
HAL Id: hal-01171507
https://hal.science/hal-01171507v2

Preprint submitted on 4 Jul 2015 (v2), last revised 16 Nov 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SPINORS AND GRAVITATIONAL FIELD
Jean Claude Dutailly

To cite this version:

Jean Claude Dutailly. SPINORS AND GRAVITATIONAL FIELD. 2015. �hal-01171507v2�

https://hal.science/hal-01171507v2
https://hal.archives-ouvertes.fr
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Jean Claude Dutailly Paris (France)

4 July 2015

Abstract

Spinors have been used in Particle Physics since the Dirac’s equation.

However their physical meaning is still obscure. In this paper we show

that Spinors, vectors of a 4 dimensional complex vector space, can be used

to represent the kinematic characteristics of particles,, encompassing both

their transversal and their rotational parts. The framework used is the

geometry of General Relativity, which is presented in a comprehensive and

consistent way, by the use of fiber bundles. Spinors can be can be used at

any scale, and the definition of a deformable solid body is introduced. The

gravitational field is treated as a gauge field, through a connection on a

fiber bundle. Using the spinor representation the action of the gravitation

field on a material body, with the covariant derivative, takes then a sim-

ple form. The propagation of the field is studied by a two form valued in

the Lie algebra, similar to the Riemann tensor. In this formulation, more

general but fully compatible with the more traditional approach starting

from the metric and the scalar curvature, , the structure of the gravita-

tional field can be explored, showing the existence of a rotational and a

transversal component, and quantized, the spin being similar to the usual

3 dimensional gravity.
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Mechanics is the mother of Physics : it states the rules linking the motion
of material bodies to the forces exercised by the fields. Material bodies oppose
a resistance in the change of their motion, their inertia is represented by the
momenta which combine the motion and characteristics of the material body
similar to mass. So they make the link between Geometry, where the motion of
material bodies are represented, and Particle Physics, in that particles are the
ultimate components of material bodies and provide the intrinsic characteristics
(independant from the motion) which are the other part of the momenta (mass
and spin). Kinematics is the part of Mechanics which deals with inertia, and
thus with momenta, and the purpose of this paper is to provide a comprehensive
and consistent formalism to kinematics.

To achieve this we need first a strong formalism of Geometry, to represent
the motion of material bodies. The first part of this paper is dedicated to
Geometry. Relativity has deeply changed the way we see the physical universe,
and is an unavoidable basis for a Physical Geometry. The issue is not to give a
picture of the whole Universe, which is the topic of Cosmology, but to provide
a theory which tells us how we can represent the location and the motion of
material bodies, what are the key variables which can be used and measured, and
how different observers can compare their measures. This last point is essential
because Relativity underlines the fact that each observer has his own window
to observe the world, and what they see through their window is different from
what see their neighbours. We will do it in the framework of General Relativity
(GR), because it is the most general, and also because, by compelling us to leave
the usual formalism of cartesian frames it helps to focus on understanding the
physical meaning of the concepts of location and velocity. General Relativity
encompasses both a theory of the Geometry of the Universe and a theory of
gravitation, which are linked but actually distinct. We will focus first only on
the Geometry. General Relativity is often seen as difficult to understand and
use, but this can be greatly alleviated by the use of the right mathematical
tools, which are fiber bundles. In this first part there will be not new results :
all the assumptions and the consequences which are drawn are in line with the
commonly accepted GR, the tetrad formalism is well proven and the use of fiber
bundles is standard in Gauge Theories. What is new is more the compact and
consistent framework which is presented.

This framework is necessary to introduce spinors. Momenta can be easily
understood and formalised for translational motion, or for rigid solids. But is-
sues appear when one considers rotation. Actually, even in the formalism of
Newtonian Mechanics there is a discrepancy between the way Physicists and
Mathematicians see a rotation : the latter have a clear and consistent represen-
tation, through orthonormal frames, Lie groups and algebras, but what matters
for the Physicists is the rotational momentum itself, which is a different quan-
tity. This discrepancy is not really acknowledged and has lead to a formalism
and computational rules which are, perhaps efficient, but not really consistent :
think about the generalised usage of cross-product or the definition of a torque.
The situation is worse when one considers particles which have no internal struc-
ture, for which geometric rotation cannot be defined, or the relativist geometry
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: rotation in a 4 dimensional universe is totally dfferent from a rotation in a
3 dimensional one. The transposition of the usual computational practices has
lead to the introduction of new concepts, the spin of particles to represent the
impossible rotation of bodies without internal structure, and spinors to pro-
vide a variable which could represent the momentum in the relativist context.
Meanwhile a great emphasize has been given to the Poincaré group, which is
just the extension of the mathematicians point of view in the Minkovski space,
but without real physical meaning. We propose here a new point of view : ack-
owledging fully the need to define a quantity which can represent the momentum
of a particle, in the GR geometry, this quantity must be intrinsic : it represents
the inertia of a particle, it combines motion and physical characteristics which
are independant of the observer (motion is absolute in GR), but whose mea-
sure changes as a geometric quantity. The fiber bundle formalism leads to the
definition of this relativist momentum and its representation by a spinor : a
vector belonging to a 4 dimensional vector space E. This is fully similar to the
definition used in Quantum Theory of Fields, but we will introduce the vector
space E as a representation of a Clifford algebra. This mathematical structures
is not new, it provides many efficient tools to represent physical quantities such
as the motion of a material body, incorporating both the translational and the
rotational motion in a single object and the spin. The screening of E leads nat-
urally to the distinction between particles and antiparticles. In the formalism
of fiber bundles, matter fields are naturally represented as sections of a vector
bundle, and this leads to the definition of the spin, which can then be quantized.

The introduction of spinors will be done for particles, defined here as any
material body which, at the scale of the study, can be considered as occupying a
single point of the Universe, and without any internal structure (but for which
we will be able to define a spin). They are the equivalent of the material points
of classical Mechanics. However the issue of composite bodies stays : if particles
are the bricks of matter we must find a way to represent easily (that is other than
through tensor products and Fock spaces) solid bodies. The usual concept of
solid cannot be transposed in Relativity, however we wil introduce a consistent
definition, first of a material body (that is with a spatial extension larger than
a point) and then of a deformable solid through spinors, which enables to do
manageable computations in the GR framework, a solution which can be useful
in Astro-Physics.

The third part is dedicated to the gravitational field. The formalism intro-
duced previously leads naturally to treat the gravitational field as a gauge field,
with the introduction of a connection which is more general than the Levy-
Civita connection. Similarly the propagation of the field is studied through a 2
form valued in the Lie algebra, which is similar to the Riemann tensor, but more
general and easier to use. In this framework it is possible to study the struc-
ture of the gravitational field, with its transversal and rotational component, to
define its spin and proceed to its quantization.

This paper is actually part of a larger study. It uses many, well known and
some new, mathematical results whcih can be found in my book ”Mathematics
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for Theoretical Physics” and will be referred to as (Maths.XXX). The quanti-
zation of spinors is done using theorems whch are proven in my book ”Quantum
Mechanics Revisited v.3” and will be refereed to as (QMR.XXX). The usage of
spinors in gauge fields theory, and notably with gravitation, is exposed in my
book ”Mathematics in Physics”. All are freely available.
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1 GEOMETRY OF GENERAL RELATIVITY

Almost all, if not all, measures rely on measures of lengths and times. These
concepts are expressed in theories about the geometry of the universe, meaning
of the container in which live the objects of physics. The issue here is not a
model of the Universe, seen in its totality, which is the topic of Cosmology, but
a model which tells us how to measure lengths and times, and how to compare
measures done by different observers. Such a model is a prerequisite to any
physical theory. Geometry, as a branch of Mathematics, is the product of this
quest of a theory of the universe, and naturally a physical geometry is formalized
with the tools of Mathematical Geometry. There are several Geometries used
in Physics : Galilean Geometry, Special Relativity (SR) and General Relativity
(GR).

In this first section we will see how such a geometry can be built, from simple
observations. We will go directly to the General Relativity model. This is the
one which is the most general and will be used in the rest of the paper. It is
said to be difficult, but actually these difficulties can be overcome with the right
formalism. Moreover it forces us to leave usual representations, which are often
deceptive.
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1.1 Manifold structure

1.1.1 The Universe has the structure of a manifold

The first question is how do we measure a location ?
For the spatial location one can use a chart, meaning any procedure which

relates a point to a system of coordinates. We need three scalar coordinates.
There are many maps which are in use : on Earth the geographic coordinates
with longitude, latitude and elevation, in Astronomy the celestial coordinates
system, and in an experiment in the laboratory the position with respect to a
trajectory. Of course a system of Cartesian coordinates, which measures dis-
tances with respect to a point (which itself must be located) provides a system
of coordinates, even if it is rarely used.

For the temporal location one uses the coincidence with any agreed upon
event. For millennia men used the position of celestial bodies for this purpose.
Say ”See you at Stonehenge at the spring’s equinox” and you will be understood.
Of course one can use a clock, but the purpose of a clock is to measure elapsed
time, so one needs a clock and a starting point, which are agreed upon, to locate
an event in time.

When necessary, one can use several charts to cover an area. The key point
is that the charts are compatible : there are mathematical functions, transitions
maps, which relate the coordinates of the same point in different charts.

A collection of compatible charts, each defined in an open subset of a vector
space and valued in a given set M, is an atlas. A collection of compatible atlas
over a set M defines the structure of a manifold.

1.1.2 What is a manifold ?

Let M be a set, E a topological vector space, an atlas, denoted A = (Oi, ϕi, E)i∈I

is a collection of :
subsets (Oi)i∈I of M such that ∪i∈IOi =M (this is a cover of M)
maps (ϕi)i∈I called charts, such that :

i) ϕi : Oi → Ui :: ξ = ϕi (m) is bijective and ξ are the coordinates of M in
the chart

ii) Ui is an open subset of E
iii) ∀i, j ∈ I : Oi ∩Oj 6= ∅ :
ϕi (Oi ∩Oj) , ϕj (Oi ∩Oj) are open subsets of E, and there is a bijective,

continuous map, called a transition map :
ϕij : ϕi (Oi ∩Oj) → ϕj (Oi ∩Oj)
Notice that no mathematical structure of any kind is required on M. A

topological structure can be imported on M, by telling that all the charts are
continuous, and conversely if there is a topological structure on M the charts
must be compatible with it.

Two atlas A = (Oi, ϕi, E)i∈I , A
′ =

(
O′

j , ϕ
′
j , E

)
j∈J

of M are said to be

compatible if their union is still an atlas. Which implies that :
∀i ∈ I, j ∈ J : Oi ∩O′

j 6= ∅ : ∃ϕij : ϕi

(
Oi ∩O′

j

)
→ ϕ′

j

(
Oi ∩O′

j

)
which is a

homeomorphism
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The relation A,A′are compatible atlas of M, is a relation of equivalence. A
class of equivalence is a structure of manifold on the set M.

The key points are :
- there can be different structures of manifold on the same set. On R4 there

are unaccountably many non equivalent structures of smooth manifolds (this is
special to R4: on Rn, n 6= 4 all the smooth structures are equivalent !).

- all the interesting properties on M come from E : the dimension of M
is the dimension of E (possibly infinite); if E is a Fréchet space we have a
Fréchet manifold, if E is a Banach space we have a Banach manifold and then
we can have differentials, if E is a Hilbert space we have a Hilbert manifold, but
these additional properties require that the transition maps ϕij meet additional
properties.

- for many sets several charts are required (a sphere requires at least two
charts) but an atlas can have only one chart, then the manifold structure is
understood as the same point M will be defined by a set of compatible charts.

The charts define over M a topology, deduced from the vector space. The
manifold is differentiable (resp. smooth) if the transition maps are differentiable
(resp.smooth) (Maths.15.1.1).

1.1.3 The manifold structure of the Universe

So, at least in a vast area which is accessible to our observations, that we will
denote by Ω, where there is no singularity such as black hole, we can say that
the physical universe can be represented as a manifold, that we will denote M.

Proposition 1 The Universe can be represented as a four dimensional real
manifold M

In Galilean Geometry the manifold is the product of R with a 3 dimensional
affine space, and in SR this is a 4 dimensional affine space (affine spaces have a
manifold structure).

We will limit ourselves to an area Ω of the universe, which can be large, so
that one can assume that one chart suffices. We will represent such a chart as
a map :

ϕM : R4 → Ω :: ϕM

(
ξ0, ξ1, ξ2, ξ3

)
= m

which is assumed to be bijective and smooth, where ξ =
(
ξ0, ξ1, ξ2, ξ3

)
are

the coordinates of m in the chart ϕM .
We will assume that Ω is a relatively compact open in M, so that the manifold

structure on M is the same as on Ω, and Ω is bounded.
A change of chart is represented by a bijective smooth map (the transition

map) :
χ : R4 → R4 :: ηα = χα

(
ξ0, ξ1, ξ2, ξ3

)

such that the new map ϕ̃M and the initial map ϕM locate the same point :
ϕ̃M

(
χα
(
ξ0, ξ1, ξ2, ξ3

)
, α = 0, ..3

)
= ϕM

(
ξ0, ξ1, ξ2, ξ3

)

Notice that there is no algebraic structure on M : am+ bm′ has no meaning.
This is illuminating in GR, but still holds in SR or Galilean Geometry. There
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is a clear distinction between coordinates, which are scalars depending on the
choice of a chart, and the point they locate on the manifold (affine space or
not).

The idea that the Universe could be 4 dimensional is not new. R.Penrose
remarked in his book “The road to reality” that Galileo considered this pos-
sibility. The true revolution of Relativity has been to acknowledge that, if the
physical universe is 4 dimensional, it becomes necessary to dissociate the ab-
stract representation of the world, the picture given by a mathematical model,
from the actual representation of the world as it can be seen through measures.
And this dissociation goes through the introduction of a new object in Physics
: the observer. Indeed, if the physical Universe is 4 dimensional, the location of
a point is absolute : there is a unique material body, in space and time, which
can occupy a location. Then, does that mean that past and future exist together
? Can we say that this apple, which is falling, is somewhere in the Universe,
still on the tree ? To avoid the conundrum and all the paradoxes that it en-
tails, the solution is to acknowledge that, if there is a unique reality, actually
the reality which is scientifically accessible, because it enables experiments and
measures, is specific : it depends on the observer. This does not mean that it
would be wrong to represent the reality in its entirety, as it can be done with
charts, frames or other abstract mathematical objects. They are necessary to
give a consistent picture, and more bluntly, to give a picture that is accessible
to our mind. But we cannot identify this abstract representation, common to
everybody, with the world as it is, because the one in which I can move, act and
measure, is my world. This is one of the reasons that motivate the introduction
of Geometry in this paper through GR : it is common to introduce subtle con-
cepts such as location and velocity through a frame, which is evoked in passing,
as if it was obvious, standing somewhere at the disposition of the public. There
is nothing like this. I can build my frame, my charts, and from there conceive
that it can be extended, and compared to what other Physicists have done. But
comparison requires first dissociation, and this is more easily done in a context
to which we are less used to, by years of schematic representations.

1.2 The tangent vector space

At each point of a smooth manifold M one can define a set which has the
structure of a vector space, with the same dimension as M. The best way to see
it is to differentiate the map ϕM with respect to the coordinates (this is close
to the mathematical construct). To any vector u ∈ R4 is associated the vector

um =
∑3

α=0 u
α∂αϕM

(
ξ0, ξ1, ξ2, ξ3

)
which is denoted um =

∑3
α=0 u

α∂ξα.

The basis (∂ξα)
3
α=0 associated to a chart, called a holonomic basis, de-

pends on the chart, but the vector space at m denoted TmM does not depend
on the chart. With this vector space structure one can define a dual space
TmM

∗ and holonomic dual bases denoted dξα with : dξα (∂ξβ) = δαβ , and any
other tensorial structure (see Math.16).

As one can see in the definition of the holonomic basis, the tangent space is
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generated by small displacements along one coordinate, around a point m. So,
physically, locally the manifold is close to an affine space with a chosen origin
m, and locally GR and SR look the same. This is similar to what we see on
Earth : locally it looks flat.

So there are essential distinctions between :
- a point on the manifold, which is a geometric object (it does not depend on

coordinates, even if it can be represented by coordinates in a chart) but has no
vectorial structure attached (the linear combination of points has no meaning);

- a vector in the tangent bundle, which is also a geometric quantity (it exists
independently of its measure by components in a basis) but has an algebraic
structure : the linear combination of vectors is well defined.

Some physical properties of objects can be represented by vectors, others
cannot, and the distinction comes from the fundamental assumptions of the
theory. It is enshrined in the theory itself.

The vector spaces TmM depend on m, and there is no canonical (meaning
independent of the choice of a specific tool) procedure to compare vectors be-
longing to the tangent spaces at two different points. These vectors um can be
considered as a couple of a location m and a vector u,which can be defined in
a holonomic basis or not, and all together they constitute the tangent bundle
TM.

However because the manifolds are actually affine spaces, in SR and Galilean
Geometry the tangent spaces at different points share the same structure (which
is the underlying tangent vector space), and only in these cases they can be as-
similated to R4. This is the origin of much confusion on the subject, and the
motivation to start in the GR context where the concepts are clearly differenti-
ated.

1.3 Vector fields

A vector field on M is a map : V :M → TM :: V (m) =
∑3

α=0 v
α (m) ∂ξα which

associates to any point m a vector of the tangent space TmM. The vector does
not depend on the choice of a basis or a chart, so its components change in a
change of chart as (Math.16.1.2) :

vα (m) → ṽα (m) =
∑3

β=0 [J (m)]αβ v
β (m)

where [J (m)] =
[
∂ηα

∂ξβ
(m)

]
is the 4x4 matrix called the jacobian

Similarly a one form onM is a map̟ :M → TM∗ :: ̟(m) =
∑3

α=0̟α (m) dξα

and the components change as :
̟α (m) → ˜̟α (m) =

∑3
β=0 [K (m)]

β
α̟β (m) and [K (m)] = [J (m)]

−1

The sets of vector fields, denoted X (TM) ,and of one forms, denoted X (TM∗)
or Λ1 (M ;R) are infinite dimensional vector spaces (with pointwise operations).

A curve on a manifold is a one dimensional submanifold : this is a geometric
structure, and there is a vector space associated to each point of the curve, which
is a one dimensional vector subspace of TmM .

A path on a manifold is a map : p : R → M :: m = p (τ) where p is a
differentiable map such that p′ (τ) 6= 0. Its image is a curve Lp, and p defines
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a bijection between R (or any interval of R) and the curve (this is a chart of
the curve), the curve is a 1 dimensional submanifold embedded in M. The same
curve can be defined by different paths. The tangent is the map : p′ (t) : R →
Tp(t)M :: dp

dτ ∈ Tp(τ)Lp . In a change of parameter in the path : τ̃ = f (τ)
(which is a change of chart) for the same point : m = p̃ (τ̃ ) = p (f (τ)) the new

tangent is proportional to the previous one : dm
dτ = dp̃

dτ̃
dτ̃
dτ ⇔ dm

dτ̃ = 1
f ′

dm
dτ

For any smooth vector field there is a collection of smooth paths (the inte-
grals of the field) such that the tangent at any point of the curve is the vector
field. There is a unique integral line which goes through a given point. The
flow of a vector field V is the map (Math.14.3.5):

ΦV : R ×M → M :: ΦV (τ, a) such that ΦV (., a) : R → M :: m = ΦV (τ, a)
is the integral path going through a :

∀θ ∈ R :
∂

∂τ
ΦV (τ, a) |τ=θ = V (ΦV (θ, a)) (1)

and ΦV (., a) is a local diffeomorphism

∀τ, τ ′ ∈ R : ΦV (τ + τ ′, a) = ΦV (τ,ΦV (τ ′, a)) (2)

ΦV (0, a) = a (3)

∀τ ∈ R : ΦV (−τ,ΦV (τ, a)) = a (4)

For a given vector field, the parameter τ is defined up to a constant, so it is
uniquely defined with the condition ΦV (0, a) = a.

In general the flow is defined only for an interval of the parameter, but this
restriction does not exist if Ω is relatively compact.

A map f : C → E from a curve to a Banach vector space E can be extended
to a map F : Ω → E (Maths.1467). So any smooth path can be considered as
the integral of some vector field (not uniquely defined), and it is convenient to
express a path as the flow of a vector field.

1.4 Fundamental symmetry breakdown

The four coordinates to locate a point in the physical Universe are not equivalent
: the measure of the time ξ0 cannot be done with the same procedures as the
other coordinates, and one cannot move along in time. This is the fundamental
symmetry breakdown.

One assumes that a given observer can tell if two events A, B occur in his
present time (they are simultaneous), and that the relation “two events are
simultaneous” is a relation of equivalence between events. Then the observer
can label each class of equivalence of events by the time of his clock. Which can
be expressed by telling that for each observer, there is a function : fo :M → R ::
fo (m) = t which assigns a time t, with respect to the clock of the observer, at any
point of the universe (or at least Ω). The points : Ω (t) = {m = fo (t) ,m ∈ Ω}
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correspond to the present of the observer. No assumption is made about the
clock, and different clocks can be used, with the condition that, as for any chart,
it is possible for a given observer to convert the time given by a clock to the
time given by another clock.

In Galilean Geometry instantaneous communication is possible, so it is pos-
sible to define a universal time, to which any observer can refer to locate his
position, and the present does not depend on the observer. The manifold M
can be assimilated to the product R × R3. The usual representation of mate-
rial bodies moving in the same affine space is a bit misleading, actually one
should say that this affine space R3 (t) changes continuously, in the same way,
for everybody. Told this way we see that Galilean Geometry relies on a huge
assumption about the physical universe.

In Relativist Geometry instantaneous communication is impossible, so it is
impossible to synchronize all the clocks. However a given observer can syn-
chronize the clocks which correspond to his present, this is the meaning of the
function fo. Different procedures have been proposed for this purpose, the sim-
plest uses electromagnetic signals which are bounced by the target. But this
process is specific to each observer, and there is a priori no way to compare
the time of clocks synchronized to two different observers, and located at two
different spatial locations. We will see how this can be done.

Whenever there is, on a manifold, a map such that fo, with f ′
o(m) 6= 0,

it defines on M a folliation : there is a collection of hypersurfaces (3 dimen-
sional submanifolds) Ω3 (t) ,and the vectors u of the tangent spaces on Ω3 (t)
are such that f ′

o(m)u = 0, meanwhile the vectors which are transversal to Ω3 (t)
(corresponding to paths which cross the hypersurface only once) are such that
f ′
o(m)u > 0 for any path with t increasing. So there are two faces on Ω3 (t) :
one for the incoming paths, and the other one for the outgoing paths. The hy-
persurfaces Ω3 (t) are diffeomorphic : they can be deduced from each other by
a differentiable bijection, which is the flow of a vector field. Conversely if there
is such a folliation one can define a unique function fo with these properties
(Maths.1502). The successions of present “spaces” for any observer is such a
folliation, so our representation is consistent. And we state :

Proposition 2 For any observer there is a function

fo :M → R :: fo (m) = t with f ′
o (m) 6= 0 (5)

which defines in the area Ω of the Universe a folliation by hypersurfaces

Ω3 (t) = {m = fo (t) ,m ∈ Ω} (6)

which represents the location of the events occurring at a given time t on his
clock.

An observer can then define a chart of M, by taking the time on his clock,
and the coordinates of a point x in the 3 dimensional hypersurfaces Ω3 (t) .
However we need a way to build consistently these spatial coordinates (how
they are related from one hypersurface Ω3 (t) to another Ω3 (t

′)).
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1.5 Trajectories of material bodies

The Universe is a container where physical objects live, and the manifold pro-
vides a way to measure a location. This is a 4 dimensional manifold which
includes the time, but that does not mean that everything is frozen on the
manifold : the universe does not change, but its content changes. As bodies
move in the universe, their representation are paths on the manifold. And the
fundamental symmetry breakdown gives a special meaning to the coordinate
with respect to which the changes are measured. Time is not only a parameter
to locate an event, it is also a variable which defines the rates of change in the
present of an observer.

1.5.1 Material bodies and particles

The common definition of a material body in Physics is that of a set of material
points which are related. A material point is assumed to have a location
corresponding to a point of the manifold. According to the relations between
material points of the same body we have rigid solids (the distance between two
points is constant), deformable solids (the deformation tensor is locally given by
the matrix of the transformation of a frame), fluids (the speed of material points
are given by a vector field). These relations are formulated by phenomenological
laws, they are essential in practical applications, but not in a theoretical study.
So we will consider material bodies which have no internal structures, or whose
internal structure can be neglected at the scale of the study, that we will call
particles. A particle then can be an electron, a nucleus, a molecule, or even a
star system, according to the scale of the study. As in Mechanics a particle is a
material point, and its location can be assimilated to a point from a geometrical
point of view. We will see later how one can extend the concept of solid bodies
to the relativist context.

1.5.2 World line and proper time

As required in any scientific theory a particle must be defined by its properties,
and the first is that it occupies a precise location at any time. The successive
locations of the material body define a curve and the particle travels on this
curve according to a specific path called itsworld line. Any path can be defined
by the flow of a vector such that the derivative with respect to the parameter
is the tangent to the curve. The parameter called the proper time is then
defined uniquely, up to the choice of an origin. The derivative with respect to
the proper time is called the velocity. By definition this is a vector, defined
at each point of the curve, and belonging to the tangent space to M. So the
velocity has a definition which is independent of any basis.

Remark : For brevity I will call velocity the 4-vector, also usually called
4-velocity, and spatial speed the common 3 vector.

Observers are assumed to have similarly a world line and a proper time (they
have other properties, notably they define a basis).

To sum up :
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Definition 3 Any particle or observer travels in the universe on a curve accord-
ing to a specific path , p : R →M :: m = p (τ) called the world line, parametrized
by the proper time τ , defined uniquely up to an origin. The derivative of the
world line with respect to the proper time is a vector, the velocity, u. So that :

u (θ) =
dp

dτ
|τ=θ ∈ Tp(θ)M (7)

p (τ) = Φu (τ, a) with a = Φu (0, a) = p (0) (8)

Observers are assumed to have clocks, that they use to measure their tem-
poral location with respect to some starting point. The basic assumption is the
following :

Proposition 4 For any observer his proper time is the time on his clock.

So the proper time of a particle can be seen formally as the time on the clock
of an observer who would be attached to the particle.

We will strive to denote t the time of an observer (specific to an observer)
and τ any other proper time. So for a given observer :

t = τ
po : R →M :: m = po (t)
u (θ) = dp

dt |t=θ ∈ Tp(θ)M
po (t) = Φu (τ, a) with a = Φu (0, a) = p (0)
The observer uses the time on his clock to locate temporally any event : this

is the purpose of the function fo and of the folliation Ω3 (t). The curve on which
any particle travels meets only once each hypersurface Ω3 (t) : it is seen only
once. This happens at a time t :

fo (p (τ)) = t = fo (Φu (τ, a))
So there is some relation between t and the proper time τ. It is specific,

both to the observer and to the particle. It is bijective and both increases
simultaneously, so that : dτ

dt > 0.
The travel of the particle on the curve can be represented by the time of an

observer. We will call then this path a trajectory.

A clock measures the elapsed time. It seems legitimate to assume that, in
the procedure, one chooses clocks which run at the same rate. But, to do this,
one needs some way to compare this rate. The most natural is to use a scalar
measure of the velocity d

dτ po (τ), and to assume that it is the same : material
bodies would travel along their world lines at the same speed. But, as velocities
are 4 dimensional vectors, one needs a special scalar product.

1.6 Metric on the manifold

1.6.1 Lorentz metric

A scalar product is defined by a bilinear symmetric form g acting on vectors of
the tangent space, at each point of the manifold, thus by a tensor field called a
metric. In a holonomic basis g reads :
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g (m) =

3∑

αβ=0

gαβ (m) dξα ⊗ dξβ with gαβ = gβα (9)

The matrix of g is symmetric and invertible, if we assume that the scalar
product is not degenerate. It is diagonalizable, and its eigen values are real. One
wants to account for the symmetry breakdown, so these eigen values cannot have
all the same sign (a direction is privileged). One knows that the hypersurface
Ω3 (t) are Riemannian : there is a definite positive scalar product (acting on
the 3 dimensional vector space tangent to Ω3 (t)), and that transversal vectors
correspond to the velocities of material bodies. So there are only two solutions
for the signs of the eigen values of [g (m)] : either (-,+,+,+) or (+,-,-,-) which
provides both a Lorentz metric. The scalar product, in an orthonormal basis
(εi)

3
i=0 at m reads :

signature (3, 1) : 〈u, v〉 = u1v1 + u2v2 + u3v3 − u0v0 (10)

signature (1, 3) : 〈u, v〉 = −u1v1 − u2v2 − u3v3 + u0v0 (11)

Such a scalar product defines by restriction on each hypersurface Ω3 (t) a
positive or a negative definite metric, which applies to spatial vectors (tangent
to Ω3 (t)) and provides, up to sign, the usual euclidean metric. So that both
signatures are acceptable.

Which leads to :

Proposition 5 The manifold M representing the Universe is endowed with a
non degenerate metric, called the Lorentz metric, with signature either (3,1)
of (1,3) defined at each point.

This reasoning is a legitimate assumption, which is consistent with all the
other concepts and assumptions, this is not the proof of the existence of such
a metric. Such a proof comes from the formula in a change of frames between
observers, which can be checked experimentally.

Notice that on a finite dimensional, connected, Hausdorff manifold, there is
always a definite positive metric (Maths.1385). There is no relation between
this metric and a Lorentz metric. Not all manifolds can have a Lorentz metric,
the conditions are technical (see Giachetta p.224 for more) but one can safely
assume that they are met in a limited region Ω.

1.6.2 Gauge group

The existence of a metric implies that, at any point, there are orthonormal bases
(εi)

3
i=0 with the property :

Definition 6 〈εi, εj〉 = ηij for the signature (3,1) and 〈εi, εj〉 = −ηij for the
signature (1,3)
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with the matrix :

Notation 7 [η] =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




so that the vector ε0 is the time vector.
An orthonormal basis, at each point, is a gauge. The choice of an orthonor-

mal basis depends on the observer : he has freedom of gauge. One goes from
one gauge to another by a linear map χ which preserves the scalar product.
They constitute a group, called the gauge group. In any basis these maps are
represented by a matrix [χ] such that :

[χ]t [η] [χ] = [η] (12)

The group denoted equivalently O(3, 1) or O(1, 3), does not depend on the
signature (replace [η] by -[η]).

O(3, 1) is a 6 dimensional Lie group with Lie algebra o(3, 1) whose matrices
[h] are such that : [h]

t
[η] + [η] [h] = 0.(Maths.24.5.3). The Lie algebra is a

vector space and we will use the basis :

[κ1] =




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0


 ; [κ2] =




0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0


 ; [κ3] =




0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0




[κ4] =




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 ; [κ5] =




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


 ; [κ6] =




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0




so that any matrix of o(3, 1) can be written :
[κ] = [J (r)] + [K (w)] with two vectors r, w of R3

[J (r)] =




0 0 0 0
0 0 −r3 r2
0 r3 0 −r1
0 −r2 r1 0


 ; [K (w)] =




0 w1 w2 w3

w1 0 0 0
w2 0 0 0
w3 0 0 0




The exponential of these matrices read (Maths.493) :

exp [K (w)] = I4 +
sinh

√
wtw√

wtw
K(w) + cosh

√
wtw−1

wtw K(w)K(w)

exp [K (w)] =

[
cosh

√
wtw wt sinh

√
wtw√

wtw

w sinh
√
wtw√

wtw
I3 +

cosh
√
wtw−1

wtw wwt

]

exp [J (r)] = I4 +
sin

√
rtr√

rtr
J(r) + 1−cos

√
rtr

rrr J(r)J(r) =

[
1 0
0 R

]
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where R a 3×3 matrix of O(3).

The group O(3) has two connected components : the subgroup SO(3) with
determinant = 1, and the subset O1 (3) with determinant -1.

O(3, 1) has four connected components which can be distinguished according
to the sign of the determinant and their projection under the compact subgroup
SO(3)× {I} .

Any matrix of SO(3, 1) can be written as the product : [χ] = exp [K (w)] exp [J (r)]
(or equivalently exp [J (r′)] exp [K (w′)]). So we have the 4 cases :

- SO0 (3, 1) : with determinant 1: [χ] = expK(w)×
[
1 0
0 R

]

- SO1 (3, 1) : with determinant 1: [χ] = expK(w)×
[
−1 0
0 −R

]

- SO2 (3, 1) with determinant = -1: [χ] = expK(w)×
[
−1 0
0 R

]

- SO3 (3, 1) with determinant = -1: [χ] = expK(w)×
[
1 0
0 −R

]

where R a 3×3 matrix of SO(3), so that −R ∈ O1 (3)
SOk (3, 1) , k = 1, 2, 3 are generated by the product of any element of SO0 (3, 1)

by either :

the time reversal matrix : T =

[
−1 0
0 I3

]

or the space reversal matrix : S =

[
1 0
0 −I3

]

1.6.3 Orientation

Is the universe orientable ? In a universe where all observers have the same
time, the simple existence of stereoisomers which do not have the same chemi-
cal properties suffices to answer positively. In a space-time universe one needs
a process with an outcome which discriminates an orientation. All chemical
reactions starting with a balanced mix of stereoisomers produce an equally bal-
anced mix (stereoisomers have the same level of energy). However there are
experiments involving the weak interactions which show the required property.
So we can state that the 4 dimensional universe is orientable, and then we can
distinguish orientation preserving gauge transformations. The right group to
consider is SO(3, 1).

The relativist universe is no longer isotropic : all directions at not equivalent.
At any point m one can discriminate the vectors v ∈ TmM according to the
value of the scalar product 〈v, v〉.

Definition 8 Time like vectors are vectors v such that 〈v, v〉 < 0 with the
signature (3,1) and 〈v, v〉 > 0 with the signature (1,3)

Space like vectors are vectors v such that 〈v, v〉 > 0 with the signature (3,1)
and 〈v, v〉 < 0 with the signature (1,3)
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Moreover the subset of time like vectors has two disconnected components
(this is no longer true in universes with more than one “time component”
(Maths.307)). This has two important consequences.

A change of gauge, physically, implies some transport of the frame (one does
not jump from one point to another) : we have a map : χ : I → SO(3, 1) such
that at each point of the path po : I → M defined on a interval I of R, χ (t) is
an isometry. The path which is followed matters. In particular it is connected.
The frame (εi)

3
i=0 is transported by : ε̃i (τ) = χ (t) εi (0) . So {[χ (τ)] , t ∈ I},

image of the connected interval I by a continuous map is a connected subset
of SO(3, 1), and because χ(0) = Id it must be the component of the identity.
So the right group to consider is the connected component of the identity
SO0 (3, 1) .

Because the subset of time like vectors has two disconnected components
one can discriminate these components and, in accordance with the assumptions
about the velocity of material bodies, it is logical to consider that their velocity
is future oriented. And one can distinguish gauge transformations which
preserve this time orientation.

Definition 9 We will assume that the future orientation is given in a gauge by
the vector ε0. So a vector u is time like and future oriented if :

〈u, u〉 < 0, 〈u, ε0〉 < 0 with the signature (3,1)
〈u, u〉 > 0, 〈u, ε0〉 > 0 with the signature (1,3)

A matrix [χ] of SO0(3, 1) preserves the time orientation iff [χ]
0
0 > 0 and this

will always happen if [χ] = exp [K (w)] exp [J (r)] that is if [χ] ∈ SO0 (3, 1) .
A gauge transformation which preserves both the time orientation, and the

global orientation must preserve also the spatial orientation.

1.7 Velocities have a constant Lorentz norm

The velocity dpo

dt is a vector which is defined independently of any basis, for
any observer it is transversal to Ω3 (t) . It is legitimate to say that it is future
oriented, and so it must be time-like. One of the basic assumptions of Relativity
is that it has a constant length, as measured by the metric, identical for all
observers. So it is possible to use the norm of the velocity to define a standard
rate at which the clocks run.

Because the proper time of any material body can be defined as the time on
the clock of an observer attached to the body this proposition is extended to
any particle.

The time is not measured with the same unit as the lengths, used for the
spatial components of the velocity. The ratio ξi/t has the dimension of a spatial
speed. So we make the general assumption that for any observer or particle the

velocity is such that
〈

dp
dτ ,

dp
dτ

〉
= −c2 where τ is the proper time. Notice that c

is a constant, with no specific value.
And we sum up :
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Proposition 10 The velocity dp
dτ of any particle or observer is a time like,

future oriented vector with Lorentz norm

〈
dp

dτ
,
dp

dτ

〉
= −c2 (13)

(with signature (3,1) or c2 with signature (1,3)) where c is a fundamental
constant.

1.8 Standard chart of an observer

As a consequence :

Theorem 11 For any observer there is a vector field ε0 ∈ X (TM) which is
future oriented, with length 〈ε0 (m) , ε0 (m)〉 = −1, normal to Ω3 (t) and such
that : ε0 (p0 (t)) =

1
c
dpo

dt where dpo

dt is the velocity of the observer at each point
of his world line.

Proof. For an observer the function f : Ω → R has for derivative a one form
f ′ (m) 6= 0 such that ∀v ∈ TmΩ3 (t) : f

′ (m) v = 0.Using the metric, it is possible
to associate to f ′ (m) a vector : ε0 (m) = gradf : 〈ε0 (m) , v〉 = f ′ (m) v. Thus
ε0 (m) is normal to Ω3 (t). Along the world line of the observer ε0 (m) is in the
direction of the velocity of the observer. And it is always possible to choose
ε0 (m) such that it is future oriented and with length 〈ε0 (m) , ε0 (m)〉 = −1

As a consequence :

Theorem 12 Ω3 (t) are space like hypersurfaces, with unitary normal ε0 ∈
X (TM)

Using the vector field ε0, and any any chart ϕΩ of Ω (0) there is a standard
chart associated to an observer.

Definition 13 The standard chart on M of any observer is defined as :
ϕo : R4 → Ω :: ϕo

(
ξ0, ξ1, ξ2, ξ3

)
= Φε0 (ct, x)

ξ0 = ct, ϕΩ

(
ξ1, ξ2, ξ3

)
= x in any chart of Ω (0)

c is required in Φε0 (ct, x) so that :

ξ0 = ct (14)

which makes all the coordinates homogeneous in units [Length].
The holonomic basis associated to this chart is such that :
∂ξ0 = ∂ϕo

∂ξ0 = 1
c

∂
∂tΦε0 (ct, x) = ε0

ε0 (m) = ∂ξ0 (15)

For any pointm = ϕo

(
ξ0, ξ1, ξ2, ξ3

)
Φε0 (ct, x) the point x is the point where

the integral curve of ε0 passing by m crosses Ω3 (0) .
So the main characteristic of an observer can be summed in the vector field

ε0 (which is equivalently deduced from the function fo).
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1.9 Trajectory and speed of a particle

A particle follows a world line q (τ), parametrized by its proper time. Any ob-
server sees only one instance of the particle, located at the point where the
world line crosses the hypersurface Ω3 (t) so we have a relation between τ and t.
This relation identifies the respective location of the observer and the particle
on their own world lines. With the standard chart of the observer it is possible
to measure the velocity of the particle at any location, and of course at the
location where it belongs to Ω3 (t) .

The trajectory (parametrized by t) of any particle in the standard chart of
an observer is :

q (t) = Φε0 (ct, x (t)) = ϕo

(
ct, ξ1 (t) , ξ2 (t) , ξ3 (t)

)

By differentiation with respect to t :
dq
dt = cε0 (q (t)) +

∂
∂xΦε0 (ct, x (t))

∂x
∂t

∂
∂xΦε0 (ct, x (t))

∂x
∂t =

∑3
α=1

dξα
dt ∂ξα ∈ TmΩ3 (t) so is orthogonal to ε0 (q (t))

Definition 14 The spatial speed of a particle on its trajectory with respect to
an observer is the vector of Tq(t)Ω3 (t) :

−→v = ∂
∂xΦε0 (ct, x (t))

∂x
∂t =

∑3
α=1

dξα

dt ∂ξα

Thus for any particle in the standard chart of an observer :

V (t) =
dq

dt
= cε0 (q (t)) +

−→v (16)

For the observer in the standard chart we had :
dp0

dt = cε0 (p0 (t)) ⇔ −→v = 0
Notice that the velocity, and the spatial speed, are measured in the chart of

the observer at the point q(t) where is the particle. Because we have defined a
standard chart it is possible to measure the speed of a particle located at a point
q (t) which is different from the location of the observer. And we can express
the relation between τ and t.

Theorem 15 The proper time τ of any particle and the corresponding time of
any observer t are related by :

dτ

dt
=

√

1− ‖−→v ‖2

c2
(17)

where −→v is the spatial speed of the particle, with respect to the observer and
measured in his standard chart.

