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GENERAL RELATIVITY AND SPINORS

Jean Claude Dutailly

15th of November 2016

Abstract

This paper exposes, in a comprehensive and consistent way, the Geometry of General Relativity

through fiber bundles and tetrads. A review of the concept of motion in Galilean Geometry leads, for its

extension to the relativist context, to a representation based on Clifford Algebras. It provides a strong

frame-work, and many tools which enable to deal easily with the most general problems, including the

extension of the concepts of deformable and rigid solids in RG, at any scale.

It is then natural to represent the moments of material bodies, translational and rotational, by spinors.

The results hold at any scale, and their implementation for elementary particles gives the known results

with anti-particles, chirality and spin.

This representation, without any exotic assumption, is the gate to a model which encompasses RG

and the Gauge Theories, and so to a reconciliation between RG and Particle Theories.
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General Relativity (GR) consists of two theories : one about the Geometry of the Universe, and another
about Gravitation. We will deal with the first one in this paper. By Geometry we mean how to represent
space and time, and from there the motion of material bodies. GR is reputed to be a difficult theory.
Fortunately Mathematics have made huge progresses since 1920, and provide now the tools to deal efficiently
with differential geometry. Moreover, quitting the usual and comfortable frame-work of orthonormal frames
helps to better understand the full extent of the revision of the concepts implied by Relativity. To extend
the concept of motion, both transversal and rotational, to the relativist context requires to give up the
schematics of Special Relativity (SR) and the Poincaré’s group. The right mathematical representation
is through Clifford Algebra, which is at the root of the Spin group, and gives a natural interpretation
to the spin. With this new representation of the motion, we can revisit the Kinematics, that is the link
between motion, a geometric concept, and forces. The kinematic characteristics of material bodies are then
represented through spinors, and we retrieve, for elementary particles, the distinction between particles and
anti-particles. The spinors, introduced here through RG, are similar to the spinors of the Standard Model,
and are a component of the representation of the state of particles. This topic requires the introduction of
Force fields and connections, and is outside the scope of this paper, but is treated in my book ”Theoretical
Physics”.

The first Part is dedicated to the Geometry of the Univers. With 5 assumptions, based on common
facts and well known scientific phenomena, we build a comprehensive and simple frame-work, which is in full
agreement with the usual GR, but uses more modern mathematical tools.

The second Part is dedicated to the concept of motion. Its representation in Galilean Geometry is actually
sophisticated, fully developed for solids, it has been extended to deformable solids and fluids. As it seems
that, at the most elementary scale, material bodies have a motion which is also rotational, in the relativist
context it is necessary to use a more robust representation, which is provided by Clifford Algebras. Then the
motion, translational and rotational, of a material body is represented by an element of the Clifford Algebra,
and it can be easily extended to deformable solids, which can be useful in Astro-Physics.

The third Part is dedicated to spinors. Kinematics studies the link between motion and forces acting on
material bodies. The kinematic characteristics of material bodies are the mass and the rotational tensor.
In the relativist frame-work momenta are represented by Spinors which are vectorial quantities. But the
kinematic characteristics of material bodies are defined by 4 scalar parameters, and for elementary particles
we retrieve, in a natural way, the distinction between particles and anti-particles.

This paper uses some mathematical definitions or theorems which can be found in more details in my
book ”Advanced Mathematics for Theoretical Physics”). They are refered to as “Maths.XX”.
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Part I

THE GEOMETRY OF GENERAL

RELATIVITY

Almost all, if not all, measures rely eventually on measures of lengths and times. The concepts of space and
time are at the foundation of theories about the geometry of the physical universe, meaning of the container
in which live the objects of physics. The issue here is not a model of the Universe, seen in its totality, which
is the topic of Cosmology, but a model which tells us how to measure lengths and times, and how to compare
measures done by different observers. Such a model is a prerequisite to any physical theory. There are several
Geometries used in Physics : Galilean Geometry, Special Relativity (SR) and General Relativity (GR).

1 MANIFOLD STRUCTURE

1.1 The Universe has the structure of a manifold

The first question is how do we measure the location of an event ?
In almost all Physics books the answer will go straight to an orthonormal frame, or in GR to a map with

some coordinates ξα, often with additional provisions for “inertial frames”, before a complicated discourse
about light, and quite often trains for the Relativist picture. Actually all these narratives, simply, do not
respect the facts.

At small distances it is possible to measure lengths by surveying, and indeed the scientists who established
the meter in 1792 based their work on a strict survey along 15 kms. Then it is possible to use an orthonormal
frame. But even at small scale, topographers use a set of 3 angles with respect to fixed directions given by
staffs, or far enough objects, points in the landscape, or distant stars, combined with one measure of distance.
The latter is measured usually by the delay for a signal emitted to rebound on the surface on a distant object.
There are small, clever, devices which do that with ultrasound, radars use electromagnetic fields. The speed
of the propagation of the signal is taken conventionally fixed and constant. It is assumed to have been
measured at small scale, and the results are then extended for larger distances. For not too far away celestial
bodies, the distances can be measured using the angles observed at different locations (the parallaxes), the
knowledge of the length of the basis of the triangle and some trigonometry. Further away one uses the
measure of the luminosity of “standard candles”, and eventually the red shift of some specific light waves.
This is the meaning of the “cosmic distance ladder” used in Astrophysics. So, measures of spatial location
rely essentially on measures of angles, and one measure of distance according to precise protocols based on
conventions about the relation between the distance and the phenomenon which is observed. The key is that,
on the scale where two methods are applicable, the measures of distances are consistent.

For the temporal location one uses the coincidence with any agreed upon event. For millennia men used
the position of celestial bodies for this purpose. Say ”See you at Stonehenge at the spring’s equinox” and
you will be understood. Of course one can use a clock, but the purpose of a clock is to measure elapsed
time, so one needs a clock and a starting point, which are agreed upon, to locate an event in time. An
observer can locate in time any event which occurs at his place, that is events that he can see directly and,
beyond that, the observer accounts for a delay due to the transmission of his perception of the event, based
on a convention for the speed of the signal. This speed can be measured itself, for not too far away events,
either by a direct communication with a distant observer, or by bouncing a signal on a object at the distant
location. But farther away the speed of transmission is set conventionally. Actually the physical support of
the signal does not matter much as long as it is efficient, and for the measure of the temporal location, can
rely on any convention. There is no need for a physical assumption as the constancy of the speed of light.

The measures of location, in time and space, are so based on conventions. This is not an issue, as long as
the protocols are precise, and the measures consistent : the purpose of the measures is to be able to locate
efficiently an event. One does that with 3 spatial coordinates, and 1 coordinate for the time, organized in
charts combining in a consistent way measures done according to different, agreed upon procedures. The key
point is that the charts are compatible : when it is possible to proceed to the measures for the same event
by different procedures, there is a way to go from one measure to another. And this enables to extend the
range of the chart by applying conventions, such as in the cosmic ladder.

These procedures describe exactly a mathematical object : a manifold. A set of charts covering a domain
constitutes an atlas. There are mathematical functions, transition maps, which relate the coordinates of
the same point in different charts. A collection of compatible atlas over a set M defines the structure of a
manifold. The coordinates represent nothing more than the measures which can be done, and the knowledge
of the protocols is sufficient.
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This leads to our first proposition :

Proposition 1 The Universe can be represented by a four dimensional real manifold M

The charts define overM a topology, deduced from the vector space. The manifold is differentiable (resp.
smooth) if the transition maps are differentiable (resp.smooth).

In Galilean Geometry the manifold is the product of R with a 3 dimensional affine space, and in SR this
is a 4 dimensional affine space (affine spaces have a manifold structure).

We will limit ourselves to an area Ω of the universe, which can be large, where there is no singularity, so
that one can assume that one chart suffices. We will represent such a chart by a map :

ϕM : R4 → Ω :: ϕM
(
ξ0, ξ1, ξ2, ξ3

)
= m

which is assumed to be bijective and smooth, where ξ =
(
ξ0, ξ1, ξ2, ξ3

)
are the coordinates of m in the

chart ϕM .
We will assume that Ω is a relatively compact open in M , then the manifold structure on M is the same

as on Ω, and Ω is bounded.
A change of chart is represented by a bijective smooth map (the transition map) :
χ : R4 → R4 :: ηα = χα

(
ξ0, ξ1, ξ2, ξ3

)

such that the new map ϕ̃M and the initial map ϕM locate the same point :
ϕ̃M

(
χα
(
ξ0, ξ1, ξ2, ξ3

)
, α = 0, ..3

)
= ϕM

(
ξ0, ξ1, ξ2, ξ3

)

Notice that there is no algebraic structure on M : am + bm′ has no meaning. This is illuminating in
GR, but still holds in SR or Galilean Geometry. There is a clear distinction between coordinates, which are
scalars depending on the choice of a chart, and the point they locate on the manifold (affine space or not).

The idea that the Universe could be 4 dimensional is not new. The true revolution of Relativity has been
to acknowledge that, if the physical universe is 4 dimensional, it becomes necessary to dissociate the abstract
representation of the world, the picture given by a mathematical model, from the actual representation of
the world as it can be seen through measures. And this dissociation goes through the introduction of a new
object in Physics : the observer. Indeed, if the physical Universe is 4 dimensional, the location of a point is
absolute : there is a unique material body, in space and time, which can occupy a location. Then, does that
mean that past and future exist together ? To avoid the conundrum and all the paradoxes that it entails,
the solution is to acknowledge that, if there is a unique reality, actually the reality which is scientifically
accessible, because it enables experiments and measures, is specific : it depends on the observer. This does
not mean that it would be wrong to represent the reality in its entirety, as it can be done with charts, frames
or other abstract mathematical objects. They are necessary to give a consistent picture, and more bluntly, to
give a picture that is accessible to our mind. But we cannot identify this abstract representation, common to
everybody, with the world as it is. It is common to introduce subtle concepts such as location and velocity
through a frame, which is evoked in passing, as if it was obvious, standing somewhere at the disposition of
the public. There is nothing like this. I can build my frame, my charts, and from there conceive that it can
be extended, and compared to what other Physicists have done. But comparison requires first dissociation.

1.2 The tangent vector space

Spatial locations rely heavily on the measures of angles with respect to fixed directions. At any point there
is a set of spatial directions, corresponding to small translations in one of the coordinates. And the time
direction is just the translation in time for an observer who is spatially immobile. There is the same construct
in Mathematics.

Mathematically at any point of a manifold one can define a set which has the structure of a vector space,
with the same dimension as M . The best way to see it is to differentiate the map ϕM with respect to the
coordinates (this is close to the mathematical construct). To any vector u ∈ R4 is associated the vector

um =
∑3

α=0 u
α∂αϕM

(
ξ0, ξ1, ξ2, ξ3

)
which is denoted um =

∑3
α=0 u

α∂ξα.

The basis (∂ξα)
3
α=0 associated to a chart, called a holonomic basis, depends on the chart, but the vector

space at m denoted TmM does not depend on the chart. With this vector space structure one can define
a dual space TmM

∗ and holonomic dual bases denoted dξα with : dξα (∂ξβ) = δαβ , and any other tensorial
structure (see Maths.16).

In the definition of the holonomic basis the tangent space is generated by small displacements along one
coordinate, around a point m. So, physically, locally the manifold is close to an affine space with a chosen
origin m, and locally GR and SR look the same. This is similar to what we see on Earth : locally it looks
flat.

However there are essential distinctions between coordinates, used to measure the location of a point in
a chart, and components, used to measure a vectorial quantity with respect to a basis. Points and vectors
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are geometric objects, whose existence does not depend on the way they are measured. However a point on
a manifold does not have an algebraic structure attached meanwhile a vector belongs to a vector space : one
can combine vectors. Some physical properties of objects can be represented by vectors, others cannot, and
the distinction comes from the fundamental assumptions of the theory. It is enshrined in the theory itself.
From the construct of the tangent space one sees that any quantity defined as a derivative of another physical
quantity with respect to the coordinates is vectorial.

The vector spaces TmM depend on m, and there is no canonical (meaning independent of the choice of
a specific tool) procedure to compare vectors belonging to the tangent spaces at two different points. These
vectors um can be considered as a couple of a location m and a vector u, which can be defined in a holonomic
basis or not, and all together they constitute the tangent bundle TM. Notably there is no physical mean
to measure a change in the vectors of a holonomic basis with time : it would require to compare ∂ξα at
two different locations m,m′ ∈ M. But, because there are maps to go from the coordinates in a chart to
the coordinates in another chart, there are maps which enable to compute the components of vectors in the
holonomic bases of different charts, at the same point.

However because the manifolds are actually affine spaces, in SR and Galilean Geometry the tangent
spaces at different points share the same structure (which is the underlying tangent vector space), and only
in these cases they can be assimilated to R4. This is the origin of much confusion on the subject, but in the
GR context the concepts are clearly differentiated.

A vector field on M is a map : V : M → TM :: V (m) =
∑3
α=0 v

α (m) ∂ξα which associates to any
point m a vector of the tangent space TmM. The vector does not depend on the choice of a basis or a
chart, so its components change in a change of chart as : vα (m) → ṽα (m) =

∑3
β=0 [J (m)]

α
β v

β (m) where

[J (m)] =
[
∂ηα

∂ξβ
(m)

]
is a 4× 4 matrix called the jacobian

Similarly a one form on M is a map ̟ : M → TM∗ :: ̟(m) =
∑3
α=0̟α (m) dξα and the components

change as :
̟α (m) → ˜̟α (m) =

∑3
β=0 [K (m)]

β
α̟β (m) and [K (m)] = [J (m)]

−1

The sets of vector fields, denoted X (TM) , and of one forms, denoted X (TM∗) or Λ1 (M ;R) are infinite
dimensional vector spaces (with pointwise operations).

A curve on a manifold is a one dimensional submanifold : this is a geometric structure, and there is a
vector space associated to each point of the curve, which is a one dimensional vector subspace of TmM .

A path on a manifold is a map : p : R → M :: m = p (τ) where p is a differentiable map such that
p′ (τ) 6= 0. Its image is a curve Lp, and p defines a bijection between R (or any interval of R) and the curve
(this is a chart of the curve), the curve is a 1 dimensional submanifold embedded in M . The same curve can
be defined by different paths. The tangent is the map : p′ (t) : R → Tp(t)M :: dpdτ ∈ Tp(τ)Lp . In a change of
parameter of the path : τ̃ = f (τ) (which is a change of chart) for the same point : m = p̃ (τ̃) = p (f (τ)) the

new tangent vector is proportional to the previous one : dm
dτ = dp̃

dτ̃
dτ̃
dτ ⇔ dm

dτ̃ = 1
f ′
dm
dτ

For any smooth vector field there is a collection of smooth paths (the integrals of the field) such that
the tangent at any point of the curve is the vector field. There is a unique integral line which goes
through a given point. The flow of a vector field V is the map : ΦV : R ×M → M :: ΦV (τ, a) such that
ΦV (., a) : R →M :: m = ΦV (τ, a) is the integral path going through a and ΦV (., a) is a local diffeomorphism
:

∀θ ∈ R : ∂
∂τΦV (τ, a) |τ=θ = V (ΦV (θ, a))

∀τ, τ ′ ∈ R : ΦV (τ + τ ′, a) = ΦV (τ,ΦV (τ ′, a))
ΦV (0, a) = a

∀τ ∈ R : ΦV (−τ,ΦV (τ, a)) = a

(1)

For a given vector field, the parameter τ is defined up to a constant, so it is uniquely defined with the
condition ΦV (0, a) = a.

In general the flow is defined only for an interval of the parameter, but this restriction does not exist if
Ω is relatively compact.

A map f : C → E from a curve can be extended to a map F : Ω → E. So any smooth path can be
considered as the integral of some vector field (not uniquely defined), and it is convenient to express a path
as the flow of a vector field.

1.3 Fundamental symmetry breakdown

The four coordinates are not equivalent : the measure of the time ξ0 cannot be done with the same procedures
as the other coordinates, and one cannot move along in time : one cannot survey time. This is the fundamental
symmetry breakdown.
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The time coordinate of an event can be measured, by conventional procedures which relate the time on
the clock (whatever it is) of a given observer to the time at which a distant event has occurred. So we assume
that a given observer can tell if two events A,B occur in his present time (they are simultaneous), and that
the relation “two events are simultaneous” is a relation of equivalence between events. Then the observer
can label each class of equivalence of events by the time of his clock. Which can be expressed by telling that
for each observer, there is a function : fo : M → R :: fo (m) = t which assigns a time t, with respect to the
clock of the observer, at any point of the universe (or at least Ω). The points : Ω (t) = {m = fo (t) ,m ∈ Ω}
correspond to the present of the observer. No assumption is made about the clock, and different clocks can
be used, with the condition that, as for any chart, it is possible to convert the time given by a clock to the
time given by another clock (both used by the same observer).

In Galilean Geometry instantaneous communication is possible, so it is possible to define a universal time,
to which any observer can refer to locate his position, and the present does not depend on the observer. The
manifold M can be assimilated to the product R× R3. The usual representation of material bodies moving
in the same affine space is a bit misleading, actually one should say that this affine space R3 (t) changes
continuously, in the same way, for everybody. Told this way, we see that Galilean Geometry relies on a huge
assumption about the physical universe.

In Relativist Geometry instantaneous communication is impossible, so it is impossible to synchronize all
the clocks. However a given observer can synchronize the clocks which correspond to his present, this is the
meaning of the function fo, whose practical realization does not matter here.

Whenever there is, on a manifold, a map such that fo, with f
′
o(m) 6= 0, it defines on M a foliation : there

is a collection of hypersurfaces (3 dimensional submanifolds) Ω3 (t) , and the vectors u of the tangent spaces
on Ω3 (t) are such that f ′

o(m)u = 0, meanwhile the vectors which are transversal to Ω3 (t) (corresponding to
paths which cross the hypersurface only once) are such that f ′

o(m)u > 0 for any path with t increasing. So
there are two faces on Ω3 (t) : one for the incoming paths, and the other one for the outgoing paths. The
hypersurfaces Ω3 (t) are diffeomorphic : they can be deduced from each other by a differentiable bijection,
which is the flow of a vector field. Conversely if there is such a foliation one can define a unique function fo
with these properties (Maths.15071). The successions of present “spaces” for any observer is such a foliation,
so our representation is consistent. And we state :

Proposition 2 For any observer there is a function

fo :M → R :: fo (m) = t with f ′
o (m) 6= 0 (2)

which defines in any area Ω of the Universe a foliation by hypersurfaces

Ω3 (t) = {m = fo (t) ,m ∈ Ω} (3)

which represents the location of the events occurring at a given time t on his clock.

An observer can then define a chart of M , by taking the time on his clock, and the coordinates of a point
x in the 3 dimensional hypersurfaces Ω3 (t) : it would be some map : ϕ : R × Ω3 (0) → M :: m = ϕ (t, x)
however we need a way to build consistently these spatial coordinates, that is to relate ϕ (t, x) to ϕ (t′, x).

2 TRAJECTORIES OF MATERIAL BODIES

The Universe is a container where physical objects live, and the manifold provides a way to measure a
location. This is a 4 dimensional manifold which includes the time, but that does not mean that everything
is frozen on the manifold : the universe does not change, but its content changes. As bodies move in the
universe, their representation are paths on the manifold. And the fundamental symmetry breakdown gives
a special meaning to the coordinate with respect to which the changes are measured. Time is not only a
parameter to locate an event, it is also a variable which defines the rates of change in the present of an
observer.

2.1 Material bodies and particles

The common definition of a material body in Physics is that of a set of material points which are related. A
material point is assumed to have a location corresponding to a point of the manifold. According to the
relations between material points of the same body we have rigid solids (the distance between two points is
constant), deformable solids (the deformation tensor is locally given by the matrix of the transformation of
a frame), fluids (the speed of material points are given by a vector field). These relations are expressed in

1This theorem, which has far reaching consequences, is new and its proof, quite technical is given in my Mathematics book.
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phenomenological laws, they are essential in practical applications. The generalization to Relativity of the
concept of solids, or material bodies which have a spatial extension, is an important issue that we address
in a following part.

We will consider first in this part material bodies which have no internal structures, or whose internal
structure can be neglected, that we will call particles. The only property that we will consider here for a
particle is its location, given by a geometrical point in the universe. A particle then can be an electron, a
nucleus, a molecule, or even a star system, according to the scale of the study.

2.2 World line and proper time

As required in any scientific theory a particle must be defined by its properties, and the first is that it
occupies a precise location at any time. The successive locations of the material body define a curve and the
particle travels on this curve according to a specific path called its world line. Any path can be defined by
the flow of a vector such that the derivative with respect to the parameter is the tangent to the curve. The
parameter called the proper time is then defined uniquely, up to the choice of an origin. The derivative
with respect to the proper time is called the velocity. By definition this is a vector, defined at each point
of the curve, and belonging to the tangent space to M . So the velocity has a definition which is independent
of any basis.

Observers are assumed to have similarly a world line and a proper time (they have other properties,
notably they define a frame).

To sum up :

Proposition 3 Any particle or observer travels in the universe on a curve according to a specific path ,
p : R → M :: m = p (τ) called the world line, parametrized by the proper time τ , defined uniquely up to an
origin. The derivative of the world line with respect to the proper time is a vector, the velocity, u. So that :

u (θ) = dp
dτ |τ=θ ∈ Tp(θ)M

p (τ) = Φu (τ, a) with a = Φu (0, a) = p (0)
(4)

Observers are assumed to have clocks, that they use to measure their temporal location with respect to
some starting point. The basic assumption is the following :

Proposition 4 For any observer his proper time is the time on his clock.

So the proper time of a particle can be seen formally as the time on the clock of an observer who would
be attached to the particle.

The observer uses the time on his clock to locate temporally any event : this is the purpose of the function
fo and of the foliation Ω3 (t). The curve on which any particle travels meets only once each hypersurface
Ω3 (t) : it is seen only once. This happens at a time t :

fo (p (τ)) = t = fo (Φu (τ, a))
So there is some relation between t and the proper time τ of any particle. It is specific, both to the

observer and to the particle. It is bijective and both increases simultaneously, so that : dτ
dt > 0.

The travel of the particle on the curve can be represented by the time of an observer. We will call then
this path a trajectory.

2.3 Standard Chart

With this assumption each observer can build a chart. On some hypersurface Ω3 (0) representing the space
of the observer at a time t = 0 he chooses a chart identifying each point x of Ω3 (0) by 3 coordinates ξ1, ξ2, ξ3,
using the methods to measure spatial locations described previously, and m = ϕo

(
t, ξ1, ξ2, ξ3

)
is a chart of

the area Ω ⊂M spanned by the Ω3 (t) . Each point m (t) = ϕo
(
t, ξ1, ξ2, ξ3

)
corresponds to the trajectory of

a material body or of an observer which would stand still at x. We will call this kind of chart a standard
chart for the observer. It relies on the choice of a chart of Ω3 (0) , that is a set of procedures to measure a
spatial location (so several compatible charts can be used) and a clock or any procedure to identify a time.
A standard chart is specific to each observer and is essentially fixed.

An observer is not necessarily spatially immobile. But to know his new location he has to proceed to
measures which are similar to setting up a chart, with similar protocols, so actually this is a change of chart
and it is managed by the relations between old and new coordinates. In order to keep it simple we assume
that the standard chart is a chart for an observer who is spatially immobile, and the motion of an observer
is a change of observer.

Even if two observers can compare the measures of spatial locations, actually so far we cannot go further
: the hypersurfaces Ω3 (t) are defined by the function fo and, a priori, are specific to each observer. Moreover
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a clock measures the elapsed time. It seems legitimate to assume that, in the procedure, one chooses clocks
which run at the same rate. But, to do this, one needs some way to compare this rate, that is a scalar
measure of the velocity d

dτ po (τ) . But, as velocities are 4 dimensional vectors, one needs a special scalar
product.

The essential feature of proper time is more striking when one considers particles. They should be located
at some point of M : they are not spread over all their world line, their location varies along their world
line with respect to the parameter τ, their proper time. So their location is definite, but with respect to a
parameter τ which is specific to each particle : there is a priori no way to tell where, at some time, are all
the particles ! An observer can locate a particle which is in his “present”, and so identify specific particles,
but this is specific to each observer.

3 METRIC

3.1 Causal structure

The Principle of Causality states that there is some order relation between events. This relation is not total
: some events are not related. In the Relativist Geometry it can be stated as a relation between locations in
the Universe : a binary relation between two points (A,B).

The function fo of an observer provides such a relation : it suffices to compare fo (A) , fo (B) : B follows
A if fo (B) > fo (A) and is simultaneous to A if fo (B) = fo (A) . For a relation between points it is natural
to look at curves joining the points. For a path p ∈ C1 ([0, 1] ;M) such that p (0) = A, p (1) = B one can
compute fo (p (τ)) . If the function is increasing then one can say that B follows A, and this is equivalent
to f ′

o (p (τ))
dp
dτ > 0. And we can say that the vector u = dp

dτ ∈ Tp(τ)M is future oriented for the observer if
f ′
o (p (τ))u > 0. We have the same conclusion for any vector at a point m ∈ M which belongs to one of the
hypersurfaces Ω3 (t) of an observer : if it is transversal it can be oriented towards the future by f ′

o (m)u, and
any curve can be similarly oriented at any point, but the orientation is not necessarily constant.

The classification of the curves which have a constant orientation is a topic of algebraic geometry, but here
there is a more interesting issue : the Principle of Causality should be met for any observer. We can study
this issue by looking at vectors u at a given point m. The derivative f ′

o (m) is just a covector λ ∈ TmM
∗. The

function : B : TmM
∗ ×TmM → R :: B (λ, u) = λ (u) is continuous in both variables (TmM

∗, TmM are finite
dimensional vector spaces and have a definite topology). For a given λ if λ (u) > 0 then λ (−u) < 0, and we
have a partition of TmM in 3 connected components : future oriented vectors λ (u) > 0, past oriented vectors
λ (u) < 0, null vectors λ (u) = 0. This partition of TmM should hold for any observer. The implementation
of the Principle of Causality in Relativist Geometry leads to state that, at each point m, there is a set C+ of
vectors future oriented for all observers, and that vectors which do not belong to C+ are not future oriented
for any observer. The opposite set C− is the set of past oriented vectors. C+ is a convex open half cone : if
for an observer u, v are future oriented, then αu+ (1− α) v for α ∈]0, 1[ is future oriented.

For any observer, there is a hyperplan Ho (m) passing by m, which separates C+, C− : take f ′
o (m) ∈

TmM
∗

∀u ∈ C−, v ∈ C+ : f ′
o (m) (u) < 0 < f ′

o (m) (v)
⇒ supu∈C−

f ′
o (m) (u) ≤ infv∈C+

f ′
o (m) (v)

Moreover this hyperplan is tangent to the hypersurface Ω3 (t) passing by m.

So any observer can choose a basis of TmM consisting of 3 vectors (εi)
3
i=1 belonging to Ho (m) , that is

his “space”. Then f ′
o (m) (εi) = 0, i = 1, 2, 3 because the vectors are tangent to Ω3 (t) .With any other vector

ε0 as 4th vector of his basis,

f ′
o (m) (u) = f ′

o (m)
(∑3

i=0 u
iεi

)
= u0f ′

o (m) (ε0)

To have a consistent result for this function, that is to be able to distinguish a past from a future oriented
vector, the observer must choose ε0 ∈ C+ , and this choice is always possible by taking his velocity as ε0.

And this choice can be done in a consistent manner for any observer. Any “physical” basis chosen by an
observer is comprised of 3 spatial vectors, which do not belong to C+ and the 4th vector belong to C−. This
holds for the holonomic basis induced by a standard chart.

The function B (λ, u) is defined all over M , does not depend on the observer, it is a bilinear map, so this
is a tensor field B ∈ TM∗ ⊗ TM. In any basis it is expressed at a point by a 4× 4 matrix, and this matrix
can be considered as the matrix of a bilinear form, from which a symmetric bilinear form can be computed,
and so a metric on TM . However we see that there are vectors such that B (u, u) = 0. This metric cannot
be definite positive.

A manifold is usually not isotropic : not all directions are equivalent. The fundamental symmetry
breakdown introduces an anisotropy, specific to each observer, and we see that actually it goes deeper,
because it is common to all observers and not all vectors representing a translation in time are equivalent :
C+ is a half cone and not a half space.
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So the Principle of Causality leads to assume that there is an additional structure in the Universe. This
causal structure is usually defined through the propagation of light : a region B is temporally dependant
from a region A if any point of B can be reached from A by a future oriented curve. This is the domain of
nice studies (see Wald), but there is no need to involve the light, the causal structure exists at the level of
the tangent bundle, its definition does not need the existence of a metric, but clearly leads to assume that
there is a metric and that this metric is not definite positive.

3.2 Lorentz metric

A scalar product is defined by a bilinear symmetric form g acting on vectors of the tangent space, at each
point of the manifold, thus by a tensor field called a metric. In a holonomic basis g reads :

g (m) =

3∑

αβ=0

gαβ (m) dξα ⊗ dξβ with gαβ = gβα (5)

The matrix of g is symmetric and invertible, if we assume that the scalar product is not degenerate.
It is diagonalizable, and its eigen values are real. One wants to account for the symmetry breakdown and
the causal structure, so these eigen values cannot have all the same sign (a direction is privileged). One
knows that the hypersurface Ω3 (t) are Riemannian : there is a definite positive scalar product (acting on
the 3 dimensional vector space tangent to Ω3 (t)), and that transversal vectors correspond to the velocities of
material bodies. So there are only two solutions for the signs of the eigen values of [g (m)] : either (-,+,+,+)

or (+,-,-,-) which provides both a Lorentz metric. The scalar product, in an orthonormal basis (εi)
3
i=0 at

m reads :

signature (3, 1) : 〈u, v〉 = u1v1 + u2v2 + u3v3 − u0v0

signature (1, 3) : 〈u, v〉 = −u1v1 − u2v2 − u3v3 + u0v0
(6)

Such a scalar product defines by restriction on each hypersurface Ω3 (t) a positive or a negative definite
metric, which applies to spatial vectors (tangent to Ω3 (t)) and provides, up to sign, the usual euclidean
metric. So that both signatures are acceptable.

