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Abstract

Computations with integro-differential operators are often carried out in

an associative algebra with unit and they are essentially non-commutative

computations. By adjoining a cocommutative co-product, one can have

those operators perform on a bialgebra isomorphic to an enveloping alge-

bra. That gives an adequate framework for a computer-algebra implemen-

tation via monoidal factorization, (pure) transcendence bases and Poincaré-

Birkhoff-Witt bases.

In this paper, we systematically study these deformations, obtaining nec-

essary and sufficient conditions for the operators to exist, and we give the

most general cocommutative deformations of the shuffle co-product and

an effective construction of pairs of bases in duality. The paper ends by

the combinatorial setting of systems of local systems of coordinates on the

group of group-like series.

∗The present work is part of a series of papers devoted to the study of the renormalization

of divergent polyzetas (at positive and at non-positive indices) via the factorization of the non

commutative generating series of polylogarithms and of harmonic sums and via the effective con-

struction of pairs of dual bases in duality in ϕ-deformed shuffle algebras. It is a sequel to [3]

and its content was presented in several seminars and meetings, including the 74th Séminaire

Lotharingien de Combinatoire.
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1 Introduction

The shuffle product first appeared in 1953 in the work of Eilenberg and Mac

Lane [17]. As soon as 1954, Chen used it to express the product of iterated

(path) integrals [8] and Ree, building on Friedrichs’ criterion, proved that the

non-commutative series of iterated integrals are exponentials of Lie polynomi-

als, thus connecting the Lie polynomials with the shuffle product [37]. In 1956,

Radford proved that the Lyndon words form a (pure) transcendence basis of the

shuffle algebra [36]. The latter result is now well understood through the duality

between bialgebras and enveloping algebras (see for example [38]), of which the

construction in 1958 of the Poincaré-Birkhoff-Witt1-Lyndon basis by Chen, Fox

and Lyndon [10] and of its dual basis by Schützenberger, via monoidal factor-

ization [39, 38], gave a striking illustration. This pair of dual bases enabled to

factorize the diagonal series in the shuffle bialgebra and, consequently, to proceed

combinatorially with the Dyson series [21] or the transport operator [20], which

play a leading role in the relations between special functions involved in quantum

field theory [26] and in number theory [6]. In 1973, that is within twenty years

of the introduction of the shuffle product, Knutson defined the quasi-shuffle in

[27], where it shows up as the inner product of symmetric groups2. This product

is very similar to the Rota-Baxter operator introduced by Cartier in 1972, in his

study of the so-called Baxter algebras [7]. Although the analogue of Radford’s

1From now on, Poincaré-Birkhoff-Witt will be abbreviated to PBW.
2In the present paper, that product will be referred to as the quasi-shuffle or as the stuffle

product, indifferently.
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theorem was pointed out by Malvenuto and Reutenauer [30], the factorization of

the diagonal series in the quasi-shuffle bialgebra, initiated in [23, 24], has not yet

been carried over to more general bialgebras.

Schützenberger’s factorization [38] and its extensions have since been applied

to the renormalization of the associators [23, 24], to which matter they turned out

to be central3.

The coefficients of these power series are polynomial at positive integral multi-

indices of Riemann’s zeta function4 [28, 42] and they satisfy quadratic relations

[6] which Lyndon words help explain. The latter relations can be obtained by iden-

tifying the local coordinates on a bridge equation connecting the Cauchy and the

Hadamard algebras of polylogarithmic functions, and by using the factorization

of the non commutative generating series of polylogarithms [22] and of harmonic

sums [23, 24]. That bridge equation is mainly a consequence of the isomorphisms

between the algebra of non commutative generating series of polylogarithms and

the shuffle algebra on one hand, between the algebra of non commutative gener-

ating series of harmonic sums and the quasi-shuffle algbra on the other hand.

As for the generalization of Schützenberger’s factorization to more general

bialgebras, the key step, and the main difficulty thereof, is to decompose orthog-

onally such bialgebras into the Lie algebra generated by its primitive elements

and the associated orthogonal ideal, as Ree was able to achieve in the case of the

shuffle bialgebra [37], and to construct, whenever possible, the respective bases.

In favorable cases, it is to be hoped that those bialgebras are enveloping algebras,

so that the Eulerian projectors are convergent and other analytic computations can

be performed.

To make that decomposition possible, one first needs to determine the Eule-

rian projectors by taking the logarithm of the diagonal series and second to insure

their convergence. A key ingredient is the fact that the diagonal series are group-

like and give a host of group-like elements by specialization, so one can use the

exponential-logarithm correspondence to compute within a combinatorial Haus-

dorff group.

To that effect, the present work generalizes the recursive definitions of the

shuffle and quasi-shuffle products given, respectively, by Fliess [19] and Hoffman

[25], to introduce the ϕ-deformed shuffle product, where ϕ stands for an arbitrary

algebra law. Recent studies on these structures can be found in [14, 32, 33].

3These associators, which are formal power series in non-commutative variables, were intro-

duced in quantum field theory by Drinfel’d [12]. The explicit coefficients of the universal associ-

ator ΦKZ are polyzêtas and regularized polyzêtas [28].
4These values are usually referred to as MZV’s by Zagier [42] and as polyzêtas by Cartier [6].
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These ϕ-shuffle products interpolate between the classical shuffle and quasi-

shuffle products for ϕ ≡ 0 and ϕ ≡ 1, respectively, and allow a classification of

the associated bialgebras.

This paper is devoted to the combinatorics of ϕ-deformed shuffle algebras and

to the effective constructions of pairs of dual bases. Its is organized as follows:

• Section 2 is a short reminder of well-known facts about the combinatorics

of the q-stuffle product [2], which encompasses the shuffle [38] and the

quasi-shuffle products [23, 24].

• In Section 3, we thoroughly investigate algebraic and combinatorial aspects

of the ϕ-deformed shuffle products and explain how to use bases in duality

to get a local system of coordinates on the (infinite dimensional) Lie group

of group-like series.

Throughout the paper, we have a particular concern for Lie series and their

correspondence with the Hausdorff group.

2 A survey of shuffle products

For standard definitions and facts appertaining to the (algebraic) combina-

torics on words, we refer the reader to the classical books by Lothaire [29] and

Reutenauer [38].

Throughout the paper, K stands for a (unital, associative and commutative)

Q-algebra containing a parameter q. In this section, we review the known combi-

natorics of bases in duality and local coordinates on the infinite dimensional Lie

group of group-like series (Hausdorff group). The parameter q allows for a unified

treatment between shuffle (q = 0) and quasi-shuffle (q = 1) products.