The velocity of the particle is :

dp

dτ
=

1√
1− ‖−→v ‖2

c2

(−→v + cε0 (m)) (18)
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Proof. i) Let be a particle A with world line :
p : R →M :: m = p (τ) = Φu (τ, a) with a = Φu (0, a) = p (0)
In the standard chart Φε0 (ct, x) of the observer O its trajectory is :
q : R →M :: m = q (t) = Φε0 (ct, x (t))
So there is a relation between t, τ :
m = p (τ) = Φu (τ, a) = q (t) = Φε0 (ct, x (t))
By differentiation with respect to t :
d
dtq (t) = cε0 (pA (t)) +−→v
dq
dt = −→v + cε0 (m)
dq
dt = dp

dτ
dτ
dt〈

dp
dτ ,

dp
dτ

〉
= −c2

〈
dq
dt ,

dq
dt

〉
= −c2

(
dτ
dt

)2
〈

dq
dt ,

dq
dt

〉
= 〈−→v ,−→v 〉3 − c2 because ε0 (m) ⊥ Ω3 (t)

‖−→v ‖2 − c2 = −c2
(
dτ
dt

)2

and because dτ
dt > 0 : dτ

dt =

√
1− ‖−→v ‖2

c2

ii) The velocity of the particle is :
dp
dτ = dq

dt
dt
dτ = 1√

1−‖−→v ‖2

c2

(−→v + cε0 (m))

As a consequence :

‖−→v ‖ < c (19)

V (t) = dp
dt is the measure of the motion of the particle with respect to the

observer : it can be seen as the relative velocity of the particle with respect to the
observer. It involves −→v which has the same meaning as usual, but we see that in
Relativity one goes from the 4 velocity u = dp

dτ (which has an absolute meaning)

to the relative velocity V (t) = dp
dt = dp

dτ
dτ
dt = u

√
1− ‖−→v ‖2

c2 by a scalar. If we have

two particles A,B, with their path qA (τA) , qB (τB) can we define their relative
motion, for instance of B relative to A ? The simplest way to do it in relativity is

to consider A as an observer, then VB/A (τA) =
dqB
dτA

= uB

√
1− ‖−→v B/A‖2

c2 which

is defined in the chart associated to the observer A.

24



1.10 Fiber bundles

As said before, the location of a particle is absolute : this is the point in the
physical Universe that it occupies at some time. But the measure of this location
is relative to the observer, starting with the time at which the particle is at a
given place. Similarly the velocity of a particle or an observer is absolute : in
its definition there is no reference to a chart or a frame. This is an essential
point in Relativity. State that the velocity of a particle is absolute confers to
the variable a specific status : it is a geometric vector. The status - vector or
not - of a variable is not arbitrary : it is part of the assumptions of the theory.
Velocity is an intrinsic property of material bodies and particles, the measure
of this velocity depends on the observer : it is relative.

This remark extends to all measures. A physical measure in itself has no
meaning if one does not know how it has been done. The label “done by the
observer O” is necessary. So we cannot contend ourselves with maps X : M →
E. We need a way to attach a tag, identifying the way the measure has been
done, to the value of the variable. The mathematical tool to achieve that is
the fiber bundle formalism. This is more than a sophisticated mathematical
theory, it embodies the relation between measure (the value) and conditions of
the measure (the gauge).

(see Math.Part VI)

1.10.1 General fiber bundle

A fiber bundle, denoted P (M,F, πP ), is a manifold P, which is locally the prod-
uct of two manifolds, the base M and the standard fiber F, with a projection
: πP : P → M which is a surjective submersion. The subset of P : π−1

P (m)
is the fiber over m. It is usually defined over a collection of open subsets of
M, patched together, but we will assume that on the area Ω there is only one
component (the fiber bundles are assumed to be trivial). A trivialization is a
map :

ϕP :M × F → P :: p = ϕP (m, v)
and any element of P is projected on M : ∀v ∈ F : πP (ϕP (m, v)) = m.So it

is similar to a chart, but the arguments are points of the manifolds.
A section p on P is defined by a map : v :M → F and p =ϕP (m, v (m)) .

The set of sections is denoted X (P ) .
A fiber bundle can be defined by different trivializations. In a change of

trivialization the same element p is defined by a different map ϕP : this is
very similar to the charts for manifold.

p = ϕP (m, v) = ϕ̃P (m, ṽ)
and there is a necessary relation between v and ṽ (m stays always the same)

depending on the kind of fiber bundle.

1.10.2 Principal bundle

If F = G is a Lie group then P is a principal bundle : its elements are a
value g(m) of G localized at a point m. There is a right action of G on P :
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p = ϕP (m, g) → p · g′ = ϕP (m, g.g′)
p will usually define the basis used to measure vectors, so p is commonly

called a gauge. There is a special gauge which can be defined at any point (it
will usually be the gauge of the observer) : the standard gauge, the element
of the fiber bundle such that : p (m) = ϕP (m, 1) where 1 denotes the unit
element of G.

A change of trivialization is induced by a map : χ : M → G that is by a
section χ ∈ X (P ) and :

p = ϕP (m, g) = ϕ̃P (m,χ (m) · g) = ϕ̃P (m, g̃) ⇔ g̃ = χ (m) · g ( χ (m) acts
on the left)

χ (m) can be identical over M (the change is said to be global) or depends
on m (the change is local).

The expression of the elements of a section changes as :
σ ∈ X (P ) :: σ = ϕP (m,σ (m)) = ϕ̃P (m, σ̃ (m)) ⇔ σ̃ (m) = χ (m) · σ (m)

σ (m) = ϕP (m,σ (m)) = ϕ̃P (m,χ (m) · σ (m)) (20)

A change of trivialization induces a change of standard gauge :
p (m) = ϕP (m, 1) = ϕ̃P (m,χ (m))

→ p̃ (m) = ϕ̃P (m, 1) = ϕ̃P

(
m,χ (m) · χ (m)

−1
)
= p (m) · χ (m)

−1

p (m) = ϕP (m, 1) → p̃ (m) = p (m) · χ (m)−1 : (21)

σ (m) = ϕP (m,σ (m)) = ϕ̃P (m,χ (m) · σ (m)) (22)

1.10.3 Vector bundle

If F = V is a vector space then P is a vector bundle and it has at each point
the structure of a vector space :

wm = ϕP (m,w) , w′
m = ϕP (m,w′) , α, β ∈ R :

αwm + βw′
m = ϕP (m,αw + βw′)

A holonomic basis is defined by a basis (εi)i∈I of V and : εi (m) = ϕP (m, εi) .
Usually vector bundles are defined as associated vector bundles. The princi-

pal bundle defines locally a standard with respect to which the measure is done.
The result belong to a fixed set, but its value is labeled by the standard which
is used and related to a point of a manifold.

1.10.4 Associated fiber bundle

Whenever there is a manifold F, a left action λ of G on F, one can built an
associated fiber bundle denoted P [F, λ] comprised of couples :

(p, v) ∈ P × F with the equivalence relation : (p, v) ∼
(
p · g, λ

(
g−1, v

))

It is convenient to define these couples by using the standard gauge on P:

(p (m) , v) = (ϕP (m, 1) , v) ∼
(
ϕP (m, g) , λ

(
g−1, v

))
(23)
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A standard gauge is nothing more than the use of an arbitrary standard,
represented by 1, with respect to which the measure is done. This is not a section
: the standard gauge is the embodiment of the free will of the observer, who
can choose the way he proceeds to the measure, and is not fixed by any physical
law. A change of standard gauge p (m) = ϕP (m, 1) → p̃ (m) = p (m) · χ (m)

−1

in the principal bundle impacts all associated fiber bundles (this is similar to
the change of units) :

vp = (p (m) , v) =
(
p (m) · χ (m)

−1
, λ (χ (m) , v)

)
(24)

Similarly for the components of a section :

v ∈ X (P [V, λ]) :: v (m) = (p (m) , v (m)) =
(
p (m) · χ (m)

−1
, λ (χ (m) , v)

)

If F is a vector space V and [V, ρ] a representation of the group G then we
have an associated vector bundle P [V, ρ] which has locally the structure of
a vector space. It is convenient to define a holonomic basis (εi (m))

n
i=1 from

a basis (εi)
n
i=1 of V by : εi (m) = (p (m) , εi) then any vector of P [V, ρ] reads :

vm = (p (m) , v) =

(
p (m) ,

n∑

i=1

viεi

)
=

n∑

i=1

viεi (m) (25)

A change of standard gauge p (m) = ϕP (m, 1) → p̃ (m) = p (m) · χ (m)
−1

in the principal bundle impacts all associated vector bundles.
The holonomic basis of a vector bundle changes as :
εi (m) = (p (m) , εi) →
ε̃i (m) = (p̃ (m) , εi) =

(
p (m) · χ (m)−1 , εi

)

∼
((

p (m) · χ (m)
−1
)
· χ (m) , ρ

(
χ (m)

−1
)
εi

)

=
(
p (m) , ρ

(
χ (m)

−1
)
(εi)
)
= ρ

(
χ (m)

−1
)
εi (m)

p (m) = ϕP (m, 1) → p̃ (m) = p (m) · χ (m)
−1

: (26)

εi (m) = (p (m) , εi) → ε̃i (m) = ρ (χ (m))−1 εi (m) (27)

so that the components of a vector in the holonomic basis change as :
vm =

∑n
i=1 v

iεi (m) =
∑n

i=1 ṽ
iε̃i (m) =

∑n
i=1 ṽ

iρ (χ (m))−1 εi (m)

⇒ ṽi =
∑

j [ρ (χ (m))]
i
j v

j

p (m) = ϕP (m, 1) → p̃ (m) = p (m) · χ (m)
−1

: (28)

vi → ṽi =
∑

j

[ρ (χ (m))]
i
j v

j (29)

The set of sections on P [V, ρ] , denoted X (P [V, ρ]) , is an infinite dimensional
vector space. In a change of standard gauge the components of a section change
as :
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v ∈ X (P [V, ρ]) :: v (m) =
∑n

i=1 v
i (m) εi (m) =

∑n
i=1 ṽ

i (m) ε̃i (m)

⇔ ṽi (m) =
∑

j

[
ρ
(
χ (m)

−1
)]i

j
vj (m)

so that (X (P [V, ρ]) , ρ) is an infinite dimensional representations of the group
G.

I have given with great precision the rules in a change of gauge, as they will
be used quite often (and are a source of constant mistakes !). They are necessary
to ensure that a quantity is intrinsic : if it is geometric, its measure must change
according to the rules. And conversely if it changes according to the rules, then
one can say that it is intrinsic (this is similar to tensors). Because this is a
source of confusion, I will try to stick to these precise terms :

- a section = a point of a fiber bundle whose value is defined for eachm ∈M,
this is a geometric object

- a gauge = a point of the principal bundle of P, this is a geometric object,
which does not depend on a trivialization

- a standard gauge = a specific element of P, whose definition depends of
the trivialization. This is not a section.

- a change of trivialization does not change the points of P, the gauge or the
sections, but change the standard gauge and the way the points of P are defined
with respect to the standard gauge

- it is equivalent to define a change of trivialization by the change of maps
ϕP → ϕ̃P or by the change of standard gauge : p (m) = ϕP (m, 1) → p̃ (m) =
ϕ̃P (m, 1)

Notice that the elements of a section stay the same, but their definition
changes, meanwhile the holonomic bases are defined by different elements. This
is very similar to what we have in any vector space in a change of basis :
the vectors of the basis change, the other vectors stay the same, but their
components change.

1.10.5 Scalar product and norm

Whenever there is a scalar product (bilinear symmetric of Hermitian two form)
〈〉 on a vector space V, so that (V, ρ) is a unitary representation of the group G :
〈ρ (g) v, ρ (g) v′〉 = 〈v, v′〉 , the scalar product can be extended on the associated
vector bundle P [V, ρ] :

〈(p (m) , v) , (p (m) , v′)〉P [V,ρ] = 〈v, v′〉W (30)

If this scalar product is definite positive, with any measure µ on the manifold
M (usually the Lebesgue measure associated to a volume form as in the relativist
context), one can define the spaces of integrable sections Lq (M,µ, P [V, ρ]) of
P [V, ρ] (by taking the integral of the norm pointwise). For q = 2 they are Hilbert
spaces, and unitary representation of the group G. Notice that the signature of
the scalar product is that of the product defined on P [V, ρ] , the metric on M
is not involved.
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If there is a norm on V, that is a map :
‖‖ : V → R+

such that :
‖X‖ ≥ 0
‖X‖ = 0 ⇔ X = 0
‖kX‖ = |k| ‖X‖
‖X +X ′‖ ≤ ‖X‖+ ‖X ′‖
which does not depend on ρ :
∀g ∈ G : ‖ρ (g)X‖ = ‖X‖
then one can define a norm pointwise on P [V, ρ] :
‖(p (m) , v)‖ = ‖v‖
(p (m) , v) ∼

(
p (m) ρ

(
g−1

)
, ρ (g) v

)
∥∥(p (m) ρ

(
g−1

)
, ρ (g) v

)∥∥ = ‖ρ (g) v‖ = ‖v‖
and the space of integrable maps :
L1 (X (P [V, ρ])) =

{
X ∈ X (P [V, ρ]) ,

∫
Ω
‖X‖µ <∞

}

is a separable Fréchet space if Ω is a compact subset.

We have several fiber bundles in the Geometry of the Universe that we have
defined. The simplest is the usual tangent bundle TM over M, which is a vector
bundle associated to the choice of an invertible map at each point (the gauge
group is SL(R, 4)). But we have another one through the standard chart of an
observer ;

Definition 16 For any observer there is a fiber bundle structureMo (R,Ω (0) , π0)
on M with base R and :

projection : πo (m) = f0 (m)
trivialization : Φε0 : R× Ω (0) → Ω :: Φε0 (ct, x) = m

1.11 Standard gauges associated to an observer

Following the Principle of Locality any physical map, used to measure the com-
ponents of a vector at a point m in M, must be done at m, that is in a local
frame. One property of the observers is that they have freedom of gauge : along
their travel on their world line po (t) they can choose a gauge, by choosing 4
orthogonal vectors.

For the time vector the observer has actually no choice : this is necessarily
the vector ε0 in the direction of his velocity dpo

dt . And this vector has been
extended as the vector field ε0 orthogonal to Ω3 (t) . The 3 other vectors of an
orthonormal basis, corresponding to the space, belong to the space tangent at
Ω3 (t) , they are orthogonal to ε0 and we assume that the observer can define
these 3 vectors at any point of his present Ω3 (t). This can be achieved by a
system of communication (not instantaneous) between observers who would be
located at each point.

This is equivalent to assume that, for each observer, there is a principal bun-
dle Po (M,SO0 (3, 1) , πp), a gauge p (m) = ϕP (m, 1) and an associated vector
bundle Po

[
R4, ı

]
where

(
R4, ı

)
is the standard representation of SO0(3, 1). It
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defines at each point an holonomic orthonormal basis : εi (m) = (p (m) , εi) .To
sum up :

Proposition 17 For each observer there is :
a principal fiber bundle structure Po (M,SO0 (3, 1) , πp) on M with fiber

the connected component of unity SO0 (3, 1), which defines at each point a stan-

dard gauge : p (m) = ϕP (m, 1)
an associated vector bundle structure Po

[
R4, ı

]
where

(
R4, ı

)
is the stan-

dard representation of SO0(3, 1), which defines at any point m ∈ Ω the stan-

dard basis εi (m) = (p (m) , εi) ,i=0..3 where ε0 (m) is orthogonal to the hyper-
surfaces Ω3 (t) to which m belongs.

Notice that these structures depend on the observer. Starting with the
principal bundle Po, a change of gauge can be defined at any point by a section
χ ∈ X (Po) as seen above, with an impact on any associated bundle.

A standard basis is such that its time vector is ε0 (m) , so at the location
of the observer it is in the direction of his velocity. Standard bases are not
unique : their time vector is the same, but their space vectors can be rotated
in Ω3 (t) . Because they constitute an euclidean orthonormal basis the rotation
is given by a matrix of SO(3).

1.12 Formulas for a change of observer

Theorem 18 For any two observers O,A the components of the vectors of the
standard orthonormal basis of A, expressed in the standard basis of O are ex-
pressed by the matrix of SO0 (3, 1) , where

−→v is the instantaneous spatial speed
of A with respect to O and R a matrix of SO(3) :

[χ] =




1√
1− ‖v‖2

c2

vt

c√
1− ‖v‖2

c2

v
c√

1− ‖v‖2

c2

I3 +

(
1√

1− ‖v‖2

c2

− 1

)
vvt

‖v‖2




[
1 0
0 R

]
(31)

Proof. Let be :
O be an observer (this will be main observer) with associated vector field ε0

, proper time t and world line po (t)
A be another observer with associated vector field ε′0 , proper time τ
Both observers use their standard chart ϕo, ϕA and their standard orthonor-

mal basis, whose time vector is in the direction of their velocity. The location
of A on his world line is the point m such that A belongs to the hypersurface
Ω3 (t)

The velocity of A at m :
dpA

dτ = cε′0 (m) by definition of the standard basis of A
dpA

dτ = 1√
1−‖−→v ‖2

c2

(−→v + cε0 (m))as measured in the standard basis of O
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The matrix [χ] to go from the orthonormal basis (εi (m))
3
i=0 to (ε′i (m))

3
i=0

belongs to SO0(3, 1). It reads :

[χ (t)] =

[
cosh

√
wtw wt sinh

√
wtw√

wtw

w sinh
√
wtw√

wtw
I3 +

cosh
√
wtw−1

wtw wwt

][
1 0
0 R

]

for some w ∈ R3, R ∈ SO (3)
The elements of the first column of [χ (t)] are the components of ε′0 (m) , that

is of 1
c
dpA

dτ expressed in the basis of O :

cosh
√
wtw = 1√

1− ‖v‖2

c2

w sinh
√
wtw√

wtw
=

−→v
c

1√
1− ‖v‖2

c2

w = k−→v ⇒ wtw = k2 ‖−→v ‖2
which leads to the classic formula with

w = v
‖v‖ arg tanh

∥∥v
c

∥∥ = 1
2

v
‖v‖ ln

(
c+‖−→v ‖
c−‖−→v ‖

)
∼ 1

2
v

‖v‖ ln

(
1 + 2

‖−→v ‖
c

)
∼ v

c

Some key points to understand these formulas :
- They hold for any observers O, A, who use their standard orthonormal

basis (the time vector is oriented in the direction of their velocity). There is no
condition such as inertial frames.

- The points of M where O and A are located can be different, but they
belong both to the same hypersurface Ω3 (t) . The spatial speed −→v is a vector
belonging to the space tangent at Ω3 (t) at the location m of A (and not at the
location of O at t).

- The formulas are related to the standard orthonormal bases (εi (m))3i=0 of

O and (ε′i (m))
3
i=0located at the point m of Ω3 (t) where A is located.

- These formulas apply to the components of vectors in the standard or-
thonormal bases.

These formulas have been verified with a great accuracy, and the experiments
show that c is the speed of light. This is an example of a theory which is checked
by the consequences that can be drawn from its basic assumptions.

We will see below how these formulas apply in Special Relativity.

If we take v
c → 0 we get [χ] =

[
1 0
0 R

]
, that is a rotation of the usual space.

The Galilean Geometry is an approximation of SR when the speeds are small
with respect to c. Then the velocities are dµA

dτ = (−→v + cε0) with a common
vector ε0.

1.13 The Tetrad

1.13.1 The principal fiber bundle

So far we have defined a chart ϕo and a fiber bundle structure Po for an observer
: the construct is based on the motion of the observer, and his capability to
extend his frame over the hypersurfaces Ω3 (t) . With the formulas above we see
how one can go from one observer to another, and thus relate the different fiber
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bundles Po. The computations in a change of frame can be done with measures
done by the observers, and have been checked experimentally. So it is legitimate
to assume that there is a more general structure of principal bundle, denoted
PG (M,SO0 (3, 1) , πG) ,over M. In this representation the bases used by any
observer is just a choice of specific trivialization, or equivalently of standard
gauge, and one goes from one trivialization to another with the matrix [χ] .

If it is easy to define such a mathematical structure, it is necessary to un-
derstand its physical meaning. There is no way to relate an element p ∈ PG at
a point m of M to a physical phenomenon : a trivialization is, like a chart, ar-
bitrary, but the relations in a change of trivialization can be measured by their
consequences on the bases of associated bundle (as can be checked the rela-
tions between components in a change of chart). In particular a gauge, denoted
ϕG (m, 1) is arbitrary, but it will be convenient to keep the notation in this paper,
and to precise its meaning : we state that the standard gauge p (m) = ϕG (m, 1)
is the gauge such that the associated basis εi (m) = (p (m) , εi) is the standard
basis chosen by an observer. So the standard gauge is actually defined by the
standard basis. Such a basis, for any observer, is orthonormal and its time vec-
tor is time like, future oriented, and defined by the velocity of the observer. Any
observer can choose another orthonormal basis, which is deduced by an action
of SO0 (3, 1) , and thus by an element of PG. So a change of trivialization, or
standard gauge, is equivalent to a change of standard basis. If the change of
basis involves a change of the time vector ε0 (m) we assume that this is a change
of observer.

Proposition 19 There is a unique structure of principal bundle
PG (M,SO0 (3, 1) , πG) with base M, standard fiber SO0 (3, 1) . A change of

observer is given by a change of trivialization on PG.
The standard gauge p (m) = ϕG (m, 1) is, for any observer, associated to his

standard basis εi (m) = (p (m) , εi)..

As a consequence the change of observer is a change of gauge, given by a
section χ (global or not) of PG, the vectors of the standard basis transform
according to the matrix [χ]. The transformation holds at any point. Moreover
the operation is associative : the combination of relative motions is represented
by the product of the matrices. This is convenient, and a big change with what
is done in SR with Cartesian frames as we will see.

1.13.2 Tetrad

The vectors of a standard basis (the tetrad) can be expressed in the holonomic
basis of any chart (of an observer or not).

εi (m) =

3∑

α=0

Pα
i (m) ∂ξα ⇔ ∂ξα =

3∑

i=0

P ′i
α (m) εi (m) (32)
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where [P ] is a real invertible matrix (which has no other specific property,
it does not belong to SO (3, 1)) and we denote

Notation 20 [P ′] = [P ]
−1

=
[
P ′i
α

]
.

The dual of (∂ξα)
3
α=0 is (dξα)

3
α=0 with the defining relation :

dξα (∂ξβ) = δαβ .

The dual
(
εi (m)

)3
i=0

is :

εi (m) =

3∑

i=0

P ′i
α dξ

α ⇔ dξα =

3∑

i=0

Pα
i ε

i (m) (33)

εi (m) (εj (m)) =
∑3

αβ=0 P
′i
αP

β
j dξ

α (∂ξβ) =
∑3

α=0 P
′i
αP

α
j = δij

Notice that, if it is usual to associate to a vector u ∈ TmM a covector :
u∗ =

∑
αβ gαβu

βdξα, then u∗ (v) = 〈u, v〉 so that (εi)
∗ 6= εi : ε∗i (v) = ηiiv

i 6=
εi (v) = vi.

In the fiber bundle representation the vectors of the tetrad are variables
which are vectors εi ∈ X (TM) or covectors εi ∈ X (TM∗) . The quantities

(Pα
i (m))

3
i=1 (called vierbein) and

(
P ′i
α (m)

)3
i=1

are the components of the vectors

εi (m) or the covectors εi (m) in any chart. They can be measured, if one has a
chart. They depend on the observer, change with the locationm and in a change
of chart as the components of a vector or a covector. The quantities εi (m) are
geometric quantities. They are one of the variables in any model in GR : as
such they replace the metric g. However it is obvious that [P ] is defined, in any
chart, up to a matrix of SO (3, 1) , so there is some freedom in the choice of
the gauge, and this has consequences in the specification of a lagrangian (the
derivative ∂βP

α
i cannot appear explicitely).

In a change of gauge on the principal bundle PG : p (m) = ϕP (m, 1) →
p̃ (m) = p (m) · χ (m)

−1
the holonomic basis becomes with [χ (m)] ∈ SO0 (3, 1)

εi (m) = (p (m) , εi) → ε̃i (m) = [χ (m)]−1 εi (m)
∑3

α=0 P̃
α
i (m) ∂ξα =

[
χ (m)

−1
]j
i

∑3
α=0 P

α
j (m) ∂ξα

p (m) = ϕP (m, 1) → p̃ (m) = p (m) · χ (m)
−1

: [P ] →
[
P̃
]
= [χ (m)]

−1
[P ]

(34)

With respect to the standard chart of the observer :
ε0 (po (t)) = ∂ξ0 ⇒ P ′i

0 = δi0
α = 1, 2, 3 : ∂

∂ξαϕo

(
ξ0, ξ1, ξ2, ξ3

)
= ∂ξα = ∂

∂xΦε0 (ct, x)
∂x
∂ξα ∈ TmΩ3 (t) ⇒

P ′0
α = 0

so [P ′] =




1 0 0 0
0 P ′

11 P ′
12 P ′

13

0 P ′
21 P ′

22 P ′
23

0 P ′
31 P ′

32 P ′
33


 ; [P ] =




1 0 0 0
0 P11 P12 P13

0 P21 P22 P23

0 P31 P32 P33



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1.13.3 Metric

The scalar product can be computed from the components of the tetrad. By
definition :

gαβ (m) = 〈∂ξα, ∂ξβ〉 =
∑3

ij=0 ηij [P
′]iα [P ′]jβ

The induced metric on the cotangent bundle (Maths.1608) is denoted with
upper indexes :

g∗ =
∑

αβ g
αβ∂ξα ⊗ ∂ξβ

and its matrix is [g]
−1

:

gαβ (m) =
∑3

ij=0 η
ij [P ]αi [P ]βj

[g]
−1

= [P ] [η] [P ]
t ⇔ [g] = [P ′]

t
[η] [P ′] (35)

It does not depend on the gauge on PG :

[g̃] =
[
P̃ ′
]t
[η]
[
P̃ ′
]
= [P ′]t

[
χ (m)

−1
]t
[η]
[
χ (m)

−1
]
[P ′] = [P ′]t [η] [P ′]

So in the standard chart of the observer : g00 = −1.

[g] = [P ′]t [η] [P ′] =

[
−1 0
0 [g]3

]

and [g]3 is definite positive.

The metric defines a volume form on M (Maths.1609). Its expression in
any chart is, by definition :

̟4 (m) = ε0 ∧ ε1 ∧ ε2 ∧ ε3 =
√
|det [g]|dξ0 ∧ dξ1 ∧ dξ2 ∧ dξ3

[g] = [P ′]t [η] [P ′] ⇒ det [g] = − (det [P ′])2 ⇒
√
|det [g]| = det [P ′]

assuming that the standard basis of PG

[
R4, ı

]
is direct.

̟4 = det [P ′] dξ0 ∧ dξ1 ∧ dξ2 ∧ dξ3 (36)

1.13.4 Induced metric

The metric on M induces a metric on any submanifold but it is not necessarily
non degenerated (Maths.19.3.1).

On hypersurfaces the metric is non degenerated if the unitary normal n is
such that 〈n, n〉 6= 0 (Maths.1642). The induced volume form is (Maths.1644) :

µ3 = in̟4 = det [P ′] dξ0 ∧ dξ1 ∧ dξ2 ∧ dξ3 (n)
For Ω3 (t) the unitary normal n is ε0 , the induced metric is Riemannian and

the volume form ̟3 is :
̟3 = iε0̟4 = det [P ′] dξ0 ∧ dξ1 ∧ dξ2 ∧ dξ3 (ε0)
= det [P ′] dξ0 (ε0) ∧ dξ1 ∧ dξ2 ∧ dξ3
= det [P ′] dξ1 ∧ dξ2 ∧ dξ3

̟3 = det [P ′] dξ1 ∧ dξ2 ∧ dξ3 (37)

and conversely :
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̟4 = ε0 ∧̟3 = det [P ′] dξ0 ∧ dξ1 ∧ dξ2 ∧ dξ3
̟3 is defined with respect to the coordinates ξ1, ξ2, ξ3 but the measure de-

pends on ξ0 = t.

For a curve C, represented by any path : p : R → C :: m = p (θ) the

condition is
〈

dp
dθ ,

dp
dθ

〉
6= 0. The volume form on any curve defined by a path :

q : R → M with tangent V = dq
dθ is

√
|〈V, V 〉|dθ. So on the trajectory q (t) of a

particle it is

̟1 (t) =
√
−〈V, V 〉dt (38)

For a particle there is the privileged parametrization by the proper time,

and as
〈

dp
dτ ,

dp
dτ

〉
= −c2 the length between two points A,B is :

ℓp =
∫ τB
τA

√
−
〈

dp
dτ ,

dp
dτ

〉
dτ =

∫ τB
τA

cdτ = c (τB − τA)

This is an illustration of the idea that all world lines correspond to a travel
at the same speed.

1.14 From particles to material bodies

In Mechanics a material body is comprised of “material points”, that is elements
of matter whose location is a single geometric point, and change with time in
a consistent way : their trajectories do not cross, and the body keeps some
cohesion, which is represented by a deformation tensor for deformable solid
bodies. In Relativity the material points, particles in our terminology, follow
independent world lines, which do not cross, and thus can be represented by a
field of vectors u, future oriented with length 〈u, u〉 = −c2, such that, at some
time 0, the particles are all together in a compact subset̟ (0) of a 3 dimensional
space like submanifold. Then the location of any particle of the material body is
given by Φu (τ, a) where τ is its proper time and a ∈ ̟ (0) its location at τ = 0.
The area swept by the body is ω̂ = {Φu (τ, a) : τ ∈ R, a ∈ ω (0)} and we have the
function : f : ω̂ → R : f (m) = τ : ∃a ∈ ω (0) : Φu (τ, a) = m. The function f
defines a folliation in diffeomorphic compact 3 dimensional hypersurfaces ω (τ)
which can be seen as the state of the material body at τ (Maths.1503). So
Φu (τ, a) can be seen as a chart of ω̂, and the material body has a unique proper
time τ. We can then give a definition of a material body which is independent
of any observer.

Definition 21 A material body is defined by a field of vectors u, future ori-
ented with length 〈u, u〉 = −c2, and a compact subset ̟ (0) of a 3 dimensional
space like submanifold. The body is located at its proper time τ on the set ω (τ)
diffeomorphic to ̟ (0) .

The vector field u ∈ X (TM) does not depend on a chart, but for any observer
O the trajectories of the material points of the body will follow a vector field V ∈
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X (TM) : the curves do not change, but they are traveled with the parameter t
and not τ.

A material point can be labeled by its position y ∈ ω (0) then its location p
is

Φu (τ, a) at the proper time τ along the world line going through y
Φε0 (t, x (t)) = ϕO (t, x (t)) at the time t of the observer in the chart of

the observer given by his vector field ε0
and τ, t, y, x (t) are related by :
u = dp

dτ

V (t) = dp
dt = u

√
−〈V,V 〉

c = cε0 +
−→v

−→v = dx
dt

x (0) = a
At t = 0 for the observer the set of points of the material body is ω̂ (0) =

ω̂ ∩ Ω (0)
At t > 0 for the observer the set of points of the material body is ω̂ (t) =

ω̂ ∩ Ω (t)
ω̂ (t) = {ϕO (t, x (t)) , x (0) ∈ ω̂ (0)}
= {ΦV (t, x (0)) , x (0) ∈ ω̂ (0)}
= {Φu (τ (t) , a) , a ∈ ω̂ (0)}
and ω (τ (t)) = {Φu (τ (t) , a) , a ∈ ω (0)}
So the characterization of a material body is observer dependant : they do

not see the same body.
However we will assume :

Proposition 22 For any material body there are observers with proper time t
such that, at t = 0 they observe the entire material body : ω (0) ⊂ Ω (0)

Then at any given time t : ω̂ (t) = ω (τ (t)) . This is a legitimate assumption,
which will be mainly used to compute the characteristics of material bodies.

In Mechanics a solid is a material body such that the distance between any
two of its points is constant. ω (τ) is a Riemannian manifold, with the metric gτ
induced by the metric g on M. gτ defines the length of a curve on ω (τ) and the
distance between two of its points is then the minimum of the length of all the
lines which join the points. Because ω (τ) is compact such a minimum exists,
however the metric gτ itself depends on the point and τ, so this concept of solid
cannot be extended in Relativity.

In Galilean Geometry the local deformation of a material body is studied
through the change of a frame attached to each point, with respect to a fixed
common frame. In the previous framework the local deformation can be mea-
sured through the derivative of the flow Φu. Choose a chart of ̟ (0) : a =
φ (η1, η2, η3) then the derivatives u = ∂Φu

∂τ , ui =
∂Φu

∂ηi
, i = 1, 2, 3 provides a basis

at each point of ω (τ) and the components of these vectors with respect to any
chart of M provide a deformation tensor. We will see in the following how one
can improve these points.
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1.15 Special Relativity

All the results of this chapter hold in Special Relativity. This theory, which is still
the geometric framework of QTF and Quantum Physics, adds two assumptions
: the Universe M can be represented as an affine space, and the metric does not
depend on the location (these assumptions are independent). As consequences
:

- the underlying vector space
−→
M (the Minkovski space) is common to all

observers : the vectors of all tangent spaces to M belong to
−→
M

- one can define orthonormal bases which can be freely transported and
compared from a location to another

- because the scalar product of vectors does not depend on the location, at
each point one can define time-like and space-like vectors, and a future orienta-
tion (this condition relates the mathematical and the physical representations,

and
−→
M is not simply R4)

- there are fixed charts
(
O, (εi)

3
i=0

)
, called frames, comprised of an origin

(a location O in M : a point) and an orthonormal basis (εi)
3
i=0 . There is nec-

essarily one vector such that 〈εi, εi〉 = −1. It is possible to define, non unique,
orthonormal bases such that ε0 is timelike and future oriented.

- the coordinates of a pointm, in any frame
(
O, (εi)

3
i=0

)
, are the components

of the vector OM. The transition maps which give the coordinates of m in

another frame
(
A, (ε̃i)

3
i=0

)
are then given by the formulas :

OM =
∑3

i=0 xiεi
AM =

∑3
i=0 x̃iε̃i

OM = OA +AM =
∑3

i=0 Liεi +
∑3

i=0 x̃iε̃i
ε̃i =

∑3
j=0 [χ]

j
i εi, [χ] ∈ SO (3, 1)

However one needs to go from this abstract representation to a physical
definition of frames.

Observers can label points which are in their present with their proper time.
The role of the function f (m) = t is crucial, because it defines the 3 dimen-
sional hypersurfaces Ω (t) . They are not necessarily hyperplanes, but they must
be space like and do not cross each other : a point m cannot belong to 2 differ-
ent hypersurfaces. These hypersurfaces define the vector field ε0 (m) to which
belongs the velocity of the observer (up to c). In SR one can compare vectors at
different points, and usually the vectors ε0 (m) are different from one location to
another. They are identical only if Ω (t) are hyperplanes normal to a vector ε0,
which implies that the world line of the observer is a straight line, and because
the proper time is the parameter of the flow, if the motion of the observer is
a translation at a constant spatial speed. These observers are called inertial.
Notice that this definition is purely geometric and does not involve gravitation
or inertia : the motion of an observer is absolute, and inertial observers are such
that their velocity is a constant vector.
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Observers can define a standard chart ϕo

(
ξ0, ξ1, ξ2, ξ3

)
with ξ0 = ct, ∂ξ0 =

ε0 (m) with the flow of ε0 (m) and a chart ϕΩ of Ω (0) which provides the
coordinates ξ1, ξ2, ξ3 of the point x where the integral curves of ε0 passing
through m crosses Ω (0) . The general results hold and such a chart can always

be defined. However this chart is usually not defined by a frame
(
O, (εi)

3
i=0

)
:

the vectors of the basis must be constant, and notably ε0 so this is possible only
if the observer is inertial : a frame can be associated to an observer only if this
is an inertial observer.

For inertial observers the integral curves are straight lines parallel to ε0.Any
spatial basis (εi)

3
i=1 of Ω (0) can be transported on Ω (t) . The standard chart is

then similar to a frame in the 4 dimensional affine space
(
O (0) , (εi)

3
i=0

)
with

originO (0), the 3 spatial vectors (εi)
3
i=1 and the time vector ε0. The coordinates

of a point m ∈ Ω3 (t) are :−−−−−→
O (0)m = ctε0 +

∑3
i=1 ξ

iεi where
−−−−→
O (t)m =

∑3
i=1 ξ

iεi
and the velocity of a particle with trajectory q (t), as measured by O, is :

V = cε0 +
−→v with −→v = d

dt

−−−−−−→
O (t) q (t) =

∑3
i=1

dξi

dt εi because
dεi
dt = 0

If there is another inertial observer with standard chart defined by a frame(
A (0) , (ε̃i)

3
i=0

)
the coordinates of A (t) , as seen by O (t) , are :

−−−−−−−→
O (0)A (t) = ctε0 +

∑3
i=1 ξ

i (t) εi where
−−−−−−→
O (t)A (t) =

∑3
i=1 ξ

i (t) εi

The spatial speed of A is : −→v = d
dt

−−−−−−→
O (t)A (t) =

∑3
i=1

dξi

dt εi
We can then implement the general results for the change of basis : εi → ε̃i.
As for the change of coordinates we have :−−−−−→
O (0)m = ctε0 +

∑3
1=1 ξ

iεi−−−−−→
A (0)m = cτ ε̃0 +

∑3
1=1 ξ̃

iε̃i[
ξ̃i
]
= [χ]

−1 [
ξi
]

−−−−−→
O (0)m =

∑3
i=0 ξ

iεi =
−−−−−−−→
O (0)A (0) +

−−−−−→
A (0)m = L+

∑3
i=0 ξ̃

iε̃i

with a constant vector
−−−−−−−→
O (0)A (0) = L.

So the transformation of the coordinates is given by the product of a fixed
translation and a fixed rotation in the Minkovski space. The set of such trans-
formations is a group, called the Poincaré’s group.

This result holds only for two inertial observers, and we need a physical
mean to tell what are these observers. The usual answer is that they do not
feel a change in the inertial forces to which they are submitted. This is similar
to the Galilean observers of Classic Mechanics. For non inertial observers the
general formulas hold, but the charts cannot be defined through frames as in an
affine space.

The concept of material body presented above holds. But if ̟ (0) belongs to
a hyperplane then the ̟ (τ) will be hyperplanes only if they are all orthonormal
to a common vector, that is if the vector field which defines the material body
is a constant vector : the body must be in a uniform translation (and not rotate
on itself).
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The formulas of the Lorentz transformations have a tremendous importance
in all aspects of Relativist Physics, they are of a constant use, as well as the
Poincaré’s group which is the starting point in the identification of particles.
However any demonstration based on frames, as it is usually done, holds only
for inertial observers. A physical theory which is valid only in the study of
bodies in uniform translation would be of little interest. As we have proven
in this chapter Relativist Geometry can be explained, in a rigorous and quite
simple way, without the need of inertial observers. And these are required only
for the use of frames. It would be a pity to loose the deep import of Relativity in
order to keep a familiar, but not essential, mathematical tool. As a consequence
the role assigned to the Poincaré’s group must be revisited.
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1.16 Some issues about relativity

It is useful to review here some issues which arise frequently about Relativity.

1.16.1 Preferred frames

Relativity is often expressed as “all inertial frames are equivalent for the Physical
Laws”. We have seen above that actually inertial frames are required only to
define coordinates in affine space : this is a non issue in GR, and in SR it
is possible to achieve the usual results with the use of standard charts which
are not given by orthogonal frames. But, beyond this point, this statement is
misleading.

The Theory of Relativity is more specific than the Principle of Relativity
(which can be stated as ”Physical laws do not depend on the observer”), it
involves inertia and gravitation but this is at first a Theory about the Geometry
of the Universe, and it shows that the geometric measures (of lengths and time)
are specific to each observer. The Universe which is Scientifically accessible -
meaning by the way of measures, data and figures - depends on the observer.
We can represent the Universe with 4 dimensions, conceive of a 4 dimensional
manifold which extends over the past and the future, but we must cope with
the fact that we are stuck into our present, and it is different for each of us. The
reintegration of the observer in Physics is one of the most important feature
of Relativity, and the true meaning of the celebrated formulas for a change of
frames. An observer is an object in Physics, and as such some properties are
attached to it, among them the free will : the possibility to choose the way he
proceeds to an experiment, without being himself included in the experiment.
But as a consequence the measures are related to his choice.

Mathematics give powerful tools to represent manifolds, in any dimensions.
And it seems easy to formulate any model using any chart as it is commonly
done. This is wrong from a physical point of view. There is no banal chart or
frame : it is always linked to an observer, there is a preferred chart, and so a
preferred frame for an observer. It is not related to inertia : it is a matter of
geometry, and a consequence of the fundamental symmetry breakdown. The
observer has no choice in the selection of the time vector of his orthonormal
basis, if he wants to change the vector, he has to change his velocity, and this
is why the formulas in a change of frames are between two different observers
moving with respect to each other. And not any change is possible : an observer
cannot travel in the past, or faster than light. These features are clear when
one sticks to a chart of an observer, as we will do in this paper. Not only they
facilitate the computations, they are a reminder of the physical meaning of the
chart. This precision is specially important in the fiber bundle formalism, which
is, from this point of view, a wise precaution as compared to the usual formalism
using undifferentiated charts.
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1.16.2 Time travel

The distinction between future and past oriented vectors come from the exis-
tence of the Lorentz metric. As it is defined everywhere, it exists everywhere,
and along any path. It is not difficult to see that the border between the two
kinds of vectors is for null vectors 〈u, u〉 = 0. So a particle which would have a
path such that its velocity is past oriented should, at some point, have a null
velocity, and, with regard to another observer located at the same point, travel
at the speed of light. Afterwards his velocity would be space like (〈u, u〉 > 0)
before being back time like but past oriented. So the first issue lies in the pos-
sibility of travel at the speed of light. Clearly this would be a discontinuity on
the path and ”Scotty engages the drive” from Star Treck has some truth.