Which leads to :

Proposition 5 The manifold M representing the Universe is endowed with a non degenerate metric, called
the Lorentz metric, with signature either (3,1) of (1,3) defined at each point.

This reasoning is a legitimate assumption, which is consistent with all the other concepts and assumptions,
notably the existence of a causal structure, this is not the proof of the existence of such a metric. Such a
proof comes from the formula in a change of frames between observers, which can be checked experimentally.

On a finite dimensional, connected, Hausdorff manifold, there is always a definite positive metric. There
is no relation between this metric and a Lorentz metric. Not all manifolds can have a Lorentz metric, the
conditions are technical but one can safely assume that they are met in a limited region Ω.

A metric is represented at each point by a tensor, whose value can change with the location. One
essential assumption of General Relativity is that, meanwhile the container M is fixed, and so the chart and
its holonomic basis are fixed geometric representations without specific physical meaning, the metric is a
physical object and can vary at each point according to specific physical laws. The well known deformation
of the space-time with gravity is expressed, not in the structure of the manifold (which is invariant) but in
the value of the metric at each point.

3.3 Gauge group

The existence of a metric implies that, at any point, there are orthonormal bases (εi)
3
i=0 with the property :

Definition 6 〈εi, εj〉 = ηij for the signature (3,1) and 〈εi, εj〉 = −ηij for the signature (1,3)

with the matrix [η]

Notation 7 In any orthonormal basis ε0 denotes the time vector.
〈ε0, ε0〉 = −1 if the signature is (3, 1)
〈ε0, ε0〉 = +1 if the signature is (1, 3)

Notation 8 [η] =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 whatever the signature
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An orthonormal basis, at each point, is a geometric gauge. The choice of an orthonormal basis depends
on the observer : he has freedom of gauge. One goes from one gauge to another by a linear map χ which
preserves the scalar product. They constitute a group, called the gauge group. These maps are represented
by a matrix [χ] such that :

[χ]
t
[η] [χ] = [η] (7)

The group denoted equivalently O(3, 1) or O(1, 3), does not depend on the signature (replace [η] by -[η]).
O(3, 1) is a 6 dimensional Lie group with Lie algebra o(3, 1) whose matrices [h] are such that :

[h]t [η] + [η] [h] = 0 (8)

The Lie algebra is a vector space and we will use the basis :

[κ1] =




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0


 ; [κ2] =




0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0


 ; [κ3] =




0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0




[κ4] =




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 ; [κ5] =




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


 ; [κ6] =




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0




so that any matrix of o(3, 1) can be written :
[κ] = [J (r)] + [K (w)] with

[J (r)] =




0 0 0 0
0 0 −r3 r2
0 r3 0 −r1
0 −r2 r1 0


 ; [K (w)] =




0 w1 w2 w3

w1 0 0 0
w2 0 0 0
w3 0 0 0




The exponential of these matrices read (Maths.2.5) :

exp [K (w)] = I4 +
sinh

√
wtw√

wtw
K(w) + cosh

√
wtw−1

wtw K(w)K(w)

exp [K (w)] =

[
cosh

√
wtw wt sinh

√
wtw√

wtw

w sinh
√
wtw√

wtw
I3 +

cosh
√
wtw−1

wtw wwt

]

exp [J (r)] = I4 +
sin

√
rtr√

rtr
J(r) + 1−cos

√
rtr

rrr J(r)J(r) =

[
1 0
0 R

]

where R a 3× 3 matrix of O(3).

The group O(3) has two connected components : the subgroup SO(3) with determinant 1, and the subset
O1 (3) with determinant -1.

O(3, 1) has four connected components which can be distinguished according to the sign of the determinant
and their projection under the compact subgroup SO(3)× {I} .

Any matrix of SO(3, 1) can be written as the product : [χ] = exp [K (w)] exp [J (r)] (or equivalently
exp [J (r′)] exp [K (w′)]). So we have the 4 cases :

- SO0 (3, 1) : with determinant 1: [χ] = expK(w)×
[
1 0
0 R

]

- SO1 (3, 1) : with determinant 1: [χ] = expK(w)×
[
−1 0
0 −R

]

- SO2 (3, 1) with determinant = -1: [χ] = expK(w) ×
[
−1 0
0 R

]

- SO3 (3, 1) with determinant = -1: [χ] = expK(w) ×
[
1 0
0 −R

]

where R a 3× 3 matrix of SO(3), so that −R ∈ O1 (3)
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3.4 Orientation and time reversal

Any finite dimensional vector space is orientable. A manifold is orientable if it is possible to define a consistent
orientation of its tangent vector spaces, and not all manifolds are orientable. If it is endowed with a metric
then the map : det g : M → R provides an orientation function (its sign changes with the permutation of
the vectors of a holonomic basis) and the manifold is orientable.

But on a 4 dimensional vector space one can define other operations, of special interest when the 4
dimensions have not the same properties. For any orthonormal basis (εi)

3
i=0 :

space reversal is the change of basis :
i = 1, 2, 3 : ε̃i = −εi
ε̃0 = −ε0
time reversal is the change of basis :
i = 1, 2, 3 : ε̃i = εi
ε̃0 = −ε0
These two operations change the value of the determinant, so they are not represented by matrices of

SO (3, 1) :

space reversal matrix : S =

[
1 0
0 −I3

]

time reversal matrix : T =

[
−1 0
0 I3

]

ST = −I4
The matrices of the subgroups SOk (3, 1) , k = 1, 2, 3 are generated by the product of any element of

SO0 (3, 1) by either S or T .

Is the universe orientable ? Following our assumption, if there is a metric, it is orientable. However one
can check for experimental proofs. In a universe where all observers have the same time, the simple existence
of stereoisomers which do not have the same chemical properties suffices to answer positively : we can tell
to a distant observer what we mean by “right” and “left” by agreeing on the property of a given product. In
a space-time universe one needs a process with an outcome which discriminates an orientation. All chemical
reactions starting with a balanced mix of stereoisomers produce an equally balanced mix (stereoisomers have
the same level of energy). However there are experiments involving the weak interactions (CP violation
symmetry in the decay of neutral kaons) which show the required property. So we can state that the 4
dimensional universe is orientable, and then we can distinguish orientation preserving gauge transformations.

A change of gauge, physically, implies some transport of the frame (one does not jump from one point to
another) : we have a map : χ : R → SO(3, 1) such that at each point of the path po : R → M defined on a
interval R of R, χ (t) is an isometry. The path which is followed matters. In particular it is connected. The

frame (εi)
3
i=0 is transported by : ε̃i (τ) = χ (t) εi (0) . So {[χ (τ)] , t ∈ R}, image of the connected interval R

by a continuous map is a connected subset of SO(3, 1), and because χ(0) = Id it must be the component of
the identity. So the right group to consider is the connected component of the identity SO0 (3, 1)

3.5 Time like and space like vectors

The causal structure is then fully defined by the metric.
At any point m one can discriminate the vectors v ∈ TmM according to the value of the scalar product

〈v, v〉.

Definition 9 Time like vectors are vectors v such that 〈v, v〉 < 0 with the signature (3,1) and 〈v, v〉 > 0
with the signature (1,3)

Space like vectors are vectors v such that 〈v, v〉 > 0 with the signature (3,1) and 〈v, v〉 < 0 with the
signature (1,3)

Moreover the subset of time like vectors has two disconnected components (this is no longer true in
universes with more than one “time component”). So one can discriminate these components and, in accor-
dance with the assumptions about the velocity of material bodies, it is logical to consider that their velocity
is future oriented. And one can distinguish gauge transformations which preserve this time orientation.

Definition 10 We will assume that the future orientation is given in a gauge by the vector ε0. So a vector
u is time like and future oriented if :

〈u, u〉 < 0, 〈u, ε0〉 < 0 with the signature (3,1)
〈u, u〉 > 0, 〈u, ε0〉 > 0 with the signature (1,3)
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A matrix [χ] of SO(3, 1) preserves the time orientation iff [χ]
0
0 > 0 and this will always happen if

[χ] = exp [K (w)] exp [J (r)] that is if [χ] ∈ SO0 (3, 1) .
A gauge transformation which preserves both the time orientation, and the global orientation must

preserve also the spatial orientation.

3.6 Velocities have a constant Lorentz norm

The velocity dpo
dτ is a vector which is defined independently of any basis, for any observer it is transversal

to Ω3 (t) . It is legitimate to say that it is future oriented, and so it must be time-like. One of the basic
assumptions of Relativity is that it has a constant length, as measured by the metric, identical for all
observers. So it is possible to use the norm of the velocity to define a standard rate at which the clocks run.

Because the proper time of any material body can be defined as the time on the clock of an observer
attached to the body this proposition is extended to any particle.

The time is not measured with the same unit as the lengths, used for the spatial components of the
velocity. The ratio ξi/t has the dimension of a spatial speed. So we make the general assumption that for

any observer or particle the velocity is such that
〈
dp
dτ ,

dp
dτ

〉
= −c2 where τ is the proper time. Notice that

c is a constant, with no specific value. This is consistent with the procedures used to measure the time of
events occurring at a distant spatial location. And we sum up :

Proposition 11 The velocity dp
dτ of any particle or observer is a time like, future oriented vector with Lorentz

norm 〈
dp

dτ
,
dp

dτ

〉
= −c2 (9)

(with signature (3,1) or c2 with signature (1,3)) where c is a fundamental constant.

3.7 More on the Standard chart of an observer

We have assumed that the observer is spatially immobile, and his chart is built around his location. But
with the other assumptions we can define a collection of charts for any point in the hypersurfaces Ω3 (t) .

Theorem 12 For any observer there is a vector field O ∈ X (TM) which is future oriented, with length
〈O (m) ,O (m)〉 = −1, normal to Ω3 (t) and such that : O (p0 (t)) = 1

c
dpo
dt where dpo

dt is the velocity of the
observer at each point of his world line.

Proof. For an observer the function fo : Ω → R has for derivative a one form f ′
o (m) 6= 0 such that

∀v ∈ TmΩ3 (t) : f ′
o (m) v = 0. Using the metric, it is possible to associate to f ′

o (m) a vector : O (m) =
gradfo : 〈O (m) , v〉 = f ′

o (m) v which is unique up to a scalar. Thus O (m) is normal to Ω3 (t). Along the
world line of the observer O (m) is in the direction of the velocity of the observer. And it is always possible
to choose O (m) such that it is future oriented and with length 〈O (m) ,O (m)〉 = −1

As a consequence :

Theorem 13 Ω3 (t) are space like hypersurfaces, with unitary, future oriented, normal O ∈ X (TM)

Using the vector field O, and any chart ϕΩ of Ω (0) there is a standard chart associated to an observer.

Definition 14 The standard chart on M of any observer is defined as :
ϕo : R

4 → Ω :: ϕo
(
ξ0, ξ1, ξ2, ξ3

)
= ΦO (ct, x)

ξ0 = ct, ϕΩ

(
ξ1, ξ2, ξ3

)
= x in any chart of Ω (0)

c is required in ΦO (ct, x) so that :

ξ0 = ct (10)

which makes all the coordinates homogeneous in units [Length].
The holonomic basis associated to this chart is such that :
∂ξ0 = ∂ϕo

∂ξ0 = 1
c
∂
∂tΦε0 (ct, x) = O

O (m) = ∂ξ0 (11)

For any point m = ϕo
(
ξ0, ξ1, ξ2, ξ3

)
= ΦO (ct, x) the point x is the point where the integral curve of O

passing by m crosses Ω3 (0) .

So the main characteristic of an observer can be summed in the vector field O (which is equivalently
deduced from the function fo). From this vector field it is possible to define any standard chart, by choosing
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a chart on Ω3 (0) . In this construct the spatial location of the observer does not matter any longer : the only
restriction is that he belongs to Ω3 (t) and he follows a trajectory which is an integral curve of the vector
field O : po (t) = ϕo (t, x0) for some fixed x0 ∈ Ω3 (0) .

According to the principle of locality any measure is done locally : the state of any system at t is
represented by the measures done over Ω3 (t) . The system itself can be defined as the “physical content” of
Ω3 (t) and its evolution as the set {Ω3 (t) , t ∈ [0, T ]}. The physical system itself is observer dependant. The
vector field O defines a special chart, but also the system itself. Two observers who do not share the vector
field O do not perceive the same system. So actually this is a limitation of the Principle of Relativity : it
holds but only when the observers agree on the system they study. And of course the observers who share
the same O have a special interest.

3.8 Trajectory and speed of a particle

A particle follows a world line q (τ), parametrized by its proper time. Any observer sees only one instance of
the particle, located at the point where the world line crosses the hypersurface Ω3 (t) so we have a relation
between τ and t. This relation identifies the respective location of the observer and the particle on their own
world lines. With the standard chart of the observer it is possible to measure the velocity of the particle at
any location, and of course at the location where it belongs to Ω3 (t) .

The trajectory (parametrized by t) of any particle in the standard chart of an observer is :
q (t) = ΦO (ct, x (t)) = ϕo

(
ct, ξ1 (t) , ξ2 (t) , ξ3 (t)

)

By differentiation with respect to t :
dq
dt = cO (q (t)) + ∂

∂xΦO (ct, x (t)) ∂x∂t
∂
∂xΦO (ct, x (t)) ∂x∂t =

∑3
α=1

dξα
dt ∂ξα ∈ TmΩ3 (t) so is orthogonal to O (q (t))

Definition 15 The spatial speed of a particle on its trajectory with respect to an observer is the vector of
Tq(t)Ω3 (t) :

−→v = ∂
∂xΦO (ct, x (t)) ∂x∂t =

∑3
α=1

dξα

dt ∂ξα

Thus for any particle in the standard chart of an observer :

V (t) =
dq

dt
= cO (q (t)) +−→v (12)

For the observer in the standard chart we have : dp0
dt = cO (p0 (t)) ⇔ −→v = 0

Notice that the velocity, and the spatial speed, are measured in the chart of the observer at the point
q(t) where is the particle. Because we have defined a standard chart it is possible to measure the speed of a
particle located at a point q (t) which is different from the location of the observer. And we can express the
relation between τ and t.

Theorem 16 The proper time τ of any particle and the corresponding time of any observer t are related by
:

dτ

dt
=

√

1− ‖−→v ‖2
c2

(13)

where −→v is the spatial speed of the particle, with respect to the observer and measured in his standard
chart. The velocity of the particle is :

dp

dτ
=

1√
1− ‖−→v ‖2

c2

(−→v + cO (m)) (14)

Proof. i) Let be a particle A with world line :
p : R →M :: m = p (τ) = Φu (τ, a) with a = Φu (0, a) = p (0)
In the standard chart ΦO (ct, x) of the observer O its trajectory is :
q : R →M :: m = q (t) = ΦO (ct, x (t))
So there is a relation between t, τ :
m = p (τ) = Φu (τ, a) = q (t) = ΦO (ct, x (t))
By differentiation with respect to t :
d
dtq (t) = cO (pA (t)) +−→v
dq
dt =

−→v + cO (m)
dq
dt =

dp
dτ

dτ
dt〈

dp
dτ ,

dp
dτ

〉
= −c2

〈
dq
dt ,

dq
dt

〉
= −c2

(
dτ
dt

)2
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〈
dq
dt ,

dq
dt

〉
= 〈−→v ,−→v 〉3 − c2 because O (m) ⊥ Ω3 (t)

‖−→v ‖2 − c2 = −c2
(
dτ
dt

)2

and because dτ
dt > 0 : dτdt =

√
1− ‖−→v ‖2

c2

ii) The velocity of the particle is :
dp
dτ = dq

dt
dt
dτ = 1√

1−‖−→v ‖2

c2

(−→v + cO (m))

As a consequence :

‖−→v ‖3 < c (15)

V (t) = dp
dt is the measure of the motion of the particle with respect to the observer : it can be seen as

the relative velocity of the particle with respect to the observer. It involves −→v which has the same meaning
as usual, but we see that in Relativity one goes from the 4 velocity u = dp

dτ (which has an absolute meaning)

to the relative velocity V (t) = dp
dt =

dp
dτ

dτ
dt = u

√
1− ‖−→v ‖2

c2 by a scalar.

4 FIBER BUNDLES

The location of a particle is absolute : this is the point in the physical Universe that it occupies at some
time. Similarly the velocity of a particle or an observer is absolute : in its definition there is no reference
to a chart or a frame. It is a vector, which is an intrinsic property of material bodies and particles. It is
measured in bases, and the value of its components vary according to precise mathematical rules when one
goes from one basis to another. The physical quantity is absolute, but its measure is relative. And this
holds for all physical quantities : a measure in itself has no meaning if one does not know how it has been
done, the units and the standards used. It is specially important in Relativity because the observers are not
interchangeable. The most general mathematical tool to deal with this problem is the fiber bundle, which is
a generalization of the concept of vector space tangent to a manifold (see Maths.Part VI).

4.1 General fiber bundle

A fiber bundle, denoted P (M,F, πP ), is a manifold P , which is locally the product of two manifolds, the base
M and the standard fiber F , with a projection : πP : P → M . The subset of P : π−1

P (m) is the fiber over
m. It is usually defined over a collection of open subsets of M , patched together, but we will assume that
on the area Ω there is only one component (the fiber bundles are assumed to be trivial). A trivialization
is a map : ϕP :M × F → P :: p = ϕP (m, v) and any element of P is projected on M :

∀v ∈ F : πP (ϕP (m, v)) = m.
So it is similar to a chart, but the arguments are points of the manifolds.
A section p on P is defined by a map : v : M → F and p (m) =ϕP (m, v (m)) . The set of sections is

denoted X (P ) .
A fiber bundle can be defined by different trivializations. In a change of trivialization the same element

p is defined by a different map ϕP : this is very similar to the charts for manifold.
p = ϕP (m, v) = ϕ̃P (m, ṽ)
and there is a necessary relation between v and ṽ (m stays always the same) depending on the kind of

fiber bundle.

4.2 Vector bundle

If F = V is a vector space then P is a vector bundle :
ϕP :M × F → P :: X (m) = (m,

∑n
i=1Xi (m) εi)

This is a vector of V located at m. The rules in a change of trivialization are such that P has at each
point the structure of a vector space :

wm = ϕP (m,w) , w′
m = ϕP (m,w′) , α, β ∈ R :

αwm + βw′
m = ϕP (m,αw + βw′)

and a holonomic basis is defined by a basis (εi)i∈I of V : εi (m) = ϕP (m, εi)
thus vectors of the fiber bundle read :-
X (m) = (m,

∑n
i=1Xi (m) εi) =

∑n
i=1Xi (m) εi (m)

(εi)i∈I plays the same role as the holonomic basis (∂ξα)
3
α=0 of the tangent bundle TM.

Usually one requires some property of the basis εi, for instance it must be orthonormal. The mean to go
from one basis to another is provided usually by the action of a group. So they are defined as associated to
a principal bundle.

16



4.3 Principal bundle

If F = G is a Lie group then P is a principal bundle : its elements are a value g(m) of G localized at
a point m.

p will usually define the basis used to measure vectors, so p is commonly called a gauge. There is a
special gauge which can be defined at any point (it will usually be the gauge of the observer) : the standard
gauge, the element of the fiber bundle such that : p (m) = ϕP (m, 1) . This is not a section : the standard
gauge is arbitrary, it reflects the free will of the observer, and as such is not submitted to any physical law.
Its definition, with respect to measures, is done in protocols which document the experiments. There is no
such thing as a given, natural, “field of gauges”.

A principal bundle P (M,G, π) is characterized by the existence of the right action of the group G on the
fiber bundle P :

ρ : P ×G→ P :: ρ (p, g′) = ρ (ϕP (m, g) , g′) = ϕP (m, g · g′)
which does not depend on the trivialization. So that any p ∈ P can be written : p = ϕP (m, g) = ρ (p,g)

with the standard gauge p =ϕP (m, 1).
A change of trivialization is induced by a map : χ :M → G that is by a section χ ∈ X (P ) and :
p = ϕP (m, g) = ϕ̃P (m,χ (m) · g) = ϕ̃P (m, g̃) ⇔ g̃ = χ (m) · g (χ (m) acts on the left)
χ (m) can be identical over M (the change is said to be global) or depends on m (the change is local).
The expression of the elements of a section change as :
σ ∈ X (P ) :: σ = ϕP (m,σ (m)) = ϕ̃P (m, σ̃ (m)) ⇔ σ̃ (m) = χ (m) · σ (m)
σ (m) = ϕP (m,σ (m)) = ϕ̃P (m,χ (m) · σ (m))
A change of trivialization induces a change of standard gauge :

p (m) = ϕP (m, 1) = ϕ̃P (m,χ (m)) → p̃ (m) = ϕ̃P (m, 1) = ϕ̃P

(
m,χ (m) · χ (m)

−1
)
= p (m) · χ (m)

−1

So changes of trivialization and change of gauge are the same operations.

4.4 Associated fiber bundle

Whenever there is a manifold F , a left action λ of G on F , one can built an associated fiber bundle
denoted P [F, λ] which consists of couples :

(p, v) ∈ P × F with the equivalence relation : (p, v) ∼
(
p · g, λ

(
g−1, v

))

v belongs to a fixed set, but its value is labeled by the standard which is used and related to a point of a
manifold.

It is convenient to define these couples by using the standard gauge on P:

(p (m) , v) = (ϕP (m, 1) , v) ∼
(
ϕP (m, g) , λ

(
g−1, v

))
(16)

A standard gauge is nothing more than the use of an arbitrary standard, represented by 1, with respect
to which the measure is done. A change of standard gauge in the principal bundle impacts all associated
fiber bundles (this is similar to the change of units) :

p (m) = ϕP (m, 1) → p̃ (m) = p (m) · χ (m)
−1

vp = (p (m) , v) = (p̃ (m) , ṽ) : ṽ = λ (χ (m) , v)
(17)

Similarly for the components of a section :

v ∈ X (P [V, λ]) :: v (m) = (p (m) , v (m)) =
(
p (m) · χ (m)

−1
, λ (χ (m) , v)

)

If F is a vector space V and [V, ρ] a representation of the group G then we have an associated vector
bundle P [V, ρ] which has locally the structure of a vector space. It is convenient to define a holonomic
basis (εi (m))ni=1 from a basis (εi)

n
i=1 of V by : εi (m) = (p (m) , εi) then any vector of P [V, ρ] reads :

vm = (p (m) , v) =

(
p (m) ,

n∑

i=1

viεi

)
=

n∑

i=1

viεi (m) (18)

A change of standard gauge p (m) = ϕP (m, 1) → p̃ (m) = p (m) ·χ (m)−1 in the principal bundle impacts
all associated vector bundles.

For any vector :

vm = (p (m) , v) ∼
(
p (m) · χ (m)−1 , χ (m) (v)

)

Meanwhile the holonomic basis of a vector bundle changes as :
εi (m) = (p (m) , εi) →
ε̃i (m) = (p̃ (m) , εi) =

(
p (m) · χ (m)

−1
, εi

)

∼
((

p (m) · χ (m)−1
)
· χ (m) , ρ

(
χ (m)−1

)
εi

)
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=
(
p (m) , ρ

(
χ (m)−1

)
(εi)
)
= ρ

(
χ (m)−1

)
εi (m)

so that the components of a vector in the holonomic basis change as :
vm =

∑n
i=1 v

iεi (m) =
∑n

i=1 ṽ
iε̃i (m) =

∑n
i=1 ṽ

iρ (χ (m))
−1
εi (m) ⇒ ṽi =

∑
j [ρ (χ (m))]

i
j v

j

The elements of a section stay the same, but their definition changes, meanwhile the holonomic bases are
defined by different elements. This is very similar to what we have in any vector space in a change of basis :
the vectors of the basis change, the other vectors stay the same, but their components change.

An important point : even if one denotes v (m) =
∑n
i=1 v

i (m) εi (m) actually the vector is measured in
a fixed vector space : v (m) = (ϕP (m, 1) , v (m)) where v (m) =

∑n
i=1 v

i (m) εi ∈ V. So that the derivatives :
∂αv (m) = (ϕP (m, 1) , ∂αv (m)) with ∂αv (m) =

∑n
i=1

(
∂αv

i (m)
)
εi.

The fiber bundle formalism enables to consider the components independently from the basis. This is
possible because the gauge p (m) = ϕP (m, 1) is not a section.

Whenever there is a scalar product (bilinear symmetric of Hermitian two form) 〈〉 on a vector space V ,
so that (V, ρ) is a unitary representation of the group G : 〈ρ (g) v, ρ (g) v′〉 = 〈v, v′〉 , the scalar product can
be extended on the associated vector bundle P [V, ρ] :

〈(p (m) , v) , (p (m) , v′)〉P [V,ρ] = 〈v, v′〉W (19)

4.5 Standard gauge associated to an observer

Frames and bases are used to measure components of vectorial quantities. Following the Principle of
Locality any physical map, used to measure the components of a vector at a point m in M , must be done at
m, that is in a local frame. Observers belong to Ω3 (t) and can do measures at any point of Ω3 (t) .

They can measure components of vectors in the holonomic basis (∂ξα)
3
α=0 given by a chart. This basis

changes with the location but the chart is fixed for a given observer.
One property of the observers is that they have freedom of gauge : they can decide to measure the

components of vectors in another basis than (∂ξα)
3
α=0 : usually, and this is what we will assume, they choose

an orthonormal basis. This can be done by choosing 3 spatial vectors at a point, and we assume that they
can extend the choice at any other point of Ω3 (t)). However for the time vector the observer has actually no
choice : this is necessarily the vector field O which is normal to Ω3 (t)) and future oriented, and in the same
direction as ∂ξ0.

We will call such orthonormal bases a Standard gauge. They are arbitrary, chosen by the observer, with
the restriction about the choice of ε0, and implemented all over Ω3 (t) . They can be defined with respect to
the holonomic basis of a chart.

This is equivalent to assume that, for each observer, there is a principal bundle Po (M,SO0 (3, 1) , πp), a
gauge p (m) = ϕP (m, 1) and an associated vector bundle Po

[
R4, ı

]
where

(
R4, ı

)
is the standard represen-

tation of SO0(3, 1). It defines at each point an holonomic orthonormal basis : εi (m) = (p (m) , εi) .To sum
up :

Proposition 17 For each observer there is :
a principal fiber bundle structure Po (M,SO0 (3, 1) , πp) on M with fiber the connected component of

identity SO0 (3, 1), which defines at each point a standard gauge : p (m) = ϕP (m, 1)
an associated vector bundle structure Po

[
R4, ı

]
where

(
R4, ı

)
is the standard representation of SO0(3, 1),

which defines at any point m ∈ Ω the standard basis εi (m) = (p (m) , εi) , i = 0..3 where ε0 (m) is orthogonal
to the hypersurfaces Ω3 (t) to which m belongs.

4.6 Formulas for a change of observer

Theorem 18 For any two observers O,A the components of the vectors of the standard orthonormal basis
of A, expressed in the standard basis of O are expressed by the following matrix [χ] of SO0 (3, 1) , where

−→v
is the instantaneous spatial speed of A with respect to O and R a matrix of SO(3) :

[χ] =




1√
1− ‖v‖2

c2

vt

c√
1−‖v‖2

c2

v
c√

1− ‖v‖2

c2

I3 +

(
1√

1− ‖v‖2

c2

− 1

)
vvt

‖v‖2




[
1 0
0 R

]
(20)

Proof. Let be :
O be an observer (this will be main observer) with associated vector field O , proper time t and world

line po (t)
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A be another observer with associated vector field A , proper time τ
Both observers use their standard chart ϕo, ϕA and their standard orthonormal basis, whose time vector

is in the direction of their velocity. The location of A on his world line is the point m such that A belongs
to the hypersurface Ω3 (t)

The velocity of A at m :
dpA
dτ = ce0 (m) by definition of the standard basis of A
dpA
dτ = 1√

1−‖−→v ‖2

c2

(−→v + cε0 (m)) as measured in the standard basis of O

The matrix [χ] to go from the orthonormal basis (εi (m))
3
i=0 to (ei (m))

3
i=0 belongs to SO0(3, 1). It reads

:

[χ (t)] =

[
cosh

√
wtw wt sinh

√
wtw√

wtw

w sinh
√
wtw√

wtw
I3 +

cosh
√
wtw−1

wtw wwt

][
1 0
0 R

]

for some w ∈ R3, R ∈ SO (3)
The elements of the first column of [χ (t)] are the components of e0 (m) , that is of 1

c
dpA
dτ expressed in the

basis of O :
cosh

√
wtw = 1√

1− ‖v‖2

c2

w sinh
√
wtw√

wtw
=

−→v
c

1√
1− ‖v‖2

c2

w = k−→v ⇒ wtw = k2 ‖−→v ‖2
which leads to the classic formula with

w = v
‖v‖ arg tanh

∥∥v
c

∥∥ = 1
2
v

‖v‖ ln

(
c+‖−→v ‖
c−‖−→v ‖

)
∼ 1

2
v

‖v‖ ln

(
1 + 2

‖−→v ‖
c

)
≃ v

c

Some key points to understand these formulas :
- They hold for any observers O, A, who use their standard orthonormal basis (the time vector is oriented

in the direction of their velocity). There is no condition such as inertial frames.
- The points of M where O and A are located can be different, O ∈ Ω3 (τ) , A ∈ Ω3 (τ) ∩ Ω3 (t) . The

spatial speed −→v is a vector belonging to the space tangent at Ω3 (τ) at the location m of A (and not at the
location of O at t) and so is the relative speed of A with respect to the point m of M , which is fixed for O.