Let Y = {yi}i≥1 be an alphabet, totally ordered by y1 > y2 > · · · . The

free monoid and the set of Lyndon words over Y are denoted by Y ∗ and LynY ,

respectively. The unit of Y ∗ is denoted by 1Y ∗ . We also write Y + = Y ∗ \ {1Y ∗}.

The q-stuffle [2], which interpolates between the shuffle [37], quasi-shuffle

[30] (or stuffle) and minus-stuffle products [9], for q = 0, 1 and −1, respectively,

is defined as follows:

u q1Y ∗ = 1Y ∗ qu = u, (1)

ysu qytv = ys(u qytv) + yt(ysu qv) + qys+t(u qv), (2)
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or its dual co-product, as follows, for any ys, yt ∈ Y and u, v ∈ Y ∗,

∆
q
(1Y ∗) = 1Y ∗ ⊗ 1Y ∗ , (3)

∆
q
(ys) = ys ⊗ 1Y ∗ + 1Y ∗ ⊗ ys + q

∑

s1+s2=s

ys1 ⊗ ys2. (4)

We now turn to the study of the combinatorial q-stuffle Hopf algebra, which we

do by stressing the importance of the Lie elements5 studied by Ree [37], and show

how Schützenberger’s factorization extends to this new structure.

The q-stuffle is commutative, associative and unital. With the co-unit defined

by ǫ(P ) = 〈P | 1Y ∗〉, for P ∈ K〈Y 〉, we got H
q
= (K〈Y 〉, conc, 1Y ∗ ,∆

q
, ǫ)

and H∨
q
= (K〈Y 〉, q, 1Y ∗ ,∆

conc
, ǫ) which are mutually dual bialgebras and,

in fact, Hopf algebras because they are N-graded by the weight.

Let DY be the diagonal series over H
q
, i.e.

DY =
∑

w∈Y ∗

w ⊗ w. (5)

Then

logDY =
∑

w∈Y +

w ⊗ π1(w), (6)

where π1 is the extended Eulerian projector over H
q
, defined by [2]

π1(w) = w +
∑

k≥2

(−1)k−1

k

∑

u1,...,uk∈Y +

〈w | u1 q . . . quk〉u1 . . . uk. (7)

Let {Πl}l∈LynY be defined by,

{

Πy = π1(y), for y ∈ Y,
Πl = [Πs,Πr], for the standard factorization (s, r) of l ∈ LynY − Y.

(8)

Then it forms a basis of the Lie algebra of primitive elements of H
q

[2].

Let {Πw}w∈Y ∗ be defined by, for any w ∈ Y ∗ such that w = li11 . . . l
ik
k with

l1 > . . . > lk and l1 . . . , lk ∈ LynY,

Πw = Πi1
l1
. . .Πik

lk
. (9)

5Following Ree [37], the Lie elements contain the non-commutative power series which are

Lie series (as the Chen non-commutative generating series of iterated integrals), i.e. they are

group-like for the co-product of the shuffle.
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Then, by the PBW theorem, the set {Πw}w∈Y ∗ is a basis of K〈Y 〉 [2].

Let {Σw}w∈Y ∗ be the family dual6 to {Πw}w∈Y ∗ in the quasi-shuffle alge-

bra. Then {Σw}w∈Y ∗ freely generates the quasi-shuffle algebra and the subset

{Σl}l∈LynY forms a transcendence basis of (K〈Y 〉, q, 1Y ∗). The Σw can be

obtained as follows [2]:


























Σy = y, for y ∈ Y,

Σl =
∑

(!)

qi−1

i!
ysk1+···+ski

Σl1···ln, for l = ys1 . . . ysk ∈ LynY,

Σw =
Σ i1

l1
. . . Σ ik

lk

i1! . . . ik!
, for w = li11 . . . l

ik
k ,

(10)

and l1 ≻lex . . . ≻lex lk ∈ LynY . In the second expression of (10), the sum (!)
is taken over all subsequences {k1, . . . , ki} ⊂ {1, . . . , k} and all Lyndon words

l1 �lex · · · �lex ln such that (ys1, . . . , ysk)
∗
⇐ (ysk1 , . . . , yski , l1, . . . , ln), where

∗
⇐

denotes the transitive closure of the relation on standard sequences, denoted by ⇐
(see [2]).

In this case, since {Πw}w∈Y ∗ and {Σw}w∈Y ∗ are multiplicative, then we get

the q-extended Schützenberger’s factorization as follows [2]:

DY =
∑

w∈Y ∗

Σw ⊗Πw =

ց
∏

l∈LynY

exp(Σl ⊗Πl). (11)

This series, in the factorized form, encompasses the most part of the combi-

natorics of Dyson’s functional expansions in quantum fields theory [15, 31]. It is

the infinite dimensional analogue of the theorem of Wei-Norman [40, 41].

3 Algebraic aspects of ϕ-shuffle bialgebras

From now on, we will work with an alphabet Y = {yi}i∈I with I an arbitrary

index set7, which needs not be totally ordered unless we write it explicitly.

3.1 First properties

Let us consider the following recursion in order to construct a map

Y ∗ × Y ∗ −→ K〈Y 〉 (12)

6The duality pairing is given by 〈u | v〉 = δu,v , for u, v ∈ Y ∗.
7The indexing is one-to-one, i.e. there is no repetition.
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i) for any w ∈ Y ∗,

(Init) 1Y ∗ ϕw = w ϕ1Y ∗ = w (13)

ii) for any a, b ∈ Y and u, v ∈ Y ∗,

(Rec) au ϕbv = a(u ϕbv) + b(au ϕv) + ϕ(a, b)(u ϕv), (14)

where ϕ is an arbitrary mapping defined by its structure coefficients

ϕ : Y × Y −→ KY, (15)

(yi, yj) 7−→
∑

k∈I

γykyi,yj yk, (16)

The following proposition guarantees the existence of a unique bilinear law on

K〈Y 〉 satisfying (Init) and (Rec).

Proposition 1 ([3]). The recursion (Rec) together with the initialization (Init)
defines a unique mapping

ϕ : Y ∗ × Y ∗ −→ K〈Y 〉

which can, at once, be extended by multilinearity as a law

ϕ : K〈Y 〉 ⊗K〈Y 〉 −→ K〈Y 〉

The space K〈Y 〉 endowed with the law ϕ is an algebra (with unit 1K〈Y 〉 by

definition). It will be called the ϕ-shuffle algebra. In full generality, this algebra

need not be associative or commutative if ϕ is not so. In the next example, we

give a table of well known laws which can be defined after this pattern (in which

ϕ is reasonable).
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Example 1. Below, a summary table of ϕ-deformed cases found in the literature.