But the main issue with time travel lies in the fact that, if ever we would be
able to come back to the location where we have been in the past (meaning a
point of the universe located in our past), we would not find our old self. The
idea that we exist in the past assumes that we exist at any time along our world
line, as a frozen copy of ourselves. This possibility is sometimes invoked, but it
raises another one : what makes us feel that each instant of time is different ?
If we do not travel physically along our world line, what does move ? And of
course this assumption raises many other issues in Physics...

1.16.3 Twins paradox

The paradox is well known : one of the twins embarks in a rocket and travels
for some time, then comes back and finds that he is younger than his twin who
has stayed on Earth. This paradox is true (and has been checked with particles)
and comes from two relativist features : the Universe is 4 dimensional, and the
definition of the proper time of an observer.

Because the Universe is 4 dimensional, to go from a point A to a point B
there are several curves. Each curve can be travelled according to different
paths. We have assumed that observers move along a curve according to a
specific path, their world line, and then :

ℓAB = c (τB − τA)
Because the curves are different, the elapsed proper time is usually different.
The proper time is the time measured by a clock attached to the observer,

it is his biological time. Assuming that all observers travel along their world

lines with a velocity such that at
〈

dpo

dτ ,
dpo

dτ

〉
= −c2 is equivalent to say that,

with respect to their clock, they age at the same rate. So if they travel along
different curves there is no reason that the total duration of their travel would
be the same.

Whom of the two twins would have aged the most ? It is not easy to do the
computation in GR, but simpler in the SR context.

We can define a fixed frame
(
O, (εi)

3
i=0

)
with origin O at the time t = 0, A

is spatially immobile with respect to this frame, moves along the time axis and
his coordinates are then : OA : pA (τA) = cτAε0
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The twin B moves in the direction of the first axis. His coordinates are then
: OB : pB (τB) = cτBε0 + xB (τB) ε1

The spatial speed of B with respect to A is : dOB
dτA

= V (τB) ε1

The velocity of B is : uB = dOB
dτB

= 1√
1−V 2

c2

(V ε1 + cε0)

To be realistic we must assume that B travels at a constant acceleration, but
needs to brake before reaching first his turning point, then A. In the first phase
we have for instance :

V = γcτB with γ = 1√
1−V 2

c2

pB (τB) =
∫ τB
0

c√
1−(γt)2

(γtε1 + ε0) dt =
c
γ

[√
1− y2ε1 + ε0 arcsin y

]γτB
0

A full computation gives : τA
τB

= arcsin vM
vM

where vM is the maximum speed
in the travel, which gives for vM = c : τA

τB
= 1. 57 that is less than what is

commonly assumed.
The Sagnac effect, used in accelerometers, is based on the same idea : two

laser beams are sent in a loop in opposite direction : their 4 dimensional paths
are not the same, and the difference in the 4 dimensional lengths can be mea-
sured by interferometry.

1.16.4 The expansion of the Universe

A manifold by itself can have some topological properties. It can be compact.
It can have holes, defined through homotopy (Maths.10.4.1) : there is a hole if
there are curves in M which cannot be continuously deformed to be reduced to
a point. A hole does not imply some catastrophic feature : a doughnut has a
hole. Thus it does not imply that the charts become singular. But there are
only few purely topological features which can be defined on a manifold, and
they are one of the topic of Differential Geometry. In particular a manifold has
no shape to speak of.

The metric on M is an addition to the structure of the Universe. It is a
mathematical feature from which more features can be defined on M, such that
curvature. It is also a physical feature and in GR the metric, and so the cur-
vature of M at a point, depends on the distribution of matter. It is customary
(see Wald) to define singularities in the Universe by singularities of geodesics,
but geodesics are curves whose definition depends on the metric. A singularity
for the metric, as Black holes or Bing Bang, is not necessarily a singular point
for the manifold itself.

GR has open the possibility to build cosmological models, representing the
totality of the Universe. It is clear that Cosmology requires some revision of
the usual concepts of Physics (what is an independent observer ?) and even
of the premises of our epistemology (do we have free will ?). A requirement
which is rarely fulfilled in the common Cosmological Theories. From some
general reasoning and Astronomical observations, it is generally assumed that
the Universe has the structure of a fiber bundle with base R (a warped Universe)
which can be seen as the generalization ofMo, that we have defined above for an
observer. Thus there is some universal time (the projection from M to R) and
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a folliation of M in hypersurfaces similar to Ω3 (t), which represent the present
for the observers who are located on them (see Wald and Peebles for more on
this topic). This is what we have defined as a material body : the part of the
universe on which stands all matter would be a single body moving together
since the Big Bang (the image of an inflating balloon). So there would not be
any physical content before or after this Ω3 (t) (inside the balloon), but nothing
can support this interpretation, or the converse, and probably it will never be.

The Riemannian metric ̟3 (t) on each Ω3 (t) is induced by the metric on M,
and therefore depends on the universal time t. In the most popular models it
comes that the distance between two points on Ω3 (t) , measured by the Rieman-
nian metric, increases with t, and this is the foundation of the narrative about
an expanding universe, which is supported by astronomical observations. But,
assuming that these models are correct, this needs to be well understood. The
change of the metric on Ω3 (t) makes that the volume form ̟3 (t) increases, but
the hypersurfaces Ω3 (t) belong to the same manifold M, which does not change
with time. The physical universe would be a deformable body, whose volume
increases inside the unchanged container. Moreover it is generally assumed that
material points, belonging to the same material body but traveling on their
own world lines, stick together : they are not affected by this dilation, only the
vacuum which separates material bodies.
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2 KINEMATICS

Kinematics is the next step after Geometry. We go further in the physical
world, and try to understand what are the relations between the motion of
material bodies and the forces which are applied to them. All material bodies
manifest some resistance to a change of their motion, either in direction or in
speed. This feature is the inertia, and is measured by different quantities which
incorporate, in one way or another, the mass of the material body. The mass m
is a characteristic of the material body : it does not change with the motion, the
forces or the observer. And from motion and mass are defined key quantities :
the momenta.

The Newton’s law :
−→
F = m−→γ is expressed, more appropriately by :

−→
F = d−→p

dt
where −→p is the momentum. The inertial forces are, by construct, the opposite
of the forces which are necessary to change the momenta of a material body. So,
Kinematics is, in many ways, the Physics of inertia. The issue of the origin of
these inertial forces, which appear everywhere and with a great strength, is the
gravitational field, as we will see. Let us see now how one goes from Geometry,
that is motion, to Kinematics, that is inertia.

The study of rotations and rotational momenta in the 4 dimensional Universe
will lead to a new representation of the momenta, based on Spinors, which are
vectors in a 4 dimensional abstract space, to the introduction of antiparticles
and of spin.

2.1 Translational Momentum in the relativist context

In Newtonian Physics the bridge between Geometry and Kinetics is hold by
momenta. And, because motion of material bodies involves both a transla-
tional motion and a rotational motion, there are linear momenta and rotational
momenta.

In Galilean Geometry the linear momentum of a particle is simply : −→p = µ−→v
with a constant scalar µ which is the inertial mass. Its natural extension in the
relativist context is the quadri-vector : P = µu where u is the velocity. This
generalization has two consequences :

- the quadri-vector P is intrinsic : its definition as well as the value of the
scalar product 〈P, P 〉 = −µ2c2 do not depend on an observer

- but its measure depends on the observer. In his standard basis it reads :
P = µ 1√

1−‖−→v ‖2

c2

(−→v + cε0 (m))

In the relativist context location and motion are absolute. If the Universe
has a physical meaning, then each of its points is singular, and this is clearly
represented by a manifold. The proper time, and the derivative of the location
with respect to the proper time, are defined without any reference to a frame, so
the vector velocity u is absolute, and this property has been used to compute the
rules in a change of frames. If motion is absolute, its measure is relative, depends
on the observer and its measure changes according to geometric rules, because
they are geometric quantities. The spatial speed appears when an observer
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has been chosen. The definition of the momentum by P = µu is consistent
with the idea that the kinematic features of a particle are intrinsic, and can be
represented by a quantity which does not depend on an observer (even if its
measure depends on it).

This is a big change from the Newtonian definitions : the momentum −→p =
µ−→v as well as the kinetic energy 1

2µ ‖
−→v ‖2 are relative and depend on the ob-

server.
If we keep the concept of Energy as measured by [Momentum]×[Speed] then

the energy of the particle 〈P, u〉 = −µc2 is constant and, for an observer, is split

between a part related to the spatial speed µ
‖−→v ‖2

1−‖−→v ‖2

c2

, corresponding to a kinetic

energy, and a part which is stored in the particle −µ c2

1−‖−→v ‖2

c2

. But, if one wants

to keep the principle of conservation of energy, one has to accept that mass itself
can be transformed into energy, according to the famous relation E = µc2.

However there are several interpretations of these concepts. Physicists like
to keep a concept of momentum linked to the spatial velocity and, with a fixed
mass, define the linear momentum as : −→pr = µ

−→v√
1−‖−→v ‖2

c2

, that is the spatial

part of P. Then they define the Energy E of the particle by : E2 = c2 ‖−→p r‖2 +
µ2c4 that is one part corresponding to a kinetic energy, and another one to an
energy at rest. This sums up to define the energy by rewriting Pc with the two
components :

Pc = (c−→pr , E) ⇒ 〈Pc, Pc〉 = −µ2c4 = c2 ‖−→p r‖2 − E2

The introduction of c in c−→pr is necessary in order to have the same unit
Energy in both parts. In this formulation Pc is a 4 vector, and its components
change according to the Lorentz formula, so E depends on the observer. The
advantages of this expression is that for small speed it gives :

E ≃
√
c2µ2 ‖−→v ‖2

(
1 + 1

2

‖−→v ‖2

c2

)
+ µ2c4

= µc2

√(
1 +

‖−→v ‖2

c2

(
1 + 1

2

‖−→v ‖2

c2

))
≃ µc2

√
1 +

‖−→v ‖2

c2 ≃ 1
2µ ‖

−→v ‖2 + µc2

and it can be adapted to massless particles such as photons.
So if one can say, with Feynman (in Lectures in Physics), that the conser-

vation of energy is a law without exception, the trouble is that in the Relativist
context the definition of energy itself depends on the observer and is fairly sub-
tle...We will see that, if it is possible to give a satisfying definition of the energy
of a particle, this is more complicated for fields, and further more for bosons.

The only physical quantity which has a clear meaning, is independent of an
observer, and is characteristic of a particle, is Pc, which has the dimension of
energy, and that we will call relativist momentum. The mass at rest, inde-
pendent from an observer, is µ = 1

c

√
−〈Pc, Pc〉. The usual energy is computed

by taking the component of Pc along the direction of ε0 (m) . So it depends on
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the observer. These quantities are individualized and localized : they are linked
to the particle and its position.

Moreover material bodies have a rotation, and a rotational momentum
−→
J

which depends on the mass and the shape of the body. Momenta are charac-
teristics features of material bodies, and the bases for the definition of forces.

According to the Newton’s law:
−→
F = d−→p

dt and −→γ = d
−→
J
dt for a torque −→γ . Ro-

tation and rotational momentum are topics which are more complicated than
it seems, in the relativist context in particular. Moreover at the atomic scale
particles show properties which look like rotation, and specific features, which
have lead to the concepts of spins and spinors.

2.2 The issues of the concept of rotation

2.2.1 Rotation in Galilean Geometry

The concept of rotation is well defined in Mathematics : this is the operation
which transforms the orthonormal basis of a vector space into another, and in
Galilean Geometry is represented by a matrix of the group SO(3). This is a
compact, 3 dimensional Lie group, of matrices such that RtR = I. Then an
instantaneous rotation, that is the derivative of a rotation with respect to time,
is represented by an element of its Lie algebra so(3) which is the vector space
of 3× 3 real antisymmetric matrices. If we take the following matrices as basis
of so(3) :

κ1 =



0 0 0
0 0 −1
0 1 0


 ;κ2 =




0 0 1
0 0 0
−1 0 0


 ;κ3 =



0 −1 0
1 0 0
0 0 0




then any matrix of so(3) reads :∑3
i=1 r

i [κi] = [j (r)] with the operator

j : R3 → L (R, 3) :: [j (r)] =




0 −r3 r2
r3 0 −r1
−r2 r1 0


 (39)

The operator j is very convenient to represent quantities which are rotated
1 and has many nice algebraic properties (see formulas in the annex) and we
will use it often in this paper.

For any vector u :
∑3

ij=1 [j (r)]
i
j u

jεi =
−→r ×−→u with the cross product ×.

Because SO(3) is a compact Lie group the exponential is surjective :

∀g ∈ SO (3) , ∃κ =
∑3

i=1 r
i [κi] ∈ so(3) : g = expκ

It is easy to show that :

[g] = exp [j (r)] = I3 + [j (r)] sin
√
rtr√

rtr
+ [j (r)] [j (r)] 1−cos

√
rtr

rtr

1It is similar to the Levi-Civitta tensor ǫ but, in my opinion, much easier to use.
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The representation of an instantaneous rotation by a vector −→r ∈ R3 is
further supported by two facts.

The axis of rotation, which is by definition the unique eigen vector of [g]
with eigen value 1 and norm 1 in the standard representation of SO(3), has for

components



r1

r2

r3


 /

√
rtr

Similarly one can define the angle θ of the rotation resulting from a given
matrix, and θ =

√
rtr, which is also the instantaneous rotational speed with the

period T = 2π/
√
rtr

Proof. For any vector u of norm 1 : 〈u, [g]u〉 = cos θ where θ is an angle
which depends on u and [g] = exp [j (r)]. With the formula above, and using
[j (r)] [j (r)] = [r] [r]

t − 〈r, r〉 I and 〈u, [j (r)]u〉 = 0 we get :

〈u, [g]u〉 = 1 +
(
〈u, r〉2 − 〈r, r〉

)
1−cos

√
rtr

rtr

which is minimum for 〈u, r〉 = 0 that is for the vectors orthogonal to the
axis, and :

cos θ = cos
√
rtr

For a rotation at constant speed ̟ : θ (t) = ̟t = t
√
rtr so T = 2π/

√
rtr

So we have a very satisfying representation of geometric rotations : a rotation
R(t) can be defined by a single vector, which can be easily related to the motion
as it can be perceived. However this mathematical representation is not faithful.
The same rotation can be defined equally by the opposite axis, and the opposite
angle. This is related to the mathematical fact that SO(3) is not the only group
which has so(3) as Lie algebra. The more general group is the Spin group Spin(3)
which has also for elements the scalars + 1 and - 1, so that R(t), corresponding

to
(
r,
√
rtr
)
and −R(t), corresponding to

(
−r,−

√
rtr
)
can represent the same

physical rotation. So, actually, the group which should be used to represent
rotations in Galilean Geometry is Spin(3), which makes the distinction between
the two rotations, and not SO(3). This is not a problem in Mathematics, but
in Physics the distinction matters : in the real world one goes from one point
to another along a path, by a continuous transformation which preserves the
orientation of a vector, thus the orientation of −→r matters 2. A single vector of
R3 cannot by itself properly identify a physical rotation, one needs an additional
parameter which is ±1 (to tell which one of the two orientations of −→r is chosen,
with respect to a direction, the spatial speed on the path).

But to represent rotation of material bodies by geometric rotations, as above,
raises several issues.

We could expect that the total rotational momentum of a body is the sum
of the rotational momentum of its components, as it happens with the transla-
tional momentum. But material points have no attached frame in Mechanics.
So actually the rotational momentum is defined only at the level of the body,
through a geometric rotation, and it has a meaning only for material bodies

2In his book ”The road to reality” Penrose gives a nice, simple trick with a belt and book
to show this fact.
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which keep some shape, represented by fixed relations between the positions of
the material points. So this is doable for solids, but even for them there is a
problem. If the solid has a cylindrical symmetry, by definition it is impossible to
measure a geometric rotation around the axis, however the physical rotation can
be measured by a rotational inertia. And some force fields, such as magnetism,
can exercise a pointwise action, represented by a torque, so that the implemen-
tation of the Newton’s law to the rotational momentum becomes muddled for
particles without structure, like the atoms.

So, even if in Mechanics it is convenient to assimilate physical rotation with
geometric rotation, they are not the same and the kinematics of rotating bodies
is more complicated. Notice also that the representation of rotation by a single
vector in Galilean Geometry relies on a fortuitous fact : the lie algebra so(3) is
a 3 dimensional vector space, as the space R3, so that it is easy to set up an
isomorphism j of vector spaces.

To represent the motion (translation + rotation) of a solid body we have
another discrepancy between the physical and the mathematical definitions. In
Classic Mechanics the motions of solids are defined by two vectors (−→v ,−→r ) and 6
parameters : the spatial speed −→v of the center of mass G and the instantaneous
rotation −→r , assimilated to 2 vectors of R3. In Mathematics the transformation
between two frames is represented by the group of displacements, which is the
semi-product of SO(3) with the group of translations. Using the isomorphism
j between SO (3) and R3 a displacement can be represented by two vectors(−→
L ,−→r

)
but

−→
L is the translation of the origins of the frames :

−→
L =

−−→
OG and

not the speed −→v = d
−−→
OG
dt .

2.2.2 The group of displacements in Relativist Geometry

In Relativist Geometry the focus is usually put on the Poincaré’s group, the semi
product of the group SO(3, 1) of rotations and of the 4 dimensional translations.
This is the simple generalization of the group of displacements of Galilean Ge-
ometry. However this raises several issues.

The Poincaré’s group represents the transformations between coordinates
in Cartesian frames. So its use is valid only in SR, and for inertial observers.
There has been attempts to extend the concept to the group of isometries (that
is maps f :M →M such that the derivative f ′(m) preserves the scalar product)
but this is difficult. And there is a more fundamental objection : the physical
comparison between bases located at different points should involve a transport
of the vectors (one does not jump from a point to another), but in SR or GR the
universe is no longer isotropic, so the path which is followed for the transport
matters (which is obvious in the Lorentz formulas, which involve −→v ).

The concept of solid is not generalizable in Relativity, thus one cannot expect
to represent the motion of a body by the transformation to go from the frame
of an observer to a frame which would be attached to the solid.

And actually, even in Galilean Geometry the point of view of the Physicists
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(who represent a motion by (−→v ,−→r )) and of the mathematicians (who define

the displacement by
(−→
L ,−→r

)
) are not the same : even if they both use two

vectors and the same number of parameters, they have not the same meaning.
In Relativity the discrepancy is worse : an element of the Poincaré’s group is
defined by 10 parameters. Geometric rotations in the 4 dimensional space have a
very different meaning than rotations in the 3 dimensional space. This is obvious
with a look at the matrices of SO(3, 1) which read : [χ] = exp [K (w)] exp [J (r)] .
The second term has the meaning of a rotation in the space, but the first term
(usually called the boost) involves the translational motion, as shown in the
formula : w = v

‖v‖ arg tanh
∥∥v

c

∥∥ .
For a physicist the motion of a material body is related to the instantaneous

change of its location and disposition (as it is done in Galilean Geometry with

(−→v ,−→r )) and not to the transformation between fixed frames (the vector
−→
L has

no physical interest in the matter). So the Lorentz matrix (defined by two 3
dimensional vectors (w, r) related to (−→r ,−→v ) ) only is significant from this point
of view, and w can be clearly (even if it is in a complicated way) related to −→v .
Moreover we have seen that the formulas hold for any observer.

Our purpose here is to find a way to represent kinematic characteristics of
material bodies, by vectorial quantities. This is not to find the formulas in a
change of coordinates (that we have), so the Poincaré’s group is of no use. But
the Lorentz group is essential because it gives the rules for the transformation
of the components of vectors.

2.3 Momenta in the fiber bundle representation

As we have seen fiber bundles provide an efficient representation of the geometry
of the Universe, notably in the GR picture. So it is legitimate to look at what it
can provide on this issue. The aim is to represent the kinematic characteristics
of material bodies, incorporating both their geometric motion (translation and
rotation) and inertial features, in a single quantity, which can be implemented
for particles, that is without the need to involve a fixed structure of the body.
This quantity should be intrinsic, meaning that its value, measured in a frame
attached to the particle, should stay constant along its world line, in accordance
with the assumption that the motion is absolute and the mass is constant .
Meanwhile its value, as measured by an observer, would change according to
the observer, as a geometric quantity (with the same gauge group). The gauge
group should be the spin group Spin(3, 1) (or Spin(1, 3), they are isomorphic,we
will denote both Spin), as we noticed before.

Let us denote the principal bundle PG (M,Spin, πG) , the standard fiber a
manifold E, and γ the action of the Spin group.Then the quantity would be an
element S of PG [E, γ] .

S, for a given particle, should stay constant on its world line. The world
line is some map p : R → M :: m = p (τ) and the trajectory for an observer
q : R →M :: m = q (t) = p (τ (t)).

If S represents an intrinsic kinematic characteristic of the particle, it should
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stay constant along its worldline p (τ): there is a privileged frame g (τ) ∈ Spin
such that S = (ϕG (p (τ) , g (τ)) , S) with S = Ct

The value measured by the observer in his gauge ϕG (q (t) ,1) is then :
(ϕG (q (t) ,1) , S (t))
∼ ϕG (q (t) , g (t (τ))) , γ

(
g−1, S (t)

)
= (ϕG (p (τ) , g (τ)) , S)

which is equivalent to say that S(t) = γ (g (τ (t)) , S) with S constant.
The relation S(t) = γ (g (τ (t)) , S) is just the consequence of our very general

assumptions. The measure of S(t) varies locally according to the observer (the
measure of motion is relative) but its intrinsic value does not change (motion
is absolute). But to get a full profit of this representation we have to adopt an
entirely new point of view. We cannot any longer view the particle as living
in M and spinning in its tangent space. Actually the particle lives in E, which
happens to be associated to PG. Its trajectory is a curve in E, which projects on
a curve in M. E can be seen as the physical world (at least a part of it), that we
can represent through networks of frames in M. So S(t) cannot be seen properly
as a motion, it is only a characteristic of the particle (such as mass and charge).
Experience shows that it can be measured through geometric frames but this
does not imply the existence of a real spinning motion of the particle. In some
way this is what physicists do, intuitively, in Galilean geometry : the rotation,
the rotational moment, are not represented as elements of the group or the Lie
algebra, but as vectors (it happens that it is the same vector space as M, but
this is fortuitous).

The issue that we face is then to precise E and γ. We will make the following,
reasonable, assumptions :

i) E is some vector space, so that we have an associated vector bundle
PG [E, γ]

ii) it implies that (E, γ) is a representation of Spin.
iii) this representation should be finite dimensional (we consider here the

value of S(t) at some point).
iv) if (E, γ) is a representation of Spin, then (E, γ′ (1)) is a representation of

its Lie algebra, both are subsets of the Clifford algebra Cl(3, 1) so that, if γ is
a linear map, then γ′ (1) = γ and this is not a big leap forward to assume that
(E, γ) is a representation of the Clifford algebra itself.

Then the quantity S is a vector of E, called a spinor. Spinors have been
first introduced by Dirac in an equation, obtained by some magic, but truly
pure intuition, which is still the basis of most Quantum Electrodynamics and
Quantum Theory of Fields.
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3 CLIFFORD ALGEBRAS AND SPINORS

Spinors, as well as the spin, cannot be properly understood without a look
at their mathematical berth, which is Clifford algebra. This is a fascinating
algebraic structure on vector spaces which is seen in details in Maths.Part 9.
The results which will be used in this book are summarized in this section, the
proofs are given in the Annex.

3.1 Clifford algebra and Spin groups

3.1.1 Clifford Algebras

A Clifford algebra Cl (F, 〈〉) is an algebraic structure, which can be defined on
any vector space (F, 〈〉) on a field K (R or C) endowed with a bilinear symmetric
form 〈〉 . The set Cl (F, 〈〉) is defined from K and F and a product, denoted · ,
with the property that for any two vectors u, v :

∀u, v ∈ F : u · v + v · u = 2 〈u, v〉 (40)

A Clifford algebra is then a set which is larger than F : it includes all vectors
of F, plus scalars, and any linear combinations of products of vectors of F. A
Clifford algebra on a n dimensional vector space is a 2n dimensional vector space
on K, and an algebra with ·. Clifford algebras built on vector spaces on the same
field, with same dimension and bilinear form with same signature are isomorphic.
On a 4 dimensional real vector space (F, 〈〉) endowed with a Lorentz metric there
are two structures of Clifford Algebra, denoted Cl (3, 1) and Cl (1, 3) , depending
on the signature of the metric, and they are not isomorphic. In the following we
will state the results for Cl (3, 1), and for Cl (1, 3) only when they are different.

The easiest way to work with a Clifford algebra is to use an orthonormal basis
of F. On any 4 dimensional real vector space (F, 〈〉) with a bilinear symmetric
form of signature (3,1) or (1,3) we will denote :

Notation 23 (εi)
3
i=0 is an orthonormal basis with scalar product : 〈εi, εi〉 = ηii

So we have the relation :

εi · εj + εj · εi = 2ηij (41)

Then a basis of the Clifford algebra is a set comprised of 1 and all ordered
products of εi, i = 0...3.

In any orthonormal basis there is a fourth vector which is such that εi · εi =
−1 (for the signature (3, 1)) of +1 (for the signature (1, 3)). We will label this
vector ε0.

3.1.2 Spin group

The group Pin(3, 1) is the subset of the Clifford algebra Cl (3, 1):
Pin (3, 1) = {u1 · u2... · uk, 〈up, up〉 = ±1, up ∈ F}. Pin(3, 1) is a Lie group,
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Spin(3,1) is its subgroup where we have an even number of vectors :
Spin (3, 1) = {u1 · u2... · u2k, 〈up, up〉 = ±1, up ∈ F}
and similarly for Pin(1, 3) and Spin(1, 3).
Notice that the scalars ±1 belong to the groups. The identity element is the

scalar 1.
Pin(3, 1) and Pin(1, 3) are not isomorphic. Spin(3, 1) and Spin(1, 3) are

isomorphic.

3.1.3 Adjoint map

For any s ∈ Pin(3, 1), the map, called the adjoint map :

Ads : Cl (3, 1) → Cl (3, 1) :: Adsw = s · w · s−1 (42)

is such that

∀w ∈ F : Adsw ∈ F (43)

and it preserves the scalar product on F :

∀u, v ∈ F, s ∈ Pin(3, 1) : 〈Adsu,Adsv〉F = 〈u, v〉F (44)

Moreover :

∀s, s′ ∈ Pin(3, 1) : Ads ◦Ads′ = Ads·s′ (45)

Because the action Ads of Spin(3, 1) on F gives another vector of F and
preserves the scalar product, it can be represented by a 4×4 orthogonal matrix.
Using any orthonormal basis (εi)

3
i=0 of F , then Ads is represented by a matrix

Π (Ads) = [h (s)] ∈ SO (3, 1). To two elements ±s ∈ Spin(3, 1) correspond a
single matrix [h (s)] . Spin(3, 1) is the double cover (as manifold) of SO(3, 1).
Spin(3, 1) has two connected components (which contains either +1 or -1) and
its connected component, that we will denote for brevity also Spin (3, 1) , is
simply connected and is the universal cover group of SO0 (3, 1). So with the
Spin group one can define two physical rotations, corresponding to opposite
signs.

3.1.4 Lie algebra of the Spin group

Theorem 24 The elements of the Lie algebra T1Spin (3, 1) belong to the Clif-
ford algebra and can be written as the linear combination of elements εi · εj :

As any algebra Cl (F, 〈〉) is a Lie algebra with the bracket :
∀w,w′ ∈ Cl (F, 〈〉) : [w,w′] = w · w′ − w′ · w
and the Lie algebra T1Spin (3, 1) of Spin(3, 1) is a subset of Cl (3, 1) (Maths.532).
The derivative Π′ (1) : T1Spin (3, 1) → so (3, 1) is an isomorphism of Lie al-

gebras. The inverse map : Π′ (1)−1 : so(3, 1) → T1Spin (3, 1) is an isomorphism
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of Lie algebras which reads (Maths.534) with any orthonormal basis (εi)
3
i=0 of

F :
Π′ (1)−1 : so(3, 1) → T1Spin (3, 1) :: Π

′ (1)−1 ([κ]) = 1
4

∑3
i,j=0 ([κ] [η])

i
j εi · εj

and any element of T1Spin (3, 1) is such expressed in the basis of Cl (F, 〈〉)
: it is the linear combinations of the ordered products of all the four vectors of
a basis.

With any orthonormal basis and the following choices of basis (−→κ a)
6
a=1 of

T1Spin (3, 1) then Π′ (1)−1
takes a simple form :

Π′ (1)−1 ([κ1]) =
−→κ 1 = 1

2ε3 · ε2,
Π′ (1)−1

([κ2]) =
−→κ 2 = 1

2ε1 · ε3,
Π′ (1)−1

([κ3]) =
−→κ 3 = 1

2ε2 · ε1,
Π′ (1)−1

([κ4]) =
−→κ 4 = 1

2ε0 · ε1,
Π′ (1)−1

([κ5]) =
−→κ 5 = 1

2ε0 · ε2,
Π′ (1)−1

([κ6]) =
−→κ 6 = 1

2ε0 · ε3
where ([κa])

6
a=1 is the basis of so(3, 1) already noticed such that : [κ] =

K (w) + J (r) =
∑3

a=1 r
a [κa] + wa [κa+3]

a = 1, 2, 3 : −→κ a = − 1
2ǫ (a, i, j) εi · εj, a = 4, 5, 6 : −→κ a = 1

2ε0 · εa−3 is a basis
of T1Spin (3, 1)

We will use extensively the convenient (the order of the indices matters) :

Notation 25 for both Cl (3, 1) , Cl (1, 3) :

υ (r, w) =
1

2

(
w1ε0 · ε1 + w2ε0 · ε2 + w3ε0 · ε3 + r3ε2 · ε1 + r2ε1 · ε3 + r1ε3 · ε2

)

(46)

With this notation, whatever the orthonormal basis (εi)
3
i=0, any element X

of the Lie algebras T1Spin (3, 1) or T1Spin (1, 3) reads :

X = υ (r, w) =

3∑

a=1

ra−→κ a + wa−→κ a+3 (47)

with (r, w) ∈ R3 × R3 then X = υ (r, w) is the image of :
Π′ (1) (υ (r, w)) = K (w) + J (r) ∈ so(3, 1) if X ∈ T1Spin (3, 1)
Π′ (1) (υ (r, w)) = − (K (w) + J (r)) ∈ so(1, 3) if X ∈ T1Spin (1, 3)

(Cl (3, 1) ,Ad) and (T1Spin (3, 1) ,Ad) are representations of Spin(3, 1).
One property that we will use often is the following. A change of orthonor-
mal basis : εi → ε̃i can be expressed by an element s ∈ Spin(3, 1): εi → ε̃i =
Adsεi. Then the vectors v ∈ F stay the same, but their components in the new
basis change according to a matrix [h(s)] of SO(3, 1):

v =
∑4

i=1 v
iεi =

∑4
i=1 ṽ

iε̃i =
∑4

i=1 ṽ
iAdsεi =

∑4
i=1 ṽ

i [h(s)]
j
i εj

The change impacts also the elements of the Lie algebra T1Spin (3, 1) :

X =
∑

aXa
−→κ a =

∑
a X̃a

−̃→κ a

−̃→κ a = ε̃i · ε̃j = s · εi · s−1 · s · εj · s−1 = Ads (εi · εj) = Ads (
−→κ a)
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X̃a =
∑6

b=1 [Ads]
b
aXb where [Ads] is a 6 × 6 matrix (not the same as the

4× 4 matrix h(s) of SO(3, 1)).

With signature (3,1),with the operator j introduced previously and :

Notation 26 ε5 = ε0 · ε1 · ε2 · ε3

ε5 · ε5 = −1
υ (r′, w′) · υ (r, w)
= 1

4 (w
tw′ − rtr′)

+ 1
2υ (−j (r) r′ + j (w)w′,−j (w) r′ − j (r)w′)− 1

4 (w
tr′ + rtw′) ε5

the bracket on the Lie algebra:
[υ (r, w) , υ (r′, w′)] = υ (r, w) · υ (r′, w′)− υ (r′, w′) · υ (r, w)
[υ (r, w) , υ (r′, w′)] = υ (j (r) r′ − j (w)w′, j (w) r′ + j (r)w′)
ε5 · υ (r, w) = υ (r, w) · ε5 = υ (r,−w)
With signature (1,3) :
υ (r, w) · υ (r′, w′)
= 1

4 (w
tw′ − rtr′)− 1

2υ (−j (r) r′ + j (w)w′, j (w) r′ + j (r)w′)
− 1

4 (w
tr′ + rtw′) ε5

[υ (r, w) , υ (r′, w′)] = −υ (j (r) r′ − j (w)w′, j (w) r′ + j (r)w′)
ε5 · υ (r, w) = υ (r, w) · ε5 = υ (w, r)

3.1.5 Expression of elements of the spin group

Theorem 27 The elements of the Spin groups read (see annex) in both signa-
tures :

s = a+ υ (r, w) + bε5 (48)

a, (wj , rj)3j=1, b are real scalar which are related. We have the necessary
identities :

a2 − b2 = 1 +
1

4

(
wtw − rtr

)
(49)

ab = −1

4
rtw (50)

The inverse is :

(a+ υ (r, w) + bε5)
−1

= a− υ (r, w) + bε5 (51)

The exponential is not surjective on so(3, 1) or T1Spin(3, 1) : for each
υ (r, w) ∈ T1Spin(3, 1) there are two elements ± expυ (r, w) ∈ Spin (3, 1) :

exp tυ (R,W ) = ±σw (t) · σr (t) with opposite sign :

σw (t) =
√
1 + 1

4W
tW sinh2 1

2 t
√
W tW + sinh 1

2 t
√
W tWυ (0,W )

σr (t) =
√
1− 1

4R
rR sin2 t 12

√
RtR+ sin t 12

√
RtRυ (R, 0)
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And we have the identity (Maths.1768) :

∀υ (r, w) ∈ T1Spin(3, 1) : (52)

expAdgυ (r, w) = Adg exp υ (r, w) = g · exp υ (r, w) · g−1 (53)

The product s · s′ reads :
s · s′ = (a+ υ (r, w) + bε5) · (a′ + υ (r′, w′) + b′ε5) = a” + υ (r”, w”) + b”ε5
with :
a” = aa′ − b′b+ 1

4 (w
tw′ − rtr′)

b” = ab′ + ba′ − 1
4 (w

tr′ + rtw′)
and in Spin(3, 1) :
r” = 1

2 (j (r) r
′ − j (w)w′) + a′r + ar′ − b′w − bw′

w” = 1
2 (j (w) r

′ + j (r)w′) + a′w + aw′ + b′r + br′

and in Spin(1, 3) :
r” = 1

2 (j (r) r
′ − j (w)w′) + a′r + ar′ + b′w + bw′

w” = − 1
2 (j (w) r

′ + j (r)w′) + a′w + aw′ + b′r + br′

3.2 Scalar product and Norm

3.2.1 Scalar product on the Clifford algebra

There is a scalar product on Cl (F, 〈〉) defined by :
〈ui1 · ui2 · ... · uin , vj1 · vj2 · ... · vjn〉 = 〈ui1 , vj1〉 〈ui2 , vj2〉 ... 〈uin , vjn〉
It does not depend on the choice of a basis, and any orthonormal basis

defined as above is orthonormal :
〈εi1 · εi2 · ... · εin , εj1 · εj2 · ... · εjn〉 = ηi1j1 ...ηinjnǫ (i1..., in, j1, ...jn) the lat-

ter term is the signature of the permutation (i1..., in, j1, ...jn) and 0 if any two
indices are equal.

This scalar product on Cl (3, 1) , Cl (3, 1) has the signature (8, 8) : it is non
degenerate but neither definite positive or negative. It is invariant by Ad.

∀w,w′ ∈ Cl (F, 〈〉) : 〈Adsw,Adsw
′〉Cl(F,〈〉) = 〈w,w′〉Cl(F,〈〉) (54)

(Cl (3, 1) ,Ad) is a unitary representation of Spin(3, 1) and (Cl (1, 3) ,Ad)
a unitary representation of Spin(1, 3).

It reads for elements of T1Spin(3, 1) :

〈υ (r, w) , υ (r′, w′)〉Cl =
1

4

(
rtr′ − wtw′) (55)

3.2.2 Norm on the Lie algebra

Theorem 28 There is a norm on the Lie algebra T1Spin (3, 1) which is pre-
served by the adjoint map
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i) There is a bilinear symmetric form on T1Spin(3, 1), called the Killing form
B which, in the basis above, has the same expression as in so (3, 1) (Maths.1669)
:

B (υ (r, w) , υ (r′, w′)) = 4
(
rtr′ − wtw′) = 16 〈υ (r, w) , υ (r′, w′)〉Cl (56)

It is invariant by Ad as the scalar product.
ii) The Lie algebras so (3, 1) , T1Spin (3, 1) are semi-simple. They have a Car-

tan involution, that is a map : θ : T1Spin (3, 1) → T1Spin (3, 1) such that :
θ2 = Id and the bilinear form Bθ (X,Y ) = −B (X, θY ) is definite positive.

θ has two eigen values ±1, by taking L0 the eigen space for -1 and P0 the
eigen space for +1, the Lie algebra is the sum of two, orthogonal (for B so for
〈〉Cl), vector subspaces (called a Cartan decomposition Maths.1742) such that :

T1Spin (3, 1) = L0 ⊕ P0

L0 is a Lie subalgebra, [L0, L0] ⊂ L0, [L0, P0] ⊂ P0, [P0, P0] ⊂ L0

The Killing form and this decomposition do not depend on the choice of a
basis in T1Spin (3, 1) (these are general properties of Lie algebras).

The Cartan involutions are defined in T1Spin (3, 1) by :
θ (ε0) (X) = ε0 ·X · ε0
with any vector ε0 : ε0·ε0 = −1.We have one involution for each orthonormal

basis.
If is easy to see that for the basis built with ε0 :
∀a = 1, 2, 3 : ε0 · −→κ a · ε0 = −−→κ a

∀a = 4, 5, 6 : ε0 · −→κ a · ε0 = −→κ a

θ (ε0) υ (r, w) = υ (−r, w)
B (υ (r, w) , θ (ε0) υ (r, w)) = −4 (wtw + rtr′)
Thus :
L0 =

{
υ (r, 0) , r ∈ R3

}
= {X ∈ T1Spin (3, 1) : θ (ε0) (X) = −X}

P0 =
{
υ (0, w) , w ∈ R3

}
= {X ∈ T1Spin (3, 1) : θ (ε0) (X) = X}

iii) Let us check that the decomposition does not depend on the choice of a
basis. In a change of basis on T1Spin (3, 1) :

εi → ε̃i = Adsεi
−→κ a → −̃→κ a = Ads

−→κ a

θ (ε̃0)
(−̃→κ a

)
= Adsε0·Ads−→κ a·Adsε0 = Ads (ε0 · −→κ a · ε0) = Ads (θ (ε0) (

−→κ a))

So :
∀a = 1, 2, 3 : θ (ε̃0)

(−̃→κ a

)
= −Ads (−→κ a) = −−̃→κ a

∀a = 4, 5, 6 : θ (ε̃0)
(−̃→κ a

)
= Ads (

−→κ a) =
−̃→κ a

X ∈ L0 :

X =
∑3

a=1X
a−→κ a =

∑3
a=1 X̃

a−̃→κ a ⇒ θ (ε̃0) (X) = −
∑3

a=1 X̃
a−̃→κ a = −X

X ∈ P0 :

X =
∑6

a=4X
a−→κ a =

∑6
a=4 X̃

a−̃→κ a ⇒ θ (ε̃0) (X) =
∑6

a=4 X̃
a−̃→κ a = X

iv) Because the vector spaces L0, P0 do not depend on the choice of an
orthonormal basis we can define uniquely the projections :
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πL : T1Spin (3, 1) → L0 :: πL (X) = 1
2 (X − θ (ε0) (X)) = 1

2 (X − ε0 ·X · ε0)
πP : T1Spin (3, 1) → P0 :: πL (X) = 1

2 (X + θ (ε0) (X)) = 1
2 (X + ε0 ·X · ε0)

X = πL (X) + πP (X)
L0, P0 are orthogonal for the scalar product, thus :
〈X,X〉Cl = 〈πL (X) , πL (X)〉Cl + 〈πP (X) , πP (X)〉Cl

The bilinear form :
〈X, πLX − πPX〉Cl = 〈πL (X) + πL (X) , πLX − πPX〉Cl

= 〈πL (X) , πL (X)〉Cl − 〈πP (X) , πP (X)〉Cl

is definite positive and invariant by the adjoint map.
‖X‖ =

√
〈X, πLX − πPX〉Cl is a norm on T1Spin (3, 1)

‖X +X ′‖2 = 〈X +X ′, πL (X +X ′)− πP (X +X ′)〉Cl

= 〈πL (X +X ′) , πL (X +X ′)〉Cl − 〈πP (X +X ′) , πP (X +X ′)〉Cl

〈πL (X +X ′) , πL (X +X ′)〉Cl ≤ 〈πL (X) , πL (X)〉Cl + 〈πL (X ′) , πL (X ′)〉Cl

−〈πP (X +X ′) , πP (X +X ′)〉Cl ≤ −〈πP (X) , πP (X)〉Cl−〈πP (X ′) , πP (X)〉Cl

It reads :

‖υ (r, w)‖ =
1

2

√
rtr + wtw =

1

2

√
〈πLX − πPX, πLX − πPX〉Cl (57)

and does not depend on a basis on T1Spin (3, 1) and is invariant by the
adjoint map.