- The formulas are related to the standard orthonormal bases (εi (m))
3
i=0 of O and (ei (m))

3
i=0 of A

located at the point m of Ω3 (t) where A is located.
- These formulas apply to the components of vectors in the standard orthonormal bases. Except in SR,

there is no simple way to deduce from them a relation between the coordinates in the charts of the two
observers.

- The formula involves a matrix R ∈ SO (3) which represents the possible rotation of the spatial frames
of O and A, as it would be in Galilean Geometry.

These formulas have been verified with a great accuracy, and the experiments show that c is the speed of
light.

If we take v
c → 0 we get [χ] =

[
1 0
0 R

]
, that is a rotation of the usual space. The Galilean Geometry is an

approximation of SR when the speeds are small with respect to c. Then the velocities are dµA

dτ = (−→v + cε0)
with a common vector ε0.

4.7 The Tetrad

4.7.1 The principal fiber bundle

So far we have defined a chart ϕo and a fiber bundle structure Po for an observer : the construct is
based on the trajectory of the observer, and his capability to extend his frame over the hypersurfaces Ω3 (t)
. With the formulas above we see how one can go from one observer to another, and thus relate the different
fiber bundles Po. The computations in a change of frame can be done with measures done by the observers,
and have been checked experimentally. So it is legitimate to assume that there is a more general structure
of principal bundle, denoted PG (M,SO0 (3, 1) , πG) ,over M . In this representation the bases used by any
observer is just a choice of specific trivialization.

Proposition 19 There is a unique structure of principal bundle PG (M,SO0 (3, 1) , πG) with base M , stan-
dard fiber SO0 (3, 1) . A change of observer is given by a change of trivialization on PG. The standard gauge
p (m) = ϕG (m, 1) is, for any observer, associated to his standard basis εi (m) = (p (m) , εi)..
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Charts on a manifold are a way to locate a point. As such they are arbitrary and fixed. They are only
related to the manifold structure. We have defined standard charts and their holonomic bases, which depend
on the observer, and are fixed for this observer. And physically one cannot conceive other charts : a physical
chart is always the standard chart of some observer.

Standard basis, or standard gauges, are orthonormal, and chosen at any point by the observer. They
comprised 4 vectors, called a tetrad. The time vector is imposed by the velocity of the observer, but the
components of the spatial vectors can be measured in the holonomic basis of a chart.

With the structure of fiber bundle it is possible to compute the impact of a change of gauge. A change
of ε0 is a change of observer. A change of gauge is given by a section χ (global or not) of PG, the vectors of
the standard basis transform according to the matrix [χ]. The operation is associative : the combination of
relative motions is represented by the product of the matrices, which is convenient.

The condition for 4 vectors to be orthogonal depends on the metric, which changes with the location. It is
proven in Differential Geometry that there is no chart such that its holonomic basis can be orthogonal at each
point (the manifolds with this property, which is not assumed forM , are special and said to be parallelizable).
This is due to the fact that a metric is an object which is added to the structure of manifold, it does not
come with it. And there is no reason why it would be constant 2. As a consequence an orthonormal basis
cannot have fixed components in any chart, even if the observer strives to keep them as fixed as possible.
And the components of the tetrad in the - fixed - holonomic chart must change in order to keep the basis
orthonormal.

4.7.2 Tetrad

The vectors of a standard basis (the tetrad) can be expressed in the holonomic basis of any chart :

εi (m) =

3∑

α=0

Pαi (m) ∂ξα ⇔ ∂ξα =

3∑

i=0

P ′i
α (m) εi (m) (21)

where [P ] is a real invertible matrix (which has no other specific property, it does not belong to SO (3, 1))
and we denote

Notation 20 [P ′] = [P ]
−1

=
[
P ′i
α

]
.

The dual of (∂ξα)
3
α=0 is (dξα)

3
α=0 with the defining relation :

dξα (∂ξβ) = δαβ .

The dual
(
εi (m)

)3
i=0

is :

εi (m) =

3∑

i=0

P ′i
α (m) dξα ⇔ dξα =

3∑

i=0

Pαi (m) εi (m) (22)

εi (m) (εj (m)) =
∑3

αβ=0 P
′i
αP

β
j dξ

α (∂ξβ) =
∑3
α=0 P

′i
αP

α
j = δij

The quantities (Pαi (m))
3
i=1 (called vierbein) and

(
P ′i
α (m)

)3
i=1

are one of the variables in any model in
GR : as such they replace the metric g.

In the fiber bundle representation the vectors of the tetrad are variables which are vectors εi ∈ X (TM)

or covectors εi ∈ X (TM∗) . (εi (m))3i=0 is the holonomic basis associated to the standard gauge p (m) =
ϕG (m, 1) .

A change of observer is a change of gauge on the principal bundle

p (m) = ϕP (m, 1) → p̃ (m) = p (m) · χ (m)
−1

εi (m) = (p (m) , εi) → ε̃i (m) =
∑3
j=0

[
χ (m)

−1
]j
i
εj (m)

(23)

In the Standard Chart the 4th vector is always in the direction of the velocity of the observer. So we
have :

ε0 (po (t)) = ∂ξ0 ⇒ P ′i
0 = δi0

α = 1, 2, 3 : ∂
∂ξαϕo

(
ξ0, ξ1, ξ2, ξ3

)
= ∂ξα = ∂

∂xΦε0 (ct, x)
∂x
∂ξα ∈ TmΩ3 (t) ⇒ P ′0

α = 0

and the matrix [P ] takes the simpler form :

[P ] =

[
1 0
0 Q

]
; [Q] =



P11 P12 P13

P21 P22 P23

P31 P32 P33




2Even in an affine space, such as in SR, there is no reason why the metric should be constant. This is an additional assumption
in SR.
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[P ′] =

[
1 0
0 Q′

]
; [Q′] =



P ′
11 P ′

12 P ′
13

P ′
21 P ′

22 P ′
23

P ′
31 P ′

32 P ′
33




[Q] [Q′] = I3

4.7.3 Metric

The scalar product can be computed from the components of the tetrad. By definition :
gαβ (m) = 〈∂ξα, ∂ξβ〉 =

∑3
ij=0 ηij [P

′]iα [P
′]jβ

The induced metric on the cotangent bundle is denoted with lifted indexes:
g∗ =

∑
αβ g

αβ∂ξα ⊗ ∂ξβ and its matrix is [g]
−1

: gαβ (m) =
∑3

ij=0 η
ij [P ]

α
i [P ]

β
j

[g]
−1

= [P ] [η] [P ]
t ⇔ [g] = [P ′]

t
[η] [P ′] (24)

It does not depend on the gauge on PG :

[g̃] =
[
P̃ ′
]t
[η]
[
P̃ ′
]
= [P ′]t

[
χ (m)−1

]t
[η]
[
χ (m)−1

]
[P ′] = [P ′]t [η] [P ′]

In the standard chart of the observer : g00 = −1.

[g] = [P ′]t [η] [P ′] =

[
−1 0
0 [g]3

]
=

[ −1 0

0 [Q′]t [Q′]

]

[g]
−1

= [P ] [η] [P ]
t
=

[ −1 0

0 [g]
−1
3

]
=

[ −1 0

0 [Q] [Q]
t

]

and [g]3 is definite positive.

The metric defines a volume form on M. Its expression in any chart is, by definition :
̟4 (m) = ε0 ∧ ε1 ∧ ε2 ∧ ε3 =

√
|det [g]|dξ0 ∧ dξ1 ∧ dξ2 ∧ dξ3

[g] = [P ′]t [η] [P ′] ⇒ det [g] = − (det [P ′])2 ⇒
√
|det [g]| = det [P ′]

̟4 = det [P ′] dξ0 ∧ dξ1 ∧ dξ2 ∧ dξ3 (25)

4.7.4 Induced metric

The metric on M induces a metric on any submanifold but it can be degenerated.
On hypersurfaces the metric g3 is non degenerated if the unitary normal n is such that 〈n, n〉 6= 0. The

induced volume form is :
µ3 = in̟4 = det [P ′] dξ0 ∧ dξ1 ∧ dξ2 ∧ dξ3 (n)
For Ω3 (t) the unitary normal n is ε0 , the induced metric is Riemannian and the volume form ̟3 is :
̟3 = iε0̟4 = det [P ′] dξ0 ∧ dξ1 ∧ dξ2 ∧ dξ3 (ε0)
= det [P ′] dξ0 (ε0) ∧ dξ1 ∧ dξ2 ∧ dξ3
= det [P ′] dξ1 ∧ dξ2 ∧ dξ3

̟3 = det [P ′] dξ1 ∧ dξ2 ∧ dξ3 (26)

and conversely :
̟4 = ε0 ∧̟3 = det [P ′] dξ0 ∧ dξ1 ∧ dξ2 ∧ dξ3
̟3 is defined with respect to the coordinates ξ1, ξ2, ξ3 but the measure depends on ξ0 = ct.

For a curve C, represented by any path : p : R → C :: m = p (θ) the condition is
〈
dp
dθ ,

dp
dθ

〉
6= 0. The

volume form on any curve defined by a path : q : R → M with tangent V = dq
dθ is

√
|〈V, V 〉|dθ. So on the

trajectory q (t) of a particle it is

̟1 (t) =
√
−〈V, V 〉dt (27)

For a particle there is the privileged parametrization by the proper time, and as
〈
dp
dτ ,

dp
dτ

〉
= −c2 the

length between two points A,B is :

ℓp =
∫ τB
τA

√
−
〈
dp
dτ ,

dp
dτ

〉
dτ =

∫ τB
τA

cdτ = c (τB − τA)

This is an illustration of the idea that all world lines correspond to a travel at the same speed.
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4.8 Example : spherical charts

This is a frequent case, which can be implemented easily in our frame-work.
We single out a point O ∈M
We assume the following :
There is a family P ⊂ C1 (R; Ω3 (0)) of spatial paths : p : R → Ω3 (0) such that :
∀p ∈ P , ∀ρ 6= ρ′ : p (ρ) 6= p (ρ′) there is no loop and each p is a bijection
p (0) = O (0)
∀x ∈ Ω3 (0) there is a unique p ∈ P such that : ∃ρ ∈ R : p (ρ) = x
dp
dρ = u (ρ) : 〈u (ρ) , u (ρ)〉3 = 1

Thus the paths constitute a grid, centered in O (0) , to locate any point in Ω3 (0). This is what is done
practically by an observer.

Then each path can be identified by the value of u (0) = v and we denote p (v, ρ) = p (ρ) ∈ Ω3 (0) which
is a chart of Ω3 (0) . Each vector v can be identified by its components in any orthonormal basis at O (0) .
Let us say :

v = (cosφ cos θ, cosφ sin θ, sinφ) and one can take as coordinates in Ω3 (0) :
ξ1 = ρ cosφ cos θ, ξ2 = ρ cosφ sin θ, ξ3 = ρ sinφ.
The holonomic basis at x = p (v, ρ) is the image of the basis at O (0) by the derivative p (v, ρ)

′ |x.
Now if we assume that O is an observer, his standard chart is given by
ϕo (t, x) = ϕM (ct, ρ cosφ cos θ, ρ cosφ sin θ, ρ sinφ) .
A path from A = ϕo (τ0, x0) to B = ϕo (τ1, x1) can be represented by :
q (τ) = ϕo (τ, x (τ))
dq
dτ = cε0 +

dx
dτ

and its length is :

ℓ (A,B)
2
=
∫ τ1
τ0

〈
dq
dτ ,

dq
dτ

〉
M
dτ =

∫ τ1
τ0

(
c2τ2 − g3 (τ, x (τ))

(
dx
dτ ,

dx
dτ

))
dτ

The volume measure ̟3 reads :
̟3 (x) = det [P ′ (ϕo (t, x))] ρ2 |cosφ| dρdθdφ
thus it still depends on t, but acts on variables whose arguments are defined through ρ, θ, φ.
No assumption has been made about the “shape” of Ω3 (0) , just that this is a 3 dimensional manifold

defined by the chart.

One can assume more, that there is a physical spherical symmetry. The physical part of the Geometry is
the metric. So we assume that the metric has a symmetry in the following meaning.

There is an action of SO (3) on the vectors v at O (0) (they are defined in an orthonormal basis at O (0))
: v → [h] [v] which induces an action on P and Ω3 (0) :

R0 : SO (3)× Ω3 (0) → Ω3 (0) :: R0 ([h]) p (v, ρ) = p ([h] [v] , ρ)
which can be extended to M :
R : SO (3)×M →M :: R ([h])ϕo (t, x) = ϕo (t, R0 (g) (x))
Notice that SO (3) acts only on v and ρ is unchanged.
The geometry is said to be spherically symmetric if R0 is an isometry. The metric is invariant by R0 :
R0 ([h])∗ g3 = g3
with the push forward R0 ([h])∗ g3 :
g3 (R0 ([h])x) (R

′
0 ([h] (x)) |xux, R′

0 ([h] (x)) |xvx) = g3 (x) (ux, vx)
The metric on Ω3 (0) does not depend on θ, φ but depends still on ρ.
Because ε0 is invariant by this action, it can be extended toM if R0 is an isometry for any t on Ω3 (t) .Then

the metric, as well as [P ] , depends only on t, ρ.
A cylindric symmetry can be represented in the same frame-work : the action is then that of a subgroup

of SO (3) with a definite axis, which can be taken as one of the vector of the orthonormal basis in O (0) .

If this symmetry applies to the whole system (the symmetry of the metric is a prerequisite) then the
variables X which have the coordinates as arguments belong to a unitary representation of SO (3) and the
simplest is the trivial one : they depend only on t, ρ.

We are free to choose our charts and gauges. So in a problem one can choose to take a particle as the
observer, apply the rules above, then the results can be translated for any observer by applying the rules
for a change of observer, using the Principle of Relativity. This is the simplest, and most rigorous, way to
compute the EM field created by a charged particle.
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5 SPECIAL RELATIVITY

All the previous results hold in Special Relativity. This theory, which is still the geometric framework of
QTF and Quantum Physics, adds two assumptions : the Universe M can be represented as an affine space,
and the metric does not depend on the location (these assumptions are independent). As consequences:

- the underlying vector space
−→
M (the Minkovski space) is common to all observers : the vectors of all

tangent spaces to M belong to
−→
M

- one can define orthonormal bases which can be freely transported and compared from a location to
another

- because the scalar product of vectors does not depend on the location, at each point one can define
time-like and space-like vectors, and a future orientation (this condition relates the mathematical and the

physical representations, and
−→
M is not simply R4)

- there are fixed charts
(
O, (εi)

3
i=0

)
, called frames, which consist of an origin (a location O in M : a

point) and an orthonormal basis (εi)
3
i=0 . There is necessarily one vector such that 〈ε0, ε0〉 = −1. It is possible

to define, non unique, orthonormal bases such that ε0 is timelike and future oriented.

- the coordinates of a point m, in any frame
(
O, (εi)

3
i=0

)
, are the components of the vector OM.

The general results hold and observers can define a standard chart as seen in RG. However this chart is

usually not defined by a frame
(
O, (εi)

3
i=0

)
. Observers can label points which are in their present with their

proper time. The role of the function f (m) = t is crucial, because it defines the 3 dimensional hypersurfaces
Ω (t) . They are not necessarily hyperplanes, but they must be space like and do not cross each other : a point
m cannot belong to 2 different hypersurfaces. These hypersurfaces define the vector field ε0 (m) to which
belongs the velocity of the observer (up to c). In SR one can compare vectors at different points, and usually
the vectors ε0 (m) are different from one location to another. They are identical only if Ω (t) are hyperplanes
normal to a vector ε0, which implies that the world line of the observer is a straight line, and because the
proper time is the parameter of the flow, if the motion of the observer is a translation at a constant spatial
speed. These observers are called inertial. Notice that this definition is purely geometric and does not
involve gravitation or inertia : inertial observers are such that their velocity is a constant vector. A frame
can be associated to an observer only if this is an inertial observer.

For inertial observers the integral curves are straight lines parallel to ε0. Any spatial basis (εi)
3
i=1 of Ω (0)

can be transported on Ω (t) . The standard chart is then similar to a frame in the 4 dimensional affine space(
O (0) , (εi)

3
i=0

)
with origin O (0), the 3 spatial vectors (εi)

3
i=1 and the time vector ε0.

6 COSMOLOGY

General Relativity has open the way to a “scientific Cosmology”, that is the study of the whole Universe
and in particular of its evolution, through mathematical models. These theories will never achieve a full
scientific status, because they lack one of the key criteria : the possibility to experiment with other universes.
They can provide plausible explanations, but not falsifiable ones. This is reflected in the choice of the
parameters which are used in the models : one can fine tune them in order to fit with observations, essentially
astronomical observations, and represent in a satisfying way “what it is”, but not tell “why is it so”.

One of the issue of Cosmology is that of the observer, who is an essential part of Relativity. Particles (and
galaxies can be considered as particles at this scale) follow world lines. Their location, which is absolute in
GR, is precisely defined with respect to a proper time, but this time is specific to each particle. An observer
can follow particles which are in his present, and establish a relation between his proper time and that of
these particles. A Cosmological model is a model for an observer who would have access to the locations of
all the particles of the universe, and indeed the existence of a universal time, which provides a foliation in
hypersurfaces analogous to Ω3 (t) , is one of their key component.

A manifold by itself can have some topological properties. It can be compact. It can have holes, defined
through homotopy : there is a hole if there are curves in M which cannot be continuously deformed to be
reduced to a point. A hole does not imply some catastrophic feature : a doughnut has a hole. Thus it does
not imply that the charts become singular. But there are only few purely topological features which can be
defined on a manifold, and they are one of the topics of Differential Geometry. In particular a manifold has
no shape to speak of.

The metric on M is an addition to the structure of the Universe. It is a mathematical feature from which
more features can be defined on M , such that curvature. In GR the metric, and so the curvature of M
at a point, depends on the distribution of matter. It is customary (see Wald) to define singularities in the
Universe by singularities of geodesics, but geodesics are curves whose definition depends on the metric. A
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singularity for the metric, as Black holes or Bing Bang, is not necessarily a singular point for the manifold
itself.

From some general reasoning and Astronomical observations, it is generally assumed that the Universe
has the structure of a fiber bundle with base R (a warped Universe) which can be seen as the generalization
of Mo, that we have defined above for an observer. Thus there is some universal time (the projection from
M to R) and a foliation ofM in hypersurfaces similar to Ω3 (t), which represent the present for the observers
who are located on them. The part of the universe on which stands all matter would be a single body moving
since the Big Bang (the image of an inflating balloon). So there would not be any physical content before
or after this Ω3 (t) (inside the balloon), but nothing can support this interpretation, or the converse, and
probably it will never be.

The Riemannian metric ̟3 (t) on each Ω3 (t) is induced by the metric on M , and therefore depends on
the universal time t. In the most popular models it comes that the distance between two points on Ω3 (t) ,
measured by the Riemannian metric, increases with t, and this is the foundation of the narrative about
an expanding universe, which is supported by astronomical observations. But, assuming that these models
are correct, this needs to be well understood. The change of the metric on Ω3 (t) makes that the volume
form ̟3 (t) increases, but the hypersurfaces Ω3 (t) belong to the same manifold M , which does not change
with time. The physical universe would be a deformable body, whose volume increases inside the unchanged
container. And of course material points do not swell, only the vacuum, which separates material bodies,
dilates.
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Part II

MOTION

So far we have considered only particles, with no internal structure. The concept of a “material point”
which occupies a geometric point, that is with no spatial extension, used to be shocking for many physicists.
Actually Mechanics is built around the concept of solids, which can be rigid or deformable, but have an
extension, and a particle is seen as an infinitesimal small solid. Solids bring a feature additional to their
location, they have an “arrangement”, which is represented by an orthonormal basis. As a consequence
the motion of a solid encompasses not only a change in its location, but also a rotational motion. Motion,
translational and rotational, is a purely geometric concept which is measured by geometric protocols. And
we are lead to extend these properties to material points, that is particles : they have a location and an
attached orthonormal basis.

The Relativist framework requires a new formalism to represent the motion of a material body, but it is
useful to remind how this is done in Galilean Geometry.

7 MOTION IN GALILEAN GEOMETRY

7.1 Rotation in Galilean Geometry

The concept of rotation is well defined in Mathematics : this is the operation which transforms the orthonor-
mal basis of a vector space into another. From a physical point of view the rotation is the operation which
transforms the orthonormal basis of the observer to an orthonormal basis which is attached to the material
body : it measures the arrangement of the body with respect to the observer.

The operation belongs to the orthogonal group, in Galilean Geometry to SO (3) and is represented by a
matrix R. This is a 3 dimensional Lie group of matrices such that RtR = I. Because of this relation the Lie
algebra so (3) = T1SO (3) is the vector space of 3 × 3 real antisymmetric matrices. If we take the following
matrices as basis of so(3) :

κ1 =



0 0 0
0 0 −1
0 1 0


 ;κ2 =




0 0 1
0 0 0
−1 0 0


 ;κ3 =



0 −1 0
1 0 0
0 0 0




then any matrix of so(3) reads :∑3
i=1 r

i [κi] = [j (r)] with the operator

j : R3 → L (R, 3) :: [j (r)] =




0 −r3 r2
r3 0 −r1
−r2 r1 0


 (28)

The operator j is very convenient to represent quantities which are rotated 3. It has many nice algebraic
properties and we will use it often.

For any vector u :
∑3
ij=1 [j (r)]

i
j u

jεi =
−→r ×−→u with the cross product ×.

The group SO(3) is compact, thus the exponential is onto and any matrix of SO (3) can be written as :

exp [j (r)] = I3 +
sin

√
rtr√

rtr
[j (r)] + 1−cos

√
rtr

rtr [j (r)] [j (r)]

The vector r is just the components of a vector in a Lie algebra, using a specific basis κ. However there
is a natural correspondence between r and geometric characteristics of a rotation.

The axis of rotation is by definition the unique eigen vector of [g] with eigen value 1 and norm 1 in the

standard representation of SO(3), it has for components



r1

r2

r3


 /

√
rtr

Similarly one can define the angle θ of the rotation resulting from a given matrix, and θ =
√
rtr.

7.2 Rotational motion

We use freely the same word “rotation” for the operation to go from one orthonormal basis to another (the
arrangement of a basis with respect to another), and for the motion (the instantaneous rotation around an
axis), but they are two distinct concepts and the distinction is essential.

If 2 orthonormal bases (with same origin) are in relative motion, at any time t we have some rotation
R (t) ∈ SO (3) and naturally the instantaneous rotation is defined through the derivative dR

dt .

3It is similar to the Levi-Civitta tensor ǫ but, in my opinion, much easier to use.
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The usual convention is to represent the instantaneous rotational motion by R (t)
−1 dR

dt ∈ so (3) , which

takes as starting point the frame rotated by R(t). Then it can be represented by a single vector : R (t)
−1 dR

dt =

j (r) . This choice is not without consequence : in a change of observer, corresponding to R → R̃ = g × R :

R (t)−1 dR
dt does not change : in Galilean Geometry a rotational motion is observer independent. The

instantaneous rotational motion can be assimilated to a rotation with constant axis r and rotational speed√
rtr : R (t) = exp tj (r) .

So we have a very satisfying representation of geometric rotations : a rotation R can be defined by a
single vector, which is simply related to essential characteristics of the transformation, and an instantaneous
rotational movement can also be represented by a single vector r. But, as one can see, this model is less
obvious than it seems. It relies on the fortuitous fact that the Lie algebra has the same dimension as the

Euclidean space (the dimension of so (n) is n(n−1)
2 ) and is compact.

7.3 Spin group

Moreover this mathematical representation is not faithful. The same rotation can be defined equally by the
opposite axis, and the opposite angle. This is related to the mathematical fact that SO(3) is not the only
group which has so(3) as Lie algebra. The more general group is the Spin group Spin(3) which has also

for elements the scalars + 1 and - 1, so that R(t), corresponding to
(
r,
√
rtr
)

and −R(t), corresponding
to
(
−r,−

√
rtr
)

can represent the same physical rotational motion. Actually, the group which should be

used to represent rotations in Galilean Geometry is Spin(3), which makes the distinction between the two
rotations, and not SO(3). In Physics the distinction matters : in the real world one goes from one point to
another along a path, by a continuous transformation which preserves the orientation of a vector, thus the
orientation of −→r is significant. A single vector of R3 cannot by itself properly identify a physical rotation,
one needs an additional parameter which is ±1 to tell which one of the two orientations of −→r is chosen, with
respect to a direction, the spatial speed on the path.

7.4 Motion of a rigid solid

One can choose any point G, a fixed orthonormal basis (ei)
3
i=1 attached to the solid, and represent the

arrangement of the rigid solid at a given time as the operation to go from a fixed orthogonal frame
(
O, (εi)

3
i=1

)

to
(
G, (ei)

3
i=1

)
. It combines a translation D, belonging to the abelian group T

(
R3
)
and a rotation R ∈

SO (3) , and belongs to the group of displacement, which is the semi-direct product T
(
R3
)
⋉ SO (3) . The

“semi” implies some relations which makes the structure of the group of displacements more complicated
than the direct product T

(
R3
)
× SO (3) .

The motion (translational and rotational) of a rigid solid is then represented by the derivative of the
displacement, or more conveniently by the value

(
dD
dt , R

−1 dR
dt

)
of the corresponding elements in the Lie

algebra T1
(
T
(
R3
)
⋉ SO (3)

)
, which is not the direct product

(
T
(
R3
)
× so (3)

)
. This is convenient because

we can represent the motion by two vectors : −→v G = d
−−→
OG
dt , r such as R−1 dR

dt = [j (r)], however the formulas
are a bit complicated (as can be seen in the law for the composition of speeds for rotating bodies) because
the displacement is not a direct product.

So the representation of the motion of a rigid solid in Galilean Geometry implies :

- the location of G and its speed −→v G = d
−−→
OG
dt

- the rotation R of
(
G, (ei)

3
i=1

)
and its instantaneous change R−1 dR

dt

The motion is defined by 6 scalar parameters, or two 3 dimensional vectors.

7.5 Deformable solid

A deformable solid is a material body which keeps some integrity : its material points stay close to each
other. It can be conveniently represented as follows.

The body occupies at the time t a compact area ω (t) ⊂ R3. Each material point is identified by its location
q at a time t = 0. It is assumed that there is a differentiable map : φ : ω (0)×R → ω (t) :: x = φ (q, t) which
gives the location of the material point q at t. The map φ is the representation of the continuity of the body.

The orthonormal basis (εi)
3
i=1 of R3 at t = 0 is transported as : ei (q, t) = φ′q (q, t) εi which is usually no

longer orthonormal.
By derivation :
∂
∂tei (q, t) = φ”qt (q, t) εi = φ”qt (q, t)

(
φ′q (q, t)

)−1
ei (q, t)
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and the matrix γ =
[
φ”qt (q, t)

(
φ′q (q, t)

)−1
]
is the deformation tensor. It can be decomposed in a sym-

metric matrix 1
2 (γ + γt) = s and an antisymmetric matrix 1

2 (γ − γt) = j (ω) which measures the torsion. s
has real eigen values and represents similitudes in the 3 axes (a “dilation”). j (ρ) can be seen as a rotation
with vector ρ (a “shear”), and the deformation tensor is the sum of a shear j (ρ) and a dilation s.

φ defines the manifolds ω (t) = φ (., t) embedded in R3 endowed with the induced metric :

gij =
∑3

k=1

[
φ′q (q, t)

]k
i

[
φ′q (q, t)

]k
j
.

The distance between 2 close elements δq ∈ Tqω (0) change as
√∑

ij gij (δq)
i
(δq)

j

The volume form is ̟ =
√
det gε1 ∧ ε2 ∧ ε3 = det

[
φ′q (q, t)

]
ε1 ∧ ε2 ∧ ε3 and the volume changes

as det
[
φ′q (q, t)

]
: the material points which occupy a volume ε1 ∧ ε2 ∧ ε3 at t = 0 occupy a volume(

det
[
φ′q (q, t)

])
ε1 ∧ ε2 ∧ ε3 at t.

8 MOTION IN RELATIVIST GEOMETRY

8.1 The Poincaré’s group

The usual concept of rigid solid, as material body whose material points are at a constant distance, does
not hold any more in the Relativist framework. Experiments show that atoms and subatomic particles
have kinematic characteristics which look like rotation, and can be measured by quantities which transform
according to the rules of SO (3) , with some complications, and this leads to the concept of spin. So one needs
to incorporate rotations in Relativity, in a way similar to what is done with solids in Newtonian Mechanics,
and this leads naturally to look for the Poincaré’s group, the semi product of the group SO(3, 1) of rotations
and of the 4 dimensional translations. This is the simple generalization of the group of displacements of
Galilean Geometry. In Special Relativity (and also in QTF) a law is deemed covariant if it is equivariant in
a change of frame by the Poincaré’s group : this is the implementation of the Principle of Relativity in a
representation based on orthogonal frames.