The last case (infiltration product) comes from computer science (see [34, 35, 13])

Name (recursion) Formula ϕ

Shuffle au ⊔⊔ bv = a(u ⊔⊔ bv) + b(au ⊔⊔ v) ϕ ≡ 0
Quasi-shuffle xiu xjv = xi(u xjv) + xj(xiu v) ϕ(xi, xj) = xi+j

+ xi+j(u v)
Min-shuffle xiu xjv = xi(u xjv) + xj(xiu v) ϕ(xi, xj) = −xi+j

− xi+j(u v)
Muffle xiu a xjv = xi(u a xjv) + xj(xiu a v) ϕ(xi, xj) = xi×j

+ xi×j(u a v)
q-stuffle xiu qxjv = xi(u qxjv) + xj(xiu qv) ϕ(xi, xj) = qxi+j

+ qxi+j(u ⊔⊔ v)
q-shuffle xiu ⊔⊔q xjv = xi(u ⊔⊔q xjv) + xj(xiu ⊔⊔q v) ϕ(xi, xj) = qi×jxi+j

+ qi×jxi+j(u ⊔⊔ v)
LDIAG(1, qs)

non-crossed, au ∗ bv = a(u ∗ bv) + b(au ∗ v) ϕ(a, b) = q
|a||b|
s (a.b)

non-shifted + q
|a||b|
s (a.b)(u ∗ v) (a.b) assoc.

B-shuffle au ⊔⊔B bv = a(u ⊔⊔B bv) + b(au ⊔⊔B v) ϕ(a, b) = 〈a, b〉
+ 〈a, b〉(u ⊔⊔B v) = 〈b, a〉

Semigroup- xtu ⊔⊔⊥ xsv = xt(u ⊔⊔⊥ xsv) + xs(xtu ⊔⊔⊥ v) ϕ(xt, xs) = xt⊥s

-shuffle + xt⊥s(u ⊔⊔⊥ v)
q-Infiltration au ↑ bv = a(u ↑ bv) + b(au ↑ v) ϕ(a, b) = qδa,ba

+ qδa,ba(u ↑ v)

Now, we cope with the first properties of ϕ (see [18]) : associativity, com-

mutativity and dualizability.

Definition 1 ([3]). A law µ : K〈Y 〉 ⊗ K〈Y 〉 → K〈Y 〉 is said dualizable if there

exists a (linear) mapping

∆µ : K〈Y 〉 −→ K〈Y 〉 ⊗K〈Y 〉

(necessarily unique) such that the dual mapping
(

K〈Y 〉 ⊗K〈Y 〉
)∗

−→ K〈〈Y 〉〉

restricts 8 to µ. Or equivalently,

∀u, v, w ∈ Y ∗, 〈µ(u⊗ v) | w〉 = 〈u⊗ v | ∆µ(w)〉
⊗2.

8through the pairing δu,v
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Theorem 1 ([3]). We have

1. The law ϕ is associative (resp. commutative) if and only if the extension

ϕ : KY ⊗KY −→ KY is so.

2. Let γzx,y := 〈ϕ(x, y) | z〉 be the structure constants of ϕ, then ϕ is dualiz-

able if and only ϕ is so i.e. if (γzx,y)x,y,z∈Y satisfies

(∀z ∈ Y )(#{(x, y) ∈ Y 2|γzx,y 6= 0} < +∞).

Proof. (sketch) We use the following lemma

Lemma 1 ([3]). Let ∆ be the morphism K〈Y 〉 −→ A〈〈Y ∗ ⊗ Y ∗〉〉 defined on the

letters by

∆(ys) = ys ⊗ 1 + 1⊗ ys +
∑

n,m∈I

γysyn,ymyn ⊗ ym.

Then

1. ∀u, v, w ∈ Y ∗, 〈u ϕv | w〉 = 〈u⊗ v | ∆(w)〉⊗2.

2. ∀w ∈ Y +,∆(w) = w ⊗ 1 + 1⊗ w +
∑

u,v∈Y +

〈∆(w) | u⊗ v〉u⊗ v.

The theorem follows by application of points 1. and 2. above.

If ϕ is associative (which is fulfilled in all cases of the table 1), we extend ϕ
to Y + by the universal property of the free semigroup Y +,

{

ϕ(x) = x, for x ∈ Y,
ϕ(xw) = ϕ(x, ϕ(w)), for x ∈ Y and w ∈ Y + (17)

and we extend the definition of the structure constants accordingly: for x1 . . . xl ∈
Y +,

γyx1...xl
= 〈y | ϕ(x1 . . . xl)〉 =

∑

t1,...,tl−2∈Y

γyx1,t1γ
t1
x2,t2 . . . γ

tl−2
xl−1,xl

. (18)

Note that the fact that ϕ is dualizable can be rephrased as

(∀y ∈ Y )({w ∈ Y 2|γyw 6= 0} is finite). (19)
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In this case, it can be checked immediately that, for an arbitrarily fixed N ≥ 1,

(∀y ∈ Y )({w ∈ Y N |γyw 6= 0} is finite) (20)

but, by no means, we have in general

(∀y ∈ Y )({w ∈ Y +|γyw 6= 0} is finite). (21)

This condition (21) is strictly stronger than (19) as the example of any group law

on Y , with |Y | ≥ 2 and finite, shows.

Definition 2. An associative law ϕ on KY will be said moderate if and only if it

fulfils condition (21).

Let us now state the structure theorem [3].

Theorem 2 ([3]). Let us suppose that ϕ is dualizable and associative. We still

denote its dual co-multiplication by

∆
ϕ
: K〈Y 〉 −→ K〈Y 〉 ⊗K〈Y 〉.

Then Bϕ = (K〈Y 〉, conc, 1Y ∗ ,∆
ϕ
, ε) is a bialgebra. If, moreover, ϕ is commu-

tative, the following conditions are equivalent

1. Bϕ is an enveloping bialgebra.

2. Bϕ is isomorphic to (K〈Y 〉, conc, 1Y ∗ ,∆⊔⊔ , ǫ) as a bialgebra.

3. For all y ∈ Y , the following series is a polynomial

(P ) y +
∑

l≥2

(−1)l−1

l

∑

x1,...,xl∈Y

〈y | ϕ(x1 . . . xl)〉 x1 . . . xl.

4. ϕ is moderate.

Proof. (sketch)

4 =⇒ 3) Obvious

3 =⇒ 2) One first constructs an endomorphism of (K〈Y 〉, conc, 1Y ∗) sending

each letter y ∈ Y to the polynomial form (P ) and prove that it is an automorphism

of AAU9 which sends (K〈Y 〉, conc, 1Y ∗ ,∆
ϕ
, ε) to (K〈Y 〉, conc, 1Y ∗ ,∆⊔⊔ , ǫ).

