFT). The
proposed method applies 2D-DFTs to each channel of the
hyperspectral data and PSF, and computations in the (spatial)
Fourier domain boil down to N 2/2 inversions of L × L
matrices.

Hence, adapting this approach to the problem at hand (non-
quadratic regularization) requires somehow rewriting (7) as a
quadratic function. We will first discuss handling the nonneg-
ativity constraint, then lay out two optimization strategies to
deal with the non-quadratic term Φs(x).

A. Nonnegativity constraint

Constrained optimization methods are generally classified as
interior point, active set and exterior penalty methods [29], re-
ferring to the location of the current estimate w.r.t. the feasible
domain. As in [6], we choose the quadratic penalty method
which belongs to the latter class, for its low computational
complexity and its quadratic nature. We introduce a set of
auxiliary variables p and an augmented criterion

K(x,p; ξ) = J (x) +
ξ

2
‖x− p‖22 (8)

in such a way that the constrained minimization of J is
replaced by the minimization of K with respect to (x,p).
Here, the non-negativity constraint has been transferred to p.
Minimization of K is carried out in an alternate fashion:

xk+1 = arg min
x

K(x|pk ; ξk) (9)

pk+1 = arg min
p

K(p|xk+1 ; ξk) s.t. p ≥ 0 (10)

where .k denotes the iteration index. Parameter ξ is gradually
increased to force the solution towards the constrained region.
Several update schemes ensure convergence of the method,
among which the simplest one is a linear rule of the form

ξk+1 = αξk (11)

1In the usual case of direct convolution, these matrices are actually block-
Tœplitz with Tœplitz blocks; however, the CBC structure can be retained
using zero-padding: see [6] for more details.

Data: Images y�, PSFs H� for � = 1 . . . L
Result: Restored images x� for � = 1 . . . L
Set x0 = 0, Ds, Dλ, φs, µs > 0, µλ > 0, τ < 0, α > 1,
ε > 0;

repeat
while (‖xk+1 − xk‖2/‖xk‖2 > ε) do

Compute x (9) based on [6];
Update p (12);

end
Update ξ (11);

until (min(x) > τ );
Algorithm 1: Quadratic penalty method

TABLE I
GENERAL ALGORITHMIC FRAMEWORK

for some constant α greater than one. Within this algorith-
mic framework, x is guaranteed to converge towards the
constrained minimum [29, Theorem 17.1, page 494]. It is
worth mentioning that the quadratic penalty method can be
generalized by the augmented lagrangian technique, which
includes explicit estimates of the Lagrange multipliers in
objective function (8). Although both schemes are suitable
for our approach, we found that both converged within a few
iterations, and the explicit computation of Lagrange multipliers
did not yield substantial improvements.

Because K(x,p; ξ) is separable w.r.t. to each variable pi, it
is easy to see that (10) rewrites

pk+1 = (xk+1)+ (12)

where the notation (.)+ means that negative values are thresh-
olded to zero, i.e. p is simply obtained by projecting x onto the
feasible domain. However, because of the non-quadratic term
Φs(x), minimizing w.r.t. x is a much more computationally
expensive problem. (9) thus must typically be carried out in
an iterative fashion. To prevent computations based on an out-
of-date version of p (i.e. an out-of-date thresholded version
of x), we choose to update p each time a new estimate x is
computed. Hence, the method can be thought of as alternating
between only one iteration of (9) and computing p according
to (12).

In order to reduce the computation time in this alternating
scheme in large scale problems, recent research on HQ min-
imization study the influence of computing an approximate
minimizer of K w.r.t. x given b (e.g., by using truncated
conjugate gradient techniques) on the convergence of the
relaxation algorithm [30]. Our approach is different: here,
a fast computation of the exact solution of this subproblem
is performed in the Fourier domain [6]. We now turn our
attention to iterative schemes for solving (9).

B. Half-quadratic method

The half-quadratic methodology for image restoration was
originally introduced by Geman and Reynolds (GR) [14]
and Geman and Yang (GY) [15], with respective numerical
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implementations ARTUR and LEGEND [31], [32]; see also
e.g. [10], [11], [33]. The key idea is to construct a quadratic
majorizing approximation of K at the current estimate x. The
quadratic function is then minimized to get the new estimate,
and the procedure is carried out alternatively. The GR and
GY approaches differ in their construction of the quadratic
majorizing approximation and we adopt the GY construction
in the following2. First, assume φs is Huber’s function defined
by (6) and define function ψs through a convex duality relation
with potential φs [10], [34]:

ψs(b) = sup
t

(
φs(t)− 1

2
(t− b)2

)
. (13)

Although ψs does not have a closed-form expression in gen-
eral, its explicit computation will not be needed. By definition,
φs(t) is upper bounded by the function t �→ 1