However the use of the Poincaré’s group raises several serious issues.

The Poincaré’s group represents the operation to go from one orthonormal frame
(
O, (εi)

3
i=0

)
to another

(
A, (ei)

3
i=0

)
. So its use is valid only in SR, and for inertial observers. It has been considered in GR to use

the group of isometries, that is of maps : f : M → M such that f ′ (m) ∈ L (TmM ;TmM) preserves the
metric. However in Physics, to compare two bases located at different points one does not jump, one follows
a path and the path matters : the relativist universe is not isotropic. This amplifies the issue of the spin
group and its 2 values ±1.

According to the Principle of Locality the location (O) of the origin of the frame has no physical meaning
: we should compare two frames, located at the same point (as we did to prove the formulas to go from one
observer to another). A displacement introduces a variable (the translation of the origin O of the frame to
go from O to A) which has nothing to do in the matter : in the formulas in a change of observers the spatial
speed −→v is the relative speed with respect to a “copy” of the observer who would be at the same location as
the body. Indeed an element of the Poincaré’s group is defined by 10 parameters (6 for the Lorentz group
and 4 for the translation of the origin), meanwhile 6 suffice in Newtonian Mechanics to define the motion of
a solid, and there is no reason why Relativity should add 4 parameters.

A group of displacement is not a direct product of groups, but a semi-direct product, and similarly for the
Lie algebras. This introduces complications in Newtonian Mechanics which are amplified in Relativity. The
exponential is not surjective for SO (3, 1) , which is not a compact group. We have [χ] = exp [K (w)] exp [J (r)]
where [K (w)] , [J (r)] ∈ so (3, 1) thus the derivative dχ

dt gives a more complicated expression, where dw
dt ,

dr
dt

are mixed with (w, r) . In particular appears dw
dt , that is the derivative of the spatial speed.

8.1.1 The Spin Bundle

Our purpose is to find an efficient way to represent the motion, translational and rotational in the General
Relativity frame-work. We start from 4 facts :

i) We do not need the Poincaré’s group : it is defined only in SR and for inertial observers. The origin O
of the frame has no physical meaning, the measures should be done at the same location.

ii) The only clear concept of rotation is done by comparing the arrangement of two orthonormal bases,
located at the same point. And in the relativist context this requires to consider a group which preserves
the Lorentz scalar product.

iii) The right group to consider is the spin group. This holds already in Galilean Geometry, and in
Relativist Geometry any observer can distinguish the orientation of the axis of a spatial rotation with respect
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to his own velocity. The spin groups Spin (3, 1) , Spin (1, 3) are isomorphic so on this point the signature
does not matter.

iv) The convenient tool to compare orthonormal bases at a point is a principal fiber bundle.
We have already assumed the existence of a principal bundle PG (M,SO (3, 1) , π), so we make the as-

sumption :

Proposition 21 There is a principal bundle PG (M,Spin0 (3, 1) , πG) which has for fiber the connected com-
ponent of the identity of the Spin group, and for trivialization the map :

ϕG :M × Spin0 (3, 1) → PG :: p = ϕG (m, s) .
The standard gauge used by observers is p (m) = ϕG (m,1)

A section σ ∈ X (PG) is defined by a map: σ :M → Spin (3, 1) such that : σ (m) = ϕG (m,σ (m)) and in
a change of gauge :

p (m) = ϕG (m, 1) → p̃ (m) = p (m) · χ (m)−1 :
σ (m) = ϕG (m,σ) = ϕ̃G (m,χ (m) · σ̃) : σ̃ = χ (m) · σ (29)

8.2 Motion of two orthonormal bases

Orthonormal bases are defined in the vector bundle associated to PG. The arrangement of an orthonormal
basis (ei (m))i=0..3 is measured with respect to the tetrad (εi (m))i=0..3 of an observer by an element [χ] of
PG located at m.

ei (m) =
(
ϕG (m, 1) ,

∑3
j=0 [χ (m)]ji εj

)

The vectors εj are fixed. The motion is given by the derivative
d
dtei (m) =

(
ϕG (m, 1) ,

∑3
j=0

[
d
dtχ (m)

]j
i
εj

)

and represented by
[
d
dtχ (m)

]
, that is by the derivatives of the components of ei (m) in the fixed basis

εj : the change of the tetrad (that is dP
dt ) is not involved.

[χ] = exp [K (w)] exp [J (r)]
The time axis e0 is related to the velocity, w is related to the spatial speed −→v , and r to the rotation of

the spatial axes.
So, to be consistent, the definition of the motion should involve the derivative of the velocity, that is the

spatial acceleration. And, indeed, an observer attached to a material body can measure both a rotational
motion and a change in its transversal motion. Assume that, to any material object, whatever its size, is
attached an orthonormal basis is not without consequence : this is an extension of the concept of particle,
with additional physical properties, which must be accounted for in their representation. In some way it gives
relief to the Geometry. Many models in theoretical physics involve a universe with more than 4 dimensions,
to account for their physical properties such as charges. One could consider to define a material body by 4
coordinates, corresponding to its location, and 4 additional coordinates for their arrangement. However the
arrangement has a meaning only locally, and with respect to a special basis : an orthonormal one (this is
the only sensible way to represent a rotation). So actually these properties are closely related to the metric,
which is the physical part of the Geometry. The time vector keeps is specificity, it is necessarily oriented as
the velocity, but the same restriction does not apply to its derivative.

So with a map : R → PG :: ϕG (q (t) , χ (t)) the arrangement and the motion can be efficiently rep-
resented. The motion depends on two vectors r, w of R3 and their derivatives. However the relation
[χ] = [expK (w)] [expJ (r)] is not convenient, and the group which is involved is the Spin group and not
SO (3, 1). In order to get a good understanding of this representation and more convenient tools, we need
to introduce Clifford Algebras, which are at the root of the Spin groups.

9 CLIFFORD ALGEBRAS

The proofs are given in my book “Theoretical Physics”.

9.1 Clifford algebra and Spin groups

A Clifford algebra Cl (F, 〈〉) is an algebraic structure, which can be defined on any vector space (F, 〈〉) on a
field K (R or C) endowed with a bilinear symmetric form 〈〉 . The set Cl (F, 〈〉) is defined from K, F and a
product, denoted · , with the property that for any two vectors u, v :

∀u, v ∈ F : u · v + v · u = 2 〈u, v〉 (30)
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A Clifford algebra is then a set which is larger than F : it includes all vectors of F , plus scalars, and
any linear combinations of products of vectors of F . A Clifford algebra on a n dimensional vector space is
a 2n dimensional vector space on K, and an algebra with ·. Clifford algebras built on vector spaces on the
same field, with same dimension and bilinear form with same signature are isomorphic. On a 4 dimensional
real vector space (F, 〈〉) endowed with a Lorentz metric there are two structures of Clifford Algebra, denoted
Cl (3, 1) and Cl (1, 3) , depending on the signature of the metric, and they are not isomorphic. The easiest
way to work with a Clifford algebra is to use an orthonormal basis of F .

Notation 22 (εi)
3
i=0 is an orthonormal basis with scalar product : 〈εi, εi〉 = ηii

So we have the relation :

εi · εj + εj · εi = 2ηij (31)

A basis of the Clifford algebra is a set which consists of 1 and all ordered products of εi, i = 0...3.

Some elements of the Clifford algebra have an inverse for the product, and there are subsets which have
a group structure. Spin(3,1) is the subset of the Clifford algebra Cl (3, 1) with an even number of vectors
with scalar product ±1 : Spin (3, 1) = {u1 · u2... · u2k, 〈up, up〉 = ±1, up ∈ F}

The scalars ±1 belong to the groups. The identity element is the scalar 1.
Spin(3, 1) and Spin(1, 3) are isomorphic.
For any s ∈ Spin(3, 1), the map, called the adjoint map :

Ads : Cl (3, 1) → Cl (3, 1) :: AdsX = s ·X · s−1 (32)

is such that :
∀V ∈ F : AdsV ∈ F
∀u, v ∈ F, s ∈ Pin(3, 1) : 〈Adsu,Adsv〉F = 〈u, v〉F
∀s, s′ ∈ Pin(3, 1) : Ads ◦Ads′ = Ads·s′
Ad is distributive with respect to the addition and the product.
Because the action Ads of Spin(3, 1) on F gives another vector of F and preserves the scalar product,

it can be represented by a 4 × 4 orthogonal matrix. In any orthonormal basis (εi)
3
i=0 of F , then Ads is

represented by a matrix [h (s)] ∈ SO (3, 1). To two elements ±s ∈ Spin(3, 1) correspond a unique matrix
[h (s)] .

As any algebra Cl (F, 〈〉) is a Lie algebra with the bracket :
∀X,X ′ ∈ Cl (F, 〈〉) : [X,X ′] = X ·X ′ −X ′ ·X
which is a bilinear, antisymmetric operation (but not associative) with the Jacobi identity :
[X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]] = 0
The group Spin (3, 1) has a Lie algebra T1Spin (3, 1) which is a subset of the Clifford algebra. Its el-

ements can be written as linear combinations of pairs of elements εi · εj .- The map : Π : so(3, 1) →
T1Spin (3, 1) is an isomorphism of Lie algebras which reads with any orthonormal basis (εi)

3
i=0 of F :

Π ([κ]) = 1
4

∑3
i,j=0 ([κ] [η])

i
j εi · εj

so that any element of T1Spin (3, 1) is the linear combinations of the ordered products of all the four

vectors of a basis. With any orthonormal basis and the following choice of basis (−→κ a)6a=1 of T1Spin (3, 1)
then Π takes a simple form with an adequate ordering of the vectors :

Π ([κ1]) =
−→κ 1 = 1

2ε3 · ε2,
Π([κ2]) =

−→κ 2 = 1
2ε1 · ε3,

Π([κ3]) =
−→κ 3 = 1

2ε2 · ε1,
Π([κ4]) =

−→κ 4 = 1
2ε0 · ε1,

Π([κ5]) =
−→κ 5 = 1

2ε0 · ε2,
Π([κ6]) =

−→κ 6 = 1
2ε0 · ε3

where ([κa])
6
a=1 is the basis of so(3, 1) already noticed such that :

[κ] = K (w) + J (r) =
∑3

a=1 r
a [κa] + wa [κa+3]

We will use extensively the convenient (the order of the indices matters) :

Notation 23 for both Cl (3, 1) , Cl (1, 3) :

υ (r, w) =
1

2

(
w1ε0 · ε1 + w2ε0 · ε2 + w3ε0 · ε3 + r3ε2 · ε1 + r2ε1 · ε3 + r1ε3 · ε2

)
(33)
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With this notation, whatever the orthonormal basis (εi)
3
i=0, any elementX of the Lie algebras T1Spin (3, 1)

or T1Spin (1, 3) reads :

X = υ (r, w) =

3∑

a=1

ra−→κ a + wa−→κ a+3 (34)

The bracket on the Lie algebra reads :
[υ (r, w) , υ (r′, w′)]
= υ (r, w) · υ (r′, w′)− υ (r′, w′) · υ (r, w)
= υ (j (r) r′ − j (w)w′, j (w) r′ + j (r)w′)
With signature (1,3) :
[υ (r, w) , υ (r′, w′)] = −υ (j (r) r′ − j (w)w′, j (w) r′ + j (r)w′)
The map : Ad : Spin (3, 1) → L (T1Spin (3, 1) ;T1Spin (3, 1)) is differentiable with respect to g.

(AdgX)
′
= Adg

([
g−1 · g′, X

])
(35)

where g′ = d
dxg (x) for x belonging to any manifold.

With these notations, the elements of the Spin group read in both signatures, with the related a, (wj , rj)3j=1, b
real scalars and ε5 = ε0 · ε1 · ε2 · ε3 :

s = a+ υ (r, w) + bε5
a2 − b2 = 1 + 1

4 (w
tw − rtr)

ab = − 1
4r
tw

(a+ υ (r, w) + bε5)
−1

= a− υ (r, w) + bε5

(36)

The product s · s’ reads with the operator j introduced previously :
(a+ υ (r, w) + bε5) · (a′ + υ (r′, w′) + b′ε5) = a” + υ (r”, w”) + b”ε5
with :
a” = aa′ − b′b+ 1

4 (w
tw′ − rtr′)

b” = ab′ + ba′ − 1
4 (w

tr′ + rtw′)
and in Spin(3, 1) :
r” = 1

2 (j (r) r
′ − j (w)w′) + a′r + ar′ − b′w − bw′

w” = 1
2 (j (w) r

′ + j (r)w′) + a′w + aw′ + b′r + br′

and in Spin(1, 3) :
r” = 1

2 (j (r) r
′ − j (w)w′) + a′r + ar′ + b′w + bw′

w” = − 1
2 (j (w) r

′ + j (r)w′) + a′w + aw′ + b′r + br′

There is a scalar product on Cl (F, 〈〉) defined by :
〈ui1 · ui2 · ... · uin , vj1 · vj2 · ... · vjn〉 = 〈ui1 , vj1〉 〈ui2 , vj2〉 ... 〈uin , vjn〉
It does not depend on the choice of a basis, and any orthonormal basis defined as above is orthonormal.

It is invariant by Ad.

∀w,w′ ∈ Cl (F, 〈〉) : 〈Adsw,Adsw
′〉Cl(E,〈〉) = 〈w,w′〉Cl(E,〈〉) (37)

The basis of the Lie algebra is orthogonal.

T1Spin(3, 1) : 〈υ (r, w) , υ (r′, w′)〉Cl = 1
4 (r

tr′ − wtw′)
T1Spin(1, 3) : 〈υ (r, w) , υ (r′, w′)〉Cl = − 1

4 (r
tr′ − wtw′)

(38)

We have the identity : ∀X,Y, Z ∈ Cl (3, 1) : 〈X, [Y, Z]〉Cl = 〈[X,Y ] , Z〉Cl

9.2 Symmetry breakdown

The elements of SO(3, 1) are the product of spatial rotations (represented by exp J(r)) and boosts, linked
to the speed and represented by expK(w). We have similarly a decomposition of the elements of Spin(3, 1).
But to understand this topic, from both a mathematical and a physical point of view, we need to distinguish
the abstract algebraic structure and the sets on which the structures have been defined.

From a vector space (F, 〈〉) endowed with a scalar product one can built only one Clifford algebra, which
has necessarily the structure Cl (3, 1) : as a set Cl (3, 1) must comprise all the vectors of F . But from any
vector subspace of F one can built different Clifford algebras : their algebraic structure depends on the
dimension of the vector space, and on the signature of the metric induced on the vector subspace. To have a
Clifford algebra structure Cl (3) on F one needs a 3 dimensional vector subspace on which the scalar product
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is definite positive, so it cannot include any vector such that 〈u, u〉 < 0 (and conversely for the signature (1, 3)
: the scalar product must be definite negative). The subsets of F which are a 3 dimensional vector subspace
and do not contain any vector such that 〈u, u〉 < 0 are not unique. So we have different subsets of Cl(3, 1)
with the structure of a Clifford algebra Cl (3) , all isomorphic but which do not contain the same vectors.
Because the Spin Groups are built from elements of the Clifford algebra, we have similarly isomorphic Spin
groups Spin(3), but with different elements. The simplest way to deal with these issues is to fix a vector ε0.

For a given fixed ε0, the group Spin (3) can be identified with the subset of Spin(3, 1) such that :

Adsrε0 = sr · ε0 · s−1
r = ε0 and it reads : Spin (3) =

{
sr = ǫ

√
1− 1

4r
tr + υ (r, 0) , r ∈ R3, rtr ≤ 4, ǫ = ±1

}

Spin(3) is a compact group, with 2 connected components. The connected component of the identity
consist of elements with ǫ = 1 and can be assimilated to SO (3) .

The quotient space SW = Spin (3, 1) /Spin (3) is not a group but a 3 dimensional manifold. Then,
for a given vector ε0, any element s ∈ Spin (3, 1) can be written uniquely (up to sign) : s = sw · sr with
sw ∈ SW, sr ∈ Spin (3) :

∀s = a+ υ (r, w) + bε5 ∈ Spin (3, 1) : s = ǫ (aw + υ (0, w)) · ǫ (ar + υ (r, 0)) (39)

with : ar =
√
1− 1

4r
tr; aw =

√
1 + 1

4w
tw

υ (r, 0) is represented in so (3, 1) by a matrix [J (r)] and υ (0, w) by a matrix [K (w)] . So we replace the
cumbersome formula in a change of gauge [χ] = exp [K (w)] exp [J (r)] by s = sw ·sr.with two elements which
are simply related to the velocity (by w) and the rotation (by r). The decomposition depends on the choice
of ε0.

Similarly we have the same decomposition in the Lie algebra.
T1Spin (3, 1) = L0 ⊕ P0

where :
L0 =

{
υ (r, 0) , r ∈ R3

}
≃ T1Spin (3) , P0 =

{
υ (0, w) , w ∈ R3

}
≃ T1SW.

The vectors r, w depends on the basis (they are components), however the elements υ (r, 0) , υ (0, w)
depend only on the choice of ε0 and L0, P0 are globally invariant by Spin (3) .

The operator : Ad :Spin (3, 1)×Cl (3, 1) → Cl (3, 1) :: AdsX = s ·X · s−1 takes a different matrix form
depending on X . With s = a+ υ (r, w) + bε5 :

The action of Spin (3, 1) on vectors of F is :

v =
∑3

i=0 v
iεi → ṽ = Adsv =

∑3
i=0 ṽ

iεi
ṽi =

∑3
j=0 [h (s)]

i
j v

j

[h (s)] =[
a2 + b2 + 1

4 (r
tr + wtw) awt − brt + 1

2w
tj (r)

aw − br + 1
2j (r)w a2 + b2 + 1

4 (r
tr + wtw) + aj (r) + bj (w) + 1

2 (j (r) j (r) + j (w) j (w))

]

[h (s)] ∈ SO (3, 1) : [h(s)]
t
[η] [h(s)] = [η] .

For a product : Ads ◦Ads′ = Ads·s′ → [h (s.s′)] = [h (s)] [h (s′)]
Then if s = sw · sr : [h (s)] = [h (sw)] [h (sr)]
If s = aw + υ (0, w)

[h(s)] =

[
2a2w − 1 aww

t

aww 2a2w − 1 + 1
2j (w) j (w)

]

If s = ar + υ (r, 0)

[h(s)] =

[
1 0
0 1 + arj (r) +

1
2j (r) j (r)

]

[C (r)] = 1 + arj (r) +
1
2j (r) j (r) ∈ SO (3)

A change of orthonormal basis of F can be expressed by an action of the Spin group : εi → ε̃i = Ads−1εi

The operator Ads acts on elements Z ∈ T1Spin (3, 1) :

Z =
∑6
a=1 Za

−→κ a → Z̃ =
∑6

a=1 ZaAds (
−→κ a) =

∑6
a=1 Z̃a

−→κ a
Z = υ (X,Y ) → Z̃ = υ

(
X̃, Ỹ

)
[
X̃

Ỹ

]
= [Ads]

[
X
Y

]

where [Ads] is a 6× 6 matrix :
[Ads] =[

1 + aj (r)− bj (w) + 1
2 (j (r) j (r)− j (w) j (w)) −

(
aj (w) + bj (r) + 1

2 (j (r) j (w) + j (w) j (r))
)

aj (w) + bj (r) + 1
2 (j (r) j (w) + j (w) j (r)) 1 + aj (r)− bj (w) + 1

2 (j (r) j (r)− j (w) j (w))

]

[Ads·s′ ] = [Ads] [Ads′ ]
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9.3 Complex structure on the Clifford algebra

The subspaces L0, P0 are crucial in the properties of T1Spin (3, 1) , as seen in the notation υ (r, w) . The
computations can be made easier by defining on Cl (3, 1) and Cl (1, 3) a complex structure : the set does not
change but it is split in a real and an imaginary part. It is convenient to make computations in the Clifford
Algebra.

This is done by a linear map such that : J2 = −Id. Then the product iX is defined as iX = Xi = J (X) .
Take J (X) = X ·ε5 with ε5 = ε0 ·ε1 ·ε2 ·ε3 then J2 (X) = X ·ε5 ·ε5 = −X. It holds on Cl (1, 3) and Cl (3, 1) .

The distinction between the real and imaginary vector subspaces is done by splitting any orthonormal
basis. With Cl (3, 1) the real basis consists of 1 and products of the vectors εi, i = 1, 2, 3. With Cl (1, 3) the
real basis consists of 1,ε0 and products of ε0 with the vectors εi, i = 1, 2, 3.

The Clifford algebra becomes a 8 dimensional complex vector space Cl (3, 1)C .
Elements of the Lie algebra T1Spin (3, 1) read :

υ (r, w) =
∑3

a=1 (ra + iwa)
−→κ a =

∑3
a=1 Z

a−→κ a = Z
and we have the formulas :
∀Z,Z ′ ∈ T1Spin (3, 1) :
Z ′ · Z = − 1

4Z
tZ ′ + 1

2 j (Z
′)Z

[υ (r, w) , υ (r′, w′)] = j (Z)Z ′

〈υ (r, w) , υ (r′, w′)〉 = ZtZ ′ = 1
4 (r + iw)

t
(r′ + iw′)

The elements of the Spin group read :
g = a+ υ (r, w) + bε5 = A+ Z
with A = a+ ib, Z = υ (r, w)
A2 = 1− 1

4Z
tZ

Ad is a complex linear map and its action on the Lie algebra reads :
[Adg]C [X ]C = [Ad (Z)] [X ]C =

(
1 +Aj (Z) + 1

2j (Z) j (Z)
)
[X ]C

The derivative of the differentiable map with any argument x : σ : E → Spin (3, 1) :: σ (x) reads :

∂σ
∂x · σ−1 = D (Z) ∂Z∂x
σ−1 · ∂σ∂x = D (−Z) ∂Z∂x

D (Z) = 1
A + 1

2j (Z) +
1
4Aj (Z) j (Z)

(40)

Moreover we have the identities :
∂A
∂x = − 1

4AZ
t ∂Z
∂x

∂Z
∂x =

(
A− 1

2j (Z)
)
∂σ
∂x · σ−1

D (Z) ∂Z∂x = 1
A
∂Z
∂x + 1

2

[
Z, ∂Z∂x

]
+ 1

4A

[
Z,
[
Z, ∂Z∂x

]]

∂
∂y

(
∂σ
∂x · σ−1

)
=
(
∂
∂yD (Z)

)
∂Z
∂x +D (Z) ∂

∂y
∂Z
∂x

[Ad (Z)] [D (Z)] = D (−Z)
D (Z)

−1
= A− 1

2j (Z)

9.4 Coordinates on the Clifford Algebra

The Clifford Algebra is a vector space, and any element can be represented as a vector with its components
in the canonic basis.

The Lie Algebra is a vector subspace, and we have the choice between :
υ (Xr, Xw) =

∑3
a=1X

a
r
−→κ a +

∑6
a=4X

a−3
w

−→κ a
and the complex representation : Z =

∑3
a=1 Z

a−→κ a
The Spin Group is not a vector space, but a 6 dimensional manifold embedded in the Clifford Algebra.

Its elements depend on 2 vectors of R3 : r, w but their meaning depend on the chart used.
i) The simplest chart is :
σ : R3 × R3 → Spin (3, 1) :: σ = a+ υ (r, w) + bε5
with a2 − b2 = 1 + 1

4 (w
tw − rtr)

ab = − 1
4r
tw

ii) The decomposition :
σ : R3 × R3 → Spin (3, 1) :: σ = σw · σr = (aw + υ (0, w)) · (ar + υ (r, 0))
with :
a2w = 1 + 1

4w
tw

a2r = 1− 1
4r
tr

Then σw, σr are defined up to the sign.
iii) The complex representation :

σ : C3 → Spin (3, 1) :: σ = A+
∑3
a=1 Z

a−→κ a
with : A2 = 1− 1

4Z
tZ,Z = r + iw
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The choice of the chart can be fitted to the problem at hand.

10 MOTION IN CLIFFORD ALGEBRAS

10.1 Description of the fiber bundles

From the principal bundle PG (M,Spin (3, 1) , πG) other fiber bundles can be defined.

Definition 24 The vector bundle TM defined through the tetrad of an observer is P
G

[
R4,Ad

]
: εi (m) =

(p (m) ,εi)

In a change of observer :

p (m) = ϕG (m, 1) → p̃ (m) = p (m) · χ (m)−1 : (p (m) , u) ∼
(
p̃ (m) ,Adχ(m)u

)

εi (m) = (p (m) , εi) → ε̃i (m) = Adχ(m)−1εi (m) =
∑3

j=0

[
h
(
χ (m)

−1
)]j

i
εj (m)

(41)

The formulas are the same as previously, the relation between εi (m) , ε̃i (m) is just explicit with Ad. In
P

G

[
R4,Ad

]
the components of vectors are measured in orthonormal bases.

ε0 (m) = (p (m) ,ε0) is the 4th vector both in the Clifford algebra and in the tangent space TmM. It
corresponds to the velocity of the observer : ε0 (qo (t)) =

1
c
dqo
dt is fixed along his world line.

The Lorentz scalar product on R4 is preserved by Ad thus it can be extended to P
G

[
R4,Ad

]
.

The gauge of an observer is defined by his tetrad : it is the physical link between the abstract fiber bundle
PG and the measures involving PG.

Because M is endowed with the structure of the principal bundle PG, there is a structure of Clifford
bundle Cl (TM) : a structure of Clifford algebra Cl ((TmM, g (m))) at each point m ∈ M, whose elements
are defined through products of vectors εi (m) , and it is isomorphic to Cl (3, 1) (Maths.2106). Pointwise the
Clifford product holds with the usual properties, and with the vectors defined in the tetrad.

Definition 25 The Clifford bundle Cl (TM) is the associated vector bundle PG [Cl (3, 1) ,Ad] defined

through the basis (εi (m))3i=0 .

A basis of Cl (TmM) is given by 1 and ordered products of ε0, ε1, ε2, ε3. It changes as ε̃i (m) =
Adχ(m)−1εi (m) and the components change as

[
Adχ(m)

]
X, the matrix

[
Adχ(m)

]
depending on X .

X (m) = (ϕG (m, 1) , X) ∼
(
ϕG

(
m,χ (m)

−−1
)
,Adχ(m)X

)

The observer uses the frame
(
O, (εi)

3
i=0

)
to measure the components of vectors of TM . The breakdown,

specific to each observer, comes from the distinction of his present, and is materialized in his standard basis
by the vector ε0 (m) .This choice leads to a split of the Spin group between the spatial rotations, represented
by Spin(3), and the homogeneous space SW = Spin (3, 1) /Spin (3) .

Any section σ ∈ X (PG) can be decomposed, for a given vector field ε0 and a fixed ǫ = ±1, in two sections
: ǫσw ∈ X (PW ) , ǫσr ∈ X (PR) with σ (m) = ǫσw (m) · ǫσr (m)

10.2 Motion of a particle

10.2.1 Arrangement of the particle

The fundamental assumption is the existence of an orthonormal basis (ei)
3
i=0 attached to the particle. At

each point it is measured in the vector bundle P
G

[
R4,Ad

]
. The basis (ei)

3
i=0 is deduced from the tetrad

(εi)
3
i=0 of the observer by an element σ ∈ Spin (3, 1) such that : ei = Adσεi and we define the arrangement

of the particle with respect to the observer O by σ.
The velocity of the particle reads in the tetrad at each point :
V = dq

dt = cε0 +
−→v =

∑3
j=0 U

jεj with U
j =

∑3
α=0 P

′j
α V

α

Because the velocity V of the particle is proportional to e0 we have :
V =

√
−〈V, V 〉e0 ⇔ U =

√
−〈V, V 〉Adσε0

and 〈V, ε0〉TM = −c =
√
−〈V, V 〉 〈Adσε0, ε0〉TM

〈Adσε0, ε0〉TM is the scalar product in the tetrad, so 〈Adσε0, ε0〉TM = 〈Adσε0, ε0〉Cl and does not
depend on the metric. Notice that Adσε0, ε0 are both vectors in the fixed vector space R4

⇒
√
−〈V, V 〉 = − c

〈Adσε0,ε0〉Cl

In a change of gauge :
p (m) = ϕG (m, 1) → p̃ (m) = p (m) · χ (m)

−1
: σ → σ̃ = χ (m) · σ
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(p (m) , ei) ∼
(
p̃ (m) ,Adχ(m)ei

)
=
(
p̃ (m) ,Adχ(m)Adσεi

)
= (p̃ (m) ,Adσ̃εi)

ei = Adσεi
V = dq

dt = cε0 +
−→v = − c

〈Adσε0,ε0〉Cl
Adσε0

(42)

With the chart : σ = σw · σr = ǫ (aw + υ (0, w)) · ǫ (ar + υ (r, 0)) with ǫ = ±1
U√

−〈V,V 〉
= e0 = Adσw·σr

ε0 = Adσw
Adσr

ε0 = Adσw
ε0 because σr ∈ T1Spin (3)

so : U√
−〈V,V 〉

= Adσw
ε0

The matrix of Adσw
is :

[h (σw)] =

[
2a2w − 1 aww

t

aww 2a2w − 1 + 1
2j (w) j (w)

]

U√
−〈V,V 〉

=
(
2a2w − 1

)
ε0 +

∑3
i=1 awwiεi =

(
2a2w − 1

)
ε0 + aww

with w =
∑3

i=1 wiεi
V = cε0 +

−→v ⇒
√
−〈V, V 〉 = c

2a2w−1

V = c
2a2w−1Adσw

ε0 = c
∑3
α=0

(
Pα0 (q (t)) + aw

2a2w−1

∑3
i=1 wi (t)P

α
i (q (t))

)
∂ξα

−→v = 0 ⇔ w = 0
V is determined by σw only. Meanwhile σ is uniquely defined by (ei)

3
i=0 , σw is defined up to the sign. In

all cases we have aw
∑3

i=1 wiεi = aw
−→w in the same direction as the spatial velocity, but this can be achieved

either by −→w in the same direction as the spatial velocity and aw > 0 or by −−→w and −aw. σr is similarly
defined up to the sign.