9Abbreviation for associative algebra with unit.
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2 =⇒ 1) Because (K〈Y 〉, conc, 1Y ∗ ,∆⊔⊔ , ǫ) is an enveloping bialgebra.

1 =⇒ 4) Remark that, for each letter y ∈ Y

〈∆(n−1)
ϕ
(y) | x1 ⊗ x2 ⊗ · · · ⊗ xn〉 = γyx1...xl

.

Example 2. 1. The muffle product (see Table 1), which determines the product

of Hurwitz polyzetas with rational centers and correspond to ϕ(xi, xj) =
xi.j for i, j ∈ Q∗

+, is not dualizable (γ1n,1/n = 1 for all n ≥ 1).

2. The q-infiltration bialgebra (see again Table 1) has its origin in computer

science [34, 35] and appears as a generic solution in [13]. It provides a

bialgebra

Hq−inflitr = (K〈Y 〉, conc, 1X∗ ,∆↑q , ǫ)

(q ∈ K) based on a ϕ, associative, commutative and dualizable law, but,

if Y 6= ∅ this law is moderate only iff q is nilpotent in the Q-algebra K.

Indeed, for all x ∈ Y , (1+ qx) is group-like and its inverse (1+ qx)−1 is in

K〈X〉 if and only if q is nilpotent. In this case the antipode is the involutive

antiautomorphism defined on the letters by

S(x) =
−x

1 + qx

3.2 Structural properties

We only assume that ϕ is associative.

The bialgebra

H∨
ϕ

= (K〈Y 〉, ϕ, 1Y ∗ ,∆
conc

, ǫ) (22)

is a Hopf algebra because it is conilpotent10. Its antipode can be computed by

10The law ∆conc, dual to the concatenation is, of course, defined by

∆conc(w) =
∑

uv=w

u⊗ v

the corresponding n-fold ∆+
conc

(∆+ = ∆ minus the primitive part) reads

∆+(n−1)
conc

(w) =
∑

u1u2···un=w

ui∈Y +

u1 ⊗ u2 ⊗ · · · ⊗ un

from which it is clear that ∆
+(n−1)
conc (w) = 0 for n > |w|.

11



a(1Y ∗) = 1 and, for w ∈ Y +,

a
ϕ
(w) =

∑

k≥1

(−1)−k
∑

u1,...,uk∈Y+

u1...uk=w

u1 ϕ . . . ϕuk. (23)

Due to the finite number of decompositions of any word u1 . . . uk = w ∈ Y + into

factors u1, . . . , uk ∈ Y +, we can, at this very early stage define an endomorphism

Φ(S) of K〈Y 〉 as

Φ(S)[w] =
∑

k≥1

ak
∑

u1,...,uk∈Y +

u1...uk=w

u1 ϕ . . . ϕuk. (24)

associated to any univariate formal power series S = a1X + a2X
2 + a3X

3 + . . ..
The case of

log(1 +X) =
∑

k≥1

(−1)k−1

k
Xk (25)

will be of particular importance. It reads here in the style of formula (23).

π̌1(w) =
∑

k≥1

(−1)k−1

k

∑

u1,...,uk∈Y+

u1...uk=w

u1 ϕ . . . ϕuk. (26)

This π̌1 ∈ End(K〈Y 〉) has an adjoint π1 ∈ End(K〈〈Y 〉〉) which reads

π1(S) =
∑

w∈Y ∗

〈S | π̌1(w)〉w (27)

=
∑

k≥1

(−1)k−1

k

∑

u1,...,uk∈Y +

〈S | u1 ϕ . . . ϕuk〉 u1 . . . uk (28)

It is an easy exercise to check that the family in the sums of (27) is summable11.

It is easy to check that the dominant term of all terms in a ϕ product is the

corresponding ⊔⊔ product, this explain why we still have the theorem of Radford.

Theorem 3. (Radford’s theorem) When ϕ is commutative, the associative and

commutative algebra with unit (K〈Y 〉, ϕ, 1Y ∗) is a polynomial algebra. More

11A family of (simple, double etc.) series is summable if it is locally finite (see [3] for a complete

development).
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precisely, the morphism β : K[LynY ] → (K〈Y 〉, ϕ, 1Y ∗) defined, for all l ∈
LynY , by β(l) = l is an isomorhism. In other words, the family

(

l ϕi1
1 ϕ . . . ϕl

ϕik
k

)

k≥0, {l1,l2,··· ,lk}⊂LynY

(i1,i2,··· ,ik)∈(N+)k

is a linear basis of K〈Y 〉.

Proof. One checks that

l ϕi1
1 ϕ . . . ϕl

ϕik
k = l⊔⊔

i1
1 ⊔⊔ . . . ⊔⊔l

⊔⊔ ik
k +

∑

|v|<
∑

1≤j≤k ij |lj |

cv v

the result follows.

The theorem of Radford is important in the classical cases because it is the left

hand side of Schützenberger’s factorization in which one has the move

PBW → Radford, see [11] for a discussion of the converse.

Lemma 2 (ϕ-extended Friedrichs criterion). We denote12 by

∆
ϕ
: K〈〈Y 〉〉 → K〈〈Y ∗ ⊗ Y ∗〉〉

the dual of ϕ applied to series, i.e. defined by

∆
ϕ
(S) =

∑

u,v∈Y ∗

〈S | u ϕ v〉 u⊗ v.

Let now S ∈ K〈〈Y 〉〉, one has

1. If 〈S | 1Y ∗〉 = 0 then S is primitive, (i.e. ∆
ϕ
S = S ⊗ 1Y ∗ + 1Y ∗ ⊗ S)13,

if and only if, for any u and v ∈ Y +, one has 〈S | u ϕv〉 = 0.

2. If 〈S | 1Y ∗〉 = 1, then S is group-like, (i.e. ∆
ϕ
S = S ⊗ S)14, if and only

if, for any u and v ∈ Y ∗, one has 〈S | u ϕv〉 = 〈S | u〉〈S | v〉.

12As in the classical case, ∆
ϕ

is a conc-morphism as can be seen by transposition of the fact

that ∆conc is a ϕ-morphism.
13Tensor products of linear forms ; 1Y ∗ being the counit P 7→ 〈P | 1Y ∗〉.
14idem
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Proof. The expected equivalences are due respectively to the following facts

∆
ϕ
S = S ⊗ 1Y ∗ + 1Y ∗ ⊗ S − 〈S | 1Y ∗〉1Y ∗ ⊗ 1Y ∗ +

∑

u,v∈Y +

〈S | u ϕv〉u⊗ v,

∆
ϕ
S =

∑

u,v∈Y ∗

〈S | u ϕv〉u⊗ v and S ⊗ S =
∑

u,v∈Y ∗

〈S | u〉〈S | v〉u⊗ v.