2 (t− b)2+ψs(b)
for a fixed scalar b. Gathering auxiliary (dual) variables in
vector b, the quantity

1

2
‖Dsx− b‖22 +

∑
i

ψs(bi)

is thus a majorizing approximation of the spatial regularization
term Φs(x) =

∑
i φs({Dsx}i). Notice that this upper bound

is a quadratic function of x, but not of b, hence the name
of the HQ approach. Substituting Φs(x) with its majorizing
approximation yields an augmented criterion

Q(x,b,p; ξ) =
1

2
‖y −Hx‖22 +

µλ

2
‖Dλx‖22 +

ξ

2
‖x− p‖22

+
µs

2

(
1

2
‖Dsx− b‖22 +

∑
i

ψs(bi)

)
(14)

which depends on both sets of variables. In this framework,
minimizing K(x;p, ξ) w.r.t. to x is equivalent to jointly
minimizing Q(x,b;p, ξ) w.r.t. to x and b, which is carried
out in an alternate fashion.

1) Minimization of Q(x|bk,pk; ξk): this quadratic problem
has a closed-form solution

xk+1 =

(
HTH+

µs

2
DT

s Ds + µλD
T
λDλ + ξkINL

)−1

(
HTy +

µs

2
DT

s b
k + ξkpk

)
(15)

which can be efficiently computed in the Fourier domain
using the aforementioned approach of [6]. Note that the
normal matrix to be inverted does not depend on b and thus
its eigenvalues in the Fourier domain can be stored at each
iteration of the quadratic penalty method.

2) Minimization of Q(b|xk+1,pk; ξk): the objective func-
tion is separable w.r.t. to each bi and can be shown to possess
a closed-form minimizer [10]:

bk+1
i = {Dsx

k+1}i − φ′s({Dsx
k+1}i) (16)

2In Geman and Reynolds’s approach, the curvature of the quadratic majoriz-
ing function changes with each estimate x, yielding a better approximation
and a more efficient algorithm. However, it does not lend itself to Fourier
domain computations

where φ′
s is the derivative of potential φs. Intuitively, this

step amounts to computing the next quadratic majorizing
approximation of K.

C. Proximal method

The half-quadratic approach only allows to perform � 1
penalization asymptotically, by driving Huber parameter η to
zero. We now propose another method that accounts for both
�1 and �2 − �1 regularizations; in the following, potential φs

indifferently denotes the modulus or Huber’s function.
Proximal methods have been the subject of particular atten-

tion in the literature of the past decade [7], [8], [13], [17],
notably to solve non-differentiable problems. In this paper,
we choose the framework of the Alternated Direction Method
of Multipliers (ADMM) algorithm [12], [35], [36], which
combines dual decomposition of the objective function with
the Lagrange multipliers method. The structure of the resulting
technique will turn out to be close to the HQ method proposed
in the previous section. The general idea consists in performing
variable splitting of the objective function, so that the spatial
regularization term becomes separable. First, let us rewrite
problem (4) as

min
x,p,z

f(x,p; ξ) + g(z) s.t. Dsx− z = 0 (17)

where p is again a set of auxiliary variables introduced to
deal with the nonnegativity constraint, and the decomposed
objective functions f and g are given by

f(x,p; ξ) =
1

2
‖y −Hx‖22 +

µλ

2
‖Dλx‖22 +

ξ

2
‖x− p‖22 (18)

g(z) =
µs

2

∑
i

φs(zi) (19)

that is, f gathers all quadratic terms of K and g is the non-
quadratic spatial regularization term. Note that the substitution
z = Dsx takes the form of an equality constraint in (17). The
augmented Lagrangian of this constrained problem writes

Lρ(x,p, z,u; ξ, ρ) = f(x,p; ξ) + g(z)

+
ρ

2
‖Dsx− z+ u‖22 −

ρ

2
‖u‖22 (20)

where ρ is called the barrier parameter and u are the
so-called normalized Lagrange multipliers, which are scaled
by a factor of ρ so that the augmented Lagrangian only
incorporates quadratic terms [12]. The procedure then consists
in alternatively minimizing Lρ(x,p, z,u; ξ, ρ) w.r.t. x,p, z,
and updating the normalized Lagrange multipliers u (dual
update) and possibly ρ.

1) Minimization of Lρ(x|pk, zk,uk; ξk, ρk) : this is a
quadratic problem, whose solution is given by

xk+1 =(HTH+ ρkDT
s Ds + µλD

T
λDλ + ξkINL)

−1

(HTy + ρDT
s (z

k − uk) + ξkpk). (21)

and is efficiently computed in the Fourier domain [6], as the
similar step of (15) .
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2) Minimization of Lρ(z|xk+1 ,pk,uk; ξk, ρk): the prob-
lem is separable w.r.t. each variable zi:

zk+1
i = arg min

zi

{
µs2φ(zi) + ρ2(zi − {Dsx

k+1}i − uki )
2

}
.