From the formula above V has the dimension of a spatial speed, and w is unitless, by the use of the
universal constant c, which provides a natural standard.

V = c
(
ε0 +

∑3
a=1

aw
2a2w−1waεa

)
(43)

With the complex chart :
σ = A+

∑3
a=1 Z

a−→κ a = a+ υ (r, w) + bε5
The matrix [h (σ)] has been given previously and :
Adσε0 = [h (s)] =

(
a2 + b2 + 1

4 (r
tr + wtw)

)
ε0 +

(
aw − br + 1

2j (r)w
)

a2 + b2 + 1
4 (r

tr + wtw) = AA+ 1
4Z

tZ

aw − br + 1
2j (r)w = − ImAZ − 1

4 Im j (Z)Z

Adσε0 =
(
AA+ 1

4Z
tZ
)
ε0 − Im

(
A+ 1

4j (Z)
)
Z

V = cε0 +
−→v =

√
−〈V, V 〉Adσε0√

−〈V, V 〉 = c
AA+ 1

4
ZtZ

V = c
(
ε0 − 1

AA+ 1
4
ZtZ

Im
(
A+ 1

4j (Z)
)
Z
)

(44)

−→v = 0 ⇔ w = 0 ⇔ A = ar, Z = r
r = 0 ⇔ A = aw, Z = iw
A = awar − i 14 (w

tr)
Z = awr + i

(
ar − 1

2j (r)
)
w

10.2.2 Motion

The tetrad attached to the particle is defined in the tetrad of the observer, and the motion is defined by
derivation with respect to a fixed observer. A continuous motion is such that the map : σ : R → Spin (3, 1)
with respect to the time t of the observer is smooth. From the definitions above (remember that the vectors
are defined in a fixed vector space) :

∀i = 0..3 : ei = Adσεi
dei
dt = d

dtAdσεi = Adσ
[
σ−1 · dσdt , εi

]
=
[
dσ
dt · σ−1,Adσεi

]
=
[
dσ
dt · σ−1, ei

]

V =
√
−〈V, V 〉Adσε0 =

√
−〈V, V 〉e0

dV
dt = d

dt

√
−〈V, V 〉e0 +

√
−〈V, V 〉de0dt

=

(
1√

−〈V,V 〉
d
dt

√
−〈V, V 〉

)√
−〈V, V 〉e0 +

√
−〈V, V 〉

[
dσ
dt · σ−1, e0

]

dV
dt =

(
1√

−〈V,V 〉
d
dt

√
−〈V, V 〉

)
V +

[
dσ
dt · σ−1, V

]
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√
−〈V, V 〉 = − c

〈Adσε0,ε0〉Cl

1√
−〈V,V 〉

d
dt

√
−〈V, V 〉 = 1

〈Adσε0,ε0〉Cl

〈
d
dtAdσε0, ε0

〉
Cl

= 1
〈Adσε0,ε0〉Cl

〈[
dσ
dt · σ−1,Adσε0

]
, ε0
〉
Cl

= 1
c

〈[
dσ
dt · σ−1,V

]
, ε0
〉
Cl

dV
dt = V

c

〈[
dσ
dt · σ−1,V

]
, ε0
〉
Cl

+
[
dσ
dt · σ−1, V

]

δRσ = dσ
dt · σ−1 is the right logarithmic derivative, and δLσ = σ−1 · dσdt is the left logarithmic derivative.

They both belong to T1Spin (3, 1) and are related by Adσ : δRσ = AdσδLσ ⇔ δLσ = Adσ−1δRσ. And we
define the motion (both translational and rotational) of the particle by dσ

dt · σ−1.

dσ
dt · σ−1 = υ (Xr, Xw)

∀i = 0..3 : deidt = [υ (Xr, Xw) , ei]
dV
dt = V

c 〈[υ (Xr, Xw) ,V ] , ε0〉Cl + [υ (Xr, Xw) , V ]

(45)

With σ = σw · σr = ǫ (aw + υ (0, w)) · ǫ (ar + υ (r, 0))
dσ
dt · σ−1 = υ (Xr, Xw) with

Xr = − 1
2j (w)

dw
dt +

[
1− 1

2j (w) j (w)
] (

1
ar

+ 1
2j (r) +

1
4ar

j (r) j (r)
)
dr
dt

Xw = 1
aw

(
1− 1

4j (w) j (w)
)
dw
dt + [awj (w)]

(
1
ar

+ 1
2j (r) +

1
4ar

j (r) j (r)
)
dr
dt

and the inverse relation reads, with some computation :
dr
dt =

(
1
ar

− 1
2j (r) +

1
4ar

j (r) j (r)
)(

Xr +
1
2

1
aw
j (w)Xw

)

dw
dt = −j (w)Xr +

(
aw − 1

4aw
j (w) j (w)

)
Xw√

−〈V, V 〉 = c
2a2w−1

dV
dt = cXw +

(
j (Xr)− (Xt

wv)
1
c

)
v with, in the tetrad : V = cε0 + v

dσ
dt · σ−1 = υ (Xr, Xw)

Xr = − 1
2j (w)

dw
dt +

[
1− 1

2j (w) j (w)
] (

1
ar

+ 1
2j (r) +

1
4ar

j (r) j (r)
)
dr
dt

Xw = 1
aw

(
1− 1

4j (w) j (w)
)
dw
dt + [awj (w)]

(
1
ar

+ 1
2j (r) +

1
4ar

j (r) j (r)
)
dr
dt

dV
dt = cXw +

(
j (Xr)− (Xt

wv)
1
c

)
v

(46)

With the complex formalism : σ = A+
∑3
a=1 Z

a−→κ a
σ = A+ Z
dσ
dt · σ−1 = D (Z) dZdt = Yr + iYw

[D (Z)]
−1

= A− 1
2j (Z)

dZ
dt = [D (Z)]−1 (Yr + iYw) =

(
A− 1

2j (Z)
)
(Yr + iYw)

dσ
dt · σ−1 = D (Z) dZdt = Yr + iYw
dZ
dt =

(
A− 1

2j (Z)
)
(Yr + iYw)

dV
dt = cYw +

(
j (Yr)− (Y twv)

1
c

)
v

(47)

10.2.3 Spin

The spin is a rotational motion. The spatial basis of the particle is deduced from the spatial tetrad by a
rotation of SO (3) :

[h(σr)] =

[
1 0
0 1 + arj (r) +

1
2j (r) j (r)

]

and the rotational motion can be defined as : dσr

dt · σ−1
r ∈ T1Spin (3) .

Meanwhile for the decomposition of σ we have the choice of ǫ and (r, w) ∼ (−r,−w) , the rotational motion
dσr

dt · σ−1
r does not depend on ǫ, but introduces a new factor with the derivative. In Galilean Geometry the

convention is that −ρ represents the opposite spin, with the same axis. In the Relativist framework, one can
distinguish the two rotations, because there is always a privileged direction (that of the velocity). One can
distinguish the two spin elements ±σr (which correspond to the same matrix of SO (3, 1)) and differentiate
the rotational motion from its opposite by fixing ǫ. If we impose that −→w is in the direction of −→v , then +ρ
and −ρ represent spinning with the same axis, but opposite rotations, or equivalently, to keep the usual
convention, rotations with opposite axis. These opposite rotational motions are usually called polarization
(spin “up” or “down”).

In Galilean Geometry two opposite rotational motions are the image of each other in a space inversion
(a symmetry with respect to a plan). In the Relativist Framework such an operation is a symmetry with
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respect to a spatial vector (and not the space inversion which is a symmetry with respect to Ω3 (t)). And
actually this is done through the choice of an orientation for −→w .

The vector r (t) ∈ R3, however the characteristic of the spin is dσr

dt · σ−1
r = υ (Xr, 0) ∈ T1Spin (3) and we

have seen that υ (Xr, 0) does not depend on the choice of a spatial basis. So we have the known paradox :
we have a quantity, the spin, which looks like a rotation, which can be measured as a rotation, but is not
related to a precise basis, even if its measure is done in one !

10.2.4 Estimates

It is useful to have estimates for w, using the spatial speed.

Let us denote : x = 1− ‖−→v ‖2

c2

With the representation σ = σw · σr = (aw + υ (0, w)) · (ar + υ (r, 0))

aw = ǫ

√
1
2

(
1√
x
+ 1
)
= ǫ 1√

2
x−1/4 (1 +

√
x)

1/2

w = ǫ
√
2

(
1− ‖−→v ‖2

c2 +

√
1− ‖−→v ‖2

c2

)−1/2
−→v
c

Usually
‖−→v ‖2

c2 ≪ 1 and we have the estimates :

aw ≃ ǫ

(
1 + 1

8

‖−→v ‖2

c2

)

w ≃ ǫ

(
1 + 3

8

‖−→v ‖2

c2

)
−→v
c

V ≃ c

(
ε0 + ǫ

(
1− 3

8

‖−→v ‖2

c2

)
−→w
)

A ≃ ǫar

(
1 + 1

8

‖−→v ‖2

c2

)
− i 14 ǫr

t−→v
c

Z ≃ ǫ

(
1 + 1

8

‖−→v ‖2

c2

)
r + i

(
ar − 1

2j (r)
)
ǫ
−→v
c

The derivative of w is given by the formula :

dw
dt =

[(
2a2w+1
4a3w

)
j
(−→v
c

)
j
(−→v
c

)
+
(

2a2w+1
4a3w

) ‖−→v ‖2

c2 +
2a2w−1
aw

] (
d
dt

−→v
c

)

dw
dt ≃

(
1 + 9

8

‖−→v ‖2

c2 + 3
4j
(−→v
c

)
j
(−→v
c

))(
d
dt

−→v
c

)

Xr ≃ − 1
2

(
1 + 3

4

‖−→v ‖2

c2

)
j
(−→v
c

)(
d
dt

−→v
c

)
+
[
1− 1

2j
(−→v
c

)
j
(−→v
c

)](
1
ar

+ 1
2 j (r) +

1
4ar

j (r) j (r)
)
dr
dt

Xw ≃
(
1 +

‖−→v ‖2

c2 − 1
2j
(−→v
c

)
j
(−→v
c

))(
d
dt

−→v
c

)
+

(
1 + 1

2

‖−→v ‖2

c2

)
j
(−→v
c

)(
1
ar

+ 1
2j (r) +

1
4ar

j (r) j (r)
)
dr
dt

The rotation of the spatial basis is usually measured by a matrix R (t) ∈ SO (3) based on a vector ρ ∈ R3 :

R (t) = exp j (ρ (t)) = I3 +
sin

√
ρtρ√

ρtρ
[j (ρ)] +

1−cos
√
ρtρ

ρtρ [j (ρ)] [j (ρ)]

[h(σr)] =

[
1 0
0 I3 + arj (r) +

1
2j (r) j (r)

]
=

[
1 0
0 R (t)

]

thus :

I3 +
sin

√
ρtρ√

ρtρ
[j (ρ)] +

1−cos
√
ρtρ

ρtρ [j (ρ)] [j (ρ)] = 1 + arj (r) +
1
2j (r) j (r)

I3 + arj (r) +
1
2j (r) j (r) has for eigen vector r with eigen value 1

exp j (ρ (t)) has for eigen vector ρ with eigen value 1
thus r = λρ
The sign of ar is fixed by ǫ, that is the orientation of w.

λ = ǫ

√
2
1−cos

√
ρtρ

ρtρ

ar = ǫ
sin

√
ρtρ√

2
(
1−cos

√
ρtρ

)

r = ǫ

√
2
1−cos

√
ρtρ

ρtρ

And :

σr = ǫ


 sin

√
ρtρ√

2
(
1−cos

√
ρtρ

) + υ

(√
2
1−cos

√
ρtρ

ρtρ , 0

)

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10.2.5 Jet representation

The motion of the particle is then fully represented by maps :
R →M :: q (t)
R → Spin (3, 1) :: σ (t)
R → T1Spin (3, 1) :: υ (Xr (t) , Xw (t))
Xr (t) , Xw (t) are independent maps and, in a continuous motion : υ (Xr (t) , Xw (t)) = dσ

dt · σ−1

This can be seen as a map : R → J1PG :: (q (t) , σ (t) , υ (Xr (t) , Xw (t))) with the 1st jet prolongation of
the fiber bundle PG (Maths.26). Both σ (t) , υ (Xr (t) , Xw (t)) belong to the Clifford algebra Cl (TM) located
at q (t) .

The trajectory is defined by the set of differential equations :
q (t) = ϕo

(
ξ0, ξ1, ξ2, ξ3

)
dq
dt =

dξα

dt = V
(
ϕo
(
ξ0, ξ1, ξ2, ξ3

))

q (0) = a
The arrangement of the particle is given by :
∀i = 0..3 : ei = Adσεi
All these components involve only σ (t) and not its derivative and change as :
dei
dt = [υ (Xr (t) , Xw (t)) , ei]
dV
dt = V

c 〈[υ (Xr, Xw) ,V ] , ε0〉Cl + [υ (Xr, Xw) , V ]

10.2.6 Example

Let be a particle moving on a circle in a plane around some point O. We can take for the observer a spherical
chart (even in the GR context) as defined before :

ξ1 = ρ cosφ cos θ, ξ2 = ρ cosφ sin θ, ξ3 = ρ sinφ, ξ0 = ct
We assume that ρ = Ct, φ = Ct = 0, θ (t) with ω = dθ

dt = Ct−→v = ρω (− sin θ, cos θ, 0)

‖−→v ‖2 =
∑3
αβ=1 gαβv

αvβ

If on Ω3 (t) : gαβ ≃ δαβ : ‖−→v ‖2 = ρ2ω2

aw =

√√√√1
2

(
1 + 1√

1− ρ2ω2

c2

)
≃
(
1 + 1

8
ρ2ω2

c2

)

w = 1√
1
2

√
1− ρ2ω2

c2

(
1+

√
1− ρ2ω2

c2

)
ρω
c (− sin θ, cos θ, 0) = w0 (− sin θ, cos θ, 0)

with w0 = 1√
1
2

√
1− ρ2ω2

c2

(
1+

√
1− ρ2ω2

c2

)
ρω
c ≃

(
1 + 1

8
ρ2ω2

c2

)
ρω
c

dσw

dt · σ−1
w = υ(− 1

2j (w)
dw
dt ,

1
aw

(
1− 1

4j (w) j (w)
)
dw
dt )

dw
dt = −w0ω




cos θ
sin θ
0




dσw

dt · σ−1
w = −ωw0υ


 1

2w0




0
0
1


 , 1

aw

(
1 + 1

4w
2
0

) cos θ
sin θ
0




≃ − ρω2

c

(
1 + 1

4
ρ2ω2

c2

)
υ


 1

2
ρω
c




0
0
1


 ,




cos θ
sin θ
0






The local tetrad of the observer in Ω3 (t) is (∂ξα)
3
α=1 . Let us assume that the orthonormal frame attached

to the particle has for components (their axis of rotation is orthogonal to the plan xy) :

e1 =




cos ζ (t)
sin ζ (t)

0


 , e1 =




− sin ζ (t)
cos ζ (t)

0


 , e3 =




0
0
1




[R (t)] =




cos ζ (t) − sin ζ (t) 0
sin ζ (t) cos ζ (t) 0

0 0 1




ar = ǫ
√

1
2 (1 + cos ζ)

r =




0
0

ǫ
√
2
√
1− cos ζ



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σr = ǫ
(√

1
2 (1 + cos ζ) + υ

((
0, 0,

√
2
√
1− cos ζ

)
, 0
))

If ζ (t) = ωrt

dr
dt =




0
0

ǫ
√
2 (1− cos ζ)

−1/2
(sin ζ)ωr




dσr

dt · σ−1
r = υ(

(
1
ar

+ 1
2j (r) +

1
4ar

j (r) j (r)
)
dr
dt , 0) = 2ωr




0
0
1




Adσw

(
dσr

dt · σ−1
r

)

= υ
([

1− 1
2j (w) j (w)

] (
1
ar

+ 1
2j (r) +

1
4ar

j (r) j (r)
)
dr
dt , [awj (w)]

(
1
ar

+ 1
2j (r) +

1
4ar

j (r) j (r)
)
dr
dt

)

The motion is then represented by :

υ



(
ωr

(
2 + ρ2ω2

c2

)
− 1

2
ρ2ω3

c2

)



0
0
1


 , ρωc (2ωr − ω)

(
1 + 1

4
ρ2ω2

c2

)



cos θ
sin θ
0






10.2.7 Periodic Motions

Periodic motions are of special interest because they can be seen as stable motions. A periodic, continuous,
motion is given by a map :

σ : R → Spin (3, 1) :: σ (t) = A (t)+Z (t) where Z (t+ T ) = Z (t) for some fixed period. Then A2 (t+ T ) =
1− 1

4Z (t+ T )
t
Z (t+ T ) = A2 (t)

Z can be written :
Z (t) =

∑
n∈Z

Ẑ (n) exp inωt with Ẑ (n) = 1
T

∫ T
0
Z (t) exp (−inωt)dt and ω = 2π

T

Z (0) =
∑
n∈Z

Ŝ (n)

A (t) =
∑

n∈Z
Â (n) exp inωt with Â (n) = 1

T

∫ T
0 A (t) exp (−inωt)dt

A (t)
2
= 1− 1

4Z (t)
t
Z (t)

Z (t)
t
Z (t) =

∑
n∈Z

∑
p∈Z

Ẑ (n− p)
t
Ẑ (p) exp inωt = 4

(
1−∑n∈Z

∑
p∈Z

A (n− p)A (p) exp inωt
)

n 6= 0 :
∑
p∈Z

Ẑ (n− p)
t
Ẑ (p)− 4A (n− p)A (p) = 0∑

p∈Z
Ẑ (−p)t Ẑ (p)− 4A (−p)A (p) = 4

We do not have necessarily Ẑ (n)
t
Ẑ (n) = 4

(
1− Â (n)

2
)
so Â (n) + Ẑ (n) does not necessarily belong to

Spin (3, 1) .
We have similarly :
dσ
dt · σ−1 = δZ (t) =

∑
n∈Z

δ̂Z (n) exp inωt

with δ̂Z (n) = 1
T

∫ T
0
δZ (t) exp (−inωt)dt

In a continuous motion :
δZ (t) = D (Z (t)) dZdt∑
n∈Z

δ̂Z (n) exp inωt = iωD (Z (t))
∑

n∈Z
nẐ (n) exp inωt

δ̂Z (n) = iωnD (Z (t)) Ẑ (n)
The periodicity is assumed with respect to the time and the orthonormal basis of an observer, whatever

it is : there is no assumption about the evolution of the tetrad [Pαi ] with t, but of course to be consistent we
must assume that the physical conditions at q (t+ T ) are the same as at q (t) . Anyway the path followed by
the particle cannot be a loop in Relativity. For a bonded particle the motion sums up to a rotational motion,
that is to its spin.

10.3 Motion of material bodies

It is possible to extend the concept of deformable solid to the framework of RG.

10.3.1 Representation of trajectories by sections of the fiber bundle

In the previous formula :
V = dq

dt = cε0 +
−→v = − c

〈Adσε0,ε0〉Cl
Adσε0

the tangent to the curve with path : q : R → M :: q (t) is defined through a map : σ : R → PG :: σ (t) =
ϕG (q (t) , σ (t)) .

This can be extended to a section : σ :: M → PG :: σ (m) = ϕG (m,σ (m))
For any function : f :M → R :: f (m) the map :
W :M → PG

[
R4,Ad

]
:: W (m) = f (m)Adσ(m)ε0 (m) =

(
p (m) , f (m)Adσ(m)ε0

)
is well defined.
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U (m) = f (m)Adσ(m)ε0 ∈ R4 that is a fixed vector space : U (m) = f (m) [h (σ (m))] ε0 with the matrix
[h (σ (m))] ∈ SO (3, 1) .

This is a section of PG
[
R4,Ad

]
:W ∈ X

(
PG
[
R4,Ad

])
.

In a change of gauge :
p (m) = ϕG (m, 1) → p̃ (m) = p (m) · χ (m)

−1
: σ (m) → σ̃ = χ (m) · σ (m)

(p (m) ,W (m)) ∼
(
p̃ (m) ,Adχ(m)W (m)

)
=(

p̃ (m) , f (m)Adχ(m)Adσ(m)ε0
)
=
(
p̃ (m) , f (m)Adσ̃(m)ε0

)

W (m) defines a vector field on TM by the projection :
πG : PG →M :: π (ϕG (m, g)) = m

V (m) = π′ (m)W (m) = f (m) [h (σ (m))] ε0 (m) = f (m)
∑3

i=0 [h (σ (m))]
i
0 [P (m)]

α
i ∂ξα (m)

This vector field defines integral curves : q : R → M :: q (τ) = ΦV (τ, a) passing through a ∈ M fixed.
And by definition :

dq
dt = V (q (τ)) = f (q (τ))Adσ(q(τ))ε0 (q (τ)) .

〈V (q (τ)) , V (q (τ))〉TM =
〈
f (q (τ))Adσ(q(τ))ε0 (q (τ)) , f (q (τ))Adσ(q(τ))ε0 (q (τ))

〉
TM

= f (q (τ))2 〈ε0 (q (τ)) , ε0 (q (τ))〉TM = −f (q (τ))2
because Ad preserves the scalar product.
〈V (q (τ)) , ε0〉TM = f (m)

〈
Adσ(q(τ))ε0 (q (τ)) , ε0 (q (τ)) .

〉
TM

= f (m)
〈
Adσ(q(τ))ε0, ε0

〉
Cl

= f (m)
〈(
2a2w − 1

)
ε0, ε0

〉
Cl

= −f (m)
(
2a2w − 1

)
(
2a2w − 1

)
= 2

(
1 + 1

4w
tw
)
− 1 = 1 + 1

4w
tw > 0

thus the path is future oriented if f (m) > 0.
If we take : f (m) = c then V is a field of world lines, for any observer.
And with : f (m) =

√
−〈V (q (t)) , V (q (t))〉TM then it defines a field of trajectories of particles, which

do not cross, as measured by any observer (who defines t).

Theorem 26 Any section σ ∈ X (PG) defines, for any positive function f ∈ C∞ (Ω;R+) and observer, a
vector field V ∈ X

(
PG
[
R4,Ad

])
by :

V (m) = f (m)Adσ(m)ε0 (m)

which can represent a field of world lines for f (m) = c, and, for any observer, a field of trajectories with
f (m) =

√
−〈V (q (t)) , V (q (t))〉TM .

Remarks :
i) There is a unique vector field : V (m) = f (m)Adσ(m)ε0 (m) does not depend on the decomposition

σr, σw. The spatial speed is the vector : v = ǫ
√
1 + 1

4w
tw
∑3

i=1 wiεi so the definition of w (that is of one of

the two σw) depends of ǫ : ǫ = +1 if
∑3

i=1 wiεi is in the direction of the spatial speed, and ǫ = −1 is in the
opposite direction.

ii) All this is defined with respect to an observer, who fixes ε0 (m) .The speed is measured with the time
t of the observer.

iii) Any map σ : R → PG is projected on M as a curve, which is not necessarily time like.

Conversely

Theorem 27 For any time like, future oriented vector field V ∈ X (TM) there is a section σw ∈ X (PW ) ,
defined up to sign, such that :

V (q (τ)) =
√
−〈V (q (τ)) , V (q (τ))〉TMAdσw(q(τ))ε0 (q (τ)) along the integral curves of V.

Proof. The parameter τ of the path along the integral curves is defined up to an additive constant. So
V (q (τ)) , f (q (τ)) =

√
−〈V (q (τ)) , V (q (τ))〉TM are well defined for any integral curve by the condition

ΦV (0, a) = a.
In the associated bundle PG

[
R4, Ad

]
:

V (q (τ)) = (p (q (τ)) , U (q (τ))) with U (q (τ)) =
∑3

j=0 Ujεj
The condition U (q (τ)) = f (q (τ))Adσ(q(τ))ε0 reads in coordinates : σw = (aw + υ (0, w))

[Adσw
] = [h (σw)] =

[
2a2w − 1 aww

t

aww 2a2w − 1 + 1
2j (w) j (w)

]

U
f =

(
2a2w − 1

)
ε0 + aw

∑3
j=1 wjεj

U0

f = 2a2w − 1

〈U, ε0〉 = 〈V, ε0 (q (τ))〉 = −U0

f < 0 ⇒ U0

f + 1 > 0
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aw = ǫ

√
1
2

(
U0

f + 1
)

i = 1, 2, 3 : wi =
1
fUi/aw

In a change of gauge on PG :
V (m) = f (m) (p (m) ,Adσw

ε0) = f (m)
(
p (m) · χ−1,Adσ̃w

ε0
)

= f (m)
(
p (m) ,Adχ−1Adσ̃w

ε0
)
= f (m)

(
p (m) ,Adχ−1·σ̃w

ε0
)

χ−1 · σ̃w = σw ⇔ σ̃w = χ · σw
A field of world lines is represented by a vector field future oriented such that : 〈V (m) , V (m)〉TM = −c2
For a given observer, the trajectories of particles whose trajectories do not cross (such as a beam of

particles) can be represented by a vector field, future oriented, such that 〈V (m) , V (m)〉TM < 0.
So they can both be represented by a section σw ∈ X (PW ) , up to sign.
V = cε0 +

−→v =
(
2a2w − 1

)
ε0 + aw

−→w
If aw > 0 then −→w is oriented as −→v , and has the opposite direction if aw < 0.
If V is past oriented (u0 < 0) or null (〈V, V 〉 = 0) there is no solution :
2a2w − 1 = 1

2 (u0 − 1) < − 1
2 ⇒ a2w < 1 and a2w 6= 1 + 1

4w
tw

10.3.2 Representation of material bodies in GR

In Mechanics a material body is comprised of “material points” that is elements of matter whose location
is a single geometric point, and change with time in a consistent way : their trajectories do not cross, and
the body keeps some cohesion, which is represented by a deformation tensor for deformable solids. So a
material body can be represented in GR by a field of vectors U , future oriented with length 〈U,U〉 = −c2,
such that, at some time 0, the particles are all together in a compact subset ̟ (0) of a 3 dimensional space
like submanifold.

The proper time τ is, up to an additive constant, a characteristic of the vector field so, if the time τ = 0
is defined by ̟ (0) , at any given time τ the location of the body itself is ̟ (τ) = {ΦU (τ, a) , a ∈ ω (0)} .

Definition 28 A material body B is defined by a field of vectors U , future oriented with length 〈U,U〉 =
−c2, and a compact subset ̟ (0) of a 3 dimensional space like submanifold. The body is located at its proper
time τ on the set ̟ (τ) = {ΦU (τ, a) , a ∈ ω (0)} diffeomorphic to ̟ (0) .

The definition of a material body is intrinsic : the vector field U and the submanifold ̟ (0) do not depend
on a chart or an observer.

The area swept by the body is ω̂ = {ΦU (τ, a) : τ ∈ R, a ∈ ω (0)} , which is a manifold with chart ΦU (τ, a) .
For any observer O the material body is seen at the time t as the set ω̂ ∩ Ω3 (t) . The material points

are not labeled by the same location : for the observer their trajectories is ΦV (t, x) with the vector field
V : U = 1√

−〈V,V 〉
V and x ∈ Ω3 (0) . So actually the characterization of a material body is observer dependant :

they do not see the same body. It coincides with B only for the observers such that τ = t⇒ ε0 (m) = U (m) .
Conversely given a material body there is a family of observers B for which ̟ (t) = ̟ (τ) and one says that
they are “attached” to the material body (they are not necessarily physically on the material body, but their
velocities must be identical).

This general definition applies to solids, in the usual meaning, but also to fluids, which are composed of
material points which travel along trajectories which do not cross.

A material point x ∈ ω (0) is transported along the integral curve of U : ΦU (τ, x) ∈ ω (τ) . Let (ei (τ, x))
3
i=0

be a tetrad attached to the material point x ∈ ω (0) . The vector ei (τ, x) is transported as : Φ′
Ux (τ, x) ei (0, x)

along the integral curve. If U is not a Kiling vector field the set (ei (τ, x))
3
i=0 is not an orthonormal basis. So,

to be consistent, we have to assume that, in addition to the vector field U, there is a map which transports
the tetrad of the material points : that is a section σ ∈ X (PG) . Then the vector field U can be defined from
σ as above.

10.3.3 Representation of a deformable solid by a section of PG

To any section of PG and any observer O(ε0) is associated a unique field V of trajectories. Then to any
compact subset ̟̂ of Ω3 (0) is attached a material body B, with the same proper time t as O. The tetrads of
O are arbitrary, but σ (m) defines at each point of B an orthonormal basis, whose arrangement with respect
to O is given by σ (m) :

ei (m) = Adσ(m)εi (m)
The trajectories of the material points are given by V = c

2a2w−1Adσ(m)ε0 (m) : they do not have necessarily

the same spatial speed : 〈V, V 〉 = −
(

c
2a2w−1

)2
.
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There are 2 solutions for the decomposition of σ, however, to be consistent with the definition for a single
particle, −→w must be oriented in the direction of the spatial speed −→v , then the spin is defined as above, the
orientation of the axis gives the rotational speed.