Lemma 3. Let S ∈ K〈〈Y 〉〉 be such that 〈S | 1Y ∗〉 = 1, then S is group-like if

and only if15 log S is primitive.

Proof. Since ∆
ϕ

and the maps T 7→ T ⊗ 1Y ∗ , T 7→ 1Y ∗ ⊗ T are continuous

homomorphisms, then if logS is primitive, then (see Lemma 2(1))

∆
ϕ
(log S) = logS ⊗ 1Y ∗ + 1Y ∗ ⊗ log S

and since log S ⊗ 1Y ∗ and 1Y ∗ ⊗ logS commute then we get successively

∆
ϕ
S = ∆

ϕ
(exp(logS))

= exp(∆
ϕ
(logS))

= exp(log S ⊗ 1Y ∗) exp(1Y ∗ ⊗ logS)

= (exp(log S)⊗ 1Y ∗)(1Y ∗ ⊗ exp(logS))

= S ⊗ S.

This means, with 〈S | 1Y ∗〉, that S is group-like. The converse can be obtained in

the same way.

In fact, Lemma 3 establishes a nice log-exp correspondence for the Lie group

of group-like series.

Lemma 4. 1. The group-like series form a group (for the concatenation).

2. The space Prim(K〈〈Y 〉〉) is a Lie algebra (for the bracket derived from

concatenation).

15For any h ∈ K〈〈Y 〉〉, if 〈h | 1Y ∗〉 = 0 , one defines

log(1Y ∗ + h) =
∑

n≥1

(−1)n−1

n
hn and exp(h) =

∑

n≥1

hn

n!
.

and one has the usual formulas log(exp(h)) = h and exp(log(1Y ∗ + h)) = 1Y ∗ + h.

14



Proof. As in the classical case.

We extend the transposition process in the same way as in lemma 2 and note,

for n ≥ 1

∆(n−1)
ϕ

: K〈〈Y 〉〉 → K〈〈(Y ∗)⊗n〉〉 (29)

the dual of
(n−1)
ϕ applied to series, i.e. defined by

∆(n−1)
ϕ
(S) =

∑

u1,u2,···un∈Y ∗

〈S | u1 ϕ · · · ϕun〉 u1 ⊗ · · · ⊗ un . (30)

We will use several times the following lemma which gives the combinatorics of

products of primitive series (and the polynomials).

Lemma 5 (Higher order co-multiplications of products). Let us consider the lan-

guage M over the alphabet A = {a1, a2 . . . , am}

M = {w ∈ A∗|w = aj1 . . . aj|w|
, j1 < . . . < j|w|, 1 ≤ |w| ≤ m}

and the morphism

µ : K〈A〉 −→ K〈〈Y 〉〉,

ai 7−→ Si,

where S1, . . . , Sm are primitive series in K〈〈Y 〉〉. Then

∆(n−1)
ϕ
(S1 . . . Sm) =

∑

w1,...,wn∈M
|w1|+...+|wn|=m

a1···am∈supp(w1 ⊔⊔ ...⊔⊔ wn)

µ(w1)⊗ . . .⊗ µ(wn)

Proof. (Sketch) Let S = (S1, · · · , Sm) be this set of primitive series and for

I = {i1, · · · , ik} ⊂ [1 · · ·m] in increasing order, let us note S[I] the product

Si1 · · ·Sik , one has

∆(n−1)
ϕ
(S1 . . . Sm) =

∑

I1+···+In=[1···m]

S[I1]⊗ · · · ⊗ S[In]

setting wi = (a1a2 . . . am)[I], one gets the expected result.

15



Lemma 6 (Pairing of products). Let S1, . . . , Sm be primitive series in K〈〈Y 〉〉 and

let P1, . . . , Pn be proper16 polynomials in K〈Y 〉. Then one has in general

〈P1 ϕ . . . ϕPn | S1 . . . Sm〉 =
∑

w1,...,wn∈M
|w1|+...+|wn|=m

a1···am∈supp(w1 ⊔⊔ ...⊔⊔ wn)

n
∏

i=1

〈Pi | µ(wi)〉.

In particular, we have the following exhaustive list of circumstances

1. If n > m then 〈P1 ϕ . . . ϕPn | S1 . . . Sm〉 = 0.

2. If n = m then

〈P1 ϕ . . . ϕPn | S1 . . . Sn〉 =
∑

σ∈Sn

n
∏

i=1

〈Pi | Sσ(i)〉.

3. If n < m then one has the general form in which every product in the sum

contains at least a factor 〈Pi | µ(wi)〉 with |wi| ≥ 2.

Proof. It is a consequence of Lemma 5 through the equality

〈P1 ϕ . . . ϕPn | S1 . . . Sn〉 = 〈P1 ⊗ . . .⊗ Pn | ∆(n−1)
ϕ
(S1 . . . Sn)〉 .

We assume that ϕ is associative and dualizable.

Now, we have the following two structures.

H
ϕ

= (K〈Y 〉, conc, 1Y ∗ ,∆
ϕ
, ǫ), (31)

H∨
ϕ

= (K〈Y 〉, ϕ, 1Y ∗ ,∆
conc

, ǫ) (32)

which are mutually dual17 bialgebras. The bialgebra H
ϕ

need not be a Hopf

algebra, even if ∆
ϕ

is cocommutative (see Example 2.2).

Now, let us consider

I := spanK{u ϕv}u,v∈Y +, (33)

K+〈Y 〉 := {P ∈ K〈Y 〉 | 〈P | 1Y ∗〉 = 0}, (34)

P := Prim(H
ϕ
) = {P ∈ K〈Y 〉 | ∆+

ϕ
(P ) = 0}, (35)

where

∆+
ϕ
(P ) = ∆

ϕ
(P )− (P ⊗ 1Y ∗ + 1Y ∗ ⊗ P ). (36)

16i.e. polynomials without constant term [1].
17This duality is separating [4].
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Remark 1. At this stage (ϕ not necessarily moderate), it can happen that

Prim(H
ϕ
) = {0}. This is the case, for example with the q-infiltration bialgebra

on one letter at q = 1

H
ϕ
= (K[x], conc, 1x∗,∆↑1 , ǫ)

and, more generally, when q is not nilpotent.

We can also endow End(K〈Y 〉), the K-module of endomorphisms of K〈Y 〉,
with the convolution product defined by

∀f, g ∈ End(K〈Y 〉), f ⋆ g = conc ◦ (f ⊗ g) ◦∆
ϕ
, (37)

i.e., ∀P ∈ K〈Y 〉, (f ⋆ g)(P ) =
∑

u,v∈Y ∗

〈P | u ϕv〉f(u)g(v). (38)

Then End(K〈Y 〉) becomes a K-associative algebra with unity (AAU), its unit

being e = 1K〈Y 〉 ◦ ǫ.