(22)
While this problem is nonconvex, a closed-form solution can

be found by exploiting its particular structure. The proximal
operator of a given function h with penalty ρ is defined as

proxh,ρ(t)
∆
= arg min

z
{h(z) + (ρ/2)(z − t)2}. (23)

For some functions h, the corresponding proximal operators
have known closed-form expressions. For instance, the proxi-
mal operator of Huber’s function is given by [13]

proxφη ,ρ
(t) =

{ t
1/(ηρ)+1 for |t| < 1

ρ + η

t− η sgn (t) otherwise.
(24)

The proximal operator of the modulus can be obtained by
driving parameter η to zero, resulting in the function t �→
S1/ρ(t) where S denotes the well-known soft thresholding
operator [12], defined by:

Sa(t)
∆
= (t− a)+ − (−t− a)+. (25)

Putting it all together, the closed-form solution of sub-problem
(22) is thus given by

zk+1
i = proxφη ,2ρ/µs

({Dsx
k+1}i + uki ) (26)

and does not involve costly operations.

3) Dual update: this step corresponds to the maximization
of the dual problem w.r.t. dual variables u, and also possesses
a closed-form solution [12]:

uk+1 = uk +Dsx
k+1 − zk+1. (27)

4) Barrier parameter ρ update: finding optimal values
for ρ is still an open problem, some authors advocating
for a fixed value [37] while others recommending that it
should be adjusted at each iteration [38]. The experimental
section displays good results on confocal fluorescence images
achieved with a fixed value of this parameter. Our perspectives
include an assessment on the value of varying parameter ρ
at each iteration. Of course, an advantage of the previously
discussed HQ method is that it does not need adjusting this
parameter.

D. Proposed algorithms

The proposed algorithms are detailed in table II. Stopping
criteria are discussed in section IV-B.

IV. EXPERIMENTAL RESULTS

A. Edge preserving deconvolution of biosensor hyperspectral
fluorescence images

In this section, we evaluate the performance of the pro-
posed algorithms on real hyperspectral images acquired on

a fluorescence confocal microscope3. The observed scene
comprises Pseudomonas biosensors, i.e. a strain of bacteria
which was genetically modified by introduction of two reporter
genes encoding fluorescent proteins. In our setup, the genetic
modifications cause the bacteria to produce green fluorescent
proteins (GFP) when they are grown in iron-rich media and
to produce E2-orange proteins in iron-poor (lean) media. The
images are acquired on 512 × 512 pixels of size 49 nm and
16 channels covering the spectral range of 455− 605 nm.

The confocal microscope PSF is estimated using the method
proposed in [21]: at each spectral band, the central lobe is
approximated by a 2D gaussian function of size 8× 8, while
the standard deviation is computed from physical acquisition
parameters (pinhole radius, refraction index of the medium
and excitation and emission wavelengths). Regularization pa-
rameters are empirically fixed to µs = 15 and µλ = 1. We set
additional parameters to η = 10, α = 10, ρ = 1, τ = −1e−6,
ε = 1e−3 and ρ = 1.

Figure 1 displays the results obtained on an image patch, at
three different spectral channels : {495, 525, 575} nm, resp.
corresponding to the modes of autofluorescence, GFP and
E2-Orange emission spectra. The autofluorescence process
acts as a reference providing information about the ‘normal’
behavior of the cell. The first row corresponds to the observed
data, while the second and third row display restored images,
resp. obtained using �2− �1 regularization applied by Huber’s
function with parameter η = 10, and �1 regularization. In
the former case, both algorithms converge to the restored
image, while �1 regularization can only be achieved by the
proximal method. Respective computational times are 142
and 155 seconds, for a MATLAB implementation on a 2,4
Ghz Intel Core 2 Duo processor with 4Go RAM. Note how
deconvolved images are significantly denoised and bacteria
edges are restored for both regularizations. The denoising
role of the deconvolution process is especially important for
this data set which suffers from low signal-to-noise ratio. As
expected, Huber’s potential preserves both edges and small
variations (details), while �1 penalty favors piecewise-constant
images (hence better denoising). Since the spectral mode
corresponding to E2-Orange is more intense than the GFP
one, we can conclude that the observed region is deprived of
iron.