3.3 Symmetry breakdown

3.3.1 Clifford algebra Cl(3)

The elements of SO(3, 1) are the product of spatial rotations (represented by
expJ(r)) and boosts, linked to the speed and represented by expK(w). We
have similarly a decomposition of the elements of Spin(3, 1). But to understand
this topic, from both a mathematical and a physical point of view, we need to
distinguish the abstract algebraic structure and the sets on which the structures
have been defined.

From a vector space (F, 〈〉) one can built only one Clifford algebra with the
structure Cl (3, 1) : as a set Cl (3, 1) must comprise all the vectors of F. But
from any vector subspace of F one can built Clifford algebras : their algebraic
structure depends on the dimension of the vector space, and on the signature of
the metric induced on the vector subspace. To have a Clifford algebra structure
Cl (3) on F one needs a 3 dimensional vector subspace on which the scalar
product is definite positive, so it cannot include any vector such that 〈u, u〉 < 0
(and conversely for the signature (1, 3) : the scalar product must be definite
negative). The subsets of F which are a 3 dimensional vector subspace and do
not contain any vector such that 〈u, u〉 < 0 are no unique. So we have different
subsets of Cl(3, 1) with the structure of a Clifford algebra Cl (3) , all isomorphic
but which do not contain the same vectors. Because the Spin Groups are built
from elements of the Clifford algebra, we have similarly isomorphic Spin groups
Spin(3), but with different elements.
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The simplest way to deal with these issues is to fix an orthonormal basis.
Any orthonormal basis of F contains one vector such that 〈εi, εi〉 = −1 (or +1
with the signature (1, 3)). If we exclude this vector we can generate a vector
subspace and then a Clifford algebra Cl(3). So the identification of a specific
set with the structure of Cl(3) sums up to single out such a vector, that we will
denote as ε0.

3.3.2 Decomposition of the elements of the Spin group

Theorem 29 For a given vector ε0 any element s ∈ Spin (3, 1) can be written
uniquely (up to sign) : s = ǫ (aw + υ (0, w)) · ǫ (aw + υ (r, 0)) with ǫ = ±1

Let us choose an orthonormal basis (εi)
3
i=0 . Then there is a unique vector

subspace F⊥ orthogonal to ε0, where the scalar product is definite positive, and
from

(
F⊥, 〈〉

)
one can build a Clifford algebra with structure Cl (3) . Its spin

group has the structure Spin (3) which has for Lie algebra T1Spin (3) .
In the basis :
an element of T1Spin (3) reads : X = υ (r, 0) =

∑3
a=1 r

a−→κ a and is associated
to a 3× 3 matrix j (r)

any element of Spin (3) reads : sr = ar + υ (r, 0) with a2r = 1− 1
4r

tr
Spin(3) has 2 connected components. The connected component of the

identity is comprised of elements with ar > 0.
Spin(3), T1Spin (3) are subsets of Cl (3, 1) : they are comprised of specific

combinations of vectors of F.
The quotient space Spin (3, 1) /Spin (3) is not a group but a 3 dimensional

manifold, called a homogeneous space (Maths.22.4.3). It is characterized by the
equivalence relation :

∀s, s′ ∈ Spin (3, 1) : s ∼ s′ ⇔ ∃sr ∈ Spin(3) : s′ = s · sr
The projection : πw : Spin (3, 1) → Spin (3, 1) /Spin (3) is a submersion, its

derivative π′
w (s) is surjective.

In each class of Spin (3, 1) /Spin (3) there are only two elements (which
belong to Spin (3, 1)) which can be written as : sw = aw + υ (0, w) and they
have opposite sign : ±sw belong to the same class (see Annex for the proofs).

Any element s ∈ Spin (3, 1) can be written : s = sw · sr with sw ∈
Spin (3, 1) /Spin (3) , sr ∈ Spin(3) :

s = ǫ (aw + υ (0, w)) · ǫ (aw + υ (r, 0)) with ǫ = ±1 (58)

For each s there are two decompositions, unique up to sign. ±sw belong
to the class of equivalence of s in Spin (3, 1) /Spin (3) . They are specific repre-
sentatives of the projection of s on the homogeneous space. The decomposition
depends on the choice of ε0.

Theorem 30 Spin (3, 1) is a principal fiber bundle
Spin (3, 1) (Spin (3, 1) /Spin (3) , Spin (3) , πw).
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and there is a left action of Spin (3, 1) on Spin (3, 1) /Spin (3) :
λ : Spin (3, 1)× Spin (3, 1) /Spin (3) → Spin (3, 1) /Spin (3) :
λ (s, sw) = πw (s · sw)

Proof. Indeed we have :
λ (s, sw) = πw (s · sw) ⇔ ∃sr : s ·sw = πw (s · sw) ·sr ⇔ λ (s, sw) = s ·sw ·s−1

r

λ (s, λ (s′, sw)) = λ
(
s, s′ · sw · s′−1

r

)
= s · s′ · sw · s′−1

r · s−1
r

λ (s · s′, sw) = s · s′ · s · sw · sr”
s · s′ · s · sw · sr” ∼ s · s′ · sw · s′−1

r · s−1
r

The subset of Spin(3, 1) of the elements sr which commute with ε0 :
Adsrε0 = sr · ε0 · s−1

r = ε0
read :

sr = ǫ

(√
1− 1

4
rtr + υ (r, 0)

)
with ǫ = ±1, rtr ≤ 4 (59)

They belong to the realization of Spin(3) which is specified by ε0. They
are generated by vectors belonging to the subspace spanned by the vectors
(εi)

3
i=1 . They have a special physical meaning : they are the spatial rotations

for an observer with a velocity in the direction of ε0. The vector r, with 3
components, has the same meaning as in Galilean Geometry. This is just a
different representation of the Lie algebra o(3).

The elements of Spin (3, 1) /Spin (3) are coordinated by w, and the matrix
[K (w)] corresponds to a gauge transformation for an observer moving with a
spatial speed −→v parallel to w, without spatial rotation.

Similarly the elements of the Lie algebra T1Spin(3) are characterized by
X ∈ T1Spin (3) ⇔ X · ε0 − ε0 ·X = 0 ⇔ w = 0
In the tangent space TmM of the manifold M all rotations (given by Spin (3, 1))

are on the same footing. But, because of our assumptions about the motion of
observers (along time like lines), any observer introduces a breakdown of sym-
metry : some rotations are privileged. Indeed the spatial rotations are special,
in that they are the ones for which the axis belongs to the physical space.

To sum up :
(εi)

3
i=1 are the generators in Cl (F, 〈〉) of a set with the structure of Spin (3)

iff 〈εi, εi〉 = +1 (then the 4th vector 〈ε0, ε0〉 = −1)
Similarly any element of the Lie algebra T1Spin(3, 1) read:

X = υ (r, w) =
∑3

a=1 r
a−→κ a + wa−→κ a+3

and
∑3

a=1 r
a−→κ a identifies a specific Lie algebra T1Spin(3) if 〈εi, εi〉 = +1.

In the following of this paper we will always assume that the orthonormal
basis is such that ε0 is the 4th vector : 〈ε0, ε0〉 = −1 with signature (3,1) and
〈ε0, ε0〉 = +1 with signature (1,3).
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3.4 Representation of Clifford algebras

3.4.1 Complexification of real Clifford algebras

A real Clifford algebra can be complexified, using the same procedure as for any
finite dimensional vector space. The complexified of both Cl (3, 1) and Cl (1, 3)
is Cl (C, 4) , the Clifford algebra on C4 with the bilinear symmetric form of
signature (+ + + +).

There are real algebras morphisms (injective but not surjective) from the
real Clifford algebras to Cl (C, 4) .

Let C̃ :
(
R4, 〈〉L

)
→ Cl (C, 4) be the real linear map defined by : C̃ (εj) =

εj, j = 1, 2, 3; C̃ (ε0) = iε0 and the scalar product 〈〉L with signature (- + + +).

It is easy to check that : C̃ (u) · C̃ (v) + C̃ (v) · C̃ (u) = 2 〈u, v〉L so, by the
universal property of Clifford algebras, there is a unique real algebra morphism
C : Cl (3, 1) → Cl (C, 4) such that C̃ = C ◦  where  is the canonical injec-

tion
(
R4, 〈〉L

)
→ Cl (3, 1). We will denote for simplicity C̃ = C. The image

C (Cl (3, 1)) is a real subalgebra of Cl (C, 4)

Similarly with C̃′ (εj) = iεj, j = 1, 2, 3; C̃′ (ε0) = ε0 we have a real algebra
morphism C′ : Cl (1, 3) → Cl (C, 4) and C′ (Cl (1, 3)) is a real subalgebra of
Cl (C, 4) .Moreover C′ (εj) = −iηjjC (εj) (η always correspond to the signature
- + + +).

3.4.2 Algebraic and geometric representations

An algebraic representation of a Clifford algebra is a map γ which associates
to each element w of the Clifford algebra a matrix [γ (w)] and such that γ is
a isomorphism of algebra : all the operations in the Clifford algebra (multi-
plication by a scalar, sum, Clifford product) are reproduced on the matrices.

A representation is fully defined by the family of matrices (γi)
3
i=0 representing

each vector (εi)
3
i=0 of an orthonormal basis. The choice of these matrices is not

unique : the only condition is that [γi] [γj] + [γj ] [γi] = 2ηij [I] and any family
of matrices deduced by conjugation with a fixed matrix gives an equivalent al-
gebraic representation. An element of the Clifford algebra is then represented
by a linear combination of generators :

γ (w) = γ
(∑

{i1...ir} a
i1...irεi1 · ... · εir

)
=
∑

{i1...ir} a
i1...irγi1 ...γir

A geometric representation (E, γ) of a Clifford algebra is an isomorphism
γ : Cl → L (E;E) in which [γ (w)] is the matrix of an endomorphism of E,
represented in some basis. From an algebraic representation one can deduce a
geometric representation, and they are equivalent up to the choice of a basis.

We look for a geometric representation : the quantity S that we are looking
for is represented, not by γ matrices, but by vectors S of the space E, which are
called spinors. Higher orders spinors are tensorial products of vectors of E.

A Clifford algebra has, up to isomorphism, a unique faithful algebraic irre-
ducible representation in an algebra of matrices (γ is a bijection). As can be
expected the representations depend on the signature :
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For Cl (3, 1) this is R (4) the 4× 4 real matrices (the corresponding spinors
are the Majorana spinors)

For Cl (1, 3) this is H (2) the 2× 2 matrices with quaternionic elements
In both cases an element of the Clifford algebra is characterized by 24 = 16

real parameters.
The geometry of the universe is based upon real structures. Thus we should

consider representations of Cl (3, 1) or Cl (1, 3) , which raises the issue of the
signature. However it happens, from experience 3, that the vector space E must
be complex.

The irreducible representation of Cl (C, 4) is by 4 × 4 matrices on complex
numbers which must meet the condition : γjγk + γkγj = 2δjkI4.

If (E, γ) is a complex representation of Cl (C, 4) then (E, γ ◦ C) is a real
geometric representation of Cl (3, 1) on the complex vector space E : the map
γ ◦ C : Cl (3, 1) → L(E;E) is a real morphism of algebras, and the maps
γ ◦ C (w) are complex linear. The matrices of the real representation are iγ0,
γj , j = 1, 2, 3, iγ0. Similarly (E, γ ◦ C′) is a real geometric representation of
Cl (1, 3) with matrices γ0, iγj, j = 1, 2, 3.

Using this trick we see that we are fortunate, in that we have the same rep-
resentation (E, γ) for both signatures, and a complex vector space E. Moreover
it is easy to specify the representation through additional features of E (such as
chirality as we will see). A spinor has 8 real components (vs 16 real components
for elements of the real Clifford algebras) thus a spinor carries more information
than a simple vector of R4 and this solves part of the issue of the number of
parameters needed to represent the motion (both translation and rotation).

3.4.3 Chirality

Any Clifford algebra Cl is the direct sum of one Clifford subalgebra Cl0 com-
prised of elements which are the sum of products of an even number of vectors,
and a vector subspace Cl1 comprised of elements which are the sum of prod-
ucts of an odd number of vectors. Moreover some Clifford algebras present a
specific feature : they are the direct sum of two subalgebras which can be seen
as algebras of left handed and right handed elements. This property depends
on the existence of an element ̟ such that ̟ · ̟ = 1. This element exists in
any complex algebra, but not in Cl (1, 3) , Cl (3, 1) . As chirality is a defining
feature of particles, this is an additional argument for using Cl (C, 4) .

In this subsection and the next one the vectors (εj)
3
j=0 denote the canonical

basis of C4 endowed with the bilinear symmetric form of signature + + + +.
In Cl (C, 4) the special element is : ̟ = ±ε0 · ε1 · ε2 · ε3 ∈ Spin(C, 4). Thus
there is a choice and we will use : ̟ = ε5 = ε0 · ε1 · ε2 · ε3.

The Clifford algebra splits in two subalgebras :
Cl (C, 4) = ClR (C, 4)⊕ ClL (C, 4) :
ClR (C, 4) = {w ∈ Cl (C, 4) : ε5 · w = w} ,

3We will see that this is necessary to account for the Electromagnetic field.
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ClL (C, 4) = {w ∈ Cl (C, 4) : ε5 · w = −w}
and any element of Cl (C, 4) can be uniquely written as : w = wR + wL

The projections from Cl (C, 4) on each subalgebra are the maps
pR = 1

2 (1 + ε5) , pL = 1
2 (1− ε5) :

wR = pR · w,wL = pL · w
pR · pL = pL · pR = 0, p2R = pR, p

2
L = pL, pR + pL = 1

We have similarly : E = ER ⊕ EL with
ER = γR (E) , EL = γL (E) , γR = γ (pR) , γL = γ (pL) ⇒ γ (ε5) = γR − γL
u ∈ E : u = uR + uL :
uR = γR (u) = 1

2 (u+ γ (ε5)u) ;
uL = γL (u) = 1

2 (u− γ (ε5)u)
For any homogeneous element w = v1 · v2... · vk, vj ∈ C4 we have ε5 · w =

(−1)
k
w · ε5

∀w ∈ Cl (C, 4) , u ∈ E :

γR (γ (w)uR) =
1
2

(
1 + (−1)k

)
γ (w) uR

k even : γR (γ (w) uR) = γ (w)uR
k odd : γR (γ (w) uR) = 0
For k even : γ (w) preserves both ER, EL (as vector subspaces)
For k odd : γ (w) exchanges ER, EL

In particular the elements of the images C (Spin (3, 1)) and C′ (Spin (1, 3))
by γ preserve both ER, EL. So we have reducible representations of these groups.

3.4.4 The choice of the representation

An algebraic representation is defined by the choice of its generators γi, and any
set of generators conjugate by a fixed matrix gives an equivalent representation.
We can specify the generators by the choice of a basis (ei)

4
i=1 of E . The previous

result leads to a natural choice : take (ei)
2
i=1 as basis of ER and (ei)

4
i=3 as basis

of EL, then :

γR =

[
I2 0
0 0

]
, γL =

[
0 0
0 I2

]
, γ5 = γ (ε5) = γR − γL =

[
I2 0
0 −I2

]

Denote : γj =

[
Aj Bj

Cj Dj

]
with four 2×2 complex matrices.

ε5 belongs to the Spin group Spin(C, 4), commutes with any element of
Cl0 (C, 4) and anticommutes with any vector, thus γ5γj = −γjγ5 which imposes
the condition :[

Aj −Bj

Cj −Dj

]
= −

[
Aj Bj

−Cj −Dj

]
⇒ γj =

[
0 Bj

Cj 0

]

The defining relations : γjγk + γkγj = 2δjkI4 lead to :[
BjCk +BkCj 0

0 CjBk + CkBj

]
= 2δjkI4

j 6= k : BjCk +BkCj = CjBk + CkBj = 0
j = k : BjCj = CjBj = I2 ⇔ Cj = B−1

j
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thus (γi)
3
i=0 is fully defined by a set (Bi)

3
i=0 of 2× 2 complex matrices

γj =

[
0 Bj

B−1
j 0

]

meeting : j 6= k : BjB
−1
k +BkB

−1
j = B−1

j Bk +B−1
k Bj = 0

which reads :
BjB

−1
k = −

(
BjB

−1
k

)−1 ⇔
(
BjB

−1
k

)2
= −I2

B−1
j Bk = −

(
B−1

j Bk

)−1 ⇔
(
B−1

j Bk

)2
= −I2

Let us define : k = 1, 2, 3 : Mk = −iBkB
−1
0

The matrices (Mk)
3
k=1 are such that :

M2
k = −

(
BjB

−1
0

)2
= −I2

MjMk +MkMj = −BjB
−1
0 BkB

−1
0 −BkB

−1
0 BjB

−1
0

= −
(
−BjB

−1
k B0 −BkB

−1
j B0

)
B−1

0

= BjB
−1
k +BkB

−1
j = 0

that is k = 1, 2, 3 : MjMk +MkMj = 2δjkI2
Moreover : γ5 = γ0γ1γ2γ3 ⇒
B0B

−1
1 B2B

−1
3 = I2

B−1
0 B1B

−1
2 B3 = −I2

with Bk = iMkB0, B
−1
k = −iB−1

0 M−1
k

B0

(
−iB−1

0 M−1
1

)
(iM2B0)

(
−iB−1

0 M−1
3

)
= I2 = −iM−1

1 M2M
−1
3

B−1
0 (iM1B0)

(
−iB−1

0 M−1
2

)
(iM3B0) = −I2 = iB−1

0 M1M
−1
2 M3B0

which reads :
iM2 = −M1M3 =M3M1

−M−1
1 M−1

3 = iM−1
2 ⇔ iM2 =M3M1

M2M3 +M3M2 = 0 = iM1M3M3 +M3M2 ⇔ iM1 = −M3M2 =M2M3

M1M2 +M2M1 = 0 = iM3M2M2 +M2M1 ⇒ iM3 = −M2M1 =M1M2

The set of 3 matrices (Mk)
3
k=1 has the multiplication table :



1\2 M1 M2 M3

M1 I iM3 −iM2

M2 −iM3 I iM1

M3 iM2 −iM1 I




which is the same as the set of Pauli’s matrices :

σ1 =

[
0 1
1 0

]
;σ2 =

[
0 −i
i 0

]
;σ3 =

[
1 0
0 −1

]
;σ0 =

[
1 0
0 1

]
(60)

σ2
i = σ0; For j 6= k : σjσk = ǫ (j, k, l) iσl (61)

Notation 31 ǫ (j, k, l) = the signature of the permutation of the 3 different
integers i,j,k, 0 if two integers are equal
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There is still some freedom in the choice of the γi matrices by the choice of
B0 and the simplest is : B0 = −iI2 ⇒ Bk = σk

Moreover, because scalars belong to Clifford algebras, one must have the
identity matrix I4 and γ (z) = zI4

Thus :

γ0 =

[
0 −iσ0
iσ0 0

]
; γ1 =

[
0 σ1
σ1 0

]
; γ2 =

[
0 σ2
σ2 0

]
; γ3 =

[
0 σ3
σ3 0

]
; (62)

The matrices γj are then unitary and Hermitian :

γj = γ∗j = γ−1
j (63)

which is extremely convenient.
We will use the following (see the annex for more formulas) :

Notation 32 j = 1,2,3 : γ̃j =

[
σj 0
0 σj

]

j 6= k, l = 1, 2, 3 : γjγk = −γkγj = iǫ (j, k, l) γ̃l

j = 1, 2, 3 : γjγ0 = −γ0γj = i

[
σj 0
0 −σj

]
= iγ5γ̃j

Notice that the choice of the matrices is done in Cl (C, 4) , so it is independent
of the choice of signature. However we have the representations of the real
algebras by the matrices γC (εj) and γC

′ (εj)

Cl (3, 1) : γC (εj) = γj , j = 1, 2, 3; γC (ε0) = iγ0; γC (ε5) = iγ5 (64)

Cl (1, 3) : γC′ (εj) = iγj , j = 1, 2, 3; γC′ (ε0) = γ0; γC
′ (ε5) = γ5 (65)

The representation that we have chosen here is not unique and others, equiv-
alent, would hold. However from my point of view this is the most convenient
because of the nice properties of the γ matrices. The choice of ̟ = −ε5 =
−ε0 · ε1 · ε2 · ε3 would have lead to take γ̃j = −γj . In the Standard Model we
have a representation of Cl (1, 3) by the matrices : γ̃0 = iγ0, γ̃j = γj , j = 1, 2, 3
and γ̃5 = −iγ̃0γ̃1γ̃2γ̃3

3.4.5 Expression of the matrices for the Lie algebra and the Spin
groups

The matrices γC (υ (r, w)) , γC′ (υ (r, w)) are of constant use.
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In Cl(R,3,1) :

γC (υ (r, w)) = −i 12
∑3

a=1 (w
aγaγ0 + raγ̃a)

= 1
2

∑3
a=1

[
(wa − ira)σa 0

0 − (wa + ira)σa

]
(66)

In Cl(R,1,3) :

γC′ (υ (r, w)) = −i 12
∑3

a=1 (w
aγaγ0 − raγ̃a)

= 1
2

∑3
a=1

[
(wa + ira)σa 0

0 − (wa − ira)σa

]
(67)

so one goes from one signature to the other by changing the sign of r.
The 2 × 2 matrices 1

2

∑3
a=1 (wa − ira)σa and 1

2

∑3
a=1 (wa + ira)σa belong

to SU(2)
The elements of the spin groups are represented by the matrices :

In Cl(R,3,1) :

γC (a+ υ (r, w) + bε5) = aI − i 12
∑3

a=1 (waγaγ0 + raγ̃a) + bγ5 (68)

In Cl(R,1,3) :

γC′ (a+ υ (r, w) + bε5) = aI − i 12
∑3

a=1 (w
aγaγ0 − raγ̃a) + bγ5 (69)

3.5 Scalar product of Spinors

We need a scalar product on E, preserved by a gauge transformation, that is by
both Spin(3, 1) and Spin(1, 3).

Theorem 33 The only scalar products on E, preserved by {γC (σ) , σ ∈ Spin(3, 1)}
are G =

[
0 kσ0
kσ0 0

]
with k ∈ C

Proof. It is represented in the basis of E by a 4× 4 Hermitian matrix G such
that : G = G∗

∀s ∈ Spin(3, 1) : [γ ◦ C (s)]
∗
G [γ ◦ C (s)] = G

or ∀s ∈ Spin(1, 3) : [γ ◦ C′ (s)]∗G [γ ◦ C′ (s)] =

[γ ◦ C (s)]
∗
G = G [γ ◦ C (s)]

−1
= G

[
γ ◦ C

(
s−1
)]

γC (s) =

[
(a+ ib)σ0 +

1
2

∑3
a=1 (wa − ira)σa 0

0 (a− ib)σ0 − 1
2

∑3
a=1 (wa + ira)σa

]

γC (s)∗ =

[
(a− ib)σ0 +

1
2

∑3
a=1 (wa + ira) σa 0

0 (a+ ib)σ0 − 1
2

∑3
a=1 (wa − ira) σa

]

G =

[
A B
B∗ C

]
, with A = A∗, C = C∗

[γ ◦ C (s)]
∗
G
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=

[
(a− ib)A+ 1

2

∑3
a=1 (wa + ira)σaA (a− ib)B + 1

2

∑3
a=1 (wa + ira) σaB

(a+ ib)B∗ − 1
2

∑3
a=1 (wa − ira)σaB

∗ (a+ ib)C − 1
2

∑3
a=1 (wa − ira) σaC

]

G
[
γ ◦ C

(
s−1
)]

=

[
(a+ ib)A− 1

2

∑3
a=1 (wa − ira)Aσa (a− ib)B + 1

2

∑3
a=1 (wa + ira)Bσa

(a+ ib)B∗ − 1
2

∑3
a=1 (wa − ira)B

∗σa (a− ib)C + 1
2

∑3
a=1 (wa + ira)Cσa

]

(a− ib)A+ 1
2

∑3
a=1 (wa + ira)σaA = (a+ ib)A− 1

2

∑3
a=1 (wa − ira)Aσa

(a− ib)B + 1
2

∑3
a=1 (wa + ira)σaB = (a− ib)B + 1

2

∑3
a=1 (wa + ira)Bσa

(a+ ib)B∗− 1
2

∑3
a=1 (wa − ira)σaB

∗ = (a+ ib)B∗− 1
2

∑3
a=1 (wa − ira)B

∗σa
(a+ ib)C − 1

2

∑3
a=1 (wa − ira)σaC = (a− ib)C + 1

2

∑3
a=1 (wa + ira)Cσa

(wa + ira)σaB =
∑3

a=1 (wa + ira)Bσa∑3
a=1 (wa − ira)σaB

∗ =
∑3

a=1 (wa − ira)B
∗σa

2ibA
= 1

2

∑3
a=1 (wa + ira)σaA+ (wa − ira)Aσa

= 1
2

∑3
a=1 wa (σaA+ Aσa) + ira ((σaA−Aσa))

2ibC
= 1

2

∑3
a=1 (wa + ira)Cσa + (wa − ira)σaC

= 1
2

∑3
a=1 wa (σaC + Cσa) + ira ((Cσa − σaC))

By taking the adjoint on the two last equations :
−2ibA
= 1

2

∑3
a=1 wa (Aσa + σaA)− ira ((Aσa − σaA))

= − 1
2

∑3
a=1 wa (σaA+Aσa) + ira ((σaA−Aσa)) ⇒ A = 0

−2ibC
= 1

2

∑3
a=1 wa (σaC + Cσa)− ira ((Cσa − σaC))

= − 1
2

∑3
a=1 wa (σaC + Cσa) + ira ((Cσa − σaC)) ⇒ C = 0

We are left with :
∀w, r :∑3

a=1 (wa + ira)σaB =
∑3

a=1 (wa + ira)Bσa
which implies that B commutes with all the Dirac matrices, which happens

only for the scalar matrices : B = kσ0.

G =

[
0 kσ0
kσ0 0

]

The scalar product will never be definite positive, so we can take k = −i
that is G = γ0. And it is easy to check that it works also for the signature (1,3).

Any vector of E reads :
u =

∑4
i=1 u

iei = uR + uL with uR =
∑2

i=1 u
iei, uL =

∑4
i=3 u

iei
The scalar product of two vectors u, v of E is then:

〈∑4
i=1 u

iei,
∑4

i=1 v
iei

〉
E
= [u]

∗
[γ0] [v] = i (u∗LvR − u∗RvL) (70)

It is not definite positive. It is preserved both by Spin(3, 1) and Spin(1, 3).
It is definite positive on ER and definite negative on EL.
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The basis (ei)
4
i=1 of E is not orthonormal : 〈ej, ek〉 = i




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0




3.6 Norm on the space E of spinors

The scalar product on E is not definite, but we can define a norm, as we have
done for the Lie algebra. We have introduced previously the two chiral operators
pR, pL on Cl (C, 4) . They do not belong to the images γC (Cl (3, 1)) , γC (Cl (1, 3))
however they define two subspaces E = ER ⊕ EL and the elements of the im-
ages C (Spin (3, 1)) and C′ (Spin (1, 3)) by γ preserve both ER, EL. So we have
operators γR : E → ER, γL : E → EL such that :

γR = γR · γR; γL = γL · γL
γR + γL = Id
∀σ ∈ Spin (3, 1) , Spin (1, 3) : γC (σ) ◦ γR = γR ◦ γC (σ) ; γC (σ) ◦ γL =

γL ◦ γC (σ)
γR = γ (pR) , γL = γ (pL) are complex linear maps, as images of the complex

linear maps pR, pL by the complex linear map γ. So they preserve any real
structure on E : γR (Reu+ i Imu) = γ (pR) (Reu+ i Imu) = γ (pR) Reu +
iγ (pR) (Imu) and γR = γR, γL = γL (Maths.357).

In the basis (ei)
4
i=1 :

γR =

[
σ0 0
0 0

]
= γ∗R

γL =

[
0 0
0 σ0

]
= γ∗L

There is no definite scalar product on E, but there is a norm, that is a map
:

‖‖ : E × E → R

such that :
‖S‖ ≥ 0
‖S‖ = 0 ⇒ S = 0
‖kS‖ = |k| ‖S‖
‖S + S′‖ ≤ ‖S‖+ ‖S′‖

Theorem 34 The vector space E is a normed vector space with the norm, in-
variant by Spin (3, 1) , Spin (1, 3) :

‖S‖E =
√
〈γRS, γRS〉E − 〈γLS, γLS〉E

Proof. ER, EL are two 2 dimensional complex vector spaces, they can be
endowed with a norm which is invariant by Spin (3, 1) , Spin (1, 3) :

S ∈ ER : ‖S‖2ER
= 〈S, S〉E

S ∈ EL : ‖S‖2EL
= −〈S, S〉E

The norm are invariant by γR, γL :
S ∈ ER ⇔ ∃S′ ∈ E : S = γR (S′)
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‖γR (S)‖ER
=
∥∥γ2R (S′)

∥∥
ER

= ‖γR (S′)‖ER
= ‖S‖ER

Define : ‖‖E : E × E → R :: ‖S‖E =
√
‖γRS‖2ER

+ ‖γLS‖2EL

‖S‖E = 0 ⇒ ‖γRS‖ER
= 0; ‖γLS‖EL

= 0 ⇒ γRS = 0; γLS = 0 ⇒
(γR + γL) [S] = 0 = S

‖S + S′‖2E = ‖γR (S + S′)‖2ER
+‖γL (S + S′)‖2EL

= ‖S + S′‖2ER
+‖S + S′‖2EL

≤ ‖S‖2ER
+ ‖S′‖2ER

+ ‖S‖2EL
+ ‖S′‖2EL

= ‖S‖2E + ‖S′‖2E
This norm is invariant by Spin (3, 1) , Spin (1, 3):

‖γC (σ)S‖E =
√
‖γC (σ) γRS‖2ER

+ ‖γC (σ) γLS‖2EL

=
√
‖γRγC (σ)S‖2ER

+ ‖γLγC (σ)S‖2EL

=
√
‖γC (σ)S‖2ER

+ ‖γC (σ)S‖2EL
=
√
‖S‖2ER

+ ‖S‖2EL
= ‖S‖E
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4 THE SPINOR MODEL OF KINEMATICS

We have now the mathematical tools to enter the representation of kinematics
of material bodies in General Relativity. First we will make some adjustment
to the fiber bundles used so far to represent the geometry, to account for the
introduction of the Spin group.

4.1 Description of the fiber bundles

4.1.1 The geometric fiber bundles

The geometric model is similar to the previous one, with the replacement of
SO(3, 1) by the Spin group.

Definition 35 The principal bundle PG (M,Spin0 (3, 1) , πG) has for fiber
the connected component of the unity of the Spin group, for trivialization the
map :

ϕG : M × Spin0 (3, 1) → PG :: p = ϕG (m, s) .
The standard gauge used by observers is p (m) = ϕG (m,1)

A section σ ∈ X (PG) is defined by a map: σ : M → Spin (3, 1) such that :
σ (m) = ϕG (m,σ (m)) and in a change of gauge :

p (m) = ϕG (m, 1) → p̃ (m) = p (m) · χ (m)
−1

: (71)

σ (m) = ϕG (m,σ (m)) = ϕ̃G (m,χ (m) · σ (m)) (72)

Definition 36 The vectors on the fiber bundle TM are represented in the
associated vector bundle P

G

[
R4,Ad

]
defined through the holonomic orthonor-

mal basis :
εi (m) = (p (m) ,εi)

So ε0 (m) = (p (m) ,ε0) is the 4th vector both in the Clifford algebra and in
the tangent space TmM. It corresponds to the velocity of the observer.

With the equivalence relation :(p (m) ,v) ∼
(
ϕG (m, g) ,Adg−1v

)

In a change of gauge on PG the holonomic basis becomes :

p (m) = ϕG (m, 1) → p̃ (m) = p (m) · χ (m)
−1

: (73)

εi (m) = (p (m) , εi) → ε̃i (m) = Adχ(m)−1εi (m) (74)

For a given observer ε0 (po (t)) =
1
c
dpo

dt is fixed along his world line.
The Lorentz scalar product on R4 is preserved by Ad thus it can be extended

to P
G

[
R4,Ad

]
.

Definition 37 The Clifford bundle Cl (TM) is the associated vector bundle

PG [Cl (3, 1) ,Ad] defined through the basis (εi (m))
3
i=0 .
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In a change of gauge on PG the elements of Cl(m) transforms as :

p (m) = ϕG (m, 1) → p̃ (m) = p (m) · χ (m)−1 : (75)

σ (m) = ϕP (m,σ (m)) = ϕ̃P (m,χ (m) · σ (m)) (76)

w (m) = (p (m) , w) → Adχ(m)−1w (m) (77)

4.1.2 The kinematic bundle

In addition to the previous bundles we define the associated bundle in which
the spinors live :

Proposition 38 The relativist momentum of particles are represented by
Spinors, which are, at each point of the world line of the particle, vectors of
the associated vector bundle PG [E, γC] . They are measured by observers in the
standard gauge defined through the holonomic basis : ei (m) = (p (m) ,ei)

With the equivalence relation : (p (m) ,S) ∼
(
ϕG (m, g) , γC

(
g−1

)
S
)
so that

in a change of gauge the holonomic basis becomes :

p (m) = ϕG (m, 1) → p̃ (m) = p (m) · χ (m)−1 : (78)

ei (m) = (p (m) , ei) → ẽi (m) = γC
(
χ (m)

−1
)
ei (m) (79)

and the components of a section S ∈ X (PG [E, γC]) change as :

p (m) = ϕG (m, 1) → p̃ (m) = p (m) · χ (m)
−1

: (80)

S (m) = (p (m) , Sm) =
(
p (m) · χ (m)

−1
, γC (χ (m))Sm

)
(81)

From a mathematical point of view the holonomic basis (εi (m))
3
i=0 ,

(ei (m))
4
i=1 , are defined through the same standard gauge p (m) chosen by

the observer. This gauge is arbitrary. For the tetrad the vectors εi (m) can be
measured in the holonomic basis of any chart through P . We have nothing
similar for ei (m) , and actually the vectors ei of E themselves are abstract.
However we will see in the following how the basis ei (m) used by an observer
can be related to physical phenomena (inertial observers).

The scalar product on E is preserved by γC thus it can be extended to
P

G
[E, γC] and to the space of sections X (P

G
[E, γC]) by :〈

S,S′〉 =
∫
Ω

〈
S (m) ,S′ (m)

〉
E
̟4 (m)

Moreover we have the following :

Theorem 39 The set of integrable sections :
L1 (X (PG [E, γC]) , ̟4) =

{∫
Ω ‖S‖̟4 <∞

}

with the norm on E is a separable, infinite dimensional Fréchet space.
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Proof. Consider the vector space : X (PG [E, γC]) endowed with the norm :
‖S‖ =

∫
Ω ‖S (m)‖E ̟4 (m) and the norm

‖S (m)‖E =
√
〈γRS, γRS〉E − 〈γLS, γLS〉E

Restrict this space to L1 (M,PG [E, γC] , ̟4)
=
{
S ∈ X (PG [E, γC])

∫
Ω
‖S (m)‖E ̟4 (m) <∞

}

This is a Fréchet space (Maths.2276). Moreover it is separable, because Ω is
relatively compact and the smooth compactly supported maps are a countable
basis in L1 (see Lieb).

Because the norm is invariant by the Spin group this space does not depend
on the choice of trivialization.

The result still holds if we impose that the sections are differentiable.

4.1.3 Fundamental symmetry breakdown

The observer uses the frame
(
O, (εi)

3
i=0

)
to measure the components of vectors

of TM, and the holonomic maps (ei (m))
3
i=0 to measure the spinors. The break-

down, specific to each observer, comes from the distinction of his present, and
is materialized in his standard basis by the vector ε0 (m) .This choice leads to
a split of the Spin group between the spatial rotations, represented by Spin(3),
and the homogeneous space Spin (3, 1) /Spin (3) .

We have an associated fiber bundle :
PW = PG [Spin (3, 1) /Spin (3) , λ] :
(p (m) ,sw) = (ϕG (m, 1) , sw) ∼

(
ϕG (m, s) , λ

(
s−1, sw

))

with the left action :
λ : Spin (3, 1) × Spin (3, 1) /Spin (3) → Spin (3, 1) /Spin (3) : λ (s, sw) =

πw (s · sw)
On the manifold PG there is a structure of principal fiber bundle
PR (PW , Spin (3) , πR) with trivialization :
ϕR : PW × Spin (3) → PG ::
ϕR ((p (m) ,sw) , sr) = ϕG (m, sw · sr) = ϕR

((
ϕG (m, s) , λ

(
s−1, sw

))
, sr
)

As the latest trivialization shows, for a given s, sr depends on sw in that it
is a part of s ∈ Spin (3, 1) .

It sums up to define the local basis in two steps : first by choosing sw second
by choosing sr

Any section σ ∈ X (PG) can be decomposed, for a given vector field ε0 and
a fixed ǫ = ±1, in two sections :

ǫσw ∈ X (PW ) , ǫσr ∈ X (PR) with σ (m) = ǫσw (m) · ǫσr (m)
The set of vectors of TmM used to build Spin(3) is defined by ε0 (m) .

Our objective is now to understand the relation between sections
S ∈ PG [E, γC] of the vector bundle and the motion of a particle,and to

precise the possible values of S. We will proceed in several steps. First we
will focus on the trajectories and we will show that they can be matched with
sections of PW .
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4.2 Trajectories and the Spin Group

A change of observer is a change of gauge p (m) = ϕG (m,1) (or trivialization)
on the principal bundle PG (M,Spin0 (3, 1) , πG) .We see now how the formulas
given previously can be expressed in the formalism of Clifford algebras.