It is convenient to represent every f ∈ End(K〈Y 〉) by its graph, a double

series which reads

Γ(f) =
∑

w∈Y ∗

w ⊗ f(w) (39)

This representation is faithful and, by direct computation, one gets

Γ(f)Γ(g) = Γ(f ⋆ g) (40)

where the multiplication of double series is performed by the stuffle on the left

and the concatenation on the right.

Definition 3. Let t be a real parameter. Let us define

DY := Γ(IdK〈Y 〉) =
∑

w∈Y ∗

w ⊗ w, HausY := logDY , σY (t) := exp(tHausY ).

We assume that ϕ is associative, commutative and dualizable.

Lemma 7. (π1 is a projector on the primitive series) The endomorphism π1 is a

projector, the image of which is exactly the space of primitive series, Prim(K〈〈Y 〉〉).

17



Proof. (sketch) The proof follows the lines of [38] with the difference that π1(w)
might not be a polynomial and the operator defined in Lemma 2 is not a genuine

co-product. The diagonal series DY (when considered as a series in (K〈〈Y 〉〉)〈〈Y 〉〉,
the coefficient ring, K〈〈Y 〉〉, being endowed with the ϕ product) is group-like

in the sense of lemma 2. Then using

log(DY ) =
∑

w∈Y ∗

w ⊗ π1(w)

(which can be established by summability of the family (w ⊗ π1(w))w∈Y ∗ , but

remember that the π1(w) are, in general, series18), one gets that, for all w, π1(w)
is a primitive series. Now, from

π1(S) =
∑

w∈Y ∗

〈S | w〉π1(w)

one has π1(S) ∈ Prim(K〈〈Y 〉〉). Conversely, from Friedrichs criterion, one gets

that π1(S) = S if S ∈ Prim(K〈〈Y 〉〉).

In the remainder of the paper, we suppose that ϕ is moderate (and still

dualizable, associative and commutative).

Definition 4. (Projectors, [38]) Let I+ : K〈Y 〉 −→ K〈Y 〉 be the linear mapping

defined by

I+(1Y ∗) = 0, and ∀w ∈ Y +, I+(w) = w.

One defines19

π1 := log(e+ I+) =
∑

n≥1

(−1)n−1

n
I⋆n+ , where I⋆n+ := concn−1 ◦ I⊗n

+ ◦∆(n−1)
ϕ
.

18In more details, this equality amounts to checking the summability of the family

( (−1)k−1

k
w ⊗ 〈w | u1 ϕ · · · ϕuk〉u1 · · ·uk

)

w∈Y ∗, k≥1

u1,··· ,uk∈Y +

(which is immediate) and rearranging the sums.
19The series below are summable because the family (I⋆n+ )n≥0 is locally nilpotent (see [3] for

complete proofs). Note that this definition gives the same result as the computation of the adjoint

of π̌1 given in Eq. 27.
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It follows immediately that

exp(π1) =
∑

k≥1

1

k!
π⋆k
1 =

∑

n≥1

πn, (41)

where e = 1K〈Y 〉 ◦ ǫ is the orthogonal complement of I+ and neutral for the con-

volution product. The πn so obtained is called the n-th eulerian projector.

Lemma 8. The endomorphism π̌1 defined in Eq. 26 is the adjoint of π1. One has

π̌1 =
∑

n≥1

(−1)n−1

n
(n−1)
ϕ ◦ I⊗n

+ ◦∆(n−1)
conc

.

Proof. Immediate.

Proposition 2. (Graph of π1, values and its exponential as resolution of unity)

1. For all Y and ϕ (moderate, associative, commutative and dualizable), one

has

HausY =
∑

w∈Y +

w ⊗ π1(w) =
∑

w∈Y +

π̌1(w)⊗ w.

2. Let P ∈ K〈Y 〉 be a primitive polynomial, for ∆
ϕ
. Then

π1(P ) = P, ∀k, n ∈ N+, πn(P
k) = δk,nP

k.

3. One has

IdK〈Y 〉 = e+ I+ =
∑

n≥0

πn

is a resolution of identity with mutually orthogonal summands.

4. We have

K+〈Y 〉 = P
⊥
⊕I = P ⊕

(

⊕

n≥2

πn(K〈Y 〉)
)

.
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Proof. The only statement which cannot be proved through an isomorphism with

the shuffle algebra is the first equality of the point 4. The fact that P ∩ I = {0}
comes from Friedrichs criterion and P + I = K+〈Y 〉 is a consequence of the fact

(seen again through any isomorphism with the shuffle algebra) that

(H
ϕ
)+ = spanK(

⋃

n≥1

(P1 ϕ · · · ϕPn)Pi∈Prim(H ϕ )).

Remark 2. 1. The first equality of Proposition 2.4, i.e.

K+〈Y 〉 = P
⊥
⊕I

is known as the theorem of Ree [37].

2. The projector on P parallel to I is not in general in the descent algebra

(see [16]). This proves that, although they are isomorphic, the spaces I
and ⊕n≥2πn(K〈Y 〉) are, in general, not identical.

Proposition 2.1 leads to

Corollary 1. We have π1(1Y ∗) = π̌1(1Y ∗) = 0 and, for all w ∈ Y +,

π1(w) = w +
∑

k≥2

(−1)k−1

k

∑

u1,...,uk∈Y +

〈w | u1 ϕ . . . ϕuk〉u1 . . . uk,

π̌1(w) = w +
∑

k≥2

(−1)k−1

k

∑

u1,...,uk∈Y +

〈w | u1 . . . uk〉u1 ϕ . . . ϕuk.

In particular π1(1Y ∗) = π̌1(1Y ∗) = 0 and, for any y ∈ Y, π̌1(y) = y and

π1(y) = y +
∑

l≥2

(−1)l−1

l

∑

x1...xl∈Y ∗

γyx1,...,xl
x1 . . . xl.

Remark 3. We already knew that, as soon as ϕ is associative, π̌1(w) is a polyno-

mial. Here, because ϕ is moderate, dualizable, and associative, π1(w) also is a

polynomial, and because ϕ is commutative, the images are primitive.

Proposition 3. We have
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1. The expression of σY (t) is given by

σY (t) =
∑

n≥0

tn
∑

w∈Y ∗

w ⊗ πn(w) =
∑

n≥0

tn
∑

w∈Y ∗

π̌n(w)⊗ w,

where π̌n is the adjoint of πn. These are given by πn(1Y ∗) = π̌n(1Y ∗) = δ0,n
and, for all w ∈ Y +,

πn(w) =
1

n!