B. Empirical remarks on the convergence of both methods

In both the HQ and proximal approaches, the global
structure is of an outer loop corresponding to the quadratic
penalty method, and an inner loop performing non-quadratic
minimization w.r.t. x. An interesting point, crucial for the
convergence properties of both methods, is the number of
iterations necessary to achieve convergence in the inner loop.
Experimental results indicate that the number of inner it-
erations required to converge is a decreasing function of
Huber’s parameter η. Intuitvely, problem (9) is akin to a � 2
minimization problem when η is very large and a much harder

3The authors would like to thank Christian Mustin, DR CNRS at LIEC
(UMR 7360) for his confocal microscopy work, as well as his precious
hindsights on experimental rests.
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Data: Images y�, PSFs H� for � = 1 . . . L
Result: Restored images x� for � = 1 . . . L
Set x0 = 0, Ds, Dλ, φs, µs > 0, µλ > 0, τ < 0, α > 1, ε > 0;

repeat
while (‖xk+1 − xk‖2/‖xk‖2 > ε) do

Compute x (15) based on [6];
Compute b (16);
Update p (12);

end
Update ξ (11);

until (min(x) > τ );
Algorithm 2: Half-quadratic method

repeat
while (‖xk+1 − xk‖2/‖xk‖2 > ε) do

Compute x (21) based on [6];
Compute z (26);
Update u (27), p (12);

end
Update ξ (11);

until (min(x) > τ );
Algorithm 3: Proximal method

TABLE II
PROPOSED ALGORITHMS

495 nm 525 nm 575 nm

Observed
data

�2 − �1 reg.
(HQ)

�1 reg.
(HQ / ADMM)

Fig. 1. Real bacterial biosensor images acquired on a confocal fluorescence microscope. First row: observed data; second row; restored data using Huber’s
function as the spatial potential (�2 − �1 regularization); third row: restored data using the absolute value as the spatial potential (�1 regularization). First
column: spectral mode of the autofluorescence process; second column: spectral mode of the emission spectrum of the GFP (activated by the presence of iron
in the medium); third column: spectral mode of the emission spectrum of E2-Orange (activated by the lack of iron in the medium).
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Fig. 2. Criteria evolution for the half-quadratic and proximal algorithms. (a) Unconstrained case: evolution of J with Huber parameter η = 1e−1. (b)
Unconstrained case: evolution of J with Huber parameter η = 10. (c) Constrained case: evolution of K displayed with a log-scale.
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�1 minimization problem when η is very small. Majorizing
schemes with variable curvature such as GR’s approach will be
more appropriate in this case.These differences are illustrated
in figure 2 (a) and (b) for η = 1e−1 and η = 10. When
considering both algorithms, the proximal approach has been
more efficient than the half-quadratic one for small values of
η, and both are equivalent for large values. This fact probably
owes to the fixed radius of curvature inherent to the Geman
and Yang’s approach.

As for the outer loop, we empirically remarked that the
quadratic penalty method typically only needs a few itera-
tions to converge. From a theoretical standpoint, nonnegativity
constraints are only fulfilled asymptotically. However, it is
sufficient in many practical cases to impose that each pixel
must only be greater than a small negative value, say 1% of
the dynamic range. The stopping criterion is designed based
on this observation. This point is illustrated in figure 2 (c),
which explores the effects of truncating the resolution of (9)
by setting a fixed number of iterations in the inner loop. The
figure represents the evolution of crterion K(x, s; ξ) when
the inner loops is truncated to 5 iterations. After 150 outer
iterations, the value of weight ξ has considerably increased and
all terms in (8) are dominated by the term ξ‖x−s‖2

2. K(x, s; ξ)
thus displays abrupt rises corresponding to an increase of ξ,
followed by reductions achived by half-quadratic or proximal
minimizations. By only requiring a few outer iterations, the
stopping criterion at hand allows to prevent this behavior.

We also make an additional observation regarding the up-
dating rule for weight ξk+1 = βξk. The value of β is linked to
the computational cost of sub-problem (9) : if the minimizer
can be found cheaply, one may choose an ambitious value
(e.g. β = 10). On the other hand, if the problem is costly, a
lesser value (e.g. β = 1.5) allow better initialization of x [29,
p. 493]. This observation is important to account for if one
decides to truncate the resolution of (9) at each iteration of
the outer loop.

V. CONCLUSION

In this paper, we proposed two algorithms to restore blurred
hyperspectral data while preserving spatial edges and account-
ing for spectral smoothness and pixel non-negativity. While
these approaches has been derived in the context of fluores-
cence microscopy, the ideas within can be extended to many
hyperspectral deconvolution problems. The methods are based
on the fast inversion algorithm derived in [6] for smooth image
restoration. We have shown that it can be adapted to non-
quadratic regularizations at the cost of performing repeated
fast inversions. Both algorithms present similar performances
in terms of restoration quality and computational cost. Per-
spectives include studying the effect of adjusting the barrier
parameter in the proximal / ADMM algorithm, incorporating
the nonnegativity constraint in the augmented Lagrangian
framework and accounting for non separable regularization
terms [39].
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