Theorem 40 Any section σ ∈ X (PG) defines, for any positive function f ∈
C∞ (Ω;R+) and observer, two vector fields V ∈ X

(
PG

[
R4,Ad

])
by :

V (m) = f (m)Adσ(m)ε0 (m) = f (m)
((
2a2w − 1

)
ε0 + ǫaw

(
w1ε1 + w2ε2 + w3ε3

))

(82)
where σw (m) = ǫ (aw + υ (0, w)) is the projection of σ on PW along ε0
Then V is time like, future oriented and 〈V (m) , V (m)〉 = −f2 (m) and is

invariant in a change of gauge on PG

Conversely, for any time like, future oriented vector field V ∈ X
(
PG

[
R4,Ad

])

there are two sections σw ∈ X (PG) such that :

V√
−〈V,V 〉

= u = Adσ(m)ε0 (m) : σw = ǫ

(√
1
2 (u0 + 1) + 1√

1

2
(u0+1)

υ (0, ui)

)

Proof. i) σ (m) = ǫσw (m) · ǫσr (m)
σw (m) = ǫ (aw + υ (0, w)) so let be aw > 0 which defines ǫ
ii) Define
u ∈ X

(
PG

[
R4,Ad

])
: u (m) = Adσw(m)ε0 (m) = (p (m) ,Adσwε0) =

(p (m) , u)
u = σw · ε0 · σ−1

w = (ǫaw + υ (0, w)) · ε0 · (ǫaw − υ (0, w))
= (ǫaw + υ (0, w)) · (ǫawε0 − ε0 · υ (0, w))
= a2wε0 + ǫaw (−ε0 · υ (0, w) + υ (0, w) · ε0)− υ (0, w) · ε0 · υ (0, w)
= a2wε0+

1
2ǫaw

(
−ε0 · ε0 ·

(
w1ε1 + w2ε2 + w3ε3

)
−
(
w1ε1 + w2ε2 + w3ε3

)
· ε0 · ε0

)

− 1
4ε0 ·

(
w1ε1 + w2ε2 + w3ε3

)
· ε0 · ε0 ·

(
w1ε1 + w2ε2 + w3ε3

)

= a2wε0 +
1
2ǫaw (w + w) + 1

4ε0 · w · w
= a2wε0 + awǫw + 1

4ε0 · 〈w,w〉
=
(
a2w + 1

4w
tw
)
ε0 + ǫaww

u =
(
2a2w − 1

)
ε0 + ǫaw

(
w1ε1 + w2ε2 + w3ε3

)

iii) 〈u, ε0〉 = −
(
2a2w − 1

)
= 1− 2

(
1 + 1

4w
tw
)
= −1− 1

2w
tw < 0

〈u, u〉 = a2ww
tw −

(
2a2w − 1

)2
= a2w

(
4
(
a2w − 1

))
−
(
2a2w − 1

)2
= −1

iv) V = f (m)u⇒
〈V, ε0〉 = f (m) 〈u, ε0〉 < 0
〈V, V 〉 = −f2 < 0
v) In a change of gauge on PG :

p (m) = ϕG (m, 1) → p̃ (m) = p (m) · χ (m)
−1

:

σ (m) → σ̃ (m) = χ (m)−1 · σ (m)

u (m) = (p (m) ,Adσwε0) ∼
(
p (m) · χ (m)

−1
,AdχAdσwε0

)
= (p̃ (m) ,Adσ̃w

ε0) =

ũ (m)
vi) Let u = V√

−〈V,V 〉
then u is time like, 〈u, u〉 = −1, 〈u, ε0〉 < 0
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u =
((
2a2w − 1

)
ε0 + ǫaw

(
w1ε1 + w2ε2 + w3ε3

))
=
∑3

i=0 uiεi
i=1,2,3 : wi = ǫui/aw

wtw =
∑

3

i=1
u2

i

a2
w

〈u, u〉 = −1 =
∑3

i=1 u
2
i − u20

u20 = 1 +
∑3

i=1 u
2
i

〈u, ε0〉 = u0 < 0

u0 = −
√
1 +

∑3
i=1 u

2
i < −1

1+ 1
4w

tw = 1+ 1
4

∑
3

i=1
u2

i

a2
w

=
1+4

∑
3

i=1
u2

i

4a2
w

=
1+4(u2

0
−1)

4a2
w

=
−3+4u2

0

4a2
w

> −3+4
4a2

w
= 1

a2
w

So we can define :
u0 = 2a2w − 1

aw = ǫ
√

1
2 (u0 + 1)

wi = ui/aw = ǫui/
√

1
2 (u0 + 1)

σw = ǫ

(√
1
2 (u0 + 1) + 1√

1

2
(u0+1)

υ (0, ui)

)
= aw + υ (0, w)

with wi =
ui√

1

2
(u0+1)

= Vi√
1

2

(
V0√

−〈V,V 〉
+1

) 1√
−〈V,V 〉

= Vi√
− 1

2

(
〈V,V 〉−V0

√
−〈V,V 〉

)

If we take f(m) = c any section σ ∈ X (PG) defines two fields of world lines,
with opposite spatial speed :

u =
dp

dτ
=

1√
1− ‖−→v ‖2

c2

(−→v + cε0 (m)) = c

(
(
2a2w − 1

)
ε0 + ǫaw

3∑

i=1

wiεi

)
(83)

If we take f(m) = c
2a2

w−1 any section σ ∈ X (PG) defines two fields of trajec-

tories, with opposite spatial speed :

V =
dp

dt
= −→v + cε0 (m) = c

(
ε0 + ǫ

aw
2a2w − 1

3∑

i=1

wiεi

)
(84)

−→v = ǫc aw

2a2
w−1

∑3
i=1 wiεi

aw =

√√√√1
2

(
1 +

√
1 + 1

4
(
1− v2

c2

)

)
≃ 0.7 + 1

16
v2

c2

w =

√
1+ 1

4(1− v2

c2
)√

1+
√

1+ 1

4(1− v2

c2
)

−→v
c ≃ 0.8

−→v
c

Remarks :
i) All this is defined with respect to an observer, who fixes ε0 (m)
ii) V ∈ X

(
PG

[
R4,Ad

])
so can be equivalently defined as a section of TM :

V =
∑3

α=0 V
α∂ξα =

∑3
α=0

∑3
i=0 V

iPα
i ∂ξα
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iii) If V is past oriented (u0 < 0) or null (〈V, V 〉 = 0) there is no solution :
2a2w − 1 = 1

2 (u0 − 1) < − 1
2 ⇒ a2w < 1 and a2w 6= 1 + 1

4w
tw

This gives a strong physical meaning to the representation of world lines by
section of PW .

iv) Any map σ : R → PG is projected on M as a curve, which is not neces-
sarily time like or defines a world line.

4.3 Spatial spinor

A section σ ∈ X (PG) defines at each point an element of Spin(3, 1), which can
uniquely (up to sign) be decomposed in σ = ǫσw · ǫσr with respect to a given
observer.

The first component σw = ± (aw + υ (0, w)) ∈ Spin (3, 1) defines, in the
standard basis of the observer, a vector field of world lines, and a trajectory. w
is aligned in the direction of the spatial speed or the opposite.

The second part σr = ar + υ (0, r) belonging to one of the two connected
components of Spin(3) (according to the sign of ar, it is + for the component
of the identity) leaves invariant ε0 (m) and defines a spatial rotation, in the
hyperplane orthogonal to ε0 (m) .

So with a single σ we have both a translational motion (along a worldline)
and a spatial rotation, at the same point.

Notice that this is not a rotation around a point (like an orbit), but a rotation
at a point. The action Adσr on any vector of the tangent space TmM rotates
the vector, but leaves invariant ε0 (m) ,so this is an action on the physical space
Ω3 (t) . In the Spinor S = γC (σ (m))S0 this action is done on vectors of E, and
not on vector of TmM .

The decomposition σ = ǫσw · ǫσr and the identification of the vectors of
Spin(3) request a choice of ε0 (m) : it is observer-dependant.

Our basic hypothesis is that the spinor S is a kinematic characteristic of the
state of the particle : it represents the relativist momentum. With a section
σ ∈ X (PG) and fixed vector S0 ∈ E we have a representation of the momenta,
both translational and rotational.

Definition 41 We can then define the spatial spinor as :

Sr (t) = γC
(
σ−1
w

)
S (t) = γC (σr (t))S0 (85)

The spatial spinor is the representation of a rotational momentum. For a
given trajectory and observer there are two possible, opposite, values of the
spatial spinor : Sr (t) = ±γC (σr (t))S0. In all cases S (t) = γC (σ (t))S0 :
the total spinor stays the same, the distinction between σw , σr and the opposite
values is the consequence of the breakdown of symmetry induced by the observer.
The sign ± is related to a trajectory (the orientation of w with respect to the
spatial speed) so one can speak of spin up or down with respect to the
trajectory. This feature is entirely linked to the Relativist picture, and has
nothing to do with QM. The name spin is used freely in Quantum Physics, and
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this is sometimes confusing. The usual spin, as rotational momentum, is the
Spatial Spinor and we will give a precise definition later. And to be clear I will
call the present feature (spin up or down) Relativist Spin which takes the
values of ǫ = ±1.

If we assume that the spatial spinor is, by itself, an intrinsic feature of the
particle, then one must assume that the map : σr : R → PR is continuous,
thus σr must belong and stay in one of the two connected components of PR.
Normally the decomposition σ = ǫσw · ǫσr is continuous, and the passage to the
opposite sign is, for the spatial spinor, a discontinuity, and also for the relativist
spin.

The issue now is to precise what can be S0,that we will call inertial spinor.
The 4 dimensional relativist momentum P = µu , which is a geometric quantity,
has a constant scalar product : 〈P, P 〉 = −µ2c2 where µ is, by definition, the
mass at rest. The scalar product 〈S, S〉 = 〈S0, S0〉 is preserved on the world line,
so we will look at vectors S such that : S 6= 0 ⇒ 〈S0, S0〉 6= 0.

4.4 Inertial spinor

We have seen that the unique scalar product on E is non degenerate, but not
definite positive. So it is logical to require that S0 belongs to some vector
subspace E0 of E, over which the scalar product is definite, either positive of
negative. Moreover a change of spatial frame should change only Sr, thus E0

should be invariant under the action of Spin(3).
So there should be some vector subspace E0 of E such that :
- it is invariant by γC (σr) for σr ∈ Spin (3) : ∀S0 ∈ E0, sr ∈ Spin (3) :

γC (sr)S0 ∈ E0

- on which the scalar product is either definite positive or definite negative :
∀S0 ∈ E0 : 〈S0, S0〉E = 0 ⇒ S0 = 0

Theorem 42 The only vector subspace of E invariant by γC on Spin (3) and
over which the scalar product is definite

- positive is E0 =

{
S =

[
SR

SL

]
=

[
v
iv

]
, v ∈ C2

}

- negative is E′
0 =

{
S =

[
SR

SL

]
=

[
v

−iv

]
, v ∈ C2

}

Proof. i) The scalar product on E (which does not depend on the signature)
reads :

u =

[
uR
uL

]
∈ E :

[
u∗R u∗L

] [ 0 −iσ0
iσ0 0

] [
uR
uL

]
= i (u∗LuR − u∗RuL) =

i
(
utLuR −

(
utRuL

))

uL = vL + iwL with vL, wL ∈ R2

uR = vR + iwR with vR, wR ∈ R2

〈S, S〉 = i ((vtL − iwt
L) (vR + iwR)− (vtR − iwt

R) (vL + iwL))
= i (vtLvR + ivtLwR − iwt

LvR + wt
LwR − vtRvL − ivtRwL + iwt

RvL − wt
RwL)
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= −2 (vtLwR − wt
LvR)

〈S, S〉 = 0 ⇔ vtLwR = wt
LvR

So it is definite for any u such that :
vL = −ǫwR, wL = ǫvR ⇒
uL = −ǫwR + ǫivR = ǫi (vR + iwR) = ǫiuR

u =

[
uR
ǫiuR

]

〈S, S〉 = 2ǫ (wt
RwR + vtRvR) = 2ǫu∗RuR

It is definite positive for ǫ = +1 and definite negative for ǫ = −1
ii) The vector subspace must be invariant by γC (sr) . Which is equivalent

to SL = ǫiSR

For any S0 ∈ E0, E
′
0, s ∈ Spin (3, 1)

γC (a+ υ (r, w) + bε5)S0 =[
(a+ ib)σ0 +

1
2

∑
a (wa − ira)σa 0

0 (a− ib)σ0 − 1
2

∑
a (wa + ira)σa

] [
v
ǫiv

]

=

[
SR

SL

]

SR =
(
(a+ ib)σ0 +

1
2

∑3
a=1 (wa − ira)σa

)
v

SL = ǫ
(
(a− ib)σ0 − 1

2

∑3
a=1 (wa + ira)σa

)
iv

and S ∈ E0 ⇔ SL = ǫiSR

⇔ ǫi
(
(a− ib)σ0 − 1

2

∑3
a=1 (wa + ira)σa

)
v

= ǫi
(
(a+ ib)σ0 +

1
2

∑3
a=1 (wa − ira)σa

)
v

⇔
(
−ibσ0 − 1

2

∑3
a=1 waσa

)
v =

(
ibσ0 +

1
2

∑3
a=1 waσa

)
v

⇔
(
ibσ0 +

1
2

∑3
a=1 waσa

)
v = 0

This condition is met for w = 0 that is s ∈ Spin (3) .
iii) It is easy to see that the result does not depend on the signature:

γC′ (s)

[
v
ǫiv

]
=

[
SR

SL

]
⇒

SR =
(
(a+ b)σ0 +

1
2

∑3
a=1 (wa + ira)σa

)
v

SL = ǫi
(
(a− b)σ0 +

1
2

∑3
a=1 (−wa + ira)σa

)
v

(
2bσ0 +

∑3
a=1 waσa

)
v = 0

So particles have both a left SL and a right SR part, which are linked but
not equal. We have one of the known features of particles : chirality.

Because E0 ∩ E′
0 = {0} , (E0, γC) , (E

′
0, γC) are two, non equivalent, irre-

ducible representations of Spin(3). So they can be seen as corresponding to two
kinds of particles according to ǫ.

The inertial spinor is defined, from the components of the two complex
vectors of SR , by 4 real scalars.

The quantity :
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〈S0, S0〉E = ǫ2S∗
RSR (86)

(with the same meaning of ǫ as above) is a scalar, which is conserved along
the trajectory. Similarly to the 4 vector P = µu, we can define a mass at rest
Mp by : 〈S0, S0〉 = M2

p c
4, but because 〈S0, S0〉 can be negative we have to

consider :

〈S0, S0〉 = ǫM2
p c

4 (87)

where ǫ is a characteristic of the particle. We retrieve a celebrated Dirac’s
result from his equation. So we define :

Definition 43 particles are such that SL = iSR.
Their mass is Mp = 1

c2

√
〈S0, S0〉E = 1

c2

√
2S∗

RSR

antiparticles are such that SL = −iSR

Their mass is Mp = 1
c2

√
−〈S0, S0〉E = 1

c2

√
−2S∗

RSR

Do antiparticles have negative mass ? The idea of a negative mass is still
controversial. Dirac considered that antiparticles move backwards in time and
indeed a negative mass combined with the first Newton’s law seems to have this
effect. But here the world line of the particle is defined by σw, and there is no
doubt about the behavior of an antiparticle : it moves towards the future. The
mass at rest Mp is somewhat conventional, the defining relation is 〈S0, S0〉 =
ǫM2

p c
2 so we can choose any sign forMp, and it seems more appropriate to take

Mp > 0 both for particles and antiparticles.

Then SR reads :

SR =
Mp

c2
√
2

[
a
b

]
and 1 =

(
|a|2 + |b|2

)

It is customary to represent the polarization of the plane wave of an electric
field by two complex quantities (the Jones vector) :

Ex = E0xe
iαx

Ey = E0ye
iαy

where (E0x, E0y) are the components of a vector E0 along the axes x,y.
So we can write similarly :

SR =
Mpc

2

√
2

[
eiα1 cosα0

eiα2 sinα0

]
(88)

Particles :

S0 =
Mpc

2

√
2




eiα1 cosα0

eiα2 sinα0

ieiα1 cosα0

ieiα2 sinα0




Antiparticles :
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S0 =
Mpc

2

√
2




eiα1 cosα0

eiα2 sinα0

−ieiα1 cosα0

−ieiα2 sinα0




To each particle corresponds an antiparticle with the same mass. And parti-
cles show polarization characteristics similar to waves. This is how the inertial
spinor is seen in Quantum Physics : the 3 real variables α0, α1, α2 define a po-
larization of the particle when it behaves as a wave. Each kind of elementary
particles is characterized by a vector of S0, and it is associated to its charge
with respect to the EM field, and the 3 variables α0, α1, α2 define the magnetic
moment as we will see. But for neutral material bodies usually its value can be
taken equal to one of the vectors of the orthonormal basis :

E1 = 1√
2
(e1 + ǫie3) , E2 = 1√

2
(e2 + ǫie4)

The space E0, E
′
0 are orthogonal, so :

∀S0 ∈ E0, S
′
0 ∈ E′

0 : 〈γC (σ)S0, γC (σ)S′
0〉 = 0

The definition of E0, E
′
0 does not depend on the observer.

The spatial spinor Sr belongs to E0, E
′
0 by construct. The action of Spin(3)

on E0, E
′
0 is proper, continuous and free, thus (Maths.1793) the orbits have a

unique structure of manifold of dimension : dimE0 −dimSpin (3) = 1. For any
value S0 ∈ E0, E

′
0 when σr ∈ Spin (3) then Sr = γC (σr)S0 stays on a curve

on E0, E
′
0, and conversely each vector S of E0, E

′
0 belongs to a unique such

curve. Spin (3) is compact, so this curve is compact, Spin (3) has two connected
components, so the curve is formed of two, compact, connected components.

The demonstration above is actually the equivalent - expressed in the for-
malism of fiber bundles and spinors - of the classic Wigner’s classification of
particles (see for instance Weinberg), done through the analysis of equivariance
of the relativist momentum by the Poincaré’s group. We could, in the same
way, consider also the null spinors (assimilated to bosons), which is the vector
subspace of E :

〈S, S〉 = 0 ⇔ vtLwR = wt
LvR

4.5 Space and time reversal

Space reversal and time reversal are changes of basis in R4, so they depend on
the basis.

A change of orthonormal basis in R4 is represented by an orthogonal matrix,
and in the Clifford algebra by the actionAds for some element s of the Pin group
(it is not necessarily represented by an element of the connected component of
the Spin group) :

w → w̃ = Adsw = s · w · s−1

The impact on a representation is :

γ (w) → γ (w̃) = [γ (s)] [γ (w)]
[
γ (s)

−1
]
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In a change of basis in E represented by a matrix Q the components of a
vector u ∈ E change according to : [u] → [ũ] = Q−1 [u] and the matrices γ
representing endomorphisms change as : γ → γ̃ = Q−1γQ. So the change of
basis in R4 corresponds to a change of basis represented by the matrix Q =
[γ (s)]

−1
in E, and the components of a vector S of E change as : [u] → [ũ] =

[γ (s)] [u] .

4.5.1 Time reversal

Time reversal is the operation :
u = u0ε0 + u1ε1 + u2ε2 + u3ε3 → −u0ε0 + u1ε1 + u2ε2 + u3ε3
corresponding to s = ε1·ε2·ε3, with s−1 = ε3·ε2·ε1 in Cl(3, 1), s−1 = ε1·ε2·ε3

in Cl(1, 3)
Cl(3, 1) :

[γC (ε1 · ε2 · ε3)] = γ3γ2γ1 = i

[
0 σ0
σ0 0

]

i

[
0 σ0
σ0 0

] [
v
ǫiv

]
=

[
−ǫv
iv

]
=

[
v′

−ǫiv′
]

Cl(1, 3) :

[γC (ε1 · ε2 · ε3)] = −iγ1γ2γ3 =

[
0 σ0
σ0 0

]

[
0 σ0
σ0 0

] [
v
ǫiv

]
=

[
ǫiv
v

]
=

[
v′

−ǫiv′
]

So with both signatures particles and antiparticles are exchanged.

4.5.2 Space reversal :

Space reversal is the operation :
u = u0ε0 + u1ε1 + u2ε2 + u3ε3 → u0ε0 − u1ε1 − u2ε2 − u3ε3
corresponding to s = ε0, s

−1 = −ε0 in Cl(3, 1), s−1 = ε0 in Cl(1, 3)
Cl(3, 1) :

[γC (ε0)] = iγ0 =

[
0 σ0

−σ0 0

]

[
0 σ0

−σ0 0

] [
v
ǫiv

]
=

[
ǫiv
−v

]
=

[
v′

ǫiv′

]

Cl(1, 3) :

[γC (ε0)] = γ0 =

[
0 −iσ0
iσ0 0

]

[
0 −iσ0
iσ0 0

] [
v
ǫiv

]
=

[
ǫv
iv

]
=

[
v′

ǫiv′

]

So with both signatures particle and antiparticles stay in the same category.
These results are consistent with what is checked in Particles Physics, and

the Standard Model. However the latter does not consider both signatures. Here
we see that this feature does not allow to distinguish one signature as more
physical than the other.
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4.6 Total Spinor

The relation SL = ǫiSR does not hold any more at the level of the total
spinor, however we have still 〈S, S〉 = 〈S0, S0〉Ewhich is positive for parti-
cles, and negative for anti-particles, so the distinction holds. The total spinor
S = γC (σ)S0 = γC (σw)Sr belongs to a subset Ê0 of E larger than E0.

Definition 44 Ê0 = {γC (σw)S0, σw ∈ Spin (3, 1) /Spin (3) , S0 ∈ E0}
=
{
awS0 − i 12

∑3
a=1 waγaγ0S0, S0 ∈ E0

}

with a similar set Ê′
0 for antiparticles.

The expression is :

γC (a+ υ (r, w) + bε5)

[
SR

ǫiSR

]
=

[ (
(a+ b) + 1

2

∑
a (wa − ira)σa

)
SR

ǫi
(
(a− b)− 1

2

∑
a (wa + ira) σa

)
SR

]

thus with r = 0 we have :

γC (a+ υ (0, w))

[
SR

ǫiSR

]
=

[ (
a+ 1

2

∑
a waσa

)
SR

ǫi
(
a− 1

2

∑
a waσa

)
SR

]

Ê0, Ê
′
0 are not vector spaces (aw = ǫ

√
1 + 1

4w
tw) ) but real manifolds, em-

bedded in E, with real dimension 7 (4 parameters for S0, 3 for w). By definition
they are invariant by Spin (3, 1).

Moreover we have the following :

Theorem 45 For a given value of the inertial spinor S0 , and a measured
value S ∈ Ê0 of the spinor S, there is a unique element σ ∈ Spin (3, 1) such
that γC (σ)S0 = S

Proof. i) The action of Spin(3, 1) on E0, E
′
0 is free :

∀S0 ∈ E0, E
′
0 : γC (s)S0 = S0 ⇔ σ = 1

S0 =

[
v
ǫiv

]

γC (s)S0 = S0 ⇔
SR =

(
(a+ ib)σ0 +

1
2

∑3
a=1 (wa − ira)σa

)
v = v

SL =
(
(a− ib)σ0 − 1

2

∑3
a=1 (wa + ira) σa

)
ǫiv = ǫiv

⇒(
2aσ0 − i

∑3
a=1 raσa

)
v = 2v

(
2ibσ0 +

∑3
a=1 waσa

)
v = 0

(∑3
a=1 raσa

)
v = 2i (1− a) v

(∑3
a=1 waσa

)
v = −2ibv

⇒∑3
a=1 rav

∗σav = 2i (1− a) v∗v∑3
a=1 wav

∗σav = −2ibv∗v
The scalars v∗σav are real because the Dirac matrices are Hermitian, as is

v∗v ,so
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⇒ b = 0, a = 1
⇒ r = w = 0
and the only solution is σ = 1.
ii) γC (σ)S0 = γC (σ′)S0 ⇒ S0 = γC

(
σ−1

)
γC (σ′)S0 ⇒ σ−1 · σ′ = 1

We can assume that S0 depends only on the type of particle, then with
the knowledge of S0 the measure of the spinor S defines uniquely the motion
(translation and rotation) with respect to the observer. As S = γC (σ)S0

and σ can itself be uniquely, up to spin, decomposed in σ = σw · σr, we have
the correspondence with the formulas in the transition between observers where
[χ] = exp [K (w)] exp [J (r)] : σw corresponds to the boost, and we have seen how
it can be computed from the spatial speed, and σr corresponds to exp [J (r)] ,the
vector r is in both cases a Lie algebra representative of a spatial rotation. So
conversely, knowing S0 the spinor S can be computed from familiar data.
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5 SPINOR FIELDS

5.1 Definition

The great interest of Spinors is that they sum up the kinematics of a particle in
one single, geometric quantity which has a value at any point in a fiber bundle.
It is then possible to conceive fields of particles whose world lines are defined
by the same vector field, which is an usual case in Physics.

We have defined previously the associated vector bundle PG [E, γC] , defined
through the holonomic basis : ei (m) = (p (m) ,ei) with the equivalence relation
: (p (m) ,S) ∼

(
p (m) · g, γC

(
g−1

)
S
)
.

Definition 46 We will call Spinor field a section S ∈ X (PG [E, γC]) which
represents the relativist momentum of a particle or an antiparticle, such that∫
Ω
‖S (m)‖̟4 <∞

Equivalently a spinor field, denoted X (S0) is defined by a vector S0 ∈ E0

and a section σ ∈ X (PG) such that S (m) = γC (σ (m))S0.
Let S ∈ X (PG [E, γC]) . Then 〈S (m) , S (m)〉 = i (S∗

LSR − S∗
RSL) = y (m)

defines a function on M. If S represents the relativist momentum of a particle,
then 〈S (m) , S (m)〉 = 〈S0, S0〉 . A necessary condition for a section of PG [E, γC]
to represent the relativist momentum of a particle is that 〈S (m) , S (m)〉 = y
has a fixed, positive, value. Then the set E (y) of vectors S0 ∈ E0 such that
∃σ ∈ X (PG) : S = γC (σ)S0 is given by :

E (y) =

{
S0 =

[
v
iv

]
, v∗v = 1

2y, v ∈ C2

}

And for a given vector S0 ∈ E (y) , at each point m there is a unique σ (m) ∈
Spin (3, 1) such that : S (m) = γC (σ (m))S0. It defines a section σ ∈ X (PG) ,
and at each point m, for each value ±1 of the relativist spin and for a given
observer, a vector field which is the tangent to the world line, and a spatial spin.

And similarly for antiparticles.
A spinor field represents particles which have the same inertial behavior. If,

in a model, we have several particles, interacting with each others or with force
fields, each particle can be assigned to a spinor field, which represents a general
solution of the problem. One can also associate a density to spinor fields.

For elementary particles the vector S0 is one of its fundamental characteris-
tic.

For other material bodies S0 is a kinematic characteristic which, for de-
formable solids, can be computed, as we will see below.

A Spinor field is defined without any reference to an observer : it has an
intrinsic meaning, as it was expected for the momentum of a particle. And the
decomposition in translational momentum on one hand, and rotational momen-
tum on the other hand, is relative to each observer. So we have here a new,
significant, feature of the relativist momentum.

Two comments :
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i) A section of PG can be seen as belonging to the Clifford bundle Cl (M) ,
and its components are (a, b, r, w) so we could hope to define the section through
some fiber bundle with only (r, w). Unfortunately the formulas for the compo-
nents of an element of a Cl (M) in a change of gauge are complicated and non
linear. So, even if the use of r, w is useful, one cannot hope to define simply an
consistently σ only through two vector fields r (m) , w (m) .

ii) In a spinor field, a particle follows, with respect to an observer, a trajec-
tory which is given by a vector field V deduced from aw. So the value of the
spinor at a point incorporates also the instantaneous velocity : at a given time
t + δt the particle is located at a point Φo (t+ δt, x (t+ δt)) and x (t+ δt) is
given by −→v , which is part of V and defined by aw, and thus by the value of the
spinor at t.

We will see now how the usual spin enters the picture, but for this we need
some more mathematics on group representations.

5.2 More on the theory of the representations of groups

5.2.1 Functional Representations

Functional representations are representations on vector spaces of functions or
maps. Any locally compact topological group has at least one unitary faithful
representation (usually infinite dimensional) of this kind, and they are common
in Physics. The principles are the following (Maths.23.2.2).

Let H be a Banach vector space of maps ϕ : E → F from a topological space
E to a vector space F, G a topological group with a continuous left action λ on
E : λ : G× E → E :: λ (g, x) such that λ (g · g′, x) = λ (g, λ (g′, x)) , λ (1, x) = x

Define the left action Λ of G on H : Λ : G × H → H :: Λ (g, ϕ) (x) =
ϕ
(
λ
(
g−1, x

))

Then (H,Λ) is a representation of G. Thus G acts on the argument of ϕ.
If H is a Hilbert space and G has a Haar measure µ (a measure on G, all the

groups that we will encounter have one Maths.22.5) then the representation is
unitary with the scalar product :

〈ϕ1, ϕ2〉 =
∫
G 〈Λ (g, ϕ1) ,Λ (g, ϕ2)〉H µ (g)

If G is a Lie group and the maps of H and λ are differentiable (which implies
that E is a manifold) then

(
H,Λ′

g (1, .)
)
is a representation of the Lie algebra

T1G where X ∈ T1G acts by a differential operator :
Λ′
g (1, ϕ) (X) (x) = −ϕ′ (x) λ′g (1, x)X = d

dtϕ (λ (exp (−tX) , x)) |t=0

For a right action ρ : E ×G→ E :: ρ (g, x)we have similar results, with
P : H ×G→ H :: P (ϕ, g) (x) = ϕ (ρ (x, g))
P ′
g (ϕ, 1) (X) (x) = −ϕ′ (x) ρ′g (x, 1)X = d

dtϕ (ρ (x, exp (−tX))) |t=0

H can be a vector space of sections on a vector bundle. In a functional
representation each function is a vector of the representation, so it is usually
infinite dimensional. However the representation can be finite dimensional, by
taking polynomials as functions, but this is not always possible : the set of
polynomials must be algebraically closed under the action of the group.
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5.2.2 Isomorphisms of groups

Most of the groups that are encountered in Physics are related to the group
SL (C, 2) of 2× 2 complex matrices with determinant 1 (Maths.24).

Any matrix of the Lie algebra sl(C, 2) reads with Z = (z1, z2, z3) ∈ C3

f (Z) =

[
iz3 z2 + iz1

−z2 + iz1 −iz3

]
⇒ Trf(Z) = 0

which is equivalent to take as basis the Dirac matrices.
The exponential is not surjective on sl(C, 2) and any matrix of SL(C, 2)

reads :
I coshD + sinhD

D f (Z) with D2 = − det f (Z) = −
(
z21 + z22 + z23

)

The group SU(2) of 2 × 2 unitary matrices (NN∗ = I) is a compact real
subgroup of SL (C, 2) . Its Lie algebra is comprised of matrices f (r) with r ∈ R3.

The exponential is surjective on SU(2) : exp f (r) = I cos
√
rtr + sin

√
rtr√

rtr
f (r)

T1Spin (3, 1) is isomorphic to sl(C, 2) (Math.1959) : υ (r, w) → f (r + iw)
Spin(3, 1) is isomorphic to SL(C, 2) : a+ υ (r, w) + bε5 → exp f (r + iw)

T1Spin(3) is isomorphic to su(2) : υ (r, 0) → f (r) and so (3) : υ (r, 0) → j (r)
Spin(3) is isomorphic to SU(2) :

ar + υ (r, 0) → exp f (r) = I cos
√
rtr + sin

√
rtr√

rtr
f (r)

5.2.3 Representations of Spin(3,1), Spin(3) and SO(3)

SL(C, 2) and Spin(3, 1) have the same representations which are (up to equiv-
alence) :

- a unique, non unitary, irreducible representation of dimension n (Maths.1953),
which can be seen as the tensorial product of two finite dimensional represen-
tations

(
P j ⊗ P k, Dj ×Dk

)
of SU (2)× SU (2) (see below).

- the only unitary representations are over spaces of complex functions : they
are infinite dimensional and each irreducible representation is parametrized by
2 scalars z ∈ Z, k ∈ R (Maths.1955).

SU(2) as Spin(3) are compact groups, so their unitary representations are
reducible (Math.1960) in a sum of orthogonal, finite dimensional, unitary rep-
resentations. The only irreducible, finite dimensional, unitary, representations,
denoted

(
P j , Dj

)
are on the space P j of degree 2j homogeneous polynomials

with 2 complex variables z1, z2, where conventionally j is an integer or half an
integer. P j is 2j + 1 dimensional and the elements of an orthonormal basis are
denoted :

|j,m〉 = 1√
(j−m)!(j+m)!

zj+m
1 zj−m

2 with −j ≤ m ≤ +j. And Dj is defined by

:

g ∈ U (2) : Dj (g)P

([
z1
z2

])
= P

(
[g]

−1

[
z1
z2

])
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Thus the functions read : ϕ (z1, z2) =
∑

j∈ 1

2
Z

∑m=+j
m=−j ϕ

jm |j,m〉 with com-

plex constants ϕjm

It induces a representation
(
P j , dj

)
of the Lie algebras where dj is a differ-

ential operator acting on the polynomials P :

X ∈ su(2) : dj (X) (P ) (z1, z2) =
d
dtP

(
[exp (−tX)]

[
z1
z2

])
|t=0

which gives, for polynomials, another polynomial.
dj (X) is a linear map on P j , which is also linear with respect to X , thus

it is convenient to define dj by the action dj (κa) of a basis (κa)
3
a=1 of the Lie

algebra and the three operators are denoted Lx, Ly, Lz.They are expressed in the
orthonormal basis |j,m〉 by square 2j+1 matrices (depending on the conventions
to represent the Lie algebra). The usage is to denote Lz |j,m〉 = m |j,m〉 .

The only irreducible, unitary, representations of SO(3) are given by
(
P j , Dj

)

with j integer.

5.2.4 Casimir element

The universal enveloping algebra U of a Lie algebra is actually a vector
space, built from tensorial powers of the Lie algebra, and whose basis is given by
ordered products of elements of the basis (κi)i∈I of the Lie algebra (Maths.1692).
Universal enveloping algebras are necessary when interacting systems are con-
sidered (such as in Chemistry), because their representation involve the tensorial
product of the variables.

Any representation (E, f) of the Lie algebra can be extended to a represen-
tation (E,F ) of its universal enveloping algebra (Maths.1891) where the action
is :

F
(
κn1

i1
...κ

np

ip

)
= f (κi1)

n1 ◦ ... ◦ f
(
κip
)np

When the representation (E, f) comes from a functional representation, in
the induced representation on U the action of F is represented by differential
operators, of the same order than n1 + n2 + ...+ np.

In the representation of T1Spin (3, 1) by matrices of so(3, 1) the universal
enveloping algebra is actually an algebra of matrices (see Annex) where the
operator j plays a key role.

The Casimir element is a special element Ω of U, defined through the
Killing form (Maths.1698). In an irreducible representation (E, f) of a semi
simple Lie algebra, as Spin(3, 1), the image of the Casimir element acts by a
non zero fixed scalar F (Ω)u = ku.In functional representations it acts by a
differential operator of second order : F (Ω)ϕ (x) = D2ϕ (x) = kϕ (x) : ϕ is
an eigen vector of D2. As a consequence, if there is a scalar product on E :
〈F (Ω)u, F (Ω)u〉 = 〈ku, ku〉 = k2 〈u, u〉 . If (E1, f1) , (E2, f2) are two equivalent
representations of the same algebra A :

∃φ : E1 → E2 such that :
∀κ ∈ A : f1 (κ) = φ−1 ◦ f2 (κ) ◦ φ
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F1

(
κn1

i1
...κ

np

ip

)
= f1 (κi1)

n1 ◦ ... ◦ f1
(
κip
)np

=
(
φ−1 ◦ f2 (κi1) ◦ φ

)n1 ◦ ... ◦
(
φ−1 ◦ f2

(
κip
)
◦ φ
)np

= φ−n1−..np ◦ F2

(
κn1

i1
...κ

np

ip

)
◦ φn1+..np

F1 (Ω) = φ−n1−..np◦F2

(
κn1

i1
...κ

np

ip

)
◦φn1+..np (u) = φ−n1−..np◦(k2φn1+..np (u)) =

k2u = k1u
Thus the Casimir element acts with the same scalar in all equivalent repre-

sentations.

The Killing form on T1Spin(3, 1) is :
B (υ (r, w) , υ (r′, w′)) = 4 (wtw′ − rtr′)
thus the elements
κ1 = − 1

8ε3 · ε2, κ2 = − 1
8ε1 · ε3, κ3 = − 1

8ε2 · ε1,
κ4 = 1

8ε0 · ε1, κ5 = 1
8ε0 · ε2, κ6 = 1

8ε0 · ε3
constitute an orthonormal basis for B and the Casimir element of U(T1Spin(3, 1))

is :
Ω =

(∑6
i=4 (κi)

2 −
∑3

i=1 (κi)
2
)

The action of the Casimir element in the representation (E, γC) of Spin (3, 1)
is :

FE (Ω)u =
(∑6

i=4 (γC (κi))
2 −∑3

i=1 (γC (κi))
2
)
u = 3

2u

In the representation
(
P j, dj

)
of T1Spin(3), if we denote Lx = f (κ1) , Ly =

f (κ2) , Lz = f (κ3) with 3 arbitrary orthogonal axes :
F (Ω) |j,m〉 = L2 |j,m〉 =

(
L2
x + L2

y + L2
z

)
|j,m〉 = j (j + 1) |j,m〉

dj (κi)
(∑m=+j

m=−j X
m|j,m >

)
=
∑m=+j

m=−j X
mdj (κi) |j,m >

5.3 The Spin of a particle

5.3.1 Definition

The space X (PG [E, γC]) of sections is a functional representation of Spin(3, 1)
with the global action γC and the argument σ. The subspace X (S0) is in-
variant by the right or left global actions of Spin(3,1) : γC (σ (m))S0 →
γC (s) γC (σ (m))S0 or γC (σ (m))S0 → γC (σ ((m))) γC (s)S0. In particular
it is invariant by the action of Spin(3) :

ρ : X (S0)× Spin(3) → ρ (S (m) , sr) = γC (σ (m) · sr)S0

Moreover the value of Y (m) = 〈S (m) , S (m)〉 is invariant by Spin(3, 1).

The spinor fields S ∈ X (S0) can equivalently be defined by a couple (S0, σ)
where σ ∈ X (PG) . For a given observer each σ (m) has two decompositions :
σ (m) = ǫσw (m) · ǫσr (m) so the couple (S0, σ) defines precisely two Spatial
Spinor fields : Sr (m) = γC (σr (m))S0.

Conversely one can define Spatial Spinor Fields by a couple : (S0, σr) where
σr ∈ X (PR) and they constitute a set Xr (S0) which is invariant by Spin(3)
(but not by Spin(3, 1)).

Let us denote : πǫ : X (S0) → Xr (S0) the maps which associates, for a given
observer, to each Spinor field the Spatial Spinor field with ǫ = ±1
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On the set : X (S0) we can define the equivalence relation :
S ∼ S′ ⇔ πǫ (S) = πǫ (S

′)
Each class of equivalence is the set of spinor fields which have, for the ob-

server, the same kinematic behavior with regard to a rotation by Spin (3) . The
value of πǫ (S) for a given spinor field is the Spin of the particle, in its usual
meaning. So to any given spinor field corresponds, for an observer, two Spins,
with the Spin up or down. And conversely for a given Spin there can be infinitely
many spinor fields, defined by a section of the associated bundle σw ∈ X (PW ) .

The projection πǫ depends on the choice of a vector ε0, so the Spin depends
on the observer and its measure depends on the spatial basis he has chosen.
The spin can be seen as a rotational momentum.

Similarly we have the projection : πw : Spin (3, 1) → Spin (3, 1) /Spin (3)
and we can define the equivalence relation in X (S0) :

S = γC (σ)S0 ∼ S′ = γC (σ′)S0 ⇔ πw (σ) = πw (σ′)
The class of equivalence represents the particles which have the same tra-

jectories. And we define the translational momentum by :
Sw = πw (σ)S0

This is also a geometric quantity, invariant by Spin (3, 1) , but observer de-
pendant.

5.3.2 Quantization of the Spinor

Theorem 47 The set L1 (S0) = L1 (M,PG [E, γC] , ̟4) ∩ X (S0) of integrable
spinor fields associated to a particle is characterized by 2 scalars : k ∈ R, z ∈ Z.

The Spin, up or down, associated to each section by an observer is char-
acterized by a scalar j ∈ 1

2N and belongs to a 2j+1 dimensional vector space :

Sr (m) =
∑+j

p=−j S
p
r |j, p > with the constant components Sp

r and an orthonormal
basis j, p >

Proof. i) The space L1 (M,PG [E, γC] , ̟4) is a Fréchet space. The Theorem
2 of [QMR] applies and there are a Hilbert space H and an isometry Υ : L1 →
H :: ψ = Υ(S) . Moreover

(
L1, γC

)
is an infinitely dimensional representation

of Spin (3, 1) (the scalar product, thus the norm, is invariant by Spin (3, 1) , and
L1 is invariant by Spin (3, 1)). We can apply the theorem 22 of [QMR] :. (H, γ̂)
is a unitary representation of Spin (3, 1) with γ̂ (σ) = Υ ◦ γC (σ) ◦Υ−1.

ii) Consider the function : Y : L1 → C :: Y = 〈S, S〉 . For a given section,
Y has a value at each point of M and Y is invariant by Spin (3, 1) . We can
implement the theorem 24 of [QMR] to each value y of Y is associated a class
of equivalence in L1 and in H .

If we fix Y = 〈S0, S0〉 = Ct we have two subsets
L1 (S0) = L1 ∩ X (S0) in L

1 and H (S0) in H .
H (S0) is invariant by γ̂
iii) The unitary representations of Spin (3, 1) read : H = ⊕z,kHz,k ⊕ Hc

where Hz,k are unitary irreducible representations, defined by the parameters
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z ∈ Z, k ∈ R, and Hc does not contain any irreducible representation, so Hc is
not invariant under the action of Spin(3, 1) (Maths.1914).

As a consequence H (S0) is isomorphic to a subset of one of the irreducible
representations Hz,k and the spinor field is characterized by two scalars k ∈
R, z ∈ Z linked to S0.

iv) In L1 , for each section S and a given observer, the Spatial Spinor Sr

is a representation of Spin(3). Moreover for S0, ǫ fixed it belongs to one of the
irreducible representations of Spin(3). It is isomorphic to one of the representa-
tions

(
P j, Dj

)
with j ∈ 1

2N. These representations are finite dimensional, so Sr

belongs to a 2j + 1 dimensional vector space : Sr (m) =
∑+j

p=−j S
p
r |j, p > with

the constant components Sp
r .

Assume that we study a system comprising of unknown particles p = 1...N .
The modeling of their kinematic characteristics leads naturally to assume that
these particles belong to some spinor field : Sp ∈ X (PG [E, γC]) with unknown
inertial spinor. Because no value of S0 is imposed we have a vector space and
we can implement the theorem 2 of [QMR].

What the theorem above tells us is that the solutions must be found in maps
: Sp : Ω → E which can be sorted out :

- by the value of 〈S0, S0〉 , that is their mass
- by the value of some integer z ∈ Z

- and their spin by a half integer j ∈ 1
2N

They correspond to particles which have the same behavior when submit-
ted to a force field (they have the same world lines and spatial spinor for any
observer). In other words the spinor is not the only characteristic which deter-
mines the behavior of a particle, and these others characteristics can be labeled
by a signed integer. This is the starting point to the representation of charged
particles.

For elementary particles it is experimentally seen that j = 1
2 ,and this is the

origin of the name “particles of spin 1
2”. For composite particles or nuclei the

spin can be higher.