∑

u1,...,un∈Y +

〈w | π̌1(u1) ϕ . . . ϕπ̌1(un)〉π1(u1) . . . π1(un),

π̌n(w) =
1

n!

∑

u1,...,un∈Y +

〈w | π1(u1) . . . π1(un)〉π̌1(u1) ϕ . . . ϕπ̌1(un)).

2. For any w ∈ Y ∗, we have

w =
∑

k≥0

1

k!

∑

u1,...,uk∈Y +

〈w | u1 ϕ . . . ϕuk〉π1(u1) . . . π1(uk)

=
∑

k≥0

1

k!

∑

u1,...,uk∈Y +

〈w | u1 . . . uk〉π̌1(u1) ϕ . . . ϕπ̌1(uk).

In particular, for any ys ∈ Y , we have ys = π̌1(ys) and

ys =
∑

k≥1

1

k!

∑

ys1 ,...,ysk∈Y

γysys1 ,...,ysk
π1(ys1) . . . π1(ysk).

Proof. Direct computation.

Applying the tensor product20 of isomorphisms of algebras21 α ⊗ IdY to the

diagonal series DY , we obtain a group-like element and then computing the loga-

rithm of this element (or equivalently, applying α ⊗ IdY to HausY ) we obtain S
which is, by Lemma 3, primitive :

S =
∑

w∈Y ∗

α(w) π1(w) =
∑

w∈Y ∗

α ◦ π̌1(w) w. (42)

20Extended to series.
21In order to clarify the ideas at this point, the reader can also take the alphabet duplication

isomorphism

∀ȳ ∈ Ȳ , ȳ = α(y)

and use {w}w∈Ȳ ∗ as a basis for K〈Ȳ 〉.
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Lemma 9. For any w ∈ Y +, one has π1(w) ∈ Prim(K〈Y 〉).

Proof. Immediate from lemma 7.

A primitive projector, π : K〈Y 〉 −→ K〈Y 〉, is defined in the same way as a

Lie projector by the three following conditions:

π ◦ π = π, π(1Y ∗) = 0 π(K〈Y 〉) = Prim(K〈Y 〉) = P. (43)

For example, π1 defined in Definition 4 (see also proposition 2) is a primitive

projector which will be used to construct bases of P and its enveloping algebra

(see Theorem 5 below). Another example of a primitive projector is the orthogonal

projector on P attached to the decomposition in Remark 2.

Now, for the remainder of the paper, let Y = {yw}w∈Y + (resp. Y1 = {yx}x∈Y )

be a copy of Y + (resp. Y ).

Let us then equip K〈Y〉 and K〈Y1〉 with • (the concatenation so denoted to be

distinguished from the concatenation within Y +) and ⊔⊔ (or equivalently by ∆•

and ∆⊔⊔ ).

Thus, the Hopf algebras (K〈Y〉, •, 1Y∗,∆⊔⊔ , ǫY∗) and (K〈Y1〉, •, 1Y∗,∆⊔⊔ , ǫY∗
1
)

are connected, N-graded, non-commutative and cocommutative bialgebras and

hence enveloping bialgebras (in fact, they are free algebras but specially indexed

to match our purpose).

Now we can state the following

Theorem 4. (New letters as images) Let π : K〈Y 〉 −→ K〈Y 〉 be a primitive

projector. Let ψπ be the conc-morphism defined by

ψπ : K〈Y〉 −→ K〈Y 〉,

yw 7−→ ψπ(yw) = π(w)

then ψπ is surjective and a Hopf morphism.

Moreover, kerψπ = J = J1 + J2 where J1 and J2 are the two-sided ideals

of K〈Y〉 generated respectively by

S1 = {yu − yπ(u)}u∈Y + and S2 = {yu • yv − yv • yu − y[π(u),π(v)]}u,v∈Y +

where, the indexing of the alphabet has been extended by linearity to polynomials

i.e.,

P =
∑

w∈Y +

α(w)w and yP :=
∑

w∈Y +

α(w) yw.
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Proof. The fact that ψπ is surjective is due to π(K〈Y 〉) = P and any enveloping

algebra (here H
ϕ
) is generated by its primitive elements. The fact that ψπ is a

Hopf morphism is due to a general property of enveloping algebras : if a morphism

of AAU between two enveloping algebras sends the primitive elements of the first

into primitive elements of the second, then it is a Hopf morphism..

Let now (pi)i∈J be an ordered (J is endowed with a total ordering ≺J ) basis22

of P = Prim(K〈Y 〉) and let us recall that J = J1 + J2 denotes the two sided

ideal generated by the elements Ji being generated by Si, i = 1, 2.

First, we remark that the elements of S1∪S2 are in the kernel of ψπ1 , and then

J ⊂ kerψπ1 .

On the other hand, for u1, u2, . . . , un ∈ Y +, one has

yu1 • yu2 • . . . • yun
≡ yπ(u1) • yπ(u2) • . . . • yπ(un) mod J (44)

(in fact they are even equivalent mod J1) which amounts to say that K〈Y〉 =
J +⋖P⋗ where ⋖P⋗ is the space “generated by P”, in fact, generated by

⊔

n≥0

{ypi1 • . . . • ypin}ij∈J .

Now, by recurrence over the number of inversions, one can show, using S2, that

ypi1 • . . . • ypin ≡ ypσ(i1)
• . . . • ypσ(in)

mod J (45)

where σ ∈ Sn is such that σ(i1) ≻J σ(i2) ≻J . . . ≻J σ(in) (large order reorder-

ing).

Let C be the space generated by the elements

{ypj1 • . . . • ypjn} j1≻Jj2≻J ...≻J jn
n≥0

(46)

by (44) and (45), we get J + C = K〈Y〉.
Now, thanks to the PBW theorem, the family of images

(

Φπ1(ypj1 • ypj2 • . . . • ypjn )
)

j1≻J j2≻J ...jn
n≥0

(47)

is a basis of K〈Y 〉 which proves that Φπ1|C: C → K〈Y 〉 is an isomorphism and

completely proves the claim.

22With the properties of ϕ here, the bialgebra (K〈Y 〉, conc, 1Y ∗ ,∆
ϕ
, ǫ) is isomorphic

to (K〈Y 〉, conc, 1Y ∗ ,∆⊔⊔ , ǫ) in which the module of primitive elements is free, thus P =
Prim(K〈Y 〉) is free.
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We now suppose that the alphabet Y is totally ordered.

Definition 5. 1. Let {Πl}l∈LynY and {Πw}w∈Y ∗ be the families of elements of

P and K〈Y 〉 respectively, obtained as follows

Πyk = π1(yk) for k ≥ 1,
Πl = [Πs,Πr] for l ∈ LynX, standard factorization of l = (s, r),

Πw = Πi1
l1
. . .Πik

lk
for w = li11 . . . l

ik
k , l1 ≻lex . . . ≻lex lk, l1 . . . , lk ∈ LynY.