In Galilean Geometry the deformation tensor is defined by the change ∂
∂tei (q, t) of ei (q, t) with respect

to ei (q, t) . The equivalent in our framework is dσ
dt · σ−1 =

∑3
α=0 V

α∂ασ · σ−1 whose matrix is
[υ (Xr, Xw)] = [K (Xw)] + [J (Xr)] ∈ so (3, 1) :

[K (Xw)] =

[
0 Xt

w

Xw 0

]
, [J (Xr)] =

[
0 0
0 j (Xr)

]

The deformation tensor has a symmetric ([K (Xw)]) and an antisymmetric ([J (Xr)]) part, as the usual
deformation tensor.

And we can state :

Definition 29 A deformable solid is a material body, represented by a vector field U future oriented with
〈U,U〉 = −c2, a compact subset ̟ (0) of a 3 dimensional space like submanifold and a section σ ∈ X (PG)
such that : U (m) = Adσ(m)ε0 (m) for the observers ε0 attached to the body.

Conversely a section σ ∈ X (PG) and a compact subset ω of M defines for any observer a deformable
solid. It belongs at t to the subsets {ϕO (x, t) , x ∈ ω ∩Ω3 (0)} .

The motion of a material body is then defined by a section of the 1st jet prolongation of PG :
σ ∈ X (PG) → J1σ =

(
m,σ (m) , ∂ασ · σ−1, α = 0...3

)
∈ J1Cl (TM)

By definition the motion is continuous : υ (Xrα, Xwα) = ∂ασ · σ−1.
The field of trajectories of the material points is :
V = dq

dt = cε0 +
−→v = − c

〈Adσε0,ε0〉Cl
Adσε0

∀i, α = 0..3 :
∂αei = [υ (Xrα, Xwα) , ei]
∂αV = V

c 〈[υ (Xrα, Xwα) ,V ] , ε0〉Cl + [υ (Xrα, Xwα) , V ]

and along the trajectories : d
dt =

∑3
α=0 V

α∂α

It is usually more convenient to define a deformable solid from the point of view of an observer B attached
to the solid : ε0 = U, and do the computations in a spherical system of coordinates. Then proceed to a
change of gauge to represent the motion of the solid from the point of view of another observer. It requires
just the map χ : B →O ∈ Spin (3, 1) . The composition of motions in the GR framework is thus easy.

The arrangement of each individual particle, represented by σ, is not necessarily identical. A rigid solid
can be defined as a solid such that the motion is identical at each point :

∀x ∈ ω (0) : dσdt · σ−1 (ΦV (t, x)) = υ (Yr (t) , Yw (t))
⇔ σ (ΦV (t, x)) = s (t) · σ (ΦV (0, x)) with s (t) ∈ Spin (3, 1)
and s (t) represents the arrangement of the rigid solid with respect to the observer. Then the deformation

tensor depends only on t.
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Part III

KINEMATICS

Fields acts on particles by forces which change the motion of particles, according to kinematic characteristics
of these particles. They are expressed as mass and inertial tensors, from which are defined translational
and rotational momenta. Newtonian Mechanics has developed a comprehensive and sophisticated theory
of Kinematics, and Analytic Mechanics has provided much of the initial framework for QM. Relativity
introduces a totally new concept of motion, which is now absolute in a quadridimensional universe, and the
usual concept of rigid solid does not hold any longer. If the usual concepts of Kinematics can more or less
be fitted to Special Relativity, General Relativity requires a totally new approach, with spinors, which have
been introduced, by a very different way, in the.Quantum Theory of Fields.

As we have done for the Geometric concepts, it is useful to rediscover the main concepts of Kinematics
in Newtonian Mechanics.

11 USUAL REPRESENTATIONS

11.1 In Newtonian Mechanics

Motion and momentum are two different, but related, physical quantities. They are measured by different
protocols. Momenta can be computed but actually this is the change in the value of the momenta which is
measured, through inertial forces which express the resistance of a material body to change its motion.

As for motion, there is a translational momentum and a rotational momentum, to which are associated
linear forces (or “forces”) and torques.

The balance of energy exchanged by a material body with the forces exercised on it is then expressed by
the kinetic energy, and there are a translational and a rotational kinetic energy.

The picture is clear for rigid solids, but can be extended to deformable solids, which are of a greater
interest because they can be defined in the relativist context.

11.1.1 Translational Momentum

To a material point with massm and speed −→v = dq
dt is associated the translational momentum −→p = m−→v . And

the Fundamental Law of Mechanics states the relation
−→
F = d−→p

dt between a force exercised on the material
point and the change of its momentum. The assumption that m is a scalar constant leads then to a direct
relation between the force and the motion. So a change of motion can be measured (by accelerometers as in
smartphones) without any measure of the motion, even by an observer attached to the material body. And

if
−→
F = 0 then the momentum is constant.
For a system of material points the picture is more complicated, because actually the forces are localized

quantities : they should be represented, not by a single vector
−→
F , but by a couple

(
q,
−→
F
)
. However Galilean

Geometry has the special feature (because it is represented as an affine space) that one can define a center

of mass G for any system of material points : (
∑
ama)

−−→
OG =

∑
ama

−−→
OMa. Then the system is equivalent to

a particle of mass
∑

ama located at G and the sum
−→
F G =

∑
a

−→
F a, exercised at G, has a physical meaning.

And the Law of Mechanics can be written :∑
a
d−→p a

dt = d−→p G

dt =
−→
F G

11.1.2 Torque

Another consequence of the localization of the forces is the existence of torques, similar to forces, but which
are distinct physical quantities.

For a force
(
Ma,

−→
Fa

)
the torque is defined with respect to any point fixed O by τa (O) =

−−−→
OMa × −→

Fa

with the cross product. τa (O) reads : τa (O) = j
(−−−→
OMa

)−→
Fa = j

(−→
Fa

)−−−→
MaO so this is actually an operator,

acting on O, with an antisymmetric matrix, which can then be represented by a vector of R3 with the usual
convention. As with the translational momentum, the rotational momentum is defined by :

Γa (O) = j
(−−−→
OMa

)−→pa = maj
(−−−→
OMa

)(
d
dt

−−→
OMa

)

d
dtΓa (O) = j

(
d
dt

−−−→
OMa

)−→pa + j
(−−−→
OMa

)
d
dt
−→pa = τa (O)

Because in Galilean Geometry one can define a center of mass :

Γa (O) = j
(−−→
OG
)−→pa + j

(−−−→
GMa

)−→pa
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∑
a Γa (O) = j

(−−→
OG
)∑

a
−→pa +

∑
a j
(−−−→
GMa

)−→pa =
∑

a j
(−−−→
GMa

)−→pa
=
∑

a j
(−−−→
GMa

)
ma

(
d
dt

−−→
OG+ d

dt

−−→
GMa

)
=
∑
a j
(−−−→
GMa

)
ma

d
dt

−−→
GMa =

∑
a Γa (G)

and one can define a total torque :
τ =

∑
a τa (O) =

∑
a τa (G)

For a rigid solid :−−−−−−−−→
G (t)Ma (t) = R (t)

−→
Xa with

−→
Xa = Ct∑

a Γa (G) =
∑
amaj

(−−−→
GMa

)
d
dt

−−−→
GMa =

∑
amaj

(
R (t)

−→
Xa

)
dR
dt

−→
Xa

=
∑

amaj
(
R (t)

−→
Xa

)
R (t)R (t)

−1 dR
dt

−→
Xa

= R (t)
∑

amaj
(−→
Xa

)
R (t)

−1 dR
dt

−→
X a

= R (t)
∑

amaj
(−→
Xa

)
j (r (t))

−→
Xa = −R (t)

∑
amaj

(−→
X a

)
j
(−→
Xa

)
r (t)

[J ] = −∑amaj
(−→
X a

)
j
(−→
X a

)
is a fixed symmetric matrix, the rotational tensor, and [J ] r (t) is the

rotational momentum.4∑
a Γa (G) = R (t) [J ] r (t)

and
∑

a τa (G) =
dR
dt [J ] r (t) +R [J ] drdt = R

(
j (r) [J ] r + [J ] drdt

)

11.1.3 Kinetic energy

Mechanical Energy is defined as the work done by a force along a path : W =
∫ q2
q1

〈−→
F ,

−→
dq
〉

thus with
−→
F = d−→p

dt :

W =
∫ t2
t1

1
m

〈−→p , d−→pdt
〉
dt = 1

2

∫ t2
t1

1
m

d
dt 〈−→p ,−→p 〉 dt which leads to the definition of the variation of kinetic

energy : δK = 1
m

〈−→p ,−→δp
〉
, that is the energy that the body exchanges with the exterior in a change

−→
δp of

momentum, and the kinetic energy K = 1
2m 〈−→p ,−→p 〉 when, in a continuous motion,

−→
δp = d−→p

dt . It is defined
with respect to an observer, as well as −→p .

Kinetic energy being a scalar one can sum the kinetic energy related to the translational momentum of
a set of material points :

K =
∑
a

1
2ma

〈−→pa,−→pa〉
=
∑

a
1
2ma

〈
d
dt

−−→
OG+ d

dt

−−→
GMa,

d
dt

−−→
OG + d

dt

−−→
GM

〉

=
∑

a
1
2ma

〈
d
dt

−−→
OG, ddt

−−→
OG
〉
+ 2

∑
a

1
2ma

〈
d
dt

−−→
OG, ddt

−−−→
GMa

〉
+
∑

a
1
2ma

〈
d
dt

−−→
GMa,

d
dt

−−−→
GMa

〉

= 1
2M ‖−→vG‖2 +

∑
a

1
2ma

〈
d
dt

−−→
GMa,

d
dt

−−−→
GMa

〉

For a solid :−−−−−−−−→
G (t)Ma (t) = R (t)

−→
Xa〈

d
dt

−−→
GMa,

d
dt

−−−→
GMa

〉
=
〈
dR
dt

−→
Xa,

dR
dt

−→
Xa

〉
=
〈
R−1 dR

dt

−→
Xa, R

−1 dR
dt

−→
Xa

〉
=
〈
j (r)

−→
Xa, j (r)

−→
Xa

〉

=
〈
j
(−→
Xa

)
r, j
(−→
Xa

)
r
〉
= [r]t

[
j
(−→
X a

)]t [
j
(−→
Xa

)]
[r] = − [r]t

[
j
(−→
X a

)] [
j
(−→
Xa

)]
[r]

∑
a

1
2ma

〈
d
dt

−−→
GMa,

d
dt

−−−→
GMa

〉
= 1

2 [r]
t
[J ] [r]

K = 1
2M ‖−→vG‖2 + 1

2 [r]
t [J ] [r]

And the variation of rotational kinetic energy is :
d
dt

(
1
2 [r]

t
[J ] [r]

)
= 1

2

[
dr
dt

]t
[J ] [r] + 1

2 [r]
t
[J ]
[
dr
dt

]

The torque on the solid :
τ (G) =

∑
a τa (G) =

d
dt (R (t) [J ] r (t)) = R

(
j (r) [J ] r + [J ] drdt

)

[J ] drdt = Rt [τ (G)]− j (r) [J ] r
1
2

[
dr
dt

]t
[J ] [r] = 1

2

(
[τ (G)]tR+ [r]t [J ] j (r)

)
[r]

1
2 [r]

t
[J ]
[
dr
dt

]
= 1

2 [r]
t
(
[R]

t
[τ (G)]− j (r) [J ] [r]

)

d
dt

(
1
2 [r]

t
[J ] [r]

)
= 1

2 [τ (G)]
t
[R] [r] + 1

2 [r]
t
[J ] j (r) [r] + 1

2 [r]
t
[R]

t
[τ (G)]− 1

2 [r]
t
j (r) [J ] [r]

d
dt

(
1
2 [r]

t
[J ] [r]

)
= [r]

t
[R]

t
[τ (G)] is the work done by the torque τ (G)

δK = 1
m

〈−→p ,−−→δpG
〉
+ [r]t [R]t [δΓ (G)]

4Matrices like j (X) j (X) have negative eigen values, so the minus sign induces positive momenta along the eigen vectors.
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The representation and computations above rely heavily on the existence of a center of mass, the fact
that SO (3) has the same dimension as the space R3, and on the properties of solids. However the definitions
can be extended to deformable solids.

11.1.4 Density

Material bodies consist of material points, so it is natural to introduce a density µ, seen as the number of
identical material points at the same location x at the time t : µ (x, t). With a volume form ̟3 = ε1∧ε2∧ε3
the density defines a measure µ̟3 such that the mass of the material body in an area Ω at t is M (t) =∫
Ω
µ (x, t)̟3 (x) .
In the model of deformable solid introduced previously a material point is labeled by its position q at t = 0

and its position at t is given by a differentiable map : X (q, t) = φ (q, t) . A basis, ei attached at q, orthonormal
at t = 0 is transported by φ′q (q, t) : ei (q, t) = φ′q (q, t) ei (q, 0) . It is no longer orthonormal at t and defines a

metric gij (q, t) = 〈ei (q, t) , ej (q, t)〉 and a volume form ̟ (q, t) =
√
det gε1∧ε2∧ε3 = detφ′q (q, t) ε1∧ε2∧ε3.

̟ (q, t) is just the push forward of ̟3 by φ. The material points which occupy a volume ε1 ∧ ε2 ∧ ε3 at
t = 0 occupy a volume detφ′q (q, t) ε1 ∧ ε2 ∧ ε3 at t. Then the conservation of mass, which is equivalent to the
conservation of the number of particles, leads to :

∂
∂t

(
µ (q, t) detφ′q (q, t)

)
= 0

∂µ
∂t detφ

′
q + µ

(
detφ′q

)
Tr
([

∂
∂tφ

′
q

] [
φ′q
]−1
)
= 0

The trajectories of the particles are : ∂
∂tX (q, t) = ∂

∂tφ (q, t)

Let us define : V : R3 × R → R3 ::
−→
V (x, t) such that :

−→
V (X (q, t) , t) = ∂

∂tX (q, t) . It is called the “flow
velocity”.

⇒ ∂2φi

∂t∂qk
(q, t) = ∂Vi

∂qk
=
∑3
j=1

∂Vi

∂xj

∂xj

∂qk
=
∑3

j=1
∂Vi

∂xj

∂φj

∂qk

⇒
[
∂
∂tφ

′
q

]
=
[
∂V
∂x

] [
∂φ
∂q

]

Tr
([

∂
∂tφ

′
q

] [
φ′q
]−1
)
= Tr

[
∂V
∂x

]
= div

−→
V

and we get the continuity equation : ∂µ
∂t + µdiv

−→
V = 0.

The reasoning is done usually for fluids but it holds for a deformable solid.

11.1.5 Stress tensor, Energy-momentum tensor

The motion of each material point of a deformable solid can be represented by :

- a translation, given by dq
dt =

∂
∂tφ (q, t) =

−→
V (X (q, t) , t)

- a deformation of its orthonormal basis (ei (q, t))
3
i=1 given by : ∂

∂tei (q, t) = [γ (q, t)] ei (q, t) with the

deformation tensor [γ] =
[
φ”qt (q, t)

] [
φ′q (q, t)

]−1
= [∂xV ] which can be decomposed in a symmetric part

[s] = 1
2

(
[γ] + [γ]t

)
and an antisymmetric part [j (ρ)] = 1

2

(
[γ]− [γ]t

)

The usual momentum of the material point is :
−→p (q, t) = µ (q, t) dqdt = µ (q, t)

−→
V (X (q, t) , t) .

The deformation of the solid is the effect of forces, or conversely the solid opposes forces to its deformation.
From :

d
dt (µ (q, t)V (X (q, t) , t)) = dµ

dt V + µ ([∂xV ] [φ′t] + [∂tV ]) = dµ
dt V + µ (([s] + [j (ρ)])V + [∂tV ])

one can identify :

- a force corresponding to a variation of the translational momentum : µ
[
∂t
−→
V
]

- the forces, similar to a pressure (they act symmetrically), opposed to the variation of the volume :
dµ
dt V + µ [s]V = µ ([s]− divV )V
- a torque µ [j (ρ)]V
The variation of the kinetic energy can be computed as above.
dK
dt = 1

2
1
µ

〈−→p (q, t) , ddt
−→p (q, t)

〉
= 1

2 [V ]t {µ [∂tV ] + µ ([s]− divV ) V + µ [j (ρ)]V }
= 1

2µ [V ]
t
[∂tV ] + 1

2µ [V ]
t
[s] [V ]− 1

2µ (divV ) [V ]
t
[V ] + µ 1

2 [V ]
t
[j (ρ)]V

and we have a kinetic energy corresponding to the rotational momentum µ 1
2 [j (V )] ρ.

This is usually written with a “stress tensor” T = T ijε
j ⊗ εi such that the forces, on the surface dσ with

normal −→n , opposing the deformation (the “stress”), are
−→
dF = T (−→n ) =

∑3
i,j=1 [T ]

i
j [n]

j εidσ.
By considering a small volume Ω with border ∂Ω :
- the sum of the stress on Ω is :∫
∂Ω

∑3
i,j=1 [T ]

i
j [n]

j εidσ =
∫
∂Ω

〈∑3
i=1 [T ]

i εi,
−→n
〉
dσ =

∫
Ω

−−→
dFv̟3 that is a force by unit of volume

−→
dF v =

∑3
j=1 div

(∑3
i=1 [T ]

i
j εi

)
εj
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- the torque with respect to the origin :

τ (O) =
∫
∂Ω

−→
X ×∑3

i,j=1 [T ]
i
j [n]

j
εidσ =

∫
∂Ω

〈
j (X)

∑3
i=1 [T ]

i
εi,

−→n
〉
dσ =

∫
Ω dτ̟3

with the fixed orthonormal basis εj

dτ =
∑3

i,j=1 div
(
j (X)

∑3
i=1 [T ]

i
j εi

)
εj =

∑3
i,j=1

∂
∂xi

([
j (X) [T ]j

])i
εj

=
∑3

i,j=1 j (εi) [T ]j εj + j (X)
∑3

i,j=1

[[
∂
∂xi

T
]i
j

]
εj

=
∑3

i,j=1 j (εi) [T ]
i
j εj +

−→
X ×−→

dF v

Thus there is an elementary torque located at X equal to
∑3
i,j=1 j (εi) [T ]

i
j εj

11.1.6 Symmetries

Symmetries have a meaning only for rigid solid. A solid presents a symmetry if it looks the same for a class
of observers : a rotation of the spatial basis of the observer, belonging to a subgroup of SO(3) gives the same
measure. So we can have spherical symmetry (the whole of SO(3)) or cylindrical symmetry (rotations with
a fixed axis). However there is an intriguing question : which is the measure involved ? It can be a visual
look, that is the shape of the body, and it refers to the value of a density function µ at the border of ω, the
3 dimensional volume of the body. But a more meaningful criterion is a kinematic symmetry, which can be
measured by the rotational momentum of the solid :∑

a Γa (G) = R (t) [J ] r (t)
In a change of observer given by a global rotation g ∈ SO (3) :

R→ R̃ = gR,

R−1 dR
dt = j (r) → R̃−1 dR̃

dt = j (r)
∑
a Γa (G) → R̃ (t) [J ] r (t) = g

∑
a Γa (G)

Notice that the instantaneous motion (represented by r) does not change. There is a symmetry if :
gR (t) [J ] r (t) = R (t) [J ] r (t)
that is if R (t) [J ] r (t) is an eigen vector of g, the only real eigen vector of g is given by the axis with

the eigen value 1. The matrix [J ] is symmetric, and has 3 orthogonal eigen vectors ra, with real eigen
values λa. If the motion is a constant rotation with axis one of this eigen vectors ra, then R (t) [J ] r (t) =
λa (exp tra) ra = λara and there is a symmetry for g = exp ra .

11.1.7 Energy momentum tensor

A more general way to deal with these issues is with the “Energy-Momentum” tensor, which comes from the
Principle of Least Action. A system represented by variables zi (m) , i = 1...N defined over a manifold with

coordinates (ξα)
3
α=1 , and their first partial derivatives ziα (m) is endowed with a scalar lagrangian such that

the equilibrium is reached when the functional
∫
Ω
L
(
zi (m) , ziα (m)

)
̟ (m) is stationary. Then the quantity

:
T =

∑
iαβ

∂L
∂ziα

zβi ∂ξα ⊗ dξβ

is a tensor, called the Energy-Momentum tensor. The Lagrangian has the meaning of the energy of the
system, and a change δzi =

∑
β z

i
βδv

β of the variables zi (m) along δv =
∑3
β=0 v

βδξβ changes the energy by

δℓ =
∫
Ω div (T (δv))̟ so that T (δv) can be seen as a reaction of the system to a change by δv, that is as

a force. Then the quantities Πi =
∑

αβ
∂L
∂ziα

zβi ∂ξα ⊗ dξβ are the momenta associated to the scalar variable

zi. They are the generalized definition of the translational and rotational momenta, as they apply for any
motion. If z =

(
zi
)n
i=1

are the components of a vector in some vector space E then there is a momentum Πz
expressed as a tensor valued in the dual space E∗.

To sum up, in Newtonian Mechanics :
i) The kinematic of a material body is represented by a translational momentum and a rotational mo-

mentum, which are distinct and read : −→p = m−→v ; Γ = R (t) [J ] r
ii) Each momentum is related to the motion, and overall the kinematic characteristics of a solid are

represented by 7 independent scalars (the mass and 6 parameters for [J ]).
iii) The momenta can be computed, but this is the change in the momenta which is measured, through

the inertial forces.
iv) The representation of the momenta by vectors of R3 is conventional. If it is natural for −→p , the vector

R (t) [J ] r has no direct relation with a physical basis −→ε i.
v) For deformable solids and systems the definition of momenta is less straightforward and comes from

the identification of the forces, inertial and external, acting on the body. The representation of momenta
and forces is given through the lagrangian.
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vi) The conservation of the momentum in the transformation of a system is only a special case of the laws
of the transformation, meanwhile the conservation of energy is just the balance of the energy exchanged by
its different components.

11.2 Usual representations in the relativist framework

11.2.1 Translational momentum

The translational momentum is defined as the 4 dimensional vector : P = mV. It depends on the observer,
and here it means the choice of the time t in the derivative V = dq

dt .
In the relativist context location and motion are absolute. So there is an intrinsic definition of the

momentum, for an observer who is attached to the particle with the proper time and velocity u = dq
dτ :

p = mu. Then, if we take the same definition for the kinetic energy, with respect to this observer, it is
constant : K = 1

m 〈p, p〉 = −mc2.
For any other observer :

P = mV = pdτdt = p

√
1− ‖−→v ‖2

c2

− 1
m 〈P, P 〉 = −

(
1− ‖−→v ‖2

c2

)
mc2 =

(
1− ‖−→v ‖2

c2

)
K ≤ K

p = m 1√
1−‖−→v ‖2

c2

(cε0 (q (t)) +
−→v ) is a 4 dimensional vector. However the common practice is to distin-

guish its spatial and time components. The spatial part : −→pr = m
−→v√

1−‖−→v ‖2

c2

which is similar to the usual

translational momentum, and m c√
1−‖−→v ‖2

c2

is then related to the energy E, defined by :

E = c2m 1√
1−‖−→v ‖2

c2

= 〈Pc, ε0〉 = mc
〈
dq
dτ , ε0

〉

⇒ E2 = c2 ‖−→p r‖2 +m2c4 which is just 〈pc, pc〉 = −m2c4 = c2 ‖−→p r‖2 − E2

The advantages of this expression is that for small speed it gives :

E = c2m 1√
1−‖−→v ‖2

c2

≃ c2m

(
1 + 1

2

‖−→v ‖2

c2

)
= 1

2m ‖−→v ‖2 +mc2

and it can be adapted to massless particles such as photons.
The total energy of the particle E has one part corresponding to a kinetic energy and another one to

an “energy at rest”. So keep the principle of conservation of energy leads to accept that mass itself can be
transformed into energy, according to the famous relation E = mc2.

However it mixes two concepts - momentum and energy - which are usually seen as distinct and are
measured by different protocols.

The definition of rigid solid of Newtonian Mechanics does not extend to the relativist Geometry, and
there is no satisfying definition for the rotational momentum.

In GR what is considered is the energy-momentum tensor T , which is a key part of the Einstein equation.
There is no general formula to specify T , only phenomenological laws. The most usual are based on the
behavior of dust clouds, including sometimes thermodynamic components.

11.2.2 The Dirac’s equation

In writing pc = (c−→pr , E) the energy E and pr are two separate quantities which can be measured 5. In the
usual interpretation of QM to E and pr are associated operators acting on scalar wave functions ψ.

In common QM, “quantization” is just an operation where mathematical symbols are substituted to other
symbols. Starting from : E2 = c2 ‖−→p r‖2 +m2c4 the “minimal substitution rule” : E → i~ ∂

∂t ; prα → −i~∂α
gives the Klein-Gordon equation :

(
�+m2

)
ψ = 0 which, checked for the spectrum of Hydrogen, provides

wrong results.

In order to have first order derivatives Dirac proposed another equation, starting fromE =

√
c2 ‖−→p r‖2 +m2c4

assuming that :
E = A.pr +Bm the substitution gives : i~∂ψ∂t = (Ai~∇+Bµ)ψ
But this is possible only if ψ is a vectorial quantity (and no longer a scalar function). Moreover to be

Lorentz equivariant A,B must be 4 × 4 complex matrices, built from a set of matrices with the relation :
γiγj + γjγi = 2ηijI4. The wave functions ψ are then vectors, belonging to a 4 dimensional complex vector
space E, which is the representation of the Lorentz group acting through the matrices γ. They are called
spinors.

5Actually only the change of momentum and energy can be physically measured.
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The Dirac’s equation then reads :
i∂ψ∂t = −i∑3

α=1 γα
∂ψ
∂ξα

+mγ0ψ
and can be seen as a propagation equation for ψ or, in the usual QM, as a substitute for the Schrödinger

equation. Its eigen values correspond to the energy. Its eigen vectors, which provides a basis for observables
quantities, correspond to “plane waves” :

with positive energies :




1
0
0
0


 exp (−imt) ,




0
1
0
0


 exp (−imt)

with negative energies :




0
0
1
0


 exp (imt) ,




0
0
0
1


 exp (imt)

The existence of the last two solutions leads to antiparticles. The proof of their existence has not closed
the issue of the interpretation of these solutions, the most common being that antiparticles are “holes” in a
sea of virtual particles, and that they moved backwards in time.

ψ (t, x) is such that ρ = ψ (t, x)
∗
ψ (t, x) gives the probability to find the particle at (t, x) . Then the

Dirac’s currents ja = ψ
t
γaψ gives the probability to find the particle in ξa, a = 1, 2, 3 and the solutions of

the Dirac’s equation meet the continuity equation :
∂ρ
∂t +

∑3
α=1

∂ja

∂ξα
= 0

The scheme has been extended to account for the action of the fields, and leads to the standard model. But
its construction is totally abstract, and is justified only by the results that it provides, through complicated
computations.

So in the Relativist context we have two representations, checked at the opposite scales, which procede
from totally different principles. And this is at the core of the belief that QM and GR are not conciliable.

12 MOMENTA REVISITED

Our purpose is to find an efficient way to represent the kinematic characteristics of particles and material
bodies in the framework of General Relativity. We focus on the properties assigned to momenta of material
bodies :

- momenta are physical quantities, related to the motion but distinct, and a change in the value of the
momenta can be physically measured through the inertial forces, by specific protocols;

- they are computed from their properties. A particle is defined not only by its location and transversal
motion, but also by an orthonormal basis attached to it, with its rotational motion. So we must consider
translational and rotational momenta.

- they must be expressed in a format which is equivariant with respect to the Lorentz group Spin (3, 1) .
- momenta are localized quantities : a momentum is defined at each location q (t) of the particle.
- momenta are expressed by vectorial quantities : the linear combination of momenta at the same point

has a physical meaning (such as in a collision).
- in a continuous motion the momenta are related to the motion by some fixed relation.
- for a free particle, which is not submitted to any force, the momenta are constant along its world line.
We will naturally look for a fiber bundle representation. It should be a vector bundle associated to a

principal bundle based on Spin (3, 1) , and the natural choice is PG [E, γ] , with some vector space E and
action γ. E is the vector space in which are represented forces and torques. In Newtonian Mechanics they
are represented by 2 distinct vectors in R3, but, at least for the torque, this is just a convention. So we are
quite free in the choice of the vector space E. It is legitimate to look for two vectors in the Minkovski space,
or a vector in a complex 4 dimensional space.

The motion dσ
dt · σ−1 is represented in the Lie Algebra. The derivative γ′ (1) provides a representation of

the Lie algebra T1Spin (3, 1) but with the bracket as internal operation, which has little interest here, so we
look for a representation (E, γ) of the Clifford algebra itself. This is consistent with the assessment that the
Clifford bundle Cl (TM) is the right framework to represent arrangement and motion of material bodies.

The motion is represented by (q, σ, υ (Xr, Xw)) in J
1Cl (TM) .