Even if the set X (S0) is not a vector space, it is a manifold which is embedded
in a vector space, so that each of its points (a map Sp) can be written as a fixed
linear combination of vectors of a basis. The vector space is always infinite
dimensional for the translational momentum, but each spin belongs to a finite
dimensional vector space, which is isomorphic to some

(
P j , Dj

)
: Sr (m) =∑+j

p=−j S
p
r |j, p > where Sp

r are fixed scalars and |j, p > are, for a given system,

fixed maps |j, p >: Ω → E0, images of vectors of the basis of P j by some
isometry. Each vector |j, p > is assimilated to a state of the particle, and j, p are
the quantum numbers labeling the state. The maps |j, p > are not polynomials
(as in P j), they are used only to define the algebraic structure of the space
H (S0) ,however they have an interpretation for models of atoms (see below).
Under the action of Spin (3) the vectors Sr (m) transform according to the same
matrices as in Dj :
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γC (σ (m) · sr)S0 =
∑+j

p=−j S
p
r

[
Dj (f (sr))

]
|j, p > where f (sr) is the image

of σ in SU (2) .
By itself the theorem does not provide a solution : a vector of a basis of the

vector spaces is itself some map Ei : Ω → E . But it shows that the solution
cannot take any value, even before we implement any physical law relating the
fields and the kinematic characteristics. In a given system the solutions that
appear follow the same pattern, whatever the initial conditions, or the value of
the other variables (notably the fields).

There is one important difference in the behavior of the spin, according to
the value of j. The Spin is invariant by a rotation by Spin (3) , and the scalars
±1 ∈ Spin (3) . The actions of +s and −s give opposite results. Spin(3) is the
double cover of SO (3) : to the same element g of SO(3) are associated two
elements ±s of Spin(3). The representations

(
P j , Dj

)
with j ∈ N are also

representations of SO(3). It implies that the vector spaces are invariant by ±s.
The fact that j is an integer means that the particle has a physical specific
symmetry : the rotations ±s give the same result. And equivalently, if j is half
an integer the rotations by ±s give opposite results.

5.3.3 Measure of the spatial spin of a particle

A particle has, whatever the scale, by definition, no internal structure, so it is
impossible to observe its geometric rotation. However it has a spin, its spatial
spinor Sr is a variable which can be represented in a finite dimensional space :
Sr is an observable. The measure of the spatial spinor, similar to a rotational
momentum, is done by observing the behavior of the particle when it is submit-
ted to a force field which acts differently according to the value of the spinor.
This is similar to the measure of the rotation of a perfectly symmetric ball by
observing its trajectory when it is submitted to a dissymmetric initial impulsion
(golfers will understand).

Most particles have a magnetic moment, linked to their spin. So the usual
way to measure the latter is to submit the particles to a non homogeneous
magnetic field. This is the Stern-Gerlach analyzer described in all handbooks,
where particles have different trajectories according to their magnetic moment.
MRI uses a method based on the same principle with oscillating fields whose
variation is measured. The process can be modelled as follows.

The spinors of the particles are represented by some section S ∈ X (S0) . The
device operates only on the spin : Sr (m) = γC (σr (m))S0 and is parametrized
by a spatial rotation sr ∈ Spin (3) , and usually by a vector ρ ∈ R3, correspond-
ing to a rotation sr.

The first effect is a breakdown of symmetry : sr has not the same impact
for the particles with spin up or down. This manifests by two separate beams
in the Stern-Gerlach experiment.
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An observable Φ (Sr) of Sr is a projection on some finite dimensional vector
space of maps (see [QMR]). Because of the quantization, this vector spaces has
for vectors |j, p > which are fixed maps, image of the vectors of basis of P j

which are eigen vectors of the observable. The action of the device can be
modelled as an operator L (ρ) acting on this space, and the matrices to go from
one orientation ρ1 to another ρ2 are the same as in

(
P j , dj

)
. It reads :

L (ρ)Φ (Sr) =
∑+j

p=−j S
p
r

[
dj (ρ)

]
|j, p >

For a given beam we have a breakdown of the measures, corresponding to
each of the states labelled by p.

Arbitrary axes x, y, z are chosen for the device, which provide 3 measures
Lx (Sr) , Ly (Sr) , Lz (Sr) , such that Lz (Sr) |j,m〉 = m |j,m〉.

The Casimir operator Ω is such that L2Φ (Sr) =
(
L2
x + L2

y + L2
z

)
(Sr) =

j (j + 1)Φ (Sr)

5.3.4 Atoms and electrons

QM has been developed from the study of atoms, with a basic model (Bohr’s
atom) in which electrons move around the nucleus. Even if this idea still holds,
and this is how atoms are commonly viewed, it had been quickly obvious that a
classic model does not work. However using what has been developed previously,
we can have another representation.

Let us consider a system comprised of one electron moving around a nucleus.
If we consider the atom as a particle, that is without considering its internal
structure, its relativist momentum can be represented by a spinor S, and its
rotational momentum by a spin Sr. The previous results hold and the spin can
be represented in a finite dimensional vector space isomorphic to Pj . However
j, which belongs to 1

2N, is not necessarily equal to 1
2 .

As noticed before, the polynomials P j have no physical meaning. However
in this case it is usual to provide one. By a purely mathematical computation it
is possible to show that the representation

(
P j , Dj

)
is equivalent to a represen-

tation on square integrable functions f(x) on R3, and from there on spherical
harmonic polynomials (Maths.1958). It is then assumed that the arguments of
the function f(x) are related to the coordinates (in an euclidean frame) of the
electron. This is a legacy of the first models of atoms. Actually there is no need
for such an assumption to build a consistent model, which would be useless
in the GR context, and the image of electrons rotating around a nucleus and
spinning has no physical support.

For atoms with several electrons, the model must involve the tensorial prod-
ucts of each spinor. The previous representations of SU(2) are then extended
to the tensorial products of P j, and their derivative to representations of the
universal enveloping algebra. It is often possible to rearrange these represen-
tations, by combinations using Clebsch-Jordan coefficients (Maths.1960), and
in this endeavour the spherical harmonic polynomials are useful because they
provide many identities. This is one major application of QM in Chemistry.

90



The same kind of model is used for composite particles in Quantum Theory of
Fields.

5.4 Material bodies and spinors

5.4.1 Representation of a material body by sections of PG

We have seen in the previous chapter that a material body B can be defined,
from a geometric point of view, by a vector field u whose integral curves are the
world lines of its particles. Then the flow Φu (τ, a) defines the body B itself at
each proper time τ as a compact subset ω (τ) of a 3 dimensional hypersurface.
And there are privileged observers B for whom ω (0) ⊂ Ω (0) .

So a material body can be defined with respect to these observers, up to a
constant ±1 by a section σw of PW or, up to a spatial spinor, by a section of
PG and a compact, space like hypersurface ω (0) . Then σw provides u, Φu and
ω (0) defines ω (τ) . The section σw can be seen as the general definition of B,
which can be fitted to any initial conditions ω (0). This is the most efficient way
to define geometrically a material body in physical models.

5.4.2 Spinors representing a solid

We have seen that the usual concepts of motion of a body over itself (usually a
rotation of the body) cannot be easily represented in relativist geometry. This
is the main motivation for the introduction of spinors, and any material body
whose internal structure can be neglected (at the scale of the study) can be
represented, from the kinematic point of view, by a spinor which accounts for
its rotation (through the spin). If the location of the material body can be
represented by a geometric point, then the kinematic representation of B is
given by a map : SB : R → PG [E, γC] , such that SB (t) = γC (σ (t))S0. We do
not need more : SB provides everything, including the rotational momentum.
Thus, even if no internal structure or rotation of the body is assumed, eventually
it can be accounted for.

However this representation assumes that S0 is known. As in Classic Me-
chanics for the inertial tensor, the computation of the inertial spinor S0 is, for
a solid, a separate issue. It can be done through the aggregation of material
points (particles) with a specific law giving the shape and the density of the
body. And the inertial spinor is not necessarily constant : we can consider de-
formable solids. Actually we can define a rigid solid as a material body such that
S0 is constant.

Proposition 48 A deformable solid body can be represented by a map :
S : R → PG [E, γC] such that 〈S (τ) , S (τ)〉 > 0 or 〈S (τ) , S (τ)〉 < 0
A rigid solid body can be represented by a map :
S : R → PG [E, γC] :: S (τ) = γC (σ (τ))S0 for a fixed S0 ∈ E0 or S0 ∈ E′

0

where τ is the proper time of the body
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To assume that the material points behave in a coherent way in a solid
assumes that there are forces which assure this cohesion. And indeed a material
body can be deformed or broken. So we can say that the fact, assumed and
which can be checked, that a material body can be represented by a unique
spinor incorporates the existence of these internal forces. And ultimately the
break of a material body can result in several spinors. So in modelling the
evolution of a material body we should include additional assumptions about
the laws (which are similar to the phenomenological laws for deformable solids)
for the change of S0.And in a discontinuous process add the laws which rules
the splitting in different spinors.

5.4.3 Aggregating matter fields

With these definitions we can consider the task to compute the spinor that we
will denote SB, for a deformable solid, by aggregating material points. This is
similar to the computation of the inertial tensor in Classic Mechanics : this is a
specific endeavour, done in a separate model, using specific assumptions (about
the shape, density, motion of the particles) and the result is then used in a more
general model (for instance to compute the motion of different bodies). The
single spinor corresponding to the whole body is assigned, in the more general
model, to any point : all the material points have then the same location.

The first issue is the definition of the motion of the material points with
respect to the body. We need a chart to do it, which is given by an observer B,
such that at his proper time t = 0 the set ω (0) is in his present Ω (0) . Then at
any given time t the set of particles constituting the solid stays in his present.
B uses his standard chart :

ϕB

(
t, η1, η2, η3

)
= Φε0

(
t, x
(
η1, η2, η3

))
where x

(
η1, η2, η3

)
is a chart on

ω (0) and ε0 his time like vector field
The particles follow the trajectories given by a vector field V and their

location at t is ΦV (t, a) = Φε0 (t, x (t)) = ϕB (t, x (t)) with x (0) = a.
ω (t) = {ΦV (t, a) , a ∈ ω (0)} = {Φε0 (t, x (t)) , x (0) ∈ ω (0)} represents the

location of the body at t and Ω = {Ω (t) , t ∈ [0, T ]}
The material points are represented by a section S (t, x) = γC (σ (t, x))S0 ∈

X (S0) . The choice of S0 can be arbitrary. S is a geometric quantity which does
not depend on a chart, however σw provides a vector field of world lines u for
the material points with respect to ε0.

We assume that the observer defines a tetrad (εi (m)) from which the metric
and the volume form are deduced in the usual way.

The density µ (t, x) is defined over Ω with respect to the volume form ̟4.
Because ω (t) ⊂ Ω (t) the unitary, future oriented, normal to ω (t) is ε0 = ∂ξ0
and µ induces a density µ3 (t, x) over ω (t) with respect to the volume form ̟3

:
µ3 (t, x)̟3 (t, x) = iV (µ (t, x)̟4 (t, x)) which is the flux of matter going

through ω (t) .

As noticed before the holonomic basis ei (m) = (p (m) , εi) of PG [E, γC] is
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arbitrary, in that there is no physical reference for the choice of the vectors ei.We
can assume that, for a deformable solid, there is a common basis associated to
the chart Φε0 .

S (t, x) = γC (σ (t, x))S0

Then the integral :∫
ω(t)

γC (σ (t, x))µ3 (t, x)S0̟3 (t, x)

=
[
γC
(∫

ω(t)
(σ (t, x))µ3 (τ, x)̟3 (t, x)

)]
S0

is well defined on the fixed vector space E.
σ (t, x) = a (t, x) + υ (r (t, x) , w (t, x)) + b (t, x) ε5
with the identities :
a (t, x)

2 − b (t, x)
2
= 1 + 1

4 (w
tw − rtr)

a (t, x) b (t, x) = − 1
4w

tr
Denote
r̂ (t) =

∫
ω(t) µ3 (x, t) r (t, x)̟3 (t, x) , ŵ (t) =

∫
ω(t) µ3 (x, t)w (t, x)̟3 (t, x)

â (t) =
∫
ω(t) a (t, x)µ3 (t, x)̟3 (t, x) , b̂ (t) =

∫
ω(t) b (t, x)µ3 (t, x)̟3 (t, x)∫

ω(t)
µ3 (x, t)σ (t, x)̟3 (t, x) = â (t) + υ (r̂ (t) , ŵ (t)) + ε5b̂ (t)

We impose, for a deformable solid, that :
∃N (t) ∈ R, R (t) ,W (t) ∈ R3 :

â (t) + υ (r̂ (t) , ŵ (t)) + ε5b̂ (t) = N (t) (A (t) + υ (R (t) ,W (t)) +B (t) ε5) (89)

such that σB (t) = A (t) + υ (R (t) ,W (t)) + B (t) ε5 ∈ Spin (3, 1) which
requires :

A2 −B2 = 1 + 1
4 (W

tW −RtR)
AB = − 1

4W
tR

and implies :
R (t) = 1

N r̂ (t) ,W (t) = 1
N ŵ (t)

A (t) = 1
N â (t) , B (t) = 1

N b̂ (t)
Which sums up to the two conditions :

â (t) b̂ (t) = −1

4
ŵtr̂ (90)

â2 − b̂2 = N2 +
1

4

(
ŵtŵ − r̂tr̂

)
(91)

⇒ N2 = â2 − b̂2 − 1
4 (ŵ

tŵ − r̂tr̂) > 0
Then the Spinor of the body is : SB (t) = N (t) γC (σB (t))S0

The conditions can be seen as resulting from the forces which keep the co-
hesion of the body.

The mass of the solid is proportional to

〈SB (t) , SB (t)〉 = N2 (t) 〈S0, S0〉 =
(
â2 − b̂2 − 1

4 (ŵ
tŵ − r̂tr̂)

)
〈S0, S0〉

and is not necessarily constant. So we may impose the additional condition
:
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d
dt

(
â2 − b̂2 − 1

4 (ŵ
tŵ − r̂tr̂)

)
= 0 ⇔ âdâ

dt − b̂ db̂dt − 1
4

(
ŵt dŵ

dt − r̂t dr̂dt
)
= 0

See below continuity equation.

In this aggregation the section σ represents the individual motion of the
constituting material points, with respect to a gauge attached to the solid. The
element σB (t) represents the average motion of these points with respect to the
gauge of the observer B in the computation of σB. The motion of the solid itself,
with respect to the gauge of an observer O (in a different, more general model),
is represented by an element σo ∈ PG. The total motion (solid + solid on itself)
is defined by a change of gauge in PG and the resulting spinor (as it would be
used in a model representing the solid) is then :

S (t) = N (t) γC (σo (t)) γC (σB (t))S0

Which sums up to replace the fixed inertial spinor S0 by the variable spinor
SB (t) = N (t) γC (σB (t))S0.

The physical meaning of σo must be understood with respect to the way the
solid is defined : for instance if σ (t, x) represents a rotation around an axis,
then σo will be a rotation of this axis. The vector r ∈ R3 in σr, which has no
geometric meaning for a particle, gets one for a solid, similar to the usual.

5.4.4 Continuity equation

The conservation of the mass of the body means, for the observer B, that :
M (t)=

∫
ω(t)

µ3 (t, x)̟3 = Ct =
∫
ω(t)

iV (µ̟4)

Consider the manifold ω ([t1, t2]) with borders ω (t1) , ω (t2) :
M (t2)−M (t1) =

∫
∂ω([t1,t2])

iV (µ̟4) =
∫
ω([t1,t2])

d (iV µ̟4)

d (iV µ̟4) = £V (µ̟4)− iV d (µ̟4) = £V (µ̟4)− iV (dµ ∧̟4)− iV µd̟4 =
£V (µ̟4)

E (t2)− E (t1) =
∫
ω([t1,t2])

£V (µ̟4)

with the Lie derivative £ (Maths.1517,1587)
The conservation of the mass is equivalent to the condition £V (µ̟4) = 0.
£V µ̟4

= dµ
dt̟4 + µ£V̟4

= dµ
dt̟4 + µ (divV )̟4

= dµ
dt + µ (divV )̟4

and we retrieve the usual continuity equation :

dµ

dt
+ µdivV = 0 (92)

Then N (t) =
∫
ω(t)

µ3 (t, x)̟3

If µ = Ct (incompressible solid) the condition becomes : divV = 0

5.4.5 Symmetries of a solid

By symmetries we mean symmetries of the whole body B : under a geometric
transformation the body looks the same for an observer. So they are transfor-
mations occuring in each ω (t) and for a privileged observer who can see the

94



whole body. It is equivalent to consider either the transformation of the body
or the transformation of the observer (as long as he keeps the same vector field
ε0), thus symmetries can be represented as a global change of observer with an
element s (t) belonging to a subgroup of Spin (3) . And B has a symmetry if the
section S (t, x) = γC (σ (t, x))S0 ∈ X (S0) is such that σ (t, x) = σw (t, x) · s (t) .
Then :

σ (t, x) = σw (t, x) · s (t)
= (aw (t, x) + υ (0, w (t, x))) · (ar (t) + υ (r (t) , 0))
= awar + υ

(
awr,

1
2j (w) r + arw

)
− 1

4 (w
tr) ε5

and σB (t) = N (t)σBw (t) · s (t)
with σBw (t) = 1

N(t)

∫
ω(t)

σw (t, x)µ3 (t, x)̟3 (t, x) and the condition â2 −
b̂2 = N2 + 1

4 (ŵ
tŵ − r̂tr̂) .

This approach can be useful in Astrophysics, where trajectories of stars
systems or galaxies are studied. The spinor SB can account for the rotational
momentum of the bodies, which is significant and contributes to the total kinetic
energy of the system.

5.5 Relativist Momentum, Spin and Energy

To sum up :
The Spinor S is the relativist momentum of the particle. Encompassing both

the translational and the rotational motions, it is intrinsic and does not depend
on the choice of a basis, and its measure S = γC (σ)S0 depends on the ob-
server. This is the equivalent of the 4 vector P = µu, but it adds the rotational
component.

The quantity Mp = 1
c2

√
|〈S0, S0〉E | = 1

c2

√
|〈S, S〉E | is the mass at rest of

the particle. It does not depend on the motion, the gauge or the chart.

The decomposition of the relativist momentum by an observer shows :
- the relativist momentum ǫ = ±1, spin up or down, with respect to the

trajectory
- the translational momentum γC (σw)S0 with σw = aw + υ (0, w) . With

respect to a basis the vector w can be identified with a spatial speed −→v by the
formulas 18. And the usual translational momentum is : −→pr =Mp

−→v√
1−‖−→v ‖2

c2

- the spin γC (σr)S0 with σr = ar + υ (r, 0) . In a basis the vector r can

be assimilated with a rotation of axis −→r =
∑3

i=1 riεi (m) and rotational speed√
〈−→r ,−→r 〉3.But this assimilation is formal. A particle, by definition, has no

internal structure, so it should look the same after any rotation around its
position. The Spin is not a geometric rotation, and because of that in the
measure of the Spin the choice of the axis x, y, z does not matter, even if the
measures change as if it was a rotation.
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The kinematic energy of a particle can be defined as 1
i

〈
S, dSdt

〉
(the

1
i factor accounts for the fact that

〈
S, dSdt

〉
is imaginary because d

dt 〈S, S〉 =
0). Its measure depends on the observer, through the choice of t. The in-
trinsic quantity would be 1

i

〈
S, dSdτ

〉
with the proper time τ, and 1

i

〈
S, dSdt

〉
=(√

1− ‖−→v ‖2

c2

)
1
i

〈
S, dSdτ

〉
. It can be expressed with (r, w) and their derivatives4

and we will see that the result is :

1

i

〈
S,
dS

dt

〉
= ktX

where
X is the vector :

X = [Ar (r)]
dr

dτ
+ [Aw (r, w)]

dw

dτ

with [Ar (r)] , [Aw (r, w)] matrices depending on r, w,
and k is a vector, similar to the inertia tensor, which encompasses both the

translational and the rotational motions, and acts also as a magnetic moment.
Its value is :

k = −ǫ 14M2
p c

4




(sin 2α0) cos (α2 − α1)
(sin 2α0) sin (α2 − α1)

2 cos 2α0




with

SR =
Mpc

2

√
2

[
eiα1 cosα0

eiα2 sinα0

]
and ǫ = −1 for antiparticles.

The representation of the kinematic characteristics of a deformable solid has
been seen before. For an object which has an internal structure this is done by
tensorial products of spinors.

4We can expect that the kinematic energy has the dimension [Mass][Speed]2. And we must
remember that r,w have themselves the dimension of speed. So the definition is consistent.
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6 GRAVITATIONAL FIELD

The concept of fields has appeared in the XIX◦ century, in the wake of the
electromagnetism theory, to replace the picture of action at a distance between
particles. A force field is one object of Physics, which has distinctive properties
:

i) Because particles are localized, a field must be able to act anywhere, that
is to be present everywhere. So the first feature of force fields, as opposed to
particles, is that, a priori, they are defined all over the universe, even if their
action can decrease quickly with the distance.

ii) A force field propagates : the value of the field depends on the location,
this propagation occurs when there is no particle, thus it is assumed that it
results from the interaction of the force fields with themselves.

iii) Force fields interact with particles, which are themselves seen as the
source of the fields. This interaction depend on charges which are carried by
the particles.

iv) The interactions, of the fields with themselves or with particles are, in
continuous processes, represented in the lagrangian according to the Principle
of Least Action.

v) In some cases the force fields can act in discontinuous processes, in which
they can be represented as particles (bosons and gravitons).

Thus we need a representation of the charges and of the fields. The situation
is totally different for the gravitational field and the other fields.

The only, generally accepted, model of the gravitational field is part of Gen-
eral Relativity, actually distinct from its theory on Geometry that we have
seen previously. Its main assumption is the Principle of Equivalence, which
states that the gravitational charge is equal to the inertial mass. Using the
Levy-Civita connection deduced from the metric, its key variable is the scalar
curvature, from which, with the Principle of Least Action, can be deduced the
Einstein equation, which is still the keystone in the study of gravitation. There
has been many variants of the model, but the focus on the metric and the cur-
vature has eclipsed the study of the gravitational field itself, and there is even
no clear consensus about if the gravitational field can be distinguished from the
geometry.

The Standard Model, built in the SR framework, encompasses all force fields
other than gravitation. It is based on the formalism of gauge fields : the key
component is a connection on a principal bundle, which acts on the state of par-
ticles through a covariant derivative. The state of particles is itself represented
in an associated vector bundle, whose fiber is the tensor product E ⊗ F where
E represents the spinor and F the charges. It should suffice to discriminate the
behavior of particles submitted to a field : we have seen that spinor fields are
characterized by a scalar z, which corresponds to a charge. Actually there is no
unit for the charge in the Standard Model : elementary particles, distinguished
according to their flavor and charges with the 3 forces (electromagnetic, weak
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and strong interactions), constitute a basis of F, and the behavior of a particle
is compared to the behavior of known particles. The model introduces another
group (the direct product U(1)× SU(2)× SU(3)), which is a compact real Lie
group, the vector space F is a unitary representation of the group, and from
there are built a principal bundle, where lives the connection, and an associated
vector bundle for E ⊗ F.

There has been many attempts to incorporate all force fields in a single model
: this is the Holy Graal of contemporary Physics. It would be impossible to list
all of them. Anyway the purpose of this paper is not to propose another theory,
but study how the formalism of fiber bundle and gauge fields can be used, in the
context of the geometry of GR, to represent the gravitational field. We will see
first how the concept of spinor can be matched with the principle of equivalence.
Then we will introduce the general concept of connection for the gravitational
field and see its relation the Levy-Civita connection. The propagation of fields
is studied through a new variable, the strength of the field, and we will see how
it relates to the Riemann tensor and the scalar curvature. It is the main tool to
understand and quantize the gravitational field, notably to define its spin.

6.1 The Law of Equivalence

In the Newton’s law of gravitation F = GMM ′

r2 and his law of Mechanics :
F = µγ the scalars M,µ represent respectively the gravitational charge and
the inertial mass, and there is no reason why they should be equal. However
this fact has been verified with great accuracy (two bodies fall in the vacuum
at the same speed). This has lead Einstein to state the fundamental Law of
Equivalence “Gravitational charge and inertial mass are identical”. From which
he built the Theory of General Relativity.

We have defined the relativist momentum of a particle as the spinor, ex-
tended to a deformable solid. This Law leads us to take as gravitational charge
of particles the inertial spinor S0.

Proposition 49 The Gravitational charge of a particle is represented by its
inertial spinor S0

So, if we stay only with the gravitational field, the space E and the rep-
resentation (E, γC) suffice to represent the state of particles. The kinematic
characteristics of particles of the same flavor (quarks, leptons) are not differen-
tiated according to their other charges.

The gravitational charge is no longer a single scalar, but can be expressed
in the same unit as the mass. It is consistent with the fact that the spinor
encompasses the rotational momentum.

However this assumption has another consequence. In the previous chapter
we assumed that :

- there is, along the world line of a particle, a privileged frame ϕG (m,σ (m))
such that the spinor of the particle is (ϕG (m,σ (m)) , S0) with S0 = Ct
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- the observer measures the spinor S (m) in his gauge : ϕG (m, 1) and
(ϕG (m,σ (m)) , S0) ∼ (ϕG (m, 1) , γC (σ (m))S0) = (ϕG (m, 1) , S (m)) thus :
S (m) = γC (σ (m))S0

We have now to consider an interpretation which is mathematically equiva-
lent, but physically different :

- the observer measures the spinor S (m) with (ϕG (m, 1) , γC (σ (m))S0)
- in presence of gravity this spinor is equivalent to : (ϕG (m,σ (m)) , S0)
The privileged gauge (for the particle) is provided by the gravitational field.

And the action of the motion, that is of the inertial forces, is equivalent to the
action of gravity on the state of the particle, which is the meaning of the Law of
Equivalence. This is a key point to understand the gravitational and the other
fields : particles have intrinsic properties, that they keep all over their travel on
their world lines but, because of the existence of the field, their measure by an
observer is distinct from this intrinsic value. This leads to see the fields as the
value of the element of the group (σ ∈ Spin(3, 1) for the gravitational field) but,
as we will see, the action of the field goes through a special derivative because
it manifests itself in the motion of the particle.

6.2 Representation of the charges for the other fields

For the other fields, in line with the Standard Model, the assumption are the
following :

Proposition 50 There is a compact, connected, real Lie group U which char-
acterizes the force fields other than gravitation.

There is a n dimensional complex vector space F, endowed with a scalar
product denoted 〈〉F and (F, ̺) is a unitary representation of U

The states of particles are vectors of the tensorial product E ⊗ F
The intrinsic characteristics of each type of particles are represented by a

fundamental state ψ0 ∈ E⊗F , and all particles sharing the same characteristics
behave identically under the actions of all the fields.

In the Standard Model U = SU(3)×SU(2)×U(1). There is a principal fiber
bundle Q with fiber Spin (3, 1) × U and the state of a particle is represented
by a tensor ψ of the associated vector bundle Q [E ⊗ F, γC × ̺] . We will not
develop this model here (for more see [MP]), however it is useful to see how it
works for the electromagnetic-field (EM).

It is represented by the group U(1), the set of complex numbers with module
1 (uu∗ = 1). This is a compact abelian group. Its irreducible representations are
unidimensional, that is multiple of a given vector.

For any given arbitrary vector f there are 3 possible irreducible non equiv-
alent representations :

- the standard one : (F, ̺) : ̺
(
eiφ
)
f = eiφf and F =

{
eiφf, φ ∈ R

}

- the contragredient : (F, ̺) : ̺
(
eiφ
)
f = e−iφf and F =

{
eiφf, φ ∈ R

}

(Maths.23.1.2)
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- the trivial representation : (F, ̺) : ̺
(
eiφ
)
f = f and F = {f}

The standard representation corresponds to negative charge, the contragre-
dient representation to positive charge and the trivial one to neutral charge (the
only known are the neutrinos). The choice positive / negative is arbitrary.

The EM field interacts similarly with the left and right part of a spinor, so
the space of states of the particles is the sum of tensorial products : S⊗ f. The
theory can be fully expressed this way. However it is legitimate to choose the
vectors f in E, which is a 4 dimensional complex vector space5. For elementary
particles, then :

i) Let {Sp ∈ E0, p = 1...N} be N vectors representing inertial spinors of par-
ticles. Then for each of them their states are represented by

{
eiφSp, φ ∈ R

}
with

the standard representation;
ii) Let

{
S′
p ∈ E′

0, p = 1...N
}

be N vectors representing inertial spinors of
the antiparticles associated to Sp. Because E0, E

′
0 are orthogonal these vectors

are orthogonal to the Sp.Then for each of them their states are represented by{
eiφS′

p, φ ∈ R
}
with the contragredient representation;

iii) Neutral particles {Sq ∈ E0 ⊕ E′
0, q = 1...N ′} correspond to the trivial

representation : their states is just one vector Sq ∈ E0 or E′
0.

Particles have a charge opposite to their anti-particle. Notice that the maps
̺, ̺ are distinct from γC (σ) for any σ ∈ Spin, T1Spin, so the state of a particle
can change only by the action of U(1).

A basis of E, for elementary particles, is then
{(
Sp, S

′
p

)N
p=1

, (Sq)
N ′

q=1

}
. Each

vector defines the mass, the charge and the type of the particle. In this picture
there is no unit for the electric charge.

In the case of the EM field the structure brought by the charges is then built
in the space E0 or E′

0. The state of an elementary particle is then :

ψ = eiφS (93)

where φ is a phase factor which must be considered as variable for charged
particles, and φ = 0 for neutral particles. Usually this phase can be ig-
nored : particles whose states differ by a phase factor have the same behav-
ior, with regard to the electromagnetic field and they have the same mass :
〈(exp iφ)S0, (exp iφ

′)S0〉 = 〈S0, S0〉 and the same EM charge.
This is the origin of the introduction of rays in QM. Two particles such that

their states differ by a phase factor eiφ behave the same way, for the gravitational
field or the EM field, so they can be deemed representing the same state.

When only the EM and the gravitational fields are involved the states of
elementary particles can be represented in E. Moreover, using a classic theorem
of QM, the state of a composite particle, comprised of several particles, should
be represented by the tensorial product of the states, thus in some space E ⊗
E...⊗E.Mathematically the tensorial product of non equivalent representations
is well defined. The action of U(1) on the tensor S1 ⊗ S2 is eiφ(ǫ1+ǫ2)S1 ⊗ S2

with ǫk = ±1 depending on the representation. However a basis of the tensorial

5This is one of the motivation to choose E as a complex vector space to represent spinors.
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product is comprised of tensorial products of all the vectors of the basis, which
would not have the same behavior under the action of U(1) (the basis of E
has positive, negative and neutral particles). So actually the only combinations
which are acceptable are made of particles of the same kind (positive, negative
or neutral) and the action is then eiqφǫ where q is the number of particles, where
q can be a positive, a negative or a null integer. As a consequence :

- when only the EM field is involved composite particles are comprised of
particles with the same type of charge (this does not hold when the weak and
strong interactions are considered)

- the electric charge of particles must be an integer multiple of an elementary
charge.

Such tensorial products of spinors can be used for nuclei, atoms or molecules.
The associated EM charge is an integer multiple of the elementary charge. Of
course this does not matter for neutral particles as they do not interact with
the EM field.

When only the gravitational field is involved the states of particles or mate-
rial bodies can be represented either by a tensorial product of spinors, or by a
single spinor in E.
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7 CONNECTIONS

The action of a field on a particle goes through the derivative of a momentum.
Because of the anisotropy of the universe, the value of the derivative will depend
on the direction on M, represented by a vector, so we are looking for a map :
M → Λ1 (T1Spin (3, 1)) ,that is a one form valued in the Lie Algebra. This

derivative is the covariant derivative. The derivative d−→p
dt =

−→
F is replaced by

the covariant derivative ∇V S of the relativist momentum along the direction V .
Covariant derivatives are built from more general mathematical objects,

called connections.

7.1 Connections on Fiber bundles

A fiber bundle P (M,V, π) is a manifold, and its tangent space is split in two
parts, related to its two manifolds components. By differentiation of the trivi-
alization :

ϕ :M × V → P :: p = ϕ (m,u)
ϕ′ : TmM × TuV → TpP :: vp = ϕ′

m (m, g) vm + ϕ′
u (m, g) vu

π (p) = m ⇒ π′ (p) vp = vm and the vector subspace VpP = {π′ (p) vp = 0}
of TpP called the vertical space does not depend on the trivialization. It is
isomorphic to the tangent space of V.

Our purpose is to look for a way to define a derivative of p, and the decom-
position of the vector vp shows that it requires two components : one linked to a
motion inM , and another to a change in V . However, even if π′ (p) vp = vm,this
is not sufficient to define a decomposition which would be independent on the
choice of a trivialization. A connection is just this tool : it is a projection of
vp on the vertical space VpP. It is a one form on P valued in the vertical bundle
V P. So it enables us to distinguish in a variation of p what can be imputed to a
change of m and what can be imputed to a change of u. A section of P depends
only on m : p (m) = ϕ (m,u (m)) so by differentiation with respect to m this
is a map from TM to TP and the value of a connection at each p (m) is a one
form over M , valued in V P, called the covariant derivative. So it meets our
purpose. Moreover because the vertical space is isomorphic to the tangent space
on V , the value of the connection can be expressed in a simpler vector space. A
connection and a covariant derivative are defined through a specific map, called
the potential of the connection, which is the key variable.

All this holds for any kind of fiber bundle (Maths.27), but the connection
takes different forms according to the kind of fiber bundle. Moreover a connec-
tion on a principle bundle defines a connection on any associated fiber bundle.

7.2 The connection of the gravitational field

7.2.1 Potential

The vertical bundle V PG of the principal bundle PG (M,Spin(3, 1), πG) is iso-
morphic to the Lie algebra T1Spin (3, 1) .
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The potential G of a principal connection G on PG is a map : G ∈
Λ1 (M ;T1Spin (3, 1)) .

Using the Clifford algebra to represent the Lie algebra, G reads :

G : TM → T1Spin(3, 1) :: G (m) =

3∑

α=0

6∑

a=1

Ga
α (m)−→κ a ⊗ dξα (94)

or equivalently :

G (m) =

3∑

α=0

υ (Grα (m) , Gwα (m)) dξα

Grα (m) , Gwα (m) are two vectors ∈ R3. So the gravitational field has a
transversal (Gwα) and a rotational (Grα) component. This is the unavoidable
consequence of the gauge group.

The potential is not a section of a fiber bundle, but a map. In a change of
gauge the potential transforms by an affine map6 :

p (m) → p̃ (m) = p (m) · χ (m)
−1

: (95)

G (m) → G̃ (m) = Adχ

(
G (m)− L′

χ−1 (χ)χ′ (m)
)

(96)

Adχυ (Grα −Xrα, Gwα −Xwα) = υ
(
G̃r (m) , G̃w (m)

)

(see Annex for the values of X,Y)
We introduce the convenient notation that will be used in the following :

Notation 51 υ
(
Ĝr (τ) , Ĝw (τ)

)
is the value of the potential of the gravita-

tional field along the integral curve m (τ) = ΦV (τ, x) of any vector field V

υ
(
Ĝr (τ) , Ĝw (τ)

)
=
∑3

α=0 V
αυ (Grα (τ) , Gαw (τ))

with : V α =
∑3

i=0 P
α
i V

i

υ
(
Ĝr (τ) , Ĝw (τ)

)
= υ (([Gr] [P ] [V ])a , ([Gw] [P ] [V ])a)

υ
(
Ĝr (τ) , Ĝw (τ)

)
can be extended to υ (Gr (m) , Gw (m)) on Ω (Maths.1467).

There are several covariant derivatives deduced from this connection.

6Similarly the Christofel coeeficients are not tensor and transform in a complicated way in
a change of charts.
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7.2.2 Covariant derivative on PG

The connection acts on sections of the principal bundle, and the covariant deriva-
tive of σ =ϕG (m,σ (m)) ∈ X (PG) is :

∇G : X (PG) → Λ1 (M ;T1Spin) :: ∇Gσ=

3∑

α=0

(
σ−1 · ∂ασ +Adσ−1Gα

)
dξα

(97)
The covariant derivative is invariant in a change of gauge.

Proof. ϕG (m, g) = ϕ̃G (m,χ (m) g)

G (m) → G̃ (m) = Adχ

(
G (m)− L′

χ−1 (χ)χ′ (m)
)

σ (m) → σ̃ (m) = χ (m) · σ (m)

∇Gσ →∇̃Gσ = σ̃−1 · σ̃′ +Adσ̃−1G̃
= σ−1 · χ−1 · (χ′ · σ + χ · σ′) +Adσ−1Adχ−1

(
Adχ

(
G− χ−1 · χ′))

= σ−1 · χ−1 · χ′ · σ + σ−1 · χ−1 · χ · σ′ +Adσ−1

(
G− χ−1 · χ′)

= σ−1 · χ−1 · χ′ · σ + σ−1 · σ′ +Adσ−1G− σ−1 · χ−1 · χ′ · σ
= σ−1 · σ′ +Adσ−1G = ∇Gσ

7.2.3 Covariant derivative for spinors

A connection on a principal bundle induces a linear connection on any associated
vector bundle.

The covariant derivative reads for a section S ∈ X (PG [E, γC]) :

∇SS =

3∑

α=0

(∂αS + γC (Gα)S) dξ
α =

3∑

α=0

(∂αS + γC (υ (Grα, Gwα))S)dξ
α

(98)
With the signature (3,1) :

γC (υ (Grα, Gwα)) = −i1
2

3∑

a=1

(Gwαγaγ0 +Grαγ̃a) (99)

With the signature (1,3) :

γC′ (υ (Grα, Gwα)) = −i1
2

3∑

a=1

(Gwαγaγ0 −Grαγ̃a) (100)

So we go from the signature (3,1) to (1,3) by a change of the sign of Grα.
Gα being valued in T1Spin (3, 1) and γC being a representation of the Clif-

ford algebra the expression makes sense. Its coordinates expression is with right
and left chiral parts:

∇SS =
∑3

α=0

[
∂αSR + 1

2

∑3
a=1 (G

a
wα − iGa

rα)σaSR

∂αSL − 1
2

∑3
a=1 (G

a
wα + iGa

rα)σaSL

]
dξα

It preserves the chirality.
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In a change of gauge :
p (m) → p̃ (m) = p (m) · χ (m)

−1

a section on X (PG [E, γC]) transforms as :

S (m) = (p (m) , S (m)) =
(
p̃ (m) , S̃ (m)

)
∼
(
p (m) , γC

(
χ (m)

−1
)
S̃ (m)

)

⇒ S̃ (m) = γC (χ (m))S (m)
The covariant derivative transforms as a section of PG [E, γC] :

Proof. ∇SS → ∇̃SS =
∑3

α=0

(
∂αS̃ + γC

(
G̃α

)
S̃
)
dξα

=
∑3

α=0

(
γC (∂αχ)S + γC (χ) ∂αS + γC

(
Adχ

(
G− χ−1∂αχ

))
γC (χ)S

)
dξα

=
∑3

α=0

(
γC (∂αχ)S + γC (χ) ∂αS + γC

(
χ
(
G− χ−1∂αχ

)
χ−1

)
γC (χ)S

)
dξα

=
∑3

α=0 (γC (∂αχ)S + γC (χ) ∂αS + γC (χ) γC (G)S − γC (∂αχ)S) dξ
α

=
∑3

α=0 γC (χ) (∂αS + γC (G)S) dξα = γC (χ)∇SS
so the operator reads: ∇S : X (PG [E, γC])→ ∗1 (M ;X (PG [E, γC]))
The action, that is the 4 dimensional force exercised on a particle with

velocity V by the gravitational field is then given by :

S → ∇V S = dS
dt +

[
γC
(
Ĝ
)]

[S] which is the equivalent of the Newton’s

law F = dP
dt = V∇P with the operator ∇ = ∂α. It depends linearly on the

potentials, and on the state of the particle and its derivative.