2. Let {Σw}w∈Y ∗ be the family of the ϕ-deformed quasi-shuffle algebra ob-

tained by duality with {Πw}w∈Y ∗ :

∀u, v ∈ Y ∗, 〈Σv | Πu〉 = δu,v.

A priori, the {Σw}w∈Y ∗ could be series, we prove first that, in this context,

they are polynomials.

Proposition 4. (Adjoint of φπ1) Let φπ1 , be the conc-endomorphism of algebra

defined on the letters as follows :

φπ1 : K〈Y 〉 −→ K〈Y 〉,

yk 7−→ φπ1(yk) = π1(yk).

Then φπ1 is an automorphism with the following properties

1. This automorphism is such that, for every l ∈ LynY ,

φπ1(Pl) = Πl,

(where Pl are the polynomials calculated with the mechanism of Def. 5,

setting ϕ ≡ 0 (or, equivalently, by Eq. 8 with q = 0), i.e. within the shuffle

algebra (K〈Y 〉, conc, 1Y ∗ ,∆⊔⊔ , ǫ))

2. This automorphism has an adjoint φ∨
π1

within K〈Y 〉 which reads, on the

words w ∈ Y ∗

φ∨
π1
(w) =

∑

k≥0

∑

yi1 ···yik∈Y

〈w | π1(yi1) · · ·π1(yik)〉 yi1yi2 · · · yik
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3. In the style of Definition 4, one has

φπ1 = e+
∑

k≥1

conc
(k−1) ◦ (π1 ◦ I1)

⊗k ◦∆(k−1)
conc

,

φ∨
π1

= e +
∑

k≥1

conc
(k−1) ◦ (I1 ◦ π̌1)

⊗k ◦∆(k−1)
conc

,

where I1 is the projector on KY parallel to ⊕n 6=1(K〈Y 〉)n.

4. For all w ∈ Y ∗, Σw = (φ∨
π1
)−1(Sw).

Proof. (Sketch) It was proved in Theorem 2 that the endomorphism φπ1 is an

isomorphism. The recursions used to construct Πl and Pl prove that φπ1(Pl) = Πl

and then φπw
(Pl) = Πw for every word w. Now the expression of φπ1 is a direct

consequence of the definition of φπ1 . This implies at once the expression of φ∨
π1

and the fact that φ∨
π1

∈ End(K〈Y 〉), the last equality come from the following

δu,v = 〈Πu | Σv〉 = 〈φπ1(Pu) | Σv〉 = 〈Pu | φ∨
π1
(Σv)〉

which shows that, for all w ∈ Y ∗, φ∨
π1
(Σw) = Sw and the claim.

We can now state

Theorem 5. 1. The family {Πl}l∈LynY forms a basis of P .

2. The family {Πw}w∈Y ∗ is a linear basis of K〈Y 〉.

3. The family {Σw}w∈Y ∗ is a linear basis of the ϕ-shuffle algebra

4. The family {Σl}l∈LynY forms a pure transcendence basis of (K〈Y 〉, ϕ, 1Y ∗).

3.3 Local coordinates by ϕ-extended Schützenberger’s factor-

ization

We have remarked very early (ϕ needs only to be associative) that the set of

group-like series (for ∆
ϕ
) forms a (infinite dimensional Lie) group (see Lem-

mas 3 and 4), its Lie algebra is the (Lie) algebra of Lie series and we have a nice

log-exp correspondence (see Lemma 3). We will see in this paragraph that, when

ϕ possesses all the “good” properties (moderate, dualizable, associative and com-

mutative), one has an analogue of the Wei-Norman theorem [40, 41] which gives

a system of local coordinates for every finite dimensional (real or complex) Lie

group. Let us recall it.
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Theorem 6. [40, 41] Given a (finite dimensional) Lie group G (real k = R or

complex k = C), its Lie algebra g, and a basis B = (bi)1≤i≤n of g, there exists a

neighbourhood W of 1G (in G) and n local coordinate analytic functions

W → k, (fi)1≤i≤n

such that, for all g ∈ W

g =

→
∏

1≤i≤n

eti(g)bi = et1(g)b1et2(g)b2 . . . etn(g)bn .

Now, we have seen that, if ϕ is moderate, dualizable, associative and commu-

tative,

H
ϕ
= (K〈Y 〉, conc, 1Y ∗ ,∆

ϕ
, ǫ) (48)

is isomorphic to the shuffle bialgebra algebra (K〈Y 〉, conc, 1Y ∗ ,∆⊔⊔ , ǫ) one can

construct bases {Πw}w∈Y ∗ ; {Σw}w∈Y ∗ of K〈Y 〉with the following properties

1. the restricted family {Πl}l∈LynY is a basis of P = Prim(K〈Y 〉)

2. the whole basis is constructed by decreasing concatenation (see Definition

5) and hence of type PBW

3. they are in duality 〈Πu | Σv〉 = δu,v

4. due to these three properties one has

Σw =
Σ i1

l1
. . . Σ ik

lk

i1! . . . ik!
, for w = li11 . . . l

ik
k (49)

Now within the algebra of double series (whose support is KY ∗⊗Y ∗
) endowed

with the law ϕ⊗̂conc, M-. P. Schützenberger (see [38]) gave the beautiful

formula

∑

w∈Y ∗

w ⊗ w =

ց
∏

l∈LynY

eΣl⊗̂Pl. (50)

Which can be used to provide a system of local coordinates on the Hausdorff

group i.e. the group of series in K〈〈Y 〉〉 which are group-like for ∆
ϕ
. Indeed,
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due to the fact that for a group-like S, (S⊗̂Id) is compatible with the law of the

double algebra and then23, applying the operator (S⊗̂Id) to (50), we get

S = (S⊗̂Id)(
∑

w∈Y ∗

w⊗̂w) =

ց
∏

l∈LynY

e〈S|Σl〉 Pl (51)

which is the perfect analogue of the theorem of Wei-Norman for the Hausdorff

group (group of group-like series).

4 Conclusion

In this paper, we have systematically studied the deformations of the shuf-

fle product by addition of a superpostion term. Fortunately, this study provides

necessary and sufficient conditions for the objects (antipode, Ree ideal, bases in

duality) and operators (infinite convolutional series, primitive projectors) to exist

together with their consequences. We have established a local system of coordi-

nates for the (infinite dimensional) Lie group of group-like series. This system is

the perfect analogue of the well known theorem of Wei-Norman which holds for

every finite dimensional Lie group.
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