The momentum is represented in the associated vector bundle PG [E, γ]
The motion comes, in a continuous motion, from the derivation of the arrangement σ. It is then natural to

consider a quantity S = γ (σ)S0 ∈ E representing the state of the particle, with a fixed vector S0 representing
the kinematic characteristics of the body, from which the momentum is computed by derivation.
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12.1 Representation of the Clifford Algebra

12.1.1 Principles

A geometric representation (E, γ) of a Clifford algebra is an isomorphism γ : Cl → L (E;E) :: [γ (X)]
where [γ (X)] is the matrix of an endomorphism of E, represented in some basis. All the operations in
the Clifford algebra (multiplication by a scalar, sum, Clifford product) are reproduced on the matrices. A

representation is fully defined by the family of matrices, the generators, (γi)
3
i=0 , representing each vector

(εi)
3
i=0 of an orthonormal basis. The choice of these matrices is not unique : the only condition is that

[γi] [γj ] + [γj ] [γi] = 2ηij [I] and any family of matrices deduced by conjugation γ̃j = MγjM
−1 with a fixed

matrix M gives an equivalent representation. An element of the Clifford algebra is then represented by a
linear combination of generators :

γ (X) = γ
(∑

{i1...ir}X
i1...irεi1 · ... · εir

)
=
∑

{i1...ir}X
i1...irγi1 ...γir

A Clifford algebra has, up to isomorphism, a unique faithful algebraic irreducible representation in an
algebra of matrices. As can be expected the representations depend on the signature :

for Cl (3, 1) this is R (4) the 4 × 4 real matrices (the corresponding spinors are the Majorana spinors),
acting on a 4 dimensional vector space;

for Cl (1, 3) this is H (2) the 2× 2 matrices with quaternionic elements.
So the choice of a representation raises the issue of the signature. However the vector space E upon which

are represented the momenta can be a 4 dimensional complex vector space. The representation of complex
Clifford algebras are on complex vector spaces. Moreover some Clifford algebras present a specific feature :
they are the direct sum of two subalgebras which can be seen as algebras of left handed and right handed
elements. This property depends on the existence of an element ω, which exists in any complex algebra, but
not in Cl (1, 3) , Cl (3, 1). As chirality is a defining feature of particles and of the rotational motion, this is
an additional argument for using a complex Clifford algebra.

The first step is to expand Cl (1, 3) , Cl (3, 1) into Cl (C, 4) .

12.1.2 Complexification of real Clifford algebras

We have seen how to introduce a complex structure on the Clifford algebra. There is another method, more
usual, by extending the set such that the operations hold with complex numbers (Maths.6.5.2). One starts by
he complexification of the vector space F : it is enlarged by all vectors of the form iu : FC = F ⊕ iF. The real
scalar product is extended to a complex bilinear form 〈〉

C
, with the signature (+ + ++)6, any orthonormal

basis (εj)
3
j=0 of F is an orthonormal basis of FC with complex components. There is a complex Clifford

algebra Cl (FC, 〈〉) which is the complexified of Cl (F, 〈〉) . In Cl (FC, 〈〉) the product of vectors is :
∀u, v ∈ FC : u⊙ v + v ⊙ u = 2 〈u, v〉

C

with the bilinear symmetric form 〈u, v〉
C
of signature (+ + + +). Cl (3, 1) and Cl (1, 3) have the same

complexified algebraic structure Cl (C, 4). Any orthonormal basis of Cl (3, 1) or Cl (1, 3) is an orthonormal
basis of Cl (C, 4) and : εi ⊙ εj + εj ⊙ εi = 2δij and ε0 ⊙ ε0 = +1

Cl (3, 1) and Cl (1, 3) are real vector subspaces of Cl (C, 4) .

There are real algebras morphisms (injective but not surjective) from the real Clifford algebras to
Cl (C, 4) .

With the signature (3,1) let us choose as above a vector ε0 ∈ F such that ε0 · ε0 = −1.
Let us define the map :
C̃ : (F, 〈〉) → Cl (C, 4) ::

C̃ (u) = (u+ 〈ε0, u〉F ε0)− i 〈ε0, u〉F ε0 = u+ 〈ε0, u〉F (ε0 − iε0)

(this is just the map : C̃ (εj) = εj , j = 1, 2, 3; C̃ (ε0) = iε0)

C̃ (u)⊙ C̃ (v) + C̃ (v)⊙ C̃ (u)
= (u+ 〈ε0, u〉F (ε0 − iε0))⊙ (v + 〈ε0, v〉F (ε0 − iε0))
+ (v + 〈ε0, v〉F (ε0 − iε0))⊙ (u+ 〈ε0, u〉F (ε0 − iε0))
= u⊙ v + 〈ε0, v〉F u⊙ (ε0 − iε0) + 〈ε0, u〉F (ε0 − iε0)⊙ v
+ 〈ε0, u〉F 〈ε0, v〉F (ε0 − iε0)⊙ (ε0 − iε0)
+v ⊙ u+ 〈ε0, u〉F v ⊙ (ε0 − iε0) + 〈ε0, v〉F (ε0 − iε0)⊙ u
+ 〈ε0, v〉F 〈ε0, u〉F (ε0 − iε0)⊙ (ε0 − iε0)
= 2 〈u, v〉

C
+ 2 〈ε0, v〉F 〈u, ε0 − iε0〉C + 2 〈ε0, u〉F 〈ε0 − iε0, v〉C

+2 〈ε0, u〉F 〈ε0, v〉F 〈ε0 − iε0, ε0 − iε0〉C
= 2 〈u+ 〈ε0, u〉F (ε0 − iε0) , v + 〈ε0, v〉F (ε0 − iε0)〉C

6Actually the signature of a bilinear symmetric form is defined for real vector space, but the meaning will be clear for the
reader. We will always work here with bilinear form and not hermitian form.
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= 2
〈
C̃ (u) , C̃ (v)

〉
C

As a consequence, by the universal property of Clifford algebras, there is a unique real algebra morphism
C : Cl (3, 1) → Cl (C, 4) such that C̃ = C ◦  where  is the canonical injection (F, 〈〉) → Cl (3, 1). We will

denote for simplicity C̃ = C. The image C (Cl (3, 1)) is a real subalgebra of Cl (C, 4) , which can be identified
with Cl (3, 1) so it does not depend on the choice of ε0 (but the map C depends on ε0).

Similarly with C̃′ (εj) = iεj, j = 1, 2, 3; C̃′ (ε0) = ε0 we have a real algebra morphism C′ : Cl (1, 3) →
Cl (C, 4) and C′ (Cl (1, 3)) is a real subalgebra of Cl (C, 4) . Moreover C′ (εj) = −iηjjC (εj).

12.1.3 Chirality

In Cl (C, 4) the special element is : ω = ±ε0 ⊙ ε1 ⊙ ε2 ⊙ ε3 ∈ Spin(C, 4). Thus there is a choice and we will
use : ω = ε0 ⊙ ε1 ⊙ ε2 ⊙ ε3.

ω ⊙ ω = 1 and the map : f : Cl (C, 4) → Cl (C, 4) :: f(X) = ω ⊙X is linear and has for eigen values ±1.
There are two eigen spaces, which are subalgebras :

Cl (C, 4) = ClR (C, 4)⊕ ClL (C, 4) :
ClR (C, 4) = {X ∈ Cl (C, 4) : ω ⊙X = X} ,
ClL (C, 4) = {X ∈ Cl (C, 4) : ω ⊙X = −X}
denoted : Clǫ (C, 4) , ǫ = ±1
For the representation (E, γ) of Cl (4,C) :
γ (ω) γ (ω) = γ (1) = I and we have similarly : E = ER ⊕ EL with
ER = {S ∈ E : γ (ω)S = S} , EL = {S ∈ E : γ (ω)S = −S}
and the projections : γǫ (S) =

1
2 (S + ǫ (ω)S) .

For any homogeneous element
X = v1 ⊙ v2...⊙ vk ∈ Cl (C, 4) : ω ⊙X = (−1)

k
X ⊙ ω

⇒ γ (ω) γ (X) = (−1)
k
γ (X) γ (ω)

γ (ω) γ (X)S = (−1)
k
γ (X)γ (ω)S

If γ (ω)S = ǫS : γ (ω) γ (X)S = ǫ (−1)
k
γ (X)S. Thus for k even γ (X) preserves both ER, EL, for k odd

γ (X) exchanges ER, EL.

12.1.4 The choice of the representation γ

A representation is defined by the choice of its generators γi, and any set of generators conjugate by a fixed
matrix gives an equivalent representation. We can specify the generators by the choice of a basis (ei)

4
i=1 of E

. The previous result leads to a practical choice. Let e1, e2 be a basis of ER and e3, e4 a basis of EL. Then :

γ (ω) = γR − γL =

[
I2 0
0 −I2

]

Denote : γj =

[
Aj Bj
Cj Dj

]
with four 2× 2 complex matrices j = 0...3.

γ (ω) γ (εj) = −γ (εj) γ (ω) which imposes the condition :[
Aj −Bj
Cj −Dj

]
= −

[
Aj Bj
−Cj −Dj

]
⇒ γj =

[
0 Bj
Cj 0

]

The defining relations : γjγk + γkγj = 2δjkI4 lead to :[
BjCk +BkCj 0

0 CjBk + CkBj

]
= 2δjkI4

j 6= k : BjCk +BkCj = CjBk + CkBj = 0
j = k : BjCj = CjBj = I2 ⇔ Cj = B−1

j

thus (γi)
3
i=0 is fully defined by a set (Bi)

3
i=0 of 2× 2 complex matrices

γj =

[
0 Bj

B−1
j 0

]

meeting : j 6= k : BjB
−1
k +BkB

−1
j = B−1

j Bk +B−1
k Bj = 0

which reads :
BjB

−1
k = −

(
BjB

−1
k

)−1 ⇔
(
BjB

−1
k

)2
= −I2

B−1
j Bk = −

(
B−1
j Bk

)−1 ⇔
(
B−1
j Bk

)2
= −I2

Let us define : k = 1, 2, 3 : Mk = −iBkB−1
0

The matrices (Mk)
3
k=1 are such that :

M2
k = −

(
BjB

−1
0

)2
= −I2

MjMk +MkMj = −BjB−1
0 BkB

−1
0 −BkB

−1
0 BjB

−1
0

= −
(
−BjB−1

k B0 −BkB
−1
j B0

)
B−1

0

= BjB
−1
k +BkB

−1
j = 0
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that is k = 1, 2, 3 : MjMk +MkMj = 2δjkI2
Moreover : γ (ω) = γ0γ1γ2γ3 ⇒
B0B

−1
1 B2B

−1
3 = I2

B−1
0 B1B

−1
2 B3 = −I2

with Bk = iMkB0, B
−1
k = −iB−1

0 M−1
k

B0

(
−iB−1

0 M−1
1

)
(iM2B0)

(
−iB−1

0 M−1
3

)
= I2 = −iM−1

1 M2M
−1
3

B−1
0 (iM1B0)

(
−iB−1

0 M−1
2

)
(iM3B0) = −I2 = iB−1

0 M1M
−1
2 M3B0

which reads :
iM2 = −M1M3 =M3M1

−M−1
1 M−1

3 = iM−1
2 ⇔ iM2 =M3M1

M2M3 +M3M2 = 0 = iM1M3M3 +M3M2 ⇔ iM1 = −M3M2 =M2M3

M1M2 +M2M1 = 0 = iM3M2M2 +M2M1 ⇒ iM3 = −M2M1 =M1M2

The set of 3 matrices (Mk)
3
k=1 has the multiplication table :



1\2 M1 M2 M3

M1 I iM3 −iM2

M2 −iM3 I iM1

M3 iM2 −iM1 I




which is the same as the set of Pauli’s matrices :

σ1 =

[
0 1
1 0

]
;σ2 =

[
0 −i
i 0

]
;σ3 =

[
1 0
0 −1

]
;σ0 =

[
1 0
0 1

]
(48)

There is still some freedom in the choice of the γi matrices by the choice of B0 and the simplest is :
B0 = −iI2 ⇒ Bk = σk

Moreover, because scalars belong to Clifford algebras, one must have the identity matrix I4 and γ (z) = zI4
Thus :

γ0 =

[
0 −iσ0
iσ0 0

]
; γ1 =

[
0 σ1
σ1 0

]
; γ2 =

[
0 σ2
σ2 0

]
; γ3 =

[
0 σ3
σ3 0

]
; (49)

The matrices γj are then unitary and Hermitian :

γj = γ∗j = γ−1
j (50)

which is extremely convenient.
We will use the following :

Notation 30 j = 1, 2, 3 : γ̃j =

[
σj 0
0 σj

]

j 6= k, l = 1, 2, 3 : γjγk = −γkγj = iǫ (j, k, l) γ̃l

j = 1, 2, 3 : γjγ0 = −γ0γj = i

[
σj 0
0 −σj

]
= iγ5γ̃j

12.1.5 Representation of the real Clifford Algebras

Notice that the choice of the matrices is done in Cl (C, 4) , so it is independent of the signature. We get the
representations of the real algebras by the matrices γC (εj) and γC

′ (εj)

Cl (3, 1) : γC (εj) = γj , j = 1, 2, 3; γC (ε0) = iγ0; γC (ε5) = iγ5
Cl (1, 3) : γC′ (εj) = iγj , j = 1, 2, 3; γC′ (ε0) = γ0; γC

′ (ε5) = γ5
(51)

However, because C is a real, and not a complex map : γC (λX) 6= λγC (X) if λ ∈ C.
The representation that we have chosen here is not unique and others, equivalent, would hold. However

the defining relations are rather strong and the choices which give manageable matrices are limited. In
the Standard Model the representation of Cl (1, 3) is by the matrices : γ̃0 = iγ0, γ̃j = γj , j = 1, 2, 3 and
γ̃5 = −iγ̃0γ̃1γ̃2γ̃3.
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Invariant vector subspaces
(E, γ) is a faithful, and thus irreducible, representation of Cl (4,C) , and because C (Cl (3, 1)) , C′ (Cl (1, 3))

are real subalgebras of Cl (4,C) , the set of vectors of E which are invariant by γC is the set invariant by
γC (εj) , j = 0..3 and similarly with γC′.

Let be the vector subspaces :

Eǫ =

{[
SR
SL

]
∈ E : SL = ǫiSR =

[
u
v

]
∈ C2

}
, ǫ = ±1

then :
with Cl (3, 1)

iγ0

[
SR
ǫiSR

]
=

[
0 σ0

−σ0 0

] [
SR
ǫiSR

]
=

[
iǫSR
−SR

]
=

[
iǫSR

ǫi (iǫSR)

]

γj

[
SR
ǫiSR

]
=

[
0 σj
σj 0

] [
SR
ǫiSR

]
=

[
iǫσjSR
σjSR

]
=

[
iǫSRσj

−iǫ (iǫσjSR)

]

S0 ∈ Eǫ ⇒ γ0C (ε0)S0 ∈ Eǫ, j = 1, 2, 3 : γC (εj)S0 ∈ E−ǫ
with Cl (1, 3)

γ0

[
SR
ǫiSR

]
=

[
0 −iσ0
iσ0 0

] [
SR
ǫiSR

]
=

[
ǫSR
iSR

]
=

[
ǫSR

iǫ (ǫSR)

]

iγj

[
SR
ǫiSR

]
=

[
0 iσj
iσj 0

] [
SR
ǫiSR

]
=

[
−ǫσjSR
iσjSR

]
=

[
−ǫσjSR

−ǫi (−ǫσjSR)

]

S0 ∈ Eǫ ⇒ γ0C
′ (ε0)S0 ∈ Eǫ, j = 1, 2, 3 : γC′ (εj)S0 ∈ E−ǫ

So the set E0 = E+ ∪E− is globally invariant by both Cl (3, 1) , Cl (1, 3) . It is not a vector space.

12.1.6 Expression of the matrices

Complex notation with the Dirac’s matrices
With complex vector spaces the following notation is very convenient.
Define, for any z ∈ C3 :

Notation 31
∑3

a=1 zaσa = σ (z) with z ∈ C3

σ (z) =

[
z3 z1 − iz2

z1 + iz2 −z3

]
∈ sl (C, 2)

Then we have the identities :
(σ (z))

∗
= σ (z)

σ (z)σ (z′) = σ (j (z) z′) + ztz′σ0
σ (z)σ (z′)− σ (z′) σ (z) = σ (j (z) z′)− σ (j (z′) z) = 2σ (j (z) z′)

σ (z′)σ (z)σ (z′) =
(
(z′)t z′

)
σ (z)

σ (z) = kσ0, k ∈ C ⇒ z, k = 0
detσ (z) = −ztz
σ (z)−1 = 1

ztzσ (z)

Representations of the elements of the Lie algebras

In Cl(3,1) :

γC (υ (r, w)) = −1

2
i

[
σ (r + iw) 0

0 σ (r − iw)

]
= −1

2
i

[
σ (Z) 0
0 σ

(
Z
)
]

(52)

In Cl(1,3) :

γC′ (υ (r, w)) =
1

2
i

[
σ (r − iw) 0

0 σ (r + iw)

]
(53)

Representations of the elements of the Spin group
γC (a+ υ (r, w) + bε5) = aI4 + γC (υ (r, w)) + bγ5
In Cl(3,1) :

γC (a+ υ (r, w) + bε5) =

[
a+ ib− 1

2 iσ (r + iw) 0
0 a− ib− 1

2 iσ (r − iw)

]
=

[
A− 1

2 iσ (Z) 0
0 A− 1

2 iσ
(
Z
)
]

51



In Cl(1,3) :

γC′ (a+ υ (r, w) + bε5) =

[
a− ib+ 1

2 iσ (r − iw) 0
0 a+ ib+ 1

2 iσ (r + iw)

]
=

[
A− 1

2 iσ
(
Z
)

0
0 A− 1

2 iσ (Z)

]

12.2 Scalar product of Spinors

We need a scalar product on E, preserved by a gauge transformation, that is by Spin(3, 1), Spin(1, 3).

Theorem 32 The only scalar products on E, preserved by {γC (σ) , σ ∈ Spin(3, 1)} are G =

[
0 kσ0
kσ0 0

]

with k ∈ C

Proof. It is represented in the basis of E by a 4× 4 Hermitian matrix G such that : G = G∗

∀s ∈ Spin(3, 1) : [γC (s)]∗G [γC (s)] = G
or ∀s ∈ Spin(1, 3) : [γC′ (s)]∗G [γC′ (s)] = G

[γC (s)]
∗
[G] = [G] [γC (s)]

−1
= [G]

[
γC
(
s−1
)]

[γC (s)] = γC (A+ Z) =

[
Aσ0 − 1

2 iσ (Z) 0
0 Aσ0 − 1

2 iσ
(
Z
)
]

[γC (s)]∗ =

[
Aσ0 +

1
2 iσ

(
Z
)

0
0 Aσ0 +

1
2 iσ (Z)

]

[
γC
(
s−1
)]

= γC (A− Z) =

[
Aσ0 +

1
2 iσ (Z) 0
0 Aσ0 +

1
2 iσ

(
Z
)
]

G =

[
M P
P ∗ N

]
, with M =M∗, N = N∗

[G] [γC (s)]
−1

= [G]
[
γC
(
s−1
)]

⇔[ (
Aσ0 +

1
2 iσ

(
Z
))
M

(
Aσ0 +

1
2 iσ

(
Z
))
P(

Aσ0 +
1
2 iσ (Z)

)
P ∗ (

Aσ0 +
1
2 iσ (Z)

)
N

]

=

[
M
(
Aσ0 +

1
2 iσ (Z)

)
P
(
Aσ0 +

1
2 iσ

(
Z
))

P ∗ (Aσ0 + 1
2 iσ (Z)

)
N
(
Aσ0 +

1
2 iσ

(
Z
))
]

We must have the identities, ∀Z :(
Aσ0 +

1
2 iσ

(
Z
))
M =M

(
Aσ0 +

1
2 iσ (Z)

)
(
Aσ0 +

1
2 iσ

(
Z
))
P = P

(
Aσ0 +

1
2 iσ

(
Z
))

(
Aσ0 +

1
2 iσ (Z)

)
P ∗ = P ∗ (Aσ0 + 1

2 iσ (Z)
)

(
Aσ0 +

1
2 iσ (Z)

)
N = N

(
Aσ0 +

1
2 iσ

(
Z
))

Let us consider first s ∈ Spin (3) ⇔ A,Z ∈ R

The conditions read
σ (Z)M =Mσ (Z)
σ (Z)P = Pσ (Z)
σ (Z)P ∗ = P ∗σ (Z)
σ (Z)N = Nσ (Z)
The only matrices which commute with all Dirac matrices are scalar, thus :
M = mσ0, N = nσ0, P = pσ0

G =

[
mσ0 pσ0
pσ0 nσ0

]
, with m,n ∈ R

Then for s ∈ Spin (3, 1) the conditions become :(
Aσ0 +

1
2 iσ

(
Z
))
m = m

(
Aσ0 +

1
2 iσ (Z)

)
(
Aσ0 +

1
2 iσ

(
Z
))
p = p

(
Aσ0 +

1
2 iσ

(
Z
))

(
Aσ0 +

1
2 iσ (Z)

)
p = p

(
Aσ0 +

1
2 iσ (Z)

)
(
Aσ0 +

1
2 iσ (Z)

)
n = n

(
Aσ0 +

1
2 iσ

(
Z
))

Am = mA⇒ m = 0
An = nA⇒ n = 0
The only solution is :

G =

[
0 kσ0
kσ0 0

]

The scalar product will never be definite positive, so we can take k = −i that is G = γ0. And it is easy
to check that it works also for the signature (1,3).

Any vector of E reads :

S =
∑4

i=1 S
iei =

[
SR
SL

]
with 2 vectors SR, SL ∈ C2
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The scalar product of two vectors S, S′ of E is then:

〈S, S′〉E = [S]
∗
[γ0] [S

′] = i
(
[SL]

∗
[S′
R]− [SR]

∗
[S′
L]
)

(54)

It is not definite positive but :

[SL]
∗ [SR] =

(
[SL]

∗ [SR]
)t

= [SR]
t [SL] =

(
[SR]

∗ [SL]
)

⇒ 〈S, S〉E = i
(
[SL]

∗
[SR]− [SR]

∗
[SL]

)
= i
(
[SL]

∗
[SR]− [SL]

∗
[SR]

)
= −2 Im

(
[SL]

∗
[SR]

)

〈S, S〉E = −2 Im
(
[SL]

∗ [SR]
)

(55)

And if S ∈ Eǫ : SL = ǫiSR : 〈S, S〉E = −2 Im
(
−ǫi [SR]∗ [SR]

)
= 2ǫ [SR]

∗
[SR] thus the scalar product is

definite positive on E+ and definite negative on E−. These two vector spaces are Hilbert spaces.

12.2.1 Norm on the space of spinors

Eǫ are Hilbert spaces, so normed vector spaces. More generally there is a norm on E : ‖S‖ =
√
[S]

∗
[S]

It has the properties :
‖S‖ ≥ 0
‖S‖ = 0 ⇒ S = 0
‖kS‖ = |k| ‖S‖
‖S + S′‖ ≤ ‖S‖+ ‖S′‖

13 THE SPINOR REPRESENTATION OF MOMENTA

13.1 The Spinor bundle

Because M is endowed with the structure of the principal bundle PG, there is a structure of spin bundle
(Maths.2110), an associated vector bundle PG [E, γC] such that at each point of M , any element of Cl (3, 1)
acts on the vectors of PG [E, γC] through γC.

Definition 33 The Spinor bundle is the associated vector bundle PG [E, γC]

Its elements S are spinors. They are measured by observers in the standard gauge defined through the
holonomic basis : ei (m) = (p (m) ,ei) .

In a change of gauge the holonomic basis becomes :

p (m) = ϕG (m, 1) → p̃ (m) = p (m) · χ (m)
−1

:

ei (m) = (p (m) , ei) → ẽi (m) = γC
(
χ (m)−1

)
ei (m)

(p (m) , S) ∼ (p̃ (m) , γC (χ (m))S)

(56)

A jet in J1PG [E, γC] is represented by : j1S = (m,S, δS) where S, δS ∈ E and change as in PG [E, γC] .
The scalar product on E is preserved by γC thus it can be extended to P

G
[E, γC] and to the space of

sections X (P
G
[E, γC]) by :〈

S,S′〉 =
∫
Ω

〈
S (m) ,S′ (m)

〉
E
̟4 (m)

13.2 Definition of the Momenta

13.2.1 Definition

Proposition 34 The momenta of a particle are represented in the first jet extension J1PG [E, γC] .
Along any trajectory by a map j1S : R →J1PG [E, γC] :: j1S (t) = (q (t) , S (t) , δS (t))
S (t) , δS (t) ∈ PG [E, γC] are located at q (t) .
In a continuous motion j1S is a the first jet prolongation of a map :
S : R →J1PG [E, γC] ::

(
q (t) , S (t) , dSdt (t)

)

Momenta and motion are two distinct concepts. The maps :
j1σ : R →J1PG :: (q (t) , σ (t) , υ (Xr, Xw))
j1S : R→J1PG [E, γC] :: (q (t) , S (t) , δS (t))
are a priori distinct. The main physical assumption is that there is a relation between the motion and the

momentum. In the usual representations the relation is given, for the translational momentum by a scalar,
the mass, and for the rotational momentum by a matrix, the inertial tensor. Because we assume that to any
particle is associated an orthonormal basis, the momentum requires more than a scalar.
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For any observer p (q (t)) = ϕG (q (t) , 1) the motion of the body is along the trajectory :
(
q (t) , σ (t) , dσdt · σ−1

)
.

The state of the particle is : (p (q (t)) , S (t)) and we assume that ∃S0 ∈ E : S (t) = γC (σ (t))S0

In a continuous motion, the observer measures the change, through inertial forces :
d
dtS (t) = γC

(
d
dtσ (t)

)
S0 = γC

(
d
dtσ (t) · σ (t)

−1
)
γC (σ (t))S0 = γC

(
d
dtσ (t) · σ (t)

−1
)
S (t)

And we generalize as : for a, not necessarily continuous, motion (q (t) , σ (t) , υ (Xr, Xw)) the momenta
follow :

(q (t) , S (t) = γC (σ (t))S0, δS (t) = γC (υ (Xr, Xw))S (t))

Proposition 35 For any particle there is a fixed differential operator M which relates the motion and the
momenta :

M : J1Cl (TM) → J1PG [E, γC] ::
M (q (t) , σ (t) , υ (Xr, Xw)) = (q, S = γC (σ)S0, δS = γC (υ (Xr, Xw))S)

(57)

where S0 ∈ E is a fixed vector called the inertial spinor.

In a change of gauge :
p (m) = ϕG (m, 1) → p̃ (m) = p (m) · χ (m)

−1
: σ → σ̃ = χ · σ

υ (Xr, Xw) → ˜υ (Xr, Xw) = Adχ(m)υ (Xr, Xw)

S → S̃ = γC (χ (m))S

δS → δ̃S = γC (χ (m)) δS

(q (t) , S (t) , δS (t)) →
(
q (t) , S̃ (t) , δ̃S (t)

)

and :
S̃ = γC (χ)S = γC (χ) γC (σ)S0 = γC (χ · σ)S0 = γC (σ̃)S0

δ̃S = γC (χ) δS = γC (χ) γC (υ (Xr, Xw))S = γC (χ) γC (υ (Xr, Xw)) γC
(
χ−1

)
S̃

= γC (Adχυ (Xr, Xw)) S̃ = γC
(

˜υ (Xr, Xw)
)
S̃

So S0 does not change : this is an intrinsic property of the particle, which is measured by an observer
through S = γC (σ)S0. And σ = 1 for an observer attached to the particle.

The spinor, which characterizes the momenta is S = γC (σ)S0.
The change of momentum, equal to the inertial forces (corresponding to the derivatives of the momenta),

is δS = γC (υ (Xr, Xw))S

δSR =
∑3
α=0 γC (υ (Xr, 0))S is the equivalent of a change of rotational momentum or an inertial torque.

δST =
∑3

α=0 γC (υ (0, Xw))S is the equivalent of a change of translational momentum or a translational
inertial force.

13.2.2 Forces, torques and Spinors

i) (E, γ) is a faithful (bijective) representation of Cl (4,C) and (E, γC) is a faithful representation of
Cl (3, 1) :

∀X,X ′ ∈ Cl (3, 1) , S ∈ E : γC (X)S = γC (X ′)S ⇔ γC (X −X ′)S = 0 ⇔ X = X ′

As a consequence there is no symmetries : it would imply that, for s belonging to a subgroup of Spin (3, 1) :
γC (s)S = S ⇔ γC (s) γC (σ)S0 = γC (σ)S0 ⇔ γC

(
σ−1 · s · σ

)
S0 = S0

But we will see that the kinematic characteristics are actually defined by a scalar (the mass) and a 3
dimensional real vector (the inertial vector), and symmetries are defined through this vector.

ii) The motion is represented in the real Clifford algebra. It is legitimate to assume that S0 belongs to a
subset which is invariant by Cl (3, 1) (or similarly by Cl (1, 3)). So we can state :

Proposition 36 For particles the inertial spinor S0 belongs to the set of vectors :

E0 =

{[
SR
SL

]
∈ E : SL = ±iSR

}

Then ∀s ∈ Cl (3, 1) : γC (s)S0 ∈ E0 and idem for Cl (1, 3) because the set is globally invariant.
iii) A vector of E, with 4 complex components, can represent :
either a combination of a translational and rotational momentum (S)
or a combination of force and torque (δS) .
Forces and torques are measured through the change of motion of known particles.
The action of the fields is represented by a differential operator acting on j1S :
DF : J1PG [E, γC] → J1PG [E, γC]
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The relation σ → S through S0 is the mathematical expression of the continuity of the particle. The
condition : S (t) = γC (σ (t))S0 provides differential equations with respect to σ which give the motion.
Their solutions depend on the value of S0, which enables to estimate S0.