7.2.4 Covariant derivatives for vector fields on M

The connection on PG induces a linear connection ∇M on the associated vector
bundle PG

[
R4,Ad

]
, which is TM with orthonormal bases, with Christoffel

symbols :
ΓM (m) = (Ads)

′
s=1 (G (m))

with the product of vectors in Cl(m):

v =
∑3

j=0 v
jεj (m) →

∑3
i,j=0 [ΓM (m)]

j
i v

iεj (m) = υ (Grα, Gwα) · v − v · υ (Grα, Gwα)
It is then more convenient to use the representation of T1Spin(3, 1) by ma-

trices of so(3, 1) :

[ΓMα] =
∑6

a=1G
a
α [κa] =




0 G1
wα G2

wα G3
wα

G1
wα 0 −G3

rα G2
rα

G2
wα G3

rα 0 −G1
α

G3
wα −G2

rα G1
rα 0




In a change of gauge :

G (m) → G̃ (m) = Adχ

(
G (m)− L′

χ−1 (χ)χ′ (m)
)

[
Γ̃Mα

]
= [h (s)]

(
[ΓMα]−

[
h
(
s−1
)]

[h (s′)]
)

The covariant derivative of a section V ∈ X
(
PG

[
R4,Ad

])
is then :

∇MV =

3∑

αi=0


∂αV i +

3∑

j=0

[ΓMα (m)]
i
j V

j


 εi (m)⊗ dξα (101)
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For any vector field W : ∇M
W : X (TM) → X (TM) is a linear map which

preserves the scalar product of vectors (Maths.2205):

∀W ∈ X (TM) :
〈
∇M

WU,∇M
WV

〉
= 〈U, V 〉

The isomorphism so(3, 1) → T1Spin (3, 1) ⊂ Cl (R, 3, 1) reads :

[J(r) +K(w)] → υ (r, w) = 1
4

∑3
i=0 ([J(r) +K(w)] [η])

i
j εi · εj

thus in matrix form the Christoffel coefficient of the connection on PG [E, γC]
reads (Maths.9.2.4) :

[Γα (m)] = [γC (Gα)]

= 1
4

∑3
ijpq=0 ([J(Grα) +K(Gwα)] [η])

i
j ([γC (εi)] [γC (εj)])

p
q εp (m)⊗ εq (m)

But on the other hand the Christoffel coefficient of the connection on PG

[
R4,Ad

]

is:
[ΓMα (m)] =

∑3
ij=0 [K (Gwα) + J (Grα)]

i
j εi (m)⊗ εj (m)

thus :
[Γα (m)] = 1

4

∑3
ij=0 ([ΓMα (m)] [η])

i
j [γC (εi)] [γC (εj)]

PG [E, γC] is a spin bundle, and we have the identity between the derivatives
:

∀V ∈ X
(
PG

[
R4,Ad

])
, S ∈ X (PG [E, γC]) :

∇ (γC (V )S) = γC
(
∇MV

)
S + γC (V )∇S

which makes of G a Clifford connection (Maths.2207).

7.3 Kinetic and potential energy

7.3.1 Kinetic energy

We have an important result :

Theorem 52 The scalar product 〈S,∇αS〉 is purely imaginary : 〈S,∇αS〉 =
i Im 〈S,∇αS〉

Proof. ∇αS = ∂αS − i
2

∑3
a=1G

a
wαγaγ0S +Grαγ̃aS

〈S,∇αψ〉 = S∗γ0∂αS − i
2

∑3
a=1G

a
wαS

∗γ0γaγ0S +GrαS
∗γ0γ̃aS

[S]
∗
γa [S] , [S]

∗
γ0γ̃a [S] are real, [S]

∗
γ0 [∂αS] are imaginary :

(S∗γa [S]) = (S∗γaS)
∗
= S∗γaS

S∗γ0γ̃aS = S∗γ0γ̃aS∗ = S∗ (γ0γ̃a)
∗
S = S∗γ0γ̃aS

〈S, S〉 = 〈S0, S0〉 ⇒ 〈S, ∂αS〉+ 〈∂αS, S〉 = 0

Im 〈S,∇αS〉 =
1

i
(〈S, ∂αS〉+ 〈S, [γC (Gα)]S〉) (102)

Along the trajectory, defined by a vector ε0 and the time t of an observer :

Im 〈S,∇V S〉 = 1
i

(〈
S, dSdt

〉
+
〈
S, γC

(
Ĝ
)
S
〉)

1
i

〈
S, dSdt

〉
= 1

i

∑3
α=0 Vα 〈S, ∂αS〉 can be seen as the kinetic energy of the

particle with respect to the observer (defined by t)
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1
i

〈
S, γC

(
Ĝ
)
S
〉
can be seen as the potential energy of the particle in the

gravitational field along its trajectory
Im 〈S,∇V S〉 can be seen as the systemic energy of the particle, as part

of a system which includes the gravitational field. The energy depends on the
choice of an observer : V is defined by σw with respect to ε0.

7.3.2 Inertial tensor

We can give a more precise expression of the covariant derivative, using the
inertial spinor S0 :

∇αS
= [γC (∂ασ)] [S0] + [γC (Gα)] [γC (σ)] [S0]
= [γC (σ)]

([
γC
(
σ−1 · ∂ασ

)]
[S0] +

[
γC
(
σ−1 ·Gα · σ

)])
[S0]}

= [γC (σ)]
([
γC
(
σ−1 · ∂ασ +Adσ−1Gα

)])
[ψ0]

By combination with the previous result :
Im 〈ψ,∇αS〉
= 1

i

〈
γC (σ)S0, γC (σ)

[
γC
(
σ−1∂ασ +Adσ−1Gα

)]
[S0]

〉

= 1
i

〈
S0,
[
γC
(
σ−1∂ασ +Adσ−1Gα

)]
[S0]

〉

Let us denote [S0] =

[
SR

ǫiSR

]
with SR a 2 vector and ǫ = +1 for particles,

and ǫ = −1 for antiparticles.
σ−1∂ασ +Adσ−1Gα = υ (Xα, Yα) ∈ T1Spin (3, 1)

γC (υ (Xα, Yα)) =
1
2

[∑3
a=1 (Y

a
α − iXa

α)σa 0

0 −∑3
a=1 (Y

a
α + iXa

α)σa

]

γC (υ (Xα, Yα)) [S0] =
1
2

[ ∑3
a=1 (Y

a
α − iXa

α)σaSR

−ǫi
∑3

a=1 (Y
a
α + iXa

α)σaSR

]

〈
S0, γC

(
σ−1∂ασ +Adσ−1Gα

)
S0

〉

= 1
2

(
S∗
R

(
−ǫ∑3

a=1 (Y
a
α + iXa

α)σaSR

)
− ǫiS∗

R

(
i
∑3

a=1 (Y
a
α − iXa

α)σaSR

))

= ǫ 12

(
−∑3

a=1 (Y
a
α + iXa

α) (S
∗
RσaSR) +

∑3
a=1 (Y

a
α − iXa

α) (S
∗
RσaSR)

)

= 1
2ǫ
∑3

a=1 (− (Y a
α + iXa

α) + (Y a
α − iXa

α)) (S
∗
RσaSR)

= −ǫi
∑3

a=1X
a
α (S∗

RσaSR)
= iktXα

The quantities S∗
RσaSR are 3 fixed scalars which define a vector k = −ǫ (S∗

RσaSR)
3
a=1 ∈

R3. Thus :

Im 〈ψ,∇αS〉 = ktXα (103)

With : 〈S0, S0〉 = ǫM2
p c

4

SR =
Mpc

2

√
2

[
eiα1 cosα0

eiα2 sinα0

]

k = −ǫ 12M2
p c

4k0 = −ǫ 12M2
p c

4




(sin 2α0) cos (α2 − α1)
(sin 2α0) sin (α2 − α1)

cos 2α0


 ; kt0k0 = 1
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The vector k is similar to the inertia tensor, but here this is a vector, and it
encompasses both the translational and the rotational motions. And of course
it holds for a particle without internal structure but can be computed for a solid
body using the aggregation method.

Using σ = σw · σr one can compute Xα (see the formulas in Annex). It
reads :

σ = σw · σr
σw = aw + υ (0, w)
σr = ar + υ (r, 0)
a2w = 1 + 1

4w
tw

a2r = 1− 1
4r

tr
υ (Xα, Yα)
= σ−1∂ασ +Adσ−1Gα

= σ−1
r · σ−1

w · ∂ασw · σr + σ−1
r · σ−1

w · σw · ∂ασr +Adσ−1
r

Adσ−1
w
Gα

= σ−1
r ·

(
σ−1
w · ∂ασw · σr + ∂ασr

)
+Adσ−1

r
Adσ−1

w
Gα

= σ−1
r ·

(
σ−1
w · ∂ασw + ∂ασr · σ−1

r

)
· σr +Adσ−1

r
Adσ−1

w
Gα

= Adσ−1
r

(
σ−1
w · ∂ασw + ∂ασr · σ−1

r +Adσ−1
w
Gα

)

∂αaw = 1
4aw

wt∂αw

∂αar = − 1
4ar

rt∂αr

σ−1
w · ∂ασw

= υ
(
1
2j (w) ∂αw,−w∂αaw + aw∂αw

)

= υ
(

1
2j (w) ∂αw,− 1

4aw
wwt∂αw + aw∂αw

)

= υ
(

1
2j (w) ∂αw,− 1

4aw
(j (w) j (w) + wtw) ∂αw + aw∂αw

)

= υ
(

1
2j (w) ∂αw,

(
− 1

4aw
j (w) j (w) − 4 1

4aw

(
a2w − 1

)
+ aw

)
∂αw

)

= υ
(

1
2j (w) ∂αw,

(
1
aw

− 1
4aw

j (w) j (w)
)
∂αw

)

∂ασr · σ−1
r

= υ(− 1
2j (r) ∂αr − r∂αar + ar∂αr, 0)

= υ(− 1
2j (r) ∂αr +

1
4ar

rrt∂αr + ar∂αr, 0)

= υ(
(
− 1

2j (r) +
1

4ar
(j (r) j (r) + rtr) + ar

)
∂αr, 0)

= υ(

(
− 1

2j (r) +
1

4ar
j (r) j (r) +

4(1−a2

r)
4ar

+ ar

)
∂αr, 0)

= υ(
(

1
ar

− 1
2j (r) +

1
4ar

j (r) j (r)
)
∂αr, 0)

Adσ−1
w
Gα

= υ(
[
a2w − 1

2j (w) j (w)
]
Grα + awj (w)Gwα,[

a2w − 1− awj (w) +
1
4j (w) j (w)

]
Grα +

[
1− 3

4j (w) j (w)
]
Gwα)

σ−1
w · ∂ασw + ∂ασr · σ−1

r +Adσ−1
w
Gα

= υ(12j (w) ∂αw+
(

1
ar

− 1
2j (r) +

1
4ar

j (r) j (r)
)
∂αr+

[
a2w − 1

2j (w) j (w)
]
Grα+

awj (w)Gwα,
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(
1
aw

− 1
4aw

j (w) j (w)
)
∂αw+

[
a2w − 1− awj (w) +

1
4j (w) j (w)

]
Grα+

[
1− 3

4j (w) j (w)
]
Gwα))

υ (Xα, Yα) = Adσ−1
r
υ (x, y)

with
Xα =

[
1− arj (r) +

3
4j (r) j (r)

]
x+

[
1− a2r +

1
4j (r) j(r)

]
y

Yα =
[
a2r − arj (r) +

1
2j (r) j (r)

]
y

x =
(

1
ar

− 1
2j (r) +

1
4ar

j (r) j (r)
)
∂αr+

1
2j (w) ∂αw+

(
a2w − 1

2j (w) j (w)
)
Grα+

awj (w)Gwα

y = 1
aw

(
1− 1

4j (w) j (w)
)
∂αw+

[
a2w − 1− awj (w) +

1
4j (w) j (w)

]
Grα+

[
1− 3

4 j (w) j (w)
]
Gwα

Xα = [Ar (r)] ∂αr + [Aw (r, w)] ∂αw + [Dr (r, w)]Grα + [Dw (r, w)]Gwα (104)

The matrices [Ar] , [AW ] , [Dr] , [Dw] are polynomials of j (r) , j (r) j (r) , j (w) , j (w) j (w) :

[Ar (r)] = [Br (r)]
[

1
ar

− 1
2j (r) +

1
4ar

j (r) j (r)
]
=
[

1
ar

+
2−5a2

r

2 j (r) +
5a2

r+1
4ar

j (r) j (r)
]

[Aw (r, w)] = [Br (r)] [Bw (w)] + [Cr (r)] [Cw (w)]
[Dr (r, w)] = [Br (r)] [Bwr (w)] + [Cr (r)] [Cwr (w)]
[Dw (r, w)] = [Br (r)] [Bww (w)] + [Cr (r)] [Cww (w)]
with :
[Br (r)] =

[
1− arj (r) +

3
4j (r) j (r)

]

[Bw (w)] = 1
2j (w)

[Cr (r)] =
[
1− a2r +

1
4 j (r) j(r)

]

[Cw (w)] = 1
aw

[
1− 1

4j (w) j (w)
]

[Bwr (w)] =
[
a2w − 1

2j (w) j (w)
]

[Bww (w)] = aw [j (w)]
[Cwr (w)] =

[
a2w − 1− awj (w) +

1
4j (w) j (w)

]

[Cww (w)] =
[
1− 3

4j (w) j (w)
]

The kinetic energy of the particle has the simple expression :

1

i

〈
S,
dS

dt

〉
= kt

(
[Ar]

dr

dt
+ [Aw]

dw

dt

)
(105)

7.3.3 The electromagnetic field

The EM field can be represented in the gauge field formalism. The Lie algebra
of U(1) is R. So the potential À of the connection is a real valued one form on

M : À =
∑3

α=0 Àαdξ
α ∈ Λ1 (M ;R) which is usually represented as a vector field

and not a form.
The action of U(1) depends on the representation, thus on the charge of the

particle :
- negative charge : ̺ (κ)S = (exp iκ)S
- positive charge : ̺ (κ)S = (exp (−iκ))S
- neutral : ̺ (κ)S = S
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The covariant derivative reads : ∇F
αψ = ∂αψ+ qiÀαψ where q is the charge

(for composite bodies) expressed as a signed integer multiple of the negative
elementary charge, and q = 0 for neutral particles.

The systemic energy is :
1
i 〈S,∇V S〉 = ktX̂ + q

̂̀
A 〈S0, S0〉 = −ǫ 12M2

p c
4kt0X̂ + qǫ

̂̀
AM2

p c
4

1

i
〈S,∇V S〉 = ǫM2

p c
4

(
1

2
kt0X̂ + qÀα

)
(106)

It gives to the vector k the physical meaning of a magnetic momentum.

7.4 Geodesics

There are several definitions of Geodesics, which, in different formulations, mean
the curves of minimum length between two points. In Euclidean Geometry they
are straight lines, in GR they are usually curves, and they play an important
role because free particles move along geodesics. Moreover there is a unique
geodesic passing through a point with a given tangent vector.

A connection enables to define the parallel transport of a vector (or a
basis) along a curve (or a vector field).

Let C be a curve defined by a path p : R → M : p(τ) with p(0) = a, and a
vector v ∈ TaM. The parallel transported vector is given by a map :

V : R → Tp(τ)M : V (τ) such that : ∇M
dp
dτ

V (τ) = 0, V (0) = v

thus we have the differential equation with V (τ) =
∑3

i=0 V
i (τ) εi (p (τ))

∇M
dp
dτ

V (τ) =
∑3

αi=0

(
∂αV

i +
∑3

j=0 ΓM (p (τ))
i
αj V

j
)(

dp
dτ

)α
εi (p(t)) = 0

dV i

dτ +
∑3

αj=0 ΓM (p (τ))
i
αj V

j
(

dp
dτ

)α
= 0

A geodesic is a path such that its tangent is parallel transported by the
connection :

p : R →M : p(τ) with p(0) = a

V (τ) = dp
dτ =

∑3
i=0 V

i (τ) εi (p (τ)) =
∑3

kα=0 V
k (τ)P ′α

k (p (τ)) ∂ξα
dV i

dτ +
∑3

αjk=0 ΓM (p (τ))
i
αj V

j (τ) V k (τ)P ′α
k (p (τ)) = 0

or in matrix form :[
dV
dτ

]
+
∑

α ([ΓMα] [V ]) ([P ′] [V ])
α
= 0

The scalar product 〈V, V 〉 is constant :
d
dτ 〈V, V 〉 = d

dτ

(
[V ]t [η] [V ]

)

= −∑α ([P ′] [V ])
α
[V ]

t
[ΓMα]

t
[η] [V ]−∑α ([P ′] [V ])

α
[V ]

t
[η] ([ΓMα] [V ])

= −∑α ([P ′] [V ])
α
[V ]

t
(
[ΓMα]

t
[η] + [η] [ΓMα]

)
[V ] = 0

A field of geodesics is a vector field U such that it is parallel transported
along its integral curves p (τ) = ΦU (τ, x) .
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As 〈U,U〉 is constant, for a time like geodesic field we can take 〈U,U〉 = −1
and, for a given observer, associate a section σw ∈ PW :

U =
((

2a2w − 1
)
ε0 (m) + aw

∑3
j=1 wjεj (m)

)

and U (m) = Adσwε0 (m)
The formalism of vector bundles enables us to give a useful description of

these geodesics, through the value of σw with respect to G.

Theorem 53 For a given observer geodesics are represented by sections σw ∈
X (PG) such that ∇G

Uσw ∈ T1Spin (3) .
They are solutions of the differential equation :
aw

dw
dτ =((
1− a2w

)
a2w + awj (w)− 1

4a
2
wj (w) j (w)

)
Ĝr +

(
3− 4a2w + 1

2j (w) j (w)
)
Ĝw

where υ
(
Ĝr, Ĝw

)
is the value of the potential of the gravitational field along

the geodesic

Proof. i) In the standard basis and with the Clifford algebra formalism :

∇M
V U = dU

dτ +
∑3

α=0 (V
α (υ (Grα, Gwα) · U − U · υ (Grα, Gwα)))

= d
dτAdσwε0 + υ

(
Ĝr, Ĝw

)
·Adσwε0 −Adσwε0 · υ

(
Ĝr, Ĝw

)

with V α =
∑

i P
α
i U

i, Ĝr =
∑3

α=0GrαV
α; Ĝw =

∑3
α=0GwαV

α,U (m) =
Adσwε0 (m)

d
dτAdσwε0 = dσw

dτ · ε0 · σ−1
w − σw · ε0 · σ−1

w · dσw

dτ · σ−1
w

=
(
σw · ∇G

Uσw − υ
(
Ĝr, Ĝw

)
· σw

)
·ε0·σ−1

w −σw·ε0·σ−1
w ·
(
σw · ∇G

Uσw − υ
(
Ĝr, Ĝw

)
· σw

)
·

σ−1
w

= σw · ∇G
Uσw · ε0 · σ−1

w − υ
(
Ĝr, Ĝw

)
· σw · ε0 · σ−1

w − σw · ε0 · ∇G
Uσw · σ−1

w +

σw · ε0 · σ−1
w · υ

(
Ĝr, Ĝw

)

with dσw

dτ = σw · ∇G
Uσw − υ

(
Ĝr, Ĝw

)
· σw

∇M
V U = σw · ∇G

Uσw · ε0 · σ−1
w − σw · ε0 · ∇G

Uσw · σ−1
w

−υ
(
Ĝr, Ĝw

)
· σw · ε0 · σ−1

w + σw · ε0 · σ−1
w · υ

(
Ĝr, Ĝw

)

+υ
(
Ĝr, Ĝw

)
· σw · ε0 · σ−1

w − σw · ε0 · σ−1
w · υ

(
Ĝr, Ĝw

)

= σw ·
(
∇G

Uσw · ε0 − ε0 · ∇G
Uσw

)
· σ−1

w

So, with the covariant derivative on the principal bundle PG. We have a
geodesic iff :

∇G
Uσw · ε0 − ε0 · ∇G

Uσw = 0
that is iff ∇G

u σw commutes with ε0.
For any element υ (r, w) of T1Spin (3, 1) we have the identity :
υ (r, w) · ε0 − ε0 · υ (r, w) = w (see Annex for the proof)
So : υ (r, w) ∈ T1Spin (3) ⇔ υ (r, w) · ε0 − ε0 · υ (r, w) = 0 ⇔ w = 0
And the geodesics are represented by sections such that ∇G

Uσw ∈ T1Spin (3) .
ii) The sections
∇G

ασw = σ−1
w · (∂ασw + υ (Grα, Gwα) · σw) has been computed :
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∇G
ασw = υ(− 1

2j (w) ∂αw +
(
a2w + 1

4 − 2j (w) j (w)
)
Grα + awj (w)Gwα,

−w∂αaw+aw∂αw+
(
a2w − 1− awj (w) +

1
4j (w) j (w)

)
Grα+

(
1− 3

4j (w) j (w)
)
Gwα

So geodesic fields are associated to the sections such that :∑
α V

α(−w∂αaw + aw∂αw +
(
a2w − 1− awj (w) +

1
4j (w) j (w)

)
Grα

+
(
1− 3

4j (w) j (w)
)
Gwα) = 0

w daw

dτ −aw dw
dτ =

(
a2w − 1− awj (w) +

1
4j (w) j (w)

)
Ĝr+

(
1− 3

4j (w) j (w)
)
Ĝw

By left multiplication with wt :
wtw daw

dτ − aww
t dw
dτ =

(
a2w − 1

)
wtĜr + wtĜw

a2w = 1 + 1
4w

tw ⇒
(
wt dw

dt

)
= 4aw

daw

dτ

wtw daw

dτ − 4a2w
daw

dτ =
(
a2w − 1

)
wtĜr + wtĜw

4
(
a2w − 1− a2w

)
daw

dτ =
(
a2w − 1

)
wtĜr + wtĜw

daw

dτ = 1
4

(
1− a2w

)
wtĜr − 1

4w
tĜw

1
4

(
1− a2w

)
wwtĜr − 1

4ww
tĜw − aw

dw
dτ

=
(
a2w − 1− awj (w) +

1
4j (w) j (w)

)
Ĝr +

(
1− 3

4 j (w) j (w)
)
Ĝw(

−
(
a2w − 1

)
a2w + awj (w)− 1

4a
2
wj (w) j (w)

)
Ĝr

−
(
4
(
a2w − 1

)
+ 1− 1

2j (w) j (w)
)
Ĝw = aw

dw
dτ

The interpretation of this result is clear : along the geodesic the forces,
gravitational or inertial, are such that they induce spatial rotations, without
change in the direction of the transversal motion.

There is nothing equivalent for the null curves, such that their tangent vector
u has a null scalar product : 〈u, u〉 = 0. But the definition of the flow of a vector
field, which does not involve the metric, still holds.

7.5 The Levi-Civita connection

In Differential Geometry one defines affine connections (Maths.1537), which
are bilinear operators acting on vector fields (sections of the tangent bundle)
∇ ∈ L2 (X (TM) ,X (TM) ;X (TM)) such that:

∀f ∈ C1 (M ;R) :
∇fVW = f∇VW
∇V fW = f∇VW + (iV df)W
They read in holonomic basis of a chart :

∇αV =
∑

β

(
∂βV

α +
∑

γ Γ
α
βγV

γ
)
∂ξβ ⊗ dξα

with Christoffel symbols Γα
βγ (m) which change in a change of chart in a

complicated way. So an affine connection is a covariant derivative, defined in
the tangent bundle, and acting on sections of the tangent bundle, which are
vector fields, or tensors. There can be many different affine connections.

An affine connection is said to be symmetric if Γα
βγ = Γα

γβ

When there is a metric (Riemannian or not) defined by a tensor g on a
manifold, an affine connection is said to be metric if ∇αg = 0 : it preserves the
scalar product of two vectors. With a metric, one can define a unique, metric,
symmetric connection, called the Levi-Civita connection. It reads (Maths.1626)
:
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Γα
βγ = 1

2

∑
η g

αη (∂βgγη + ∂γgβη − ∂ηgβγ)
And this has been the bread and butter of workers on GR for decenniums,

in a formalism where the metric is at the core of the model.

With a principal bundle, and a principal connection, one can define covariant
derivatives in any associated vector bundle, including of course the tangent bun-
dle to M. And it has all the properties of the usual covariant derivative of affine
connections. Connections on fiber bundles are a more general tool than usual
affine connections which are strictly limited to the tangent bundle. We have
seen that the connection G on PG induces a linear connection on PG

[
R4,Ad

]
,

which is nothing more than TM with an orthonormal basis, and a covariant
derivative ∇M with Christoffel symbol ΓM . By translating the orthonormal ba-
sis (εi)

3
i=0 into the holonomic basis (∂ξα)

3
α=0 of any chart using the tetrad, a

straightforward computation (Maths.2005) gives the Christoffel coefficients Γ̂γ
αβ

of the affine connection ΓM , expressed in the basis of the chart :

Γ̂γ
αβ = P γ

i

(
∂αP

′i
β + Γi

MαjP
′j
β

)

In matrix form :

Γ̂γ
αβ =

[
Γ̂α

]γ
β
,Γi

Mαj = [ΓMα]
i
j ,

[ΓMα] =
∑6

a=1Gaα [κa][
Γ̂α

]
= [P ] ([∂αP

′] + [ΓMα] [P
′]) ⇔ [ΓMα] =

(
[P ′]

[
Γ̂α

]
− [∂αP

′]
)
[P ]

with :
a=1,2,3 : [κa]

p
q =

∑3
bc=1 ǫ (a, b, c) δ

p
c δ

b
q

a=4,5,6 : ([κa])
p
q = δp0δ

a−3
q + δpa−3δ

0
q[

Γ̂α

]γ
β
= ([P ] [∂αP

′])γβ

+
∑3

a=1

(∑3
bc=1 ǫ (a, b, c)G

a
rα [P ]

γ
c [P

′]bβ +Ga
wα

(
[P ]

γ
0 [P

′]aβ + [P ]
γ
a [P

′]0β

))

Any affine connection deduced this way from a principal connection is nec-
essarily metric, but it is not necessarily symmetric.

To sum up :
- affine connections are defined in the strict framework of the tangent bundle,

and the Levi-Civita connection is one of these connections, with specific prop-
erties (it is metric and symmetric); the covariant derivative which is deduced
acts only on vectors fields (or tensors) of the tangent bundle.

- connections on principal bundle define connections on any associated vector
bundle and act on sections of these bundles. So one can compute a covariant
derivative acting on vectors fields of the tangent bundle, which is necessarily
metric but not necessarily symmetric.

So, using the formalism of fiber bundles we do not miss anything, we can
get the usual results, but in a more elegant and simple way. One can require
from the principal connection G on PG that the induced connection on TM
is symmetric, which will then be identical to the Levi-Civita connection. This
requests :

∀α, β, γ :
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[
Γ̂α

]γ
β
= ([P ] ([∂αP

′] + [ΓMα] [P
′]))γβ =

[
Γ̂β

]γ
α
= ([P ] ([∂βP

′] + [ΓMβ ] [P
′]))γα

which has no obvious meaning for ΓM .
Actually the Levi-Civita connection is traditionally used because it is the

natural mathematical choice when one starts from the metric. Moreover it is
assumed that the gravitational field (whose action goes through the connection)
acts symmetrically, in the meaning that it has no torsion (or no torque). But
actually this assumption has not been verified (which is difficult), and different
theories have been proposed, notably by Einstein and Cartan, which consider
connections with torsion, that is connections other than the Levi-Civita con-
nection. However, when starting from the metric, they lead mostly to more
complicated computations, in what is already a dreadful endeavour. In the
fiber bundle framework there is no such problem and actually it would be the
requirement of symmetry, always possible at any point, which would introduce
a complication. Moreover the introduction of spinors and the distinction of the
components Gr, Gw of the connection, are a more efficient way to deal with
rotation and torque, so it is justified that we keep the more general connection.
An additional argument is that the Levi-Civita connection does not make any
distinction between the bases, which can be induced by any chart. But, as we
have seen, there is always a privileged chart, that of the observer, and the use of
an orthogonal basis, in the fiber bundle formalism, is a useful reminder of this
feature.

7.6 The inertial observer

The states of the particles and the fields are linked, so to measure one we have
to know the other : to measure a charge one uses a known field, and to measure
a field one uses a known particle. This process requires actually two measures,
involving the motion of the particle, it is done locally and is represented by
the standard gauges : pG (m) = ϕG (m, 1) and the related holonomic bases
ei (m) = (pG (m) , ei) . The measures are done with respect to the standards
(represented by 1), which are arbitrary. For this reason the gauges and the
holonomic bases are not sections, just a specific choice done by the observer.
This is consistent with the principle of locality (the measures are done locally)
and the free will of the observer (he is not submitted himself to the laws of the
system).

However one can consider another kind of gauges, such that they do not
change on the travel of an observer on his world line. This seems more physical,
and in accordance with the common understanding of inertial observers : they
keep their gauges, in which they proceed to their measures, “constant”. However
the implementation then must account for the existence of external fields : the
observer keeps his free will (which is asserted by the fact that he adjusts his
gauge), but he is also submitted to the action of the fields, and notably to the
gravitational field.

The action of the fields is given by the covariant derivative of sections, so the
gauges of these observers are sections, and they change with the fields according
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to :
pG ∈ X (PG) : pG (m) = ϕG (m,σ (m)) : ∇G

ε0pG = 0
The world line of the observer is defined by ε0 (m) . The bases of the associ-

ated vector bundles PG

[
R4,Ad

]
, PG [E, γC] change :

εi (m) → ε̃i (m) = Adσ−1εi (m)
ei (m) → ẽi (m) = γC (σ) ei (m)

∇G
ε0pG = 0 ⇔ σ−1 · dσ

dt +Adσ−1υ
(
Ĝr, Ĝw

)
= 0 ⇔ dσ

dt = −υ
(
Ĝr, Ĝw

)
· σ

So the inertial gauges depend on the existing fields along the trajectory. In
the absence of any field one retrieves : σ = Ct and the standard gauge. This is
the usual meaning of inertial observers. As for now one cannot escape gravity,
inertial observers should follow trajectories such that their motion (through the
inertial forces) balance the gravitational field. As it changes slowly with location
it will require a constant acceleration, contrary to the common understanding
of the inertial observer7.

A great consideration is given, both in Newtonian Mechanics and Relativity,
to the inertial observers. The main motivation is that they allow the use of
“fixed” frames in affine space, and we have seen that this is the only way to do
it in SR. The formalism of fiber bundle seems abstract, but avoids this issue
: the concept of standard gauge relies on the fact that the measures of the
states of particles or of fields require the comparison with a known quantity
(the standard), in similar conditions. And actually, as often in Physics, it is
quite impossible to enshrine in the theories the conditions of the experiments.
Doing this would bring more confusion than rigor.

The same remark applies to a procedure common in electromagnetism or lin-
earized gravity. When facing a complicated mathematical relation it is tempting
to reduce it to a simpler form by calling to what is called gauge freedom. Actu-
ally this procedure uses the fact that the same quantity is expressed in different
forms according to the gauge (in the fiber bundle definition). So one can re-
place one by another, which is equivalent, and better looking. To have any
meaning this procedure shall follow the requirements of the change of gauge,
clearly stated in the fiber bundle formalism. But we have to keep in mind that
a change of gauge has a physical meaning, and an implication on the observer
who does the measures. A change of gauge can be physically unacceptable by
the constraints which would be imposed to the observer, and any experimental
proof which would ignore these requirements in its protocols would be non valid.

7An observer in the International Space Station can be considered as inertial, but obviously
he is submitted to an acceleration which balances Earth gravity.
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8 THE PROPAGATION OF FIELDS

We have noticed that Relativity obliges to dissociate the abstract representation
of the reality in its entirety, from the representation of the reality which can be
scientifically accessible to an observer : this is the true motivation for the use
of fiber bundles. It is more necessary when addressing the propagation of fields.
Fields are assumed to be defined everywhere, this is one of their key properties.
Have the fields a defined value everywhere, including in the future ? What is
the true meaning of their propagation, in a 4 dimensional Universe ? We have
to remind that the manifold M is just a container, and its physical content is not
frozen, it changes. So the propagation of a field is no more than the variation of
its value along any future oriented path. But if this image is clear for particles,
which have a definite path, it is less so for fields. Are there privileged paths
for their propagation ? There is no simple answer to this question. We need
to refer to one of our basic assumptions : the representation of the physical
world depends on the observer. The observer has a privileged path, given by his
velocity and represented by the vector ε0(m). This vector plays a fundamental
role in the understanding of the propagation of fields. For any observer his own
vector ε0(m) is the direction of the propagation of the fields. There is no other
way to define it, practically, that is in a way which is accessible to measures.
So the propagation of fields is observer dependant. As a consequence one can
prove (MP 7.1.2) that in the vacuum the field propagates at the speed of light8,
whatever the observer.

The variation of the field is measured by a derivative, and as the fields are
characterized by their potential, we need a derivative of the potentials G. This is
the strength of the field, a 2 form F on M, which is logical because the potentials
are themselves one form. However F as well as the potential is valued in the
Lie algebra. If we want to underline the role played by the observer, both in
the definition of ε0 and of holonomic bases in the Lie algebras, it is necessary to
put in concordance the mathematical definitions. From this point of view the
potential is not the good choice : it is only a map, which changes according to
a strange rule in a change of gauge. So the key role in the propagation of the
fields will be given to F .

8.1 The strength of the connection

8.1.1 Definition

The potential is a one form over M, so its derivative will be a two form. There are
several mathematical objects which can be considered, related to the curvature
of the connection (Maths.27.1.4), but for principal connections the strength of
the connection is the most pertinent. This is a 2-form F on M valued in the
Lie algebra (Maths.2194), which can be seen as the exterior covariant derivative
of the potential and is a good estimate of its rate of change.

8In the vacuum. The propagation of light in any medium is a process which involves the
interaction of the field with the particles of the medium.
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The strength of the connection is a two form on M valued in the Lie algebra
T1Spin(3, 1) which reads with the basis (−→κ a)

6
a=1 :

FG =
∑6

a=1

(
dGa +

∑3
αβ=0 [Gα,Gβ ]

a dξα ∧ dξβ
)
⊗−→κ a

where d is the exterior differential on TM and [] is the bracket in T1Spin(3, 1).
9

FG =

6∑

a=1

3∑

α,β=0

Fa
Gαβdξ

α ∧ dξβ ⊗−→κ a (107)

Fa
Gαβ =

∑6
a=1

∑3
α,β=0

(
∂αG

a
β − ∂βG

a
α + [Gα, Gβ ]

a
)
dξα ∧ dξβ ⊗−→κ a

Or equivalently :

FG = d
(∑3

α=0 υ (Grα, Gwα) dξ
α
)
+
∑3

αβ=0 [υ (Grα, Gwα) , υ (Grβ , Gwβ)] dξ
α∧

dξβ

We can distinguish the two parts, Fr,Fw :

FG =
∑

α,β

υ (Frαβ,Fwαβ) dξ
α ∧ dξβ (108)

and we have :
a = 1,2,3 : Fa

Gαβ = Fa
rαβ

a = 4,5,6 : Fa
Gαβ = Fa

wαβ

with the signature (3,1) :
[υ (r, w) , υ (r′, w′)] = υ (j (r) r′ − j (w)w′, j (w) r′ + j (r)w′)
[Gα, Gβ ] = [υ (Grα, Gwα) , υ (Grβ , Gwβ)]
= υ (j (Grα)Grβ − j (Gwα)Gwβ, j (Gwα)Grβ + j (Grα)Gwβ)

Frαβ = υ

(
∂Grβ

∂ξα
− ∂Grα

∂ξβ
+ j (Grα)Grβ − j (Gwα)Gwβ, 0

)
(109)

Fwαβ = υ

(
0,
∂Gwβ

∂ξα
− ∂Gwα

∂ξβ
+ j (Gwα)Grβ + j (Grα)Gwβ

)
(110)

With the signature (1,3):
[υ (r, w) , υ (r′, w′)] = −υ (j (r) r′ − j (w)w′, j (w) r′ + j (r)w′)
[Gα, Gβ ]
= − (υ (j (Grα)Grβ − j (Gwα)Gwβ , j (Gwα)Grβ + j (Grα)Gwβ))

Frαβ = −υ
(
∂Grβ

∂ξα
− ∂Grα

∂ξβ
+ j (Grα)Grβ − j (Gwα)Gwβ, 0

)
(111)

Fwαβ = −υ
(
0,
∂Gwβ

∂ξα
− ∂Gwα

∂ξβ
+ j (Gwα)Grβ + j (Grα)Gwβ

)
(112)

9The notations and conventions for r forms vary according to the authors and if the indices
are ordered or not. On this see Maths.1525,1529.
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Notice that the indices α, β are not ordered, that it involves only the principal
bundle, and not the associated vector bundles, and is valued in a fixed vector
space.

FG can be written in the matrix form of so(3, 1), using −→κ a → [κa] :

[FGαβ] =
6∑

a=1

Fa
Gαβ [κa] = [K (Fwαβ)] + [J (Frαβ)] (113)

[Fαβ ] =




0 F1
wαβ F2

wαβ F3
wαβ

F1
wαβ 0 −F3

rαβ F2
rαβ

F2
wαβ F3

rαβ 0 −F1
αβ

F3
wαβ −F2

rαβ F1
rαβ 0


 =

[
0 Fwαβ

Fwαβ j (Frαβ)

]

which underlines the rotational feature of the component Fr, and the transver-
sal aspect of the component Fw.

With :

ΓMα = [K (Gwα)] + [J (Grα)] =




0 G1
wα G2

wα G3
wα

G1
wα 0 −G3

rα G2
rα

G2
wα G3

rα 0 −G1
α

G3
wα −G2

rα G1
rα 0




=

[
0 Gwα

Gwα j (Grα)

]

[Fαβ ] = [∂αΓMβ ]− [∂βΓMα] + [ΓMα] [ΓMβ ]− [ΓMβ ] [ΓMα] (114)

8.1.2 Adjoint bundle

The strength of the connection is a map valued in the Lie algebra, that is a
fixed vector space. We have seen above how the potential changes in a change
of gauge. In a change of gauge on the principal bundle the strength changes as :

pG (m) = ϕG (m, 1) → p̃G (m) = pG (m) · s (m)
−1

: (115)

FGαβ → F̃Gαβ (m) = Ads(m)FGαβ (116)

υ
(
F̃rαβ, F̃wαβ

)
= Ads(m)υ (Frαβ,Fwαβ)

This feature allows to consider the strength as section of the adjoint bun-
dle, which is defined as the associated vector bundle

PG [T1Spin(3, 1),Ad] using the representation of the groups on their Lie
algebra through the adjoint map (Ad on T1Spin(3, 1) is identical to Ad). This
gives a more geometrical meaning to the concept, and these relations are crucial
in the definition of the lagrangian.

Electromagnetic field The strength of the electromagnetic field is a 2 form
valued in R : FA ∈ Λ2 (M ;R) .
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Because the Lie algebra is abelian the bracket is null and : FA = dÀ which
gives the first Maxwell’s law : dFA = 0.

In a change of gauge : FAαβ → F̃Aαβ (m) = Adκ(m)FAαβ = FAαβ . The
strength of the EM field is invariant in a change of gauge.

8.2 Scalar curvature

The strength of the potential is a general object, which is related to the different
concepts of curvature used in the theory of connections. It involves only the
principal bundle, and not the associated vector bundles. However in GR another
definition of curvature is commonly used, and it is necessary to see how these
concepts are related.

8.2.1 Riemann curvature of a principal connection

A connection on a principal bundle leads to the definition of a quantity, called
Riemann curvature, on any associated vector bundle, through a path which
involves exterior covariant derivatives (Maths.2203). The result is a two-form
on M, valued in the endomorphisms on the vector space, which in the case of
PG

[
R4,Ad

]
is expressed by the 4 order tensor :

R =
∑

{αβ}ij R
i
αβjdξ

α ∧ dξβ ⊗ εi (m)⊗ εj (m) with the dual basis εj (m)

Ri
αβj = ∂αΓ

i
Mβj − ∂βΓ

i
Mαj +

∑3
k=0

(
Γi
MαkΓ

k
Mβj − Γi

MβkΓ
k
Mαj

)

In matrix form (see above) :

[Rαβ ]
i
j = ([∂αΓMβ ]− [∂βΓMα] + [ΓMα] [ΓMβ ]− [ΓMβ ] [ΓMα])

i
j = [Fαβ ]

i
j

R =
∑

{αβ}ij [Fαβ ]
i
j dξ

α ∧ dξβ ⊗ εi (m)⊗ εj (m)

The Riemann curvature is the image of the strength of the field on PG

[
R4,Ad

]
.

This is the same quantity, but in the representation of T1Spin (3, 1) in the matrix
algebra so (3, 1) .

By construct this quantity is covariant (in a change of chart on M) and
equivariant (in a change of gauge on PG) :

In a change of gauge :
pG (m) = ϕG (m, 1) → p̃G (m) = pG (m) · s (m)

−1
:

[Fαβ ]
i
j →

∑3
kl=0 [h (s)]

i
k [Fαβ]

k
l

[
h
(
s−1
)]l

j

with [h (s)] the matrix of SO(3, 1) associated to s ∈ Spin(3, 1)

R → R̃ =
∑

{αβ}ij

[
F̃αβ

]i
j
dξα ∧ dξβ ⊗ ε̃i (m)⊗ ε̃j (m)

=
∑

{αβ}ij [h (s)]
i
k [Fαβ]

k
l

[
h
(
s−1
)]l

j
dξα∧dξβ⊗

[
h
(
s−1
)]p

i
εp (m)⊗[h (s)]

j
q ε

q (m)

=
∑

{αβ}ij [Fαβ]
p
q dξ

α ∧ dξβ ⊗ εp (m)⊗ εq (m)

so R̃ = R
It can be expressed in the holonomic basis of any chart on M using the tetrad

:
εi (m) =

∑3
γ=0 P

γ
i ∂ξγ

εj (m) =
∑3

η=0 P
′j
η dξ

η
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R =
∑

{αβ}γη ([P ] [FGαβ] [P
′])γη dξ

α ∧ dξβ ⊗ ∂ξγ ⊗ dξη

So we have the steps :
Principal connectionG →Riemann curvatureR on PG

[
R4,Ad

]
→ Riemann

curvature R on TM in any chart
and the Riemann curvature R on TM is the same object as the strength of

the connection F , but expressed in matrix form in any holonomic basis of a
chart.