The vectors ei of the basis of E have no universal physical meaning : it depends on the system. Actually
forces and torques are identified by the change of motion with which they are associated, that is by υ (Xr, Xw)
and not to vectors of the basis εi as in Newtonian Mechanics : forces correspond to υ (0, Xw) and torques to
υ (Xr, 0) . And the identification of the axes ei can be done, for a rigid solid, through the inertial vector as
we will see.

13.3 Mass and Kinetic Energy

13.3.1 Mass

The scalar product is invariant by the action of γ, thus :
〈S (t) , S (t)〉 = 〈γC (σ (t))S0, γC (σ (t))S0〉 = 〈S0, S0〉 = −2 Im

(
[SL]

∗
[SR]

)

By similarity with 〈P, P 〉 = −M2
p c

2 it is then natural to state that 〈S0, S0〉 represents the square of the
mass of the particle, up to a constant depending on the units.

With the proposition above : [SL] = ǫi [SR] ⇒ 〈S0, S0〉 = 2ǫ [SR]
∗
[SR]

This quantity can be positive or negative. We will come back on this issue later and define the mass “at
rest” of the particle by :

Mp =
√
|〈S0, S0〉| =

√
2
∣∣Im

(
[SL]

∗
[SR]

)∣∣ =
√
2 [SR]

∗
[SR] (58)

Then SR reads :

SR =
Mp√

2

[
a
b

]
and 1 =

(
|a|2 + |b|2

)

It is customary to represent the polarization of the plane wave of an electric field by two complex quantities
(the Jones vector) :

Ex = E0xe
iαx

Ey = E0ye
iαy

where (E0x, E0y) are the components of a vector E0 along the axes x, y.
So we can write similarly :

SR =
Mp√
2

[
eiα1 cosα0

eiα2 sinα0

]
(59)

13.3.2 Kinetic Energy

d
dt 〈S (t) , S (t)〉 = 0 =

〈
d
dtS (t) , S (t)

〉
+
〈
S (t) , ddtS (t)

〉
thus

〈
S (t) , ddtS (t)

〉
is pure imaginary.

The variation of the kinetic energy is defined in Newtonian Mechanics as :

δK = 1
m

〈−→p ,−−→δpG
〉
+ [r]

t
[R]

t
[δΓ (G)]

It involves both the present state of momentum and its evolution. The natural generalization is :
δK = 1

Mp

1
i 〈S, δS〉 = 1

Mp

1
i 〈γC (σ)S0, γC (υ (Xr, Xw)) γC (σ)S0〉 = 1

Mp

1
i 〈S0, γC (Adσ−1υ (Xr, Xw))S0〉

In a continuous motion along the trajectory :
υ (Xr, Xw) =

dσ
dt · σ−1

dK
dt = 1

Mp

1
i

〈
γC (σ)S0, γC

(
dσ
dt · σ−1

)
γC (σ)S0

〉
= 1

Mp

1
i

〈
S0, γC

(
σ−1 · dσdt

)
S0

〉

δK = 1
Mp

1
i 〈S, δS〉 = 1

Mp

1
i 〈S0, γC (Adσ−1υ (Xr, Xw))S0〉

dK
dt = 1

Mp

1
i

〈
S0, γC

(
σ−1 · dσdt

)
S0

〉 (60)

The scalar product does not depend on the observer, however in a continuous motion the observer is
involved in the definition of t.

13.3.3 Inertial vector

Let us denote [S0] =

[
SR
SL

]
,Z ∈ T1Spin (3, 1) in the complex formalism.

γC (Z) [S0] = − i
2

[
σ (Z) 0
0 σ

(
Z
)
] [

SR
SL

]

〈S0, γC (Z)S0〉 = − i
2

[
S∗
R S∗

L

] [ 0 −iσ0
iσ0 0

] [
σ (Z)SR
σ
(
Z
)
SL

]

= 1
2

(
−S∗

Rσ
(
Z
)
SL + S∗

Lσ (Z)SR
)
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S∗
Lσ (Z)SR = (S∗

Lσ (Z)SR)
t
= StR [σ (Z)]

t
SL = S

t

R[σ (Z)]
t
SL = S∗

Rσ
(
Z
)
SL

〈S0, γC (Z)S0〉 = 1
2

(
−S∗

Lσ (Z)SR + S∗
Lσ (Z)SR

)
= i ImS∗

Lσ (Z)SR

Denote the vector : k ∈ C3 : ka = S∗
LσaSR then S∗

Lσ (Z)SR =
∑3

a=1 Z
aS∗

LσaSR = ktZ. And one can

check that : ktk =
(
[SL]

∗
[SR]

)2
〈S0, γC (Z)S0〉 = i ImktZ

For a = 1, 2, 3 take υ (Xr, Xw) =
−→κa

〈S0, γC (−→κa)S0〉E = i Im ka = − 1
2 i 〈S0, γ̃aS0〉E

Im ka = − 1
2 〈S0, γ̃aS0〉E

Take υ (Xr, Xw) =
−−→κa+3

〈S0, γC (−−→κa+3)S0〉E = 〈S0, γC (i−→κa)S0〉E = i Im ika = iRe ka = 1
2 i 〈S0, γ0γaS0〉E

Re ka = 1
2 〈S0, γ0γaS0〉E

ka = 1
2 〈S0, γ0γaS0〉E + i

(
− 1

2 〈S0, γ̃aS0〉E
)
= 1

2 〈S0, (γ0γa − iγ̃a)S0〉E
ka = 1

2 〈S0, (γ0γa − iγ̃a)S0〉E corresponds to the Dirac’s current.

With SR =
Mp√

2

[
eiα1 cosα0

eiα2 sinα0

]
, SL = iǫSR :

ka = S∗
LσaSR = −iǫS∗

RσaSR

k = −iǫM
2
p

2




(sin 2α0) cos (α1 − α2)
− (sin 2α0) sin (α1 − α2)

cos 2α0


 = −iǫM

2
p

2 k0

with kt0k0 = 1

Then δK = 1
Mp

1
i 〈S0, γC (Adσ−1υ (Xr, Xw))S0〉 = 1

Mp
Im ktAdσ−1υ (Xr, Xw)

In a continuous motion :
υ (Xr, Xw) =

dσ
dt · σ−1 ⇔ σ−1 · dσdt = Adσ−1υ (Xr, Xw)

dK
dt = 1

Mp
Im kt

(
σ−1 · dσdt

)

If S0 ∈ E0 : δK = −ǫMp

2 kt0 Im iAdσ−1υ (Xr, Xw) = −ǫMp

2 kt0 ReAdσ−1υ (Xr, Xw)
We sum up the results :

a = 1, 2, 3 : ka = S∗
LσaSR = 1

2 i 〈S0, (γ0γa − γ̃a)S0〉E
δK = 1

Mp

1
i 〈S0, γC (Adσ−1υ (Xr, Xw))S0〉 = 1

Mp
Im ktAdσ−1υ (Xr, Xw)

S0 ∈ E0 : k = −iǫM
2
p

2 k0

k0 =




(sin 2α0) cos (α1 − α2)
− (sin 2α0) sin (α1 − α2)

cos 2α0


 ; kt0k0 = 1

δK = −ǫMp

2 kt0 ReAdσ−1υ (Xr, Xw)

(61)

The vector k, that we will call the inertial vector, does not depend on the motion of the particle.
In a change of gauge S0 does not change, so ka = S∗

LσaSR does not change. k and 〈S0, S0〉 characterize
the kinematic features of the material body. They are defined by 7 independent parameters, as we have in
Newtonian Mechanics, and 4 when S0 ∈ E0. Two material bodies such that S′

0 = eiαS0 with α ∈ R have the
same kinematic characteristics.

13.4 Momenta of Deformable Solids

13.4.1 Spinor Fields

A section of PG can represent the motion of particles whose trajectories do not cross and have similar
behavior. And a section of PG [E, γC] can represent the kinematic characteristics of identical particles.

Definition 37 A Spinor field is a section S ∈ X
(
J1PG [E, γC]

)
which represents the kinematics charac-

teristics of a particle. S = (m,S (m) , δβS (m) , β = 0..3)

From a Mathematical point of view the condition is that there is a section J1σ ∈ X
(
J1PG

)
and an inertial

spinor S0 such that :
S (m) = γC (σ (m))S0, δαS (m) = γC (υ (Xrα (m) , Xwα (m)))S (m) . A necessary condition is that :

〈S (m) , S (m)〉E = Ct.

56



From a Physical point of view such a section represents particles which have the same kinematics character-
istics and whose trajectories do not cross. As a consequence the motion is continuous and υ (Xrα (m) , Xwα (m)) =
∂ασ · σ−1.

Conversely a vector S0 ∈ E and a section J1σ ∈ X
(
J1PG

)
defines a spinor field.

13.4.2 Density

With a population of similar particles represented by a spinor field it is natural to consider a density of
particles, that is a function µ : M → R such that µ (m) represents the number of identical particles located
at the same point. Then for any observer the conservation of the number of particles implies that :

N (t)=
∫
Ω(t) µ3 (t, x)̟3 = Ct

which can be written :∫
Ω(t)

iV (µ̟4) = Ct

where V is the vector field representing the trajectories, as it is deduced from σ : V = − c
〈Adσε0,ε0〉Cl

Adσε0.

Consider the manifold Ω ([t1, t2]) with borders Ω (t1) ,Ω (t2) :
N (t2)−N (t1) =

∫
∂Ω([t1,t2])

iV (µ̟4) =
∫
Ω([t1,t2])

d (iV µ̟4)

d (iV µ̟4) = £V (µ̟4)− iV d (µ̟4) = £V (µ̟4)− iV (dµ ∧̟4)− iV µd̟4 = £V (µ̟4)
N (t2)−N (t1) =

∫
ω([t1,t2])

£V (µ̟4)

with the Lie derivative £. The conservation of the number of particles is equivalent to the condition
£V (µ̟4) = 0.

£V µ̟4

= dµ
dt̟4 + µ£V̟4

= dµ
dt̟4 + µ (divV )̟4

=
(
dµ
dt + µ (divV )

)
̟4

and we retrieve the usual continuity equation :

dµ

dt
+ µdivV = 0 (62)

Without a density we should have also the conservation of 〈S0, S0〉 in any spinor field. The previous
demonstration can be done with 〈S0, S0〉 = µ and leads to divV = 0. So actually to have a physical meaning
it is necessary to add a density to a spinor field.

Let us define :
T : TM ⊗ J1PG [E, γC] → R ::

T (
∑
α U

α∂ξα) =
1
i

∑3
α,β=0 µ 〈S,Uαυ (Xrβ, Xwβ)〉

= − 1
2µǫk

t
0 Im

(∑3
α,β=0

Uα

c

(
σ−1 · ∂βσ

))

T is a tensor : its action is linear, and the result does not depend on the chart or the gauge. It gives the
resistance of the particle to change its motion by σ−1 ·∂βσ in the direction Uα.This is the energy-momentum
tensor of the Spinor field.

The trace Tr (T ) of the tensor T is the tensor :

Tr (T ) (
∑

α U
α∂ξα) =

1
i

∑3
α=0 µ 〈S,Uαυ (Xrα, Xwα)〉

that is the kinetic energy (up to a constant).
Take υ (Xrα, Xwα) = υ (0, δαw)

Tr (T ) (
∑

α U
α∂ξα) = − 1

2µǫk
t
0

∑3
α=0

Uα

c δαw
can be seen as the pressure of the flow of matter in the spatial direction δαw.

13.4.3 Spinor field for a deformable solid

One can define, for any observer, a deformable solid by a section σ ∈ PG. The particles travel on trajectories
V defined by σw. Adding a density µ, and an inertial spinor S0, then, because S is valued in the vector
space E, the integral :

∫
ω(t) µ (m)S (m)̟3 (t,m) where ω (t) = ΦV (ω, t) and ω is a compact subset of Ω (0) ,

makes sense.
S (t) = γC

(∫
ω(t)

σ (m)µ (m)̟3 (m)
)
S0

Γ =
∫
ω(t) σ (m)µ (m)̟3 (m) ∈ Cl (3, 1)

We have several cases of interest.

If the solid is rigid : σ (ΦV (t, x)) = s (t) · g (ΦV (0, x)) with s (t) ∈ Spin (3, 1). Then∫
ω(t)

σ (m)µ (m)̟3 (m) = s (t)
∫
x∈ω g (x)µ ((ΦV (t, x)))̟3 (ΦV (t, x))

and S (t) = γC (s (t))SB (t) with SB (t) = γC
(∫
x∈ω g (x)µ ((ΦV (t, x)))̟3 (ΦV (t, x))

)
S0.
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The variation of SB (t) can be computed as above :

SB (t2)− SB (t1) =
∫
ω([t1,t2])

γC (£V (gµ̟4))S0 =
∫
ω([t1,t2])

γC
(
dgµ
dt + gµ (divV )

)
̟4S0

=
∫
ω([t1,t2])

γC
(
g
(
dµ
dt + µ (divV )

))
̟4S0

With the continuity equation : SB (t) = Ct and S (t) = γC (s (t))SB.
The solid can be replaced by a particle moving along one integral curve of the vector field V with spinor

S (t) = γC (s (t))SB. This is the generalization of the rule of Newtonian Mechanics.
SB = SB (0) = γC

(∫
x∈ω g (x)µ (x)̟3 (x)

)
S0

The computation of the integral Γ =
∫
x∈ω g (x)µ (x)̟3 (x) ∈ Cl (3, 1) can be done in any chart, adjusted

for the symmetries of the solid. And if S0 ∈ E0 then SB ∈ E0. However Γ does not necessarily belong to
Spin (3, 1) .

In the general case the deformation tensor is ∂ασ · σ−1. This is a 1 form on M valued in T1Spin (3, 1) .
The stress tensor is then : γC (∂ασ)S0 ⊗ dξα = γC

(
∂ασ · σ−1

)
γC (σ)S0 ⊗ dξα. This is a 1 form on M

valued in E. On a trajectory δU =
∑3

α=0 δU
α∂ξα the inertial forces, similar to stress forces, which preserve

the integrity of the solid are :
δF =

∑3
α=0 δU

αδαS ∈ E.
We still have S (t) = γC (Γ (t))S0 ∈ E0 if SB ∈ E0.

13.4.4 Symmetries

Symmetries have a meaning only for rigid solids. As in Newtonian Mechanics they are kinematic symmetries,
related to the momentum of the material body. For a rigid solid : SB (t) = Ct and S (t) = γC (s (t))SB so
that there is an inertial vector defined by SB ∈ E0 :

ka0B = 1
i ǫ

1
M2

B

〈SB, (γ0γa − iγ̃a)SB〉E with kt0Bk0B = 1

The Dirac’s current (γ0γa − iγ̃a)SB can be identified with the flow of matter in the 3 spatial directions
corresponding to γa = γ (εa) .

For any rigid solid in Newtonian Mechanics there is an inertial tensor, represented by a symmetric matrix
[J ] with 3 orthogonal eigen vectors and real eigen values λa. So we can say that they correspond to the 3
vectors εa and ka0B = 1√∑

3
a=1

λ2
a

λa.

The symmetries are, as in Newtonian Mechanics, related to the eigen vectors of [J ] .

In all practical applications this is the vector k0 which is involved, the basis (ei)
4
i=1 and the inertial spinor

S0 are only used to identify the forces and torques, and this is done in conventional bases depending on the
problem, as required (that is in relation with physical measures).

Classic Mechanics provides efficient and simpler tools, and the use of spinors would be just pedantic in
common problems. However this approach can be used at any scale. It can be used to study the deformation
of nuclei, atoms or molecules. At the other end it can be useful in Astrophysics, where trajectories of stars
systems or galaxies are studied. The spinor can account for the rotational momentum of the bodies, which
is significant and contributes to the total kinetic energy of the system.

However Spinors have been introduced for elementary particles in the frame-work of Quantum Mechanics,
and we need to tell how they can be quantized.

14 SPINORS OF ELEMENTARY PARTICLES

14.1 Quantization of spinors

Quantum Mechanics proper can be summed up in a collections of axioms about the representation of a
system, in which states are vectors of a Hilbert spaces, observables are operators. I will not come back on
the meaning of these axioms, the reader can find a comprehensive presentation of the theory in my book.
Let us just say that these axioms are actually mathematical theorems, which can be proved for any system
represented by variables which meet some precise (but quite general) conditions.

The vector space E is normed, and Eǫ are Hilbert spaces. In a model involving a particle the spinor is
represented by a map : J1S : [0, T ] ⊂ R → J1PG [E, γC] for some S0 ∈ E0. The state of the system is actually

this map (and not only its value at each t). It is assumed to be such that
∫ T
0 max (‖S (t)‖ , ‖δS (t)‖) dt <∞

then it belongs to a separable, infinite dimensional, separable, Fréchet space F and the theorems of QM
apply. The space F is isomorphic to an open subset of a Hilbert space H , and to each map J1S is associated
a vector of this Hilbert space.

The vector space F is invariant under the global action :
λ : Spin (3, 1)× F → F :: λ (g, S) (t) = γC (g)S (t)
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so (F, λ) is a representation of the group Spin (3, 1) . One can say that S and λ (g, S) represent the same
state of the system. The action preserves the scalar product, soH is a unitary representation of Spin (3, 1) and
by restriction of SO (3, 1) . The only irreducible unitary representations of SO (3, 1) are infinite dimensional
and parametrized by a scalar, which we can assume is the mass, and a signed integer.

The rotational momentum γC (υ (Xr (t) , 0))S0 belongs to a vector space invariant by the action of
Spin (3) , which is a compact group. Its observables belong to finite dimensional representations, parametrized
by a half integer j ∈ 1

2N.

14.2 Periodic states

We have seen that a periodic motion can be represented by a map :
σ : R → Spin (3, 1) :: σ (t) = A (t) + Z (t) where Z (t+ T ) = Z (t) for some fixed period
with :
Z (t) =

∑
n∈Z

Ẑ (n) exp inωt with Ẑ (n) = 1
T

∫ T
0
Z (t) exp (−inωt)dt and ω = 2π

T

Z (0) =
∑
n∈Z

Ŝ (n)

A (t) =
∑

n∈Z
Â (n) exp inωt with Â (n) = 1

T

∫ T
0 A (t) exp (−inωt)dt

A (t)
2
= 1− 1

4Z (t)
t
Z (t)

The spinor is then :

S (t) = γC (σ (t))S0 =
∑

n∈Z
Ŝ (n) exp inωt with Ŝ (n) = 1

T

∫ T
0 S (t) exp (−inωt)dt

Ŝ (n) = γC
(
Â (n) + Ẑ (n)

)
S0

By derivation :
dS
dt =

∑
n∈Z

inωŜ (n) exp inωt
we have necessarily the relation :
d̂S
dt (n) = inωŜ (n)

and dS
dt |t=0 =

∑
n∈Z

inωŜ (n)

The average energy on the trajectory is : 1
Mp

1
T

∫ T
0

1
i

〈
S (t) , ddtS (t)

〉
dt

The variables belong to a Hilbert space H with scalar product :

〈Y1, Y2〉H = 1
T

∫ T
0 〈Y1 (t) , Y2 (t)〉E dt =

∑
n∈Z

〈
Ŷ1 (n) , Ŷ2 (n)

〉
E

Thus :
1
T

∫ T
0

1
i

〈
S (t) , ddtS (t)

〉
dt =

∑
n∈Z

〈
Ŝ (n) , d̂Sdt (n)

〉
=
∑
n∈Z inω

〈
Ŝ (n) , Ŝ (n)

〉

〈
Ŝ (n) , Ŝ (n)

〉
can be computed with : S0 =

[
SR
ǫiSR

]
and one gets :

〈
Ŝ (n) , Ŝ (n)

〉
=M2

p

((
Re Â (n)

)2
−
(
Im Â (n)

)2
+ 1

4

((
Re Ẑ (n)

t
Ẑ (n)

)2
−
(
Im Ẑ (n)

t
Ẑ (n)

)2))

dS
dt |t=0 =

∑
n∈Z

inωŜ (n) ⇒∑
n∈Z

〈
inωŜ (n) , inωŜ (n)

〉
= ω2

∑
n∈Z n

2
〈
Ŝ (n) , Ŝ (n)

〉
<∞

⇒∑
n∈Z n

〈
Ŝ (n) , Ŝ (n)

〉
S∗
RSR <∞

1
Mp

1
T

∫ T
0

1
i

〈
S (t) , ddtS (t)

〉
dt

= ωMp

∑
n∈Z n

((
Re Â (n)

)2
−
(
Im Â (n)

)2
+ 1

4

((
Re Ẑ (n)

t
Ẑ (n)

)2
−
(
Im Ẑ (n)

t
Ẑ (n)

)2))

The average kinetic energy is proportional to the frequency.

14.3 Spinors for elementary particles

14.3.1 Particles and Anti-particles

The inertial spinor is a starting point in the identification of “elementary particles”, that is the ultimate
constituent of matter.

The first natural requisite is that S0 ∈ E0. The value of ǫ is related to a choice of a basis of Eǫ. In the
usual cases ǫ is purely conventional, however for elementary particles one can expect that it is related to
some fundamental feature of matter. The logical explanation is that the value of ǫ distinguishes particles and
antiparticles. The mass is M2

p = ǫ2 [SR]
∗
[SR] . Do antiparticles have negative mass ? The idea of a negative

mass is still controversial. Dirac considered that antiparticles move backwards in time and indeed a negative
mass combined with the first Newton’s law seems to have this effect. But here the world line of the particle
is defined by σw, and there is no doubt about the behavior of an antiparticle : it moves towards the future.
The mass at rest Mp is somewhat conventional, the defining relation is 〈S0, S0〉 = ǫ2M2

p so we can choose
any sign for Mp, and it seems more appropriate to take Mp > 0 both for particles and antiparticles.

The inertial spinor of particles is then :
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S0 =
Mp√

2




eiα1 cosα0

eiα2 sinα0

ieiα1 cosα0

ieiα2 sinα0




and of antiparticles :

S0 =
Mp√

2




eiα1 cosα0

eiα2 sinα0

−ieiα1 cosα0

−ieiα2 sinα0




It is characterized by 4 parameters : Mp, α0, α1, α2.

14.3.2 Chirality

In the Spinor representation particles have both a left SL and a right SR part, which are linked but not
equal. We have one of the known features of elementary particles : chirality. The representation (E, γ) has
been chosen because of this property. If the real Clifford algebras leave invariant E0, some of their elements
exchange Eǫ and E−ǫ.

S0 ∈ Eǫ ⇒ γ0C (ε0)S0 ∈ Eǫ, j = 1, 2, 3 : γC (εj)S0 ∈ E−ǫ with the same property in Cl (1, 3) .
So Eǫ is preserved by X ∈ T1Spin (3) , σ ∈ Spin (3) .
Space reversal is the operation :
u = u0ε0 + u1ε1 + u2ε2 + u3ε3 → u0ε0 − u1ε1 − u2ε2 − u3ε3
corresponding to s = ε0, s

−1 = −ε0 in Cl(3, 1), s−1 = ε0 in Cl(1, 3) so it preserves Eǫ.
Time reversal is the operation :
u = u0ε0 + u1ε1 + u2ε2 + u3ε3 → −u0ε0 + u1ε1 + u2ε2 + u3ε3
corresponding to s = ε1 · ε2 · ε3, with s−1 = ε3 · ε2 · ε1 in Cl(3, 1), s−1 = ε1 · ε2 · ε3 in Cl(1, 3) so it

exchanges Eǫ and E−ǫ.
These results are consistent with what is checked in Particles Physics, and the Standard Model. However

the latter does not consider both signatures. This feature does not allow to distinguish one signature as more
physical than the other.

14.3.3 Inertial vector

The inertial vector is : k = −iǫMp

2 k0 = −iǫMp

2




(sin 2α0) cos (α1 − α2)
− (sin 2α0) sin (α1 − α2)

cos 2α0


 . Particles and antiparticles with

the same parameters Mp, α0, α1, α2 have opposite inertial vectors, and so opposite momenta and kinematic
behaviors.

Particles whose inertial vectors differ by a complex scalar of module 1 have the same kinematic behavior.
This is the starting point for the idea of rays in QM.

14.3.4 Spin

Spin (3) preserves Eǫ, then (Eǫ, γC) , (Eǫ, γC
′) are representations of Spin (3) . Moreover the scalar product

is definite positive or negative and preserved by Spin (3) so we have unitary representations, which are
isomorphic to one of the classic representations

(
P j , Dj

)
with j ∈ 1

2N. Actually elementary particles have a
spin 1

2 , the first in line as we could assume, and we retrieve the “particles of spin 1
2”.

The natural representation is by a periodic motion : the particle spins at a constant rotational speed.
Because the spatial spin is quantized, the rotational motion is itself quantized. The average kinetic energy
is proportional to the frequency. The axis of rotation can change (by the action of Spin (3)). Moreover the
spin can take the opposite value, corresponding to υ (Xr, 0) → υ (−Xr, 0) . This is a discontinuous process
(because the spin is quantized, it cannot take intermediate values) which requires an external action and
entails a change of kinetic energy.

To each particle corresponds an antiparticle with the same mass. And particles show polarization char-
acteristics similar to waves. The picture is similar to the Dirac’s spinors, with different definitions of the γ
matrices.

14.3.5 Charge

Assume that we study a system comprising of unknown particles p = 1...N . The modeling of their kinematic
characteristics leads naturally to assume that these particles belong to some spinor fields : Sp ∈ X (PG [E, γC])
with different, unknown, inertial spinor.S0.
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What the quantization theorem tells us is that the solutions must be found in maps : Sp : Ω → E which
can be sorted out by the value of k, their inertial vector, but they belong also to classes of maps characterized
by z ∈ Z. One can assume that the signed integer z is related to a charge. But we see that any particle which
has the same inertial vector k belongs to a definite class characterized by the same z : these particles have
the same behavior in a field. This is the starting point for the representation of charged particles and we can
guess that the inertial vector is more than a kinematic feature. Actually it is also a magnetic moment.

14.4 Composite particles and Atoms

Stable combinations of elementary particles are represented by the tensorial product of the spinors. Then the
motion is represented in the universal enveloping algebra U of T1Spin (3, 1) . This is a vector space, built from
tensorial powers of the Lie algebra T1Spin (3, 1), such that the elements of the form : X⊗Y −Y ⊗X−[X,Y ] ∼
0. Any representation of the Lie algebra can be extended to a representation of its universal enveloping
algebra. So the kinematic behavior of composite particles can be represented in U for the motion and (E,Γ)
for the spinors, with the action Γ defined by the ordered products of the matrices γi.

When the internal structure can be neglected, nuclei, atoms or molecules can be represented by a single
spinor, as a deformable solid. And the natural assumption about their motion is that they have a periodic
rotational motion, which is then quantized.

61



Part IV

CONCLUSION

In this paper we have built a comprehensive and consistent Geometry of General Relativity starting
from the way one proceeds to measures, some general principles of Physics, and the concepts of space, time,
material bodies and their motion, with their characteristic properties. We have not started from scratch,
but from the usual, well known and proven formalism of Galilean Geometry, without any exotic assumption.
Relativity extends the frame-work, it does not negate it. And it leads to uncover some troubling facts which
were actually already present in Galilean Geometry. Exploring the concept of motion, we have seen that
the idea of an orthonormal frame is actually present in our perception and understanding of the motion of
a material body. We are so well used to deal with rotation that we forget two significant features : it is a
property of material bodies, and it adds 3 parameters to characterize, geometrically, a material body, even
in Galilean Geometry. Observers use a tetrad, but actually a tetrad is attached to any material body, and
it must be seen as a property of matter, whatever the scale. The tetrad is orthonormal, and thus defined
with respect to the metric, which is of physical nature. As well as particles travel with constant velocity, the
tetrad attached to a material body must adjust (in a chart), to adapt to a changing metric. This is where
the use of the tetrad formalism finds all its worth, compared to the usual computations with banal charts :
it has a physical meaning, and is closer to the way measures are done.

The right way to deal with a metric is by principal bundles. But the representation of the concept of
motion leads to see the Clifford bundle as the natural, and physical, framework to represent any change in
the geometric state of a material body, be it its location or its arrangement. The Clifford bundle replaces
the tangent bundle TM as the true physical domain where any change in the geometric characteristics of
material bodies occurs.

Moreover the motion is essentially characterized by two vectors r, w ∈ R3 which have a clear physical
meaning, and are related to the 6 parameters used in Galilean Geometry. With all the tools of Clifford
Algebra, it is then easy to work on and compute all the geometric problems in RG, even problems involving
rotation which would have been intractable in the usual framework. Actually in the most part of the
computations one can forget the chart, and the ∂ξα, dξ

β which have been the nightmare of Physicists.
The concept of deformable solid or rigid solid of Newtonian Mechanics can be extended to the relativist

context,.which enables to consider material bodies at any scale, and should be useful in Astro-Physics.
Starting from fiber bundles, the introduction of Spinors is then natural, and we retrieve the known results

of the Quantum Thory of Fields. Moreover the link between the spinor and the kinematic characteristics of
particles is obvious, and can be the starting point to the incorporation of the gravitational field, following
the principle of equivalence. The state of a particle is then the tensorial product of a spinor and a vector
which carries the charges. The introduction of connections, as in any gauge field theory, leads then to a full
model which is the expected merger of Quantum Mechanics and General Relativity, and is studied in my
book on Theoretical Physics.
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