8.2.2 Riemann tensor of an affine connection

With a common affine connection Γ̂α on TM one can also define similarly a
Riemann tensor (Maths.1543) :

R̂ =
∑

{αβ}
∑

γη R̂
γ
αβηdξ

α ∧ dξβ ⊗ ∂ξγ ⊗ dξη

which, expressed in matrix form with : R̂γ
αβη =

[
R̂αβ

]γ
η
, reads :

[
R̂αβ

]
=
[
∂αΓ̂β

]
−
[
∂βΓ̂α

]
+
[
Γ̂α

] [
Γ̂β

]
−
[
Γ̂β

] [
Γ̂α

]

R̂ =
∑

{αβ}
∑

γη R̂
γ
αβηdξ

α ∧ dξβ ⊗ ∂ξγ ⊗ dξη

When we take as affine connection the one which is deduced from G :

Γ̂γ
αβ =

[
Γ̂α

]γ
β
= ([P ] ([∂αP

′] + [ΓMα] [P
′]))γβ

we get the same result :

[
R̂αβ

]
= [Rαβ ] = [P ] [FGαβ ] [P

′] ⇔ [FGαβ] = [P ′] [Rαβ ] [P ] (117)

Proof.
[
R̂αβ

]

= [∂αP ] [∂βP
′] + [∂αP ] [ΓMβ ] [P

′] + [P ]
[
∂2βαP

′
]
+ [P ] [∂αΓMβ ] [P

′]

+ [P ] [ΓMβ ] [∂αP
′]− [∂βP ] [∂αP

′]− [∂βP ] [ΓMα] [P
′]− [P ]

[
∂2αβP

′
]

− [P ] [∂βΓMα] [P
′]− [P ] [ΓMα] [∂βP

′] + [P ] [∂αP
′] [P ] [∂βP ′]

+ [P ] [ΓMα] [P
′] [P ] [∂βP ′] + [P ] [∂αP

′] [P ] [ΓMβ ] [P
′]

+ [P ] [ΓMα] [P
′] [P ] [ΓMβ ] [P

′]− [P ] [∂βP
′] [P ] [∂αP ′]

− [P ] [ΓMβ ] [P
′] [P ] [∂αP ′]− [P ] [∂βP

′] [P ] [ΓMα] [P
′]

− [P ] [ΓMβ ] [P
′] [P ] [ΓMα] [P

′]
= + [P ] ([∂αΓMβ ]− [∂βΓMα] + [ΓGα] [ΓMβ ]− [ΓMβ ] [ΓMα]) [P

′]
+ [∂αP ] [∂βP

′]− [∂βP ] [∂αP
′] + [P ] [∂αP

′] [P ] [∂βP ′]
− [P ] [∂βP

′] [P ] [∂αP ′] + [∂αP ] [ΓMβ ] [P
′]− [∂βP ] [ΓMα] [P

′]
+ [P ] [ΓMβ ] [∂αP

′]− [P ] [ΓMα] [∂βP
′] + [P ] [ΓMα] [∂βP

′]
− [P ] [ΓMβ ] [∂αP

′] + [P ] [∂αP
′] [P ] [ΓMβ ] [P

′]− [P ] [∂βP
′] [P ] [ΓMα] [P

′]
= [P ] [FGαβ] [P

′] + [∂αP ] [∂βP
′]− [∂βP ] [∂αP

′]
− [∂αP ] [P

′] [P ] [∂βP ′] + [∂βP ] [P
′] [P ] [∂αP ′] + [∂αP ] [ΓMβ ] [P

′]
− [∂βP ] [ΓMα] [P

′] + [P ] [ΓMβ ] [∂αP
′]− [P ] [ΓMα] [∂βP

′] + [P ] [ΓMα] [∂βP
′]

− [P ] [ΓMβ ] [∂αP
′]− [∂αP ] [P

′] [P ] [ΓMβ ] [P
′] + [∂βP ] [P

′] [P ] [ΓMα] [P
′]

= [P ] [FGαβ] [P
′]

with [P ] [∂αP
′] + [∂αP ] [P

′] = 0
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So the Riemann tensor is the Riemann curvature of the principal connection,
expressed in the holonomic basis of a chart, and it is the same object as the
strength of the connection.

The Riemann tensor can be computed with any affine connection, as well as
with any principal connection. In the usual RG formalism the Riemann tensor
is computed with a special connection : the Levy-Civita connection.

The Riemann tensor is antisymmetric, in the meaning :
R̂αβγη = −R̂αβηγ with R̂αβγη =

∑
λ R̂

λ
αβγgλη

[FGαβ ] ∈ so (3, 1) so [η] [FGαβ ] + [FGαβ ]
t
[η] = 0 and

R̂αβγη =
∑

λ R̂
λ
αβγgλη =

∑
λ ([P ] [FGαβ ] [P

′])λγ gλη =
(
[P ′]t [η] [FGαβ] [P

′]
)η
γ

=

((
[P ′]t [η] [FGαβ] [P

′]
)t)γ

η

=
(
[P ′]t [FGαβ]

t [η] [P ′]
)γ
η

= −
(
[P ′]t [η] [FGαβ ] [P

′]
)γ
η
= −R̂αβηγ

Thus this symmetry is not specific to the Lévi-Civita connection as it is
usually assumed (Wald p.39).

8.2.3 Ricci tensor and scalar curvature

The Riemann tensor R̂, coming from any connection, is a 2 form but can be
expressed as an antisymmetric tensor with non ordered indices :

R̂ =
∑

αβγη

[
R̂αβ

]γ
η
dξα ⊗ dξβ ⊗ ∂ξγ ⊗ dξη

and we can contract the covariant index α, β or η with the contravariant
index γ . The result does not depend on a basis : it is covariant (Maths.385).
The different solutions give :

α :
∑

βη

(∑
α

[
R̂αβ

]α
η

)
dξβ ⊗ dξη

β :
∑

αη

(∑
β

[
R̂αβ

]β
η

)
dξα ⊗ dξη

η :
∑

αη

(∑
γ

[
R̂αβ

]γ
γ

)
dξα ⊗ dξβ

The last solution has no interest because :
Tr ([P ] [FGαβ] [P

′]) = Tr ([FGαβ ] [P
′] [P ]) = Tr ([FGαβ]) = 0

The first two read :∑
βγ [P ]

α
k [FGαβ]

k
l [P

′]lη [P ]
β
i ε

i ⊗ [P ]
η
j ε

j =
∑

βγ [P ]
α
k [FGαβ]

k
j [P ]

β
i ε

i ⊗ εj =∑
αβj ([P ] [FGαβ])

α
j dξ

β ⊗ εj
∑

αγ [P ]
β
k [FGαβ]

k
l [P

′]lη [P ]
α
i ε

i ⊗ [P ]
η
j ε

j =
∑

αγ [P ]
β
k [FGαβ ]

k
j [P ]

α
i ε

i ⊗ εj =
∑

βγ ([P ] [FGαβ])
β
j dξ

α ⊗ εj

The Ricci tensor is the contraction on the two indices γ, β of R̂ :

Ric =
∑

αη Ricαηdξ
α ⊗ dξη =

∑
αη

(∑
β

[
R̂αβ

]β
η

)
dξα ⊗ dξη
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This is a tensor, from which one can compute another tensor by lowering
the last index:∑

λ g
ηλRicαηdξ

α ⊗ dξη =
∑

αλRic
λ
αdξ

α ⊗ ∂ξλ
and the contraction (called the trace of this tensor) provides the scalar

curvature :

R =
∑

α Ricαα =
∑

αβη g
αη
[
R̂αβ

]β
η

The same procedure applied to the contraction on the two indices γ, α of R̂
gives the opposite scalar :

R =
∑

αβη g
βη
[
R̂αβ

]α
η
= −∑αβη g

αη
[
R̂βα

]β
η
= −∑αβη g

αη
[
R̂αβ

]β
η

This manipulation is mathematically valid, and provides a unique scalar,
which does not depend on a chart, and can be used in a lagrangian. However
its physical justification (see Wald) is weak.

In the usual GR formalism the scalar curvature is computed with the Rie-
mann tensor deduced from the Levy-Civita connection but, as we can see, it
can be computed with any principal connection. Starting from [P ] [FGαβ] [P

′] =[
F̂Gαβ

]
one gets :

R =
∑

αβη g
αη ([P ] [FGαβ ] [P

′])βη and with [g]
−1

= [P ] [η] [P ]
t

R =
∑

αβη ([P ] [FGαβ] [P
′])βη

[
g−1

]η
α
=
∑

αβ

(
[P ] [FGαβ ] [P

′] [P ] [η] [P ]t
)β
α

R =
∑

αβ

(
[P ] [FGαβ] [η] [P ]

t
)β
α

(118)

The computation of the scalar curvature gives ::

R =
∑6

a=1

∑
αβ Fa

Gαβ

(
[P ] [κa] [η] [P ]

t
)β
α

For a = 1,2,3 : [κa] [η] = [κa]

[κa]
p
q =

∑3
bc=1 ǫ (a, b, c) δ

p
c δ

b
q(

[P ] [κa] [η] [P ]
t
)β
α
=
∑3

p,q=1 ǫ (a, q, p) [P ]
β
p [P ]

α
q

∑3
a=1

∑
αβ Fa

Gαβ

(
[P ] [κa] [η] [P ]

t
)β
α
=
∑3

a=1

∑
αβ Fa

rαβ

∑3
p,q=1 ǫ (a, q, p) [P ]

β
p [P ]

α
q

For a = 4,5,6 :
([κa] [η])

p
q = δp0δ

a−3
q − δpa−3δ

0
q(

[P ] [κa] [η] [P ]
t
)β
α
= [P ]

β
0 [P ]

α
a−3 − [P ]

β
a−3 [P ]

α
0

∑6
a=4

∑
αβ Fa

Gαβ

(
[P ] [κa] [η] [P ]

t
)β
α
=
∑3

a=1

∑
αβ Fa

wαβ

(
[P ]

β
0 [P ]

α
a − [P ]

β
a [P ]

α
0

)

Thus :

R =

3∑

a=1

∑

αβ

(
Fa

wαβ

(
[P ]

β
0 [P ]

α
a − [P ]

β
a [P ]

α
0

)
+ Fa

rαβ

3∑

p,q=1

ǫ (a, q, p) [P ]
β
p [P ]

α
q

)

(119)
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which reads in a geometric way :

R =
∑3

a=1

(
Fa

w (εa, ε0) +
∑3

p,q=1 ǫ (a, q, p)Fa
r (εq, εp)

)

In the standard chart with : [P ]
α
0 = δα0

R =
∑3

a=1

∑
αβ

(
Fa

wαβ

(
δβ0 [P ]

α
a − [P ]

β
a δ

α
0

)
+ Fa

rαβ

∑3
p,q=1 ǫ (a, q, p) [P ]

β
p [P ]

α
q

)

= 2
∑

α<β{
∑3

a=1 Fa
Gαβ

∑3
p,q=1 ǫ (a, q, p) [P ]

β
p [P ]

α
q

+
∑6

a=4 Fa
Gαβ

(
[P ]

β
0 [P ]

α
a−3 − [P ]

β
a−3 [P ]

α
0

)
}

This expression has two important features :
- the scalar curvature is linear with respect to the strength of the field.

In the implementation of the Principle of Least Action it provides equations
which are linear with respect to FG, which is a big improvement from the usual
computations.

- it shows that the scalar curvature has a transversal component and a rota-
tional component. This happens for any scalar curvature, but is just masked in
the usual expression through the metric. This feature is not without significance,
as it is related to the distinction between the space and the time Universe.

To sum up, with the fiber bundle and connections formalism it is possible to
compute, more easily, a scalar curvature which has the usual meaning. And by
imposing symmetry to the affine connection we get exactly the same quantity.
However, as we have seen before, the symmetry of the connection has no obvious
physical meaning, and similarly for the scalar curvature. So, in the following, we
will stay with the strength of the connection, which gives a good representation
of the propagation of the field, and puts gravitation in the same footing as the
other fields.
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9 THE RELATIVIST MOMENTUM OF THE

GRAVITATIONAL FIELD

9.1 Polarization of the fields

Polarization of light is a concept familiar to Physicists, and can be easily ob-
served. It has a deeper meaning, related to the fact that the vector ∂ξ0 is the
only privileged direction for the propagation of the field with respect to the
observer.

With singling out dξ0, any two form read :
F = FR + FW

with :
FR = 2

(
F32dξ

3 ∧ dξ2 + F13dξ
1 ∧ dξ3 + F21dξ

2 ∧ dξ1
)

FW = 2
(
F01dξ

0 ∧ dξ1 + F02dξ
0 ∧ dξ2 + F03dξ

0 ∧ dξ3
)

(the 2 accounting for the symmetric part)
The action of these two forms on vectors is :
FW

(∑3
α=0 u

α∂ξα

)
= −2u0

(
F01dξ

1 + F02dξ
2 + F03dξ

3
)

+2
(
F01u

1 + F02u
2 + F03u

3
)
dξ0

FR

(
u0∂ξ0

)
= 0

FR

(∑3
α=0 u

α∂ξα

)
= −∑3

α=1

[
j
(
F32dξ

1 + F13dξ
2 + F21dξ

3
)
u
]
α
dξα

so the action of Fa
R can be seen as a rotation in the physical space by the

vector FR.
This decomposition seems a bit formal, however for the EM field this is

exactly the decomposition in electric field (FW ) and magnetic field (FR). It
characterizes the polarization of the field in the direction given by the vector
ε0 = ∂ξ0 which characterizes the observer. And we see that it can be extended
to any field, separately for each component Fa. The decomposition into the
components FR,FW depends on the chart. For instance the decomposition of
the EM field in electric and magnetic field depends on the observer. But we can
go further in exploring this decomposition.

F is formally defined as a 2 form, that is with respect to any chart, in
one hand, and is valued in the adjoint bundle, that is with respect to a gauge
provided by PG on the other hand. The privileged direction ∂ξ0 = ε0 is masked
in the anonymity of the labels in a banalized chart. But there is no such banal
chart in Relativity : a chart is always linked to an observer, and each observer
has a privileged orientation, that of its future. To put the matter right it is
necessary to express F in a basis which varies with the observer in a consistent
and clear way. It is possible to do this, first by expressing the two forms in the
orthonormal basis, then by expressing it in a unique vector bundle.

9.2 From the holonomic basis of a chart to the orthonor-

mal basis

Any scalar two form on M can be expressed in the dual basis
(
εi (m)

)3
i=0

:
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F =
∑3

αβ=0Fαβdξ
α ∧ dξβ =

∑3
ij=0 Fijε

i (m) ∧ εj (m)
This is a classic change of basis with :
εi (m) =

∑3
i=0 P

′i
α dξ

α ⇔ dξα =
∑3

i=0 P
α
i ε

i (m)

Fij =

3∑

αβ=0

FαβP
α
i P

β
j ⇔ Fαβ =

3∑

ij=0

FijP
′i
αP

′j
β (120)

In the Special Relativity context the components Fij are the components of
the field, measured in an inertial orthonormal frame, so all usual formulas in this

context can be transposed in curved space time by using the frame
(
εi (m)

)3
i=0

.

9.3 The dual Clifford bundle

The Clifford bundle Cl (TM) is defined through the basis (εi (m))
3
i=0 . In a

change of gauge on PG :
p (m) = ϕG (m, 1) → p̃ (m) = p (m) · χ (m)

−1

The holonomic basis of PG

[
R4,Ad

]
changes as :

εi (m) = (p (m) , εi) → ε̃i (m) = χ (m)−1 · εi (m) · χ (m)
and the Clifford product of vectors as :
εi1 (m) ·εi2 (m) · ... ·εip (m) → ε̃i (m) · ... · ε̃ip (m) = χ (m)

−1 ·εi1 (m) ·εi2 (m) ·
... · εip (m) · χ (m)

that is :
ε̃i (m) · ... · ε̃ip (m) = Adχ(m)−1εi1 (m) · ... · εip (m)

and the components of an element ofCl (TM) in the holonomic basis (εi (m))
3
i=0

as
w̃i1...ip = [Ad]

i1
j1
... [Ad]

ip
jp
wj1...jp

so Cl (TM) ≡ PG [Cl (3, 1) ,Ad]
The Clifford algebra built on covectors : εi in R4 with the bisymmetric

linear form of same signature is isomorphic to the Clifford algebras that we
have denoted Cl(3, 1) or Cl(1, 3) : this is just the replacement of εi by the
dual εi. Notice that εi (εj) = δij and not ηij . We will denote them Cl(3, 1)∗ or
Cl(1, 3)∗.

The Clifford bundle Cl (TM∗) is the associated vector bundle defined through

the basis
(
εi (m)

)3
i=0

. In a change of gauge on PG the holonomic basis changes
as :

εi (m) =
(
p (m) , εi

)
→ ε̃i (m) = χ (m) · εi (m) · χ (m)−1

the elements of Cl(TM∗) transform as :
εi1 (m) ... · εip (m) → ε̃i1 (m) · ...ε̃ip (m) = Adχ(m)ε

i1 (m) ... · εip (m)
and the components of an element of Cl (TM∗) in the holonomic basis(

εi (m)
)3
i=0

as

w̃i1..ip = [Ad]
j1
i1
... [Ad]

jp
ip
wj1...jp

So we will denote this associated vector bundle PG

[
Cl (3, 1)

∗
,Ad−1

]
.
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There are a Spin group Spin (3, 1)
∗
and its Spin algebra T1Spin (3, 1)

∗
de-

fined in PG

[
Cl (3, 1)

∗
,Ad−1

]
and we denote the basis of T1Spin (3, 1)

∗ 10 :
−→κ 1 = 1

2ε
3 · ε2,−→κ 2 = 1

2ε
1 · ε3,−→κ 3 = 1

2ε
2 · ε1,

−→κ 4 = 1
2ε

0 · ε1,−→κ 5 = 1
2ε

0 · ε2,−→κ 6 = 1
2ε

0 · ε2

9.4 2 forms expressed in the Clifford bundle

The algebra ⊕4
r=0ΛrTM

∗ of forms on M is isomorphic (as vector space, the
isomorphism does not extend to the product) to the Clifford algebra Cl(TM∗).
This isomorphism is defined through any orthonormal basis.

 : ΛTM∗ → Cl (TM∗) : 
(
εi1 ∧ ... ∧ εip

)
= εi1 · ... · εip (121)

Then we can associate, by the isomorphism  the 2 form
∑3

ij=0 Fijε
i (m) ∧

εj (m) to the element of the dual Clifford bundle Cl (TM∗) :

 (F) =

3∑

ij=0

Fijε
i (m) · εj (m) (122)

It reads :
 (F) = 2

(
F32ε

3 · ε2 + F13ε
1 · ε3 + F21ε

2 · ε1 + F01ε
0 · ε1 + F02ε

0 · ε2 + F03ε
0 · ε3

)

With the decomposition :
FR = 2

(
F32ε

3 ∧ ε2 + F13ε
1 ∧ ε3 + F21ε

2 ∧ ε1
)

FW = 2
(
F01ε

0 ∧ ε1 + F02ε
0 ∧ ε2 + F03ε

0 ∧ ε3
)

and υ∗ (FR, FW )
= 1

2

(
F32ε

3 · ε2 + F13ε
1 · ε3 + F21ε

2 · ε1 + F01ε
0 · ε1 + F02ε

0 · ε2 + F03ε
0 · ε3

)

 (F) = 4υ∗ ((F32, F13, F21) , (F01, F02, F03)) = 4υ∗ (FR, FW ) (123)

In the basis −→κ a :  (F) =
∑6

a=1 [ (F)]a
−→κ a

That we can sum in the formula :
{[ (F)]a}

6
a=1 = 4

∑3
αβ=0 Fαβ

{
Pα
3 P

β
2 , P

α
1 P

β
3 , P

α
2 P

β
1 , P

α
0 P

β
1 , P

α
0 P

β
2 , P

α
0 P

β
3

}

The isomorphism uses the bases of TmM
∗ and PG

[
R4,Ad

]
. We need to

check how  (F) behaves in a change of gauge or chart.
In a change of chart on M, the variables change as :
Pα
i → P̃α

i =
∑

λ J
α
λ P

λ
i

Fαβ → F̃αβ =
∑

γηK
γ
αK

η
βFγη

with the jacobian : J =
[
Jα
β

]
=
[
∂ξ̃α

∂ξβ

]
and K = J−1

[̃ (F)]a =
∑3

αβ=0 F̃αβ

{
P̃α
3 P̃

β
2 , P̃

α
1 P̃

β
3 , P̃

α
2 P̃

β
1 , P̃

α
0 P̃

β
1 , P̃

α
0 P̃

β
2 , P̃

α
0 P̃

β
3

}

[̃ (F)]a =
∑3

αβ=0

∑
γηK

γ
αK

η
βFγη

∑
λµ J

α
λ J

β
µ

{
Pλ
3 P

µ
2 , P

λ
1 P

µ
3 , P

λ
2 P

µ
1 , P

λ
0 P

µ
1 , P

λ
0 P

µ
2 , P

λ
0 P

µ
3

}

10Notice that this is the basis of the subset T1Spin(3, 1)∗ of Cl (M∗) and not the basis of
the vector space dual of T1Spin(3, 1).
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[̃ (F)]a =
∑3

λµ=0 Fλµ

{
Pλ
3 P

µ
2 , P

λ
1 P

µ
3 , P

λ
2 P

µ
1 , P

λ
0 P

µ
1 , P

λ
0 P

µ
2 , P

λ
0 P

µ
3

}

[̃ (F)]a = [ (F)]a
So  (F) is invariant in a change of chart on M.

9.5 Strength of the gravitational field in the Clifford al-

gebras

The field is valued in the Lie algebras. The corresponding quantities read :
 (FG) =

∑6
a=1

∑3
αβ=0 Fa

GαβP
α
i P

β
j ε

i ⊗ εj ⊗−→κ a

=
∑6

a=1

∑3
αβ=0 υ (Frαβ,Fwαβ)P

α
i P

β
j ε

i ⊗ εj

 (FG) (m) =

6∑

a,b=1

[ (FG)]
a
b
−→κ b (m)⊗−→κ a (m) (124)

F a
rij =

∑3
αβ=0 Fa

rαβP
α
i P

β
j

F a
wij =

∑3
αβ=0 Fa

wαβP
α
i P

β
j

 (FG) = 2{υ (Fr32, Fw32) ε
3 · ε2 + υ (Fr13, Fw13) ε

1 · ε3 + υ (Fr21, Fw21) ε
2 · ε1

+υ (Fr01, Fw01) ε
0 · ε1 + υ (Fr02, Fw02) ε

0 · ε2 + υ (Fr03, Fw03) ε
0 · ε3}

Expressed with the 6× 6 matrix [ (Fa
G)]

a=1,2,3 : [ (FG)]
a
1 = 4F a

r32; [ (FG)]
a
2 = 4F a

r13; [ (FG)]
a
3 = 4F a

r21; [ (FG)]
a
4 =

4F a
r01; [ (FG)]

a
5 = 4F a

r02; [ (FG)]
a
6 = 4F a

r03

a=4,5,6 :[ (FG)]
a
1 = 4F a

w32; [ (FG)]
a
2 = 4F a

w13; [ (FG)]
a
3 = 4F a

w21; [ (FG)]
a
4 =

4F a
w01; [ (FG)]

a
5 = 4F a

w02; [ (FG)]
a
6 = 4F a

w03

In a change of gauge on the principal bundle PG : pG (m) = ϕG (m, 1) →
p̃G (m) = pG (m)·χ (m)−1 the holonomic basis becomes with χ (m) ∈ Spin (3, 1)

−→κ b → −̃→κ b = Adχ
−→κ b notice that this is a 6×6 matrix forAdχ : T1Spin (3, 1) →

T1Spin (3, 1)−→κ a → Adχ−1
−→κ a

 (FG) (m) =
∑6

a,b=1 [ (FG)]
a
b
−→κ b ⊗−→κ a =

∑6
a,b=1

˜[ (FG)]
a

b
−̃→κ b ⊗ −̃→κ a

=
∑6

a,b=1
˜[ (FG)]

a

bAdχ
−→κ b ⊗Adχ−1

−→κ a

=
∑6

a,bcd=1
˜[ (FG)]

a

b [Adχ]
b
d
−→κ d ⊗

[
Adχ−1

]c
a
−→κ c

[ (FG)] =
[
Adχ−1

]
˜[ (FG)] [Adχ]

˜[ (FG)] = [Adχ] [ (FG)]
[
Adχ−1

]
(125)

(
T1Spin (3, 1)

∗ ⊗ T1Spin (3, 1) ,Ad−1 ×Ad
)
is a representation of Spin (3, 1)

PG

[
T1Spin (3, 1)

∗ ⊗ T1Spin (3, 1) ,Ad−1 ×Ad
]
is an associated vector bun-

dle
The fields are defined everywhere, and we can associate to FG the section

 (FG) of the associated bundle :
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(p (m) ,  (FG)) ∼
(
p (m) · χ−1, [Adχ] [ (FG)]

[
Adχ−1

])

 (FG) is a tensor : it has an intrinsic existence, independent of any chart
or gauge, and its measure changes, in a change of gauge on PG, in a clear and
unified way, with respect to the observer. It involves only the strength of the
field, as expected, and as the potentials cannot figure explicitly in a lagrangian,
this is consistent. And we state :

Proposition 54 The relativist momentum density of the gravitational

field is represented as a section of the associated vector bundle :

 (FG) ∈ X
(
PG

[
T1Spin (3, 1)

∗ ⊗ T1Spin (3, 1) ,Ad−1 ×Ad
])
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10 ENERGY OF THEGRAVITATIONAL FIELD

It is intuitive that Force fields carry energy. Because fields are present every-
where, it will be a density, valued at any point and related to the volume form
̟4. It should be a quantity which changes in a consistent way with the observer.
And, as for particles, it would be logical if it involves a scalar product of the
relativist momentum. We could do it from the expression above, but it is more
illuminating to proceed from the expression in any chart, as it leads to introduce
useful tools. There are two vector spaces involved : the tangent space of 2 forms
with the holonomic basis of a chart, and the Lie algebra. So we need to address
successively both spaces.

10.1 Scalar product of forms over M

There is a scalar product Gr on the space ΛrM of scalar r forms computed with
the metric g (Maths.1611). This is a bilinear symmetric form, which does not
depend on a chart, is non degenerate and definite positive if g is Riemannian.

The Hodge dual ∗λ of a r form λ is a 4− r form (Maths.1613) such that :
∀µ ∈ Λr (M) : µ ∧ ∗λ = Gr (µ, λ)̟4

The Hodge dual ∗F of a scalar 2-form F ∈ Λ2M is a 2 form whose expression,
with the Lorentz metric, is simple when a specific ordering is used, which have
been used before about the polarization of the fields :

F = FR + FW with
FR = 2

(
F32dξ

3 ∧ dξ2 + F13dξ
1 ∧ dξ3 + F21dξ

2 ∧ dξ1
)

FW = 2
(
F01dξ

0 ∧ dξ1 + F02dξ
0 ∧ dξ2 + F03dξ

0 ∧ dξ3
)

(the 2 accounting for the symmetric part)
By raising the indices with g we get :
Fαβ =

∑
λµ g

αλgβµFλµ

∗F = ∗FR + ∗FW

∗FR = 2
(
F01dξ3 ∧ dξ2 + F02dξ1 ∧ dξ3 + F03dξ2 ∧ dξ1

)
detP ′

∗FW = 2
(
F32dξ0 ∧ dξ1 + F13dξ0 ∧ dξ2 + F21dξ0 ∧ dξ3

)
detP ′

thus the components of the parts are exchanged and the indices are raised
with the metric g. Notice that the Hodge dual is a 2 form : even if the notation
uses raised indexes, they refer to the basis dξα ∧ dξβ .

Take any two scalar 2 forms F ,K and their decomposition as above, a
straightforward computation gives :

∗FW ∧KW = 0
∗FW ∧KR = −4

(
F32K32 + F13K13 + F21K21

)
̟4

∗FR ∧KW = −4
(
F01K01 + F02K02 + F03K03

)
̟4

∗FR ∧KR = 0
G2 (FW ,KW ) = G2 (FR,KR) = 0
G2 (FW ,KR) = −4

(
F32K32 + F13K13 + F21K21

)

G2 (FR,KW ) = −4
(
F01K01 + F02K02 + F03K03

)

From there, because G2 is bilinear :
G2 (F ,K) = G2 (FW + FR,KR +KW )
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= −4
(
F32K32 + F13K13 + F21K21 + F01K01 + F02K02 + F03K03

)

G2 (F ,K) = −2
∑

αβ

FαβKαβ (126)

These quantities can be expressed in the orthonormal basis
(
εi (m)

)3
i=0

.

G2 (F ,K) = −2
∑

αβ FαβKαβ = −2
∑

αβ g
αλgβµ

∑3
ijpq=0 FijP

′i
λ P

′j
µ KpqP

′p
α P

′q
β

= −2
∑

ijpq η
piηqjFijKpq = −2

∑3
ij=0 η

iiηjjFijKij

= −2
(∑3

j=1 η
00ηjjF0jK0j +

∑3
i=0 η

iiη00Fi0Ki0 +
∑3

ij=1 η
iiηjjFijKij

)

= −2
(∑3

ij=1 FijKij − 2
∑3

j=1 F0jK0j

)

G2 (F ,F) = 4




3∑

j=1

(F0j)
2 −

3∑

{ij}=1

(Fij)
2


 (127)

G2 is not definite positive or negative. The decomposition emphasizes the
role played by the component along ε0 : the spatial components (Fij) and the
temporal components (F0j) contribute to the scalar product with definite op-
posite signs.

This scalar product can easily be expressed for  (F) using the scalar product
on the Clifford algebra Cl (3, 1)

∗
:

〈υ (r, w) , υ (r′, w′)〉Cl(3,1)∗ = 1
4 (r

tr′ − wtw′)

 (F) = 4
∑6

a=1

∑m
b=1 υ

∗ ((F32, F13, F21) , (F01, F02, F03)) ∈ T1Spin (3, 1)
∗

〈 (F) ,  (F)〉Cl(3,1)∗ = 1
416

(
(F32)

2
+ (F13)

2
+ (F21)

2 −
(
(F01)

2
+ (F02)

2
+ (F03)

2
))

〈 (F) ,  (F)〉Cl(3,1)∗ = 4 (F t
RFR − F t

WFW ) = −G2 (F ,F)

〈 (F) ,  (F)〉Cl(3,1)∗ = 4




3∑

{ij}=1

(Fij)
2 −

3∑

j=1

(F0j)
2


 = −G2 (F ,F) (128)

So, up to the sign, we have the same quantity.

10.2 Scalar products on the Lie algebras

The strength can be seen as a section of the associated vector bundle PG [T1Spin(3, 1), Ad]
and then the scalar product must be preserved by the adjoint map Ad. There
are not too many possibilities. It can be shown that, for simple groups of ma-
trices, the only scalar products on their Lie algebra which are invariant by the
adjoint map are of the kind : 〈[X ] , [Y ]〉 = kT r

(
[X ]

∗
[Y ]
)
which sums up, in

our case, to use the Killing form. This is a bilinear form (Maths.1609) which
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is preserved by any automorphism of the Lie algebra (thus in any representa-
tion). However it is negative definite if and only if the group is compact and
semi-simple (Maths.1847).

We have seen in previous Sections that the scalar product on T1Spin (3, 1) ,
induced by the scalar product on the Clifford algebra, is, up to a constant, the
Killing form :

〈υ (r, w) , υ (r′, w′)〉Cl(3,1) =
1
4 (r

tr′ − wtw′)
a= 1,2,3 : Fa

Gαβ = Fa
rαβ

a = 4,5,6 : Fa
Gαβ = Fa

wαβ〈
FGαβ (m) ,F ′

Gλµ (m)
〉
Cl

=
〈
υ (Frαβ,Fwαβ) , υ

(
F ′

rλµ,F ′
wλµ

)〉
Cl

= 1
4

(
F t

rαβF ′
rλµ −F t

wαβF ′
wλµ

)

〈
FGαβ (m) ,F ′

Gλµ (m)
〉
Cl

=
1

4

(
3∑

a=1

Fa
GαβFa

Gλµ −
6∑

a=4

Fa
GαβFa

Gλµ

)
(129)

The result does not depend on the signature. This scalar product is invariant
in a change of gauge, non degenerate but not definite positive.

10.3 Scalar product for the strength of the field

We have to combine both scalar products.
The scalar product on T1Spin (3, 1)

∗ ⊗ T1Spin (3, 1) is expressed by :〈∑6
ab=1 [X ]ba κ

a ⊗ κb,
∑6

cd=1 [Y ]dc κ
c ⊗ κd

〉

=
〈∑6

b=1

(∑6
a=1 [X ]

b
a κ

a
)
⊗ κb,

∑6
d=1

(∑6
c=1 [Y ]

d
c κ

c
)
⊗ κd

〉

= 1
4

(∑3
b=1

〈∑6
a=1 [X ]

b
a κ

a,
∑6

c=1 [Y ]
b
c κ

c
〉
−∑6

b=4

〈∑6
a=1 [X ]

b
a κ

a,
∑6

c=1 [Y ]
b
c κ

c
〉)

= 1
4

∑3
b=1

1
4

(∑3
a=1 [X ]

b
a [Y ]

b
a −

∑6
a=4 [X ]

b
a [Y ]

b
a

)

− 1
4

∑6
b=4

(
1
4

(∑3
a=1 [X ]ba [Y ]ba −

∑6
a=4 [X ]ba [Y ]ba

))

= 1
16

∑3
a=1

(∑3
b=1 [X ]

b
a [Y ]

b
a −

∑6
b=4 [X ]

b
a [Y ]

b
a

)

−∑6
a=4

(∑3
b=1 [X ]

b
a [Y ]

b
a −

∑6
b=4 [X ]

b
a [Y ]

b
a

)

〈 (FG) ,  (FG)〉
=
∑3

b=1

([
F b
r32

]2
+
[
F b
r13

]2
+
[
F b
r21

]2)−
([
F b
w32

]2
+
[
F b
w13

]2
+
[
F b
w21

]2)

−
([
F b
r01

]2
+
[
F b
r02

]2
+
[
F b
r03

]2)
+
([
F b
w01

]2
+
[
F b
w02

]2
+
[
F b
w03

]2)

=
∑3

b=1

([
F b
r32

]2
+
[
F b
r13

]2
+
[
F b
r21

]2)−
([
F b
r01

]2
+
[
F b
r02

]2
+
[
F b
r03

]2)

−
(([

F b
w32

]2
+
[
F b
w13

]2
+
[
F b
w21

]2)−
([
F b
w01

]2
+
[
F b
w02

]2
+
[
F b
w03

]2))

=
∑3

b=1 − 1
4G2

(
Fb

r ,Fb
r

)
+ 1

4G2

(
Fb

w,Fb
w

)
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=
∑3

b=1 − 1
4

(
−2
∑

αβ Fbαβ
r Fb

rαβ

)
+ 1

4

(
−2
∑

αβ Fbαβ
w Fb

wαβ

)

= 1
2

∑3
αβ=0

((
Fαβ

r

)t Frαβ −
(
Fαβ

w

)t Fwαβ

)

〈 (FG) ,  (FG)〉 =
1

2

3∑

αβ=0

((
Fαβ

r

)t Frαβ −
(
Fαβ

w

)t Fwαβ

)
(130)

This scalar product is invariant in a change of charts or in a change of gauge.
However its expression depends on the decomposition between the transversal
and rotational components, characteristic of the observer, as can be seen in the
orthonormal basis. It does not depend on the signature of the metric but is not
definite positive. All these quantities are, of course, estimated up to constants
depending on the units.

10.4 Energy of the field

And we can state :

Proposition 55 The energy density of the gravitational field is the scalar
product 〈 (FG) ,  (FG)〉

The question of the energy of the gravitational field has been a topic of
discussion for years and it is generally accepted that it has no precise value
(see Wald). We have here another, consistent answer : there is a density of
relativist momentum and energy, which have precise definitions, and whose
measure depends on the observer. Notice that these quantities can be computed
in the usual frame work : it then involves the Riemann tensor, it is simply more
obvious in the fiber bundle presentation. Moreover the gravitational field has
a distinctive feature : the energy of the gravitational field has two components
which have opposite signs. This can explain the fact that the gravitational field,
as we measure it, is exceptionally weak : the electromagnetic force is some 39
orders of magnitude greater than the force of gravity.

The energy of the gravitational field does not depend on the chart or the
observer, it is similar to 〈S0, S0〉 for particles. This quantity is not necessarily
positive. However, incorporated in a lagrangian along with the definition of the
energy for particles, it provides the expected solutions. We must also remember
that the similar scalar product 〈S0, S0〉 can be negative for antiparticles.

In Thermodynamics, only the variation of the energy of a system has a
physical meaning, and it was a source of discussion when Relativity introduced
the idea of an absolute energy for particles with c2 〈P, P 〉 . This absolute energy is
linked to the existence of a fundamental state (here represented by S0). And one
can wonder if something similar does exist for the fields. Indeed QTF considers
the “energy of the vacuum”. This vacuum is intended as an area where there
is no particle or boson (so where is no field), but it has quite an animated life
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with virtual particles. So it is worth to consider the existence of a fundamental
state for the fields.

The quantity for which it could be defined must be geometric, so it would
apply to  (FG) which would change with the action Ad−1 ×Ad of the group.
But then we would have to introduce explicitly the value s (m) of elements of
Spin (3, 1) :

 (FG) (m) =
[
Ads(m)

]
[ (FG)0]

[
Ads−1(m)

]

Formally this is not much trouble for Spin (3, 1) but less so for U, at least
for the fields other than the EM field. Physically we would expect that similarly
the state of a particle would be defined on E ⊗ E with the action γC × γC−1

ψ (m) = [γC (s (m))] [ψ0]
[
γC
(
s (m)

−1
)]

Then the key variables of any model would be a section s ∈ PG. But we will
not explore this venue.

10.4.1 Identity

We have a useful property which is more general, and holds for all the fields:

Theorem 56 On the Lie algebra T1U of a Lie group U, endowed with a sym-
metric scalar product 〈〉T1U

which is preserved by the adjoint map :

∀X,Y, Z ∈ T1U : 〈X, [Y, Z]〉 = 〈[X,Y ] , Z〉 (131)

Proof. ∀g ∈ U : 〈AdgX,AdgY 〉 = 〈X,Y 〉
take the derivative with respect to g at g = 1 for Z ∈ T1U :
(AdgX)

′
(Z) = ad (Z) (X) = [Z,X ]

〈[Z,X ] , Y 〉+ 〈X, [Z, Y ]〉 = 0 ⇔ 〈X, [Y, Z]〉 = 〈[Z,X ] , Y 〉
exchange X,Z:
⇒ 〈Z, [Y,X ]〉 = 〈[X,Z] , Y 〉 = −〈[Z,X ] , Y 〉 = −〈X, [Y, Z]〉 = −〈Z, [X,Y ]〉

10.5 Norm on the spaces of the relativist momentum of

the fields

As usual a norm is required for the application of QM theorems.
For the gravitational field :
 (FG) ∈ X

(
PG

[
T1Spin (3, 1)

∗ ⊗ T1Spin (3, 1) ,Ad−1 ×Ad
])

With the Cartan decomposition in Cl (3, 1)
∗ ⊗ Cl (3, 1) :

T1Spin (3, 1)
∗⊗T1Spin (3, 1) = (L∗

0 ⊕ P ∗
0 )⊗(L0 ⊕ P0) = (L∗

0 ⊗ L0)⊕(L∗
0 ⊗ P0)⊕

(P ∗
0 ⊗ L0)⊕ (P ∗

0 ⊗ P0)
The projections :
πll : T1Spin (3, 1)

∗ ⊗ T1Spin (3, 1) → L∗
0 ⊗ L0

πlp : T1Spin (3, 1)
∗ ⊗ T1Spin (3, 1) → L∗

0 ⊗ P0 ,...
are well defined
∀T ∈ T1Spin (3, 1)

∗ ⊗ T1Spin (3, 1) = πll (T ) + πlp (T ) + πpl (T ) + πpp (T )
The scalar product is extended to the tensorial product by :
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∀X,X ′ ∈ l0, Y, Y
′ ∈ p0 : 〈X ⊗ Y,X ′ ⊗ Y ′〉 = 〈X,X ′′〉l0 〈Y, Y

′〉p0

and similarly for the others. The norm on T1Spin (3, 1)
∗ ⊗ T1Spin (3, 1) is

then :
‖T ‖ =√
〈πll (T ) , πll (T )〉+ 〈πlp (T ) , πlp (T )〉+ 〈πpl (T ) , πpl (T )〉+ 〈πpp (T ) , πpp (T )〉

We define the norm on the space Λ2 (M ;T1Spin (3, 1)) by :
‖FG‖ = ‖ (FG)‖
This norms is invariant in a change of chart or in a change of gauge.

With these norms the set :
L1
G = L1

(
M,X

(
PG

[
T1Spin (3, 1)

∗ ⊗ T1Spin (3, 1) ,Ad−1 ×Ad
])
, ̟4

)
=

=
{
 (FG) ∈ X

(
PG

[
T1Spin (3, 1)

∗ ⊗ T1Spin (3, 1) ,Ad−1 ×Ad
])

:
∫
Ω ‖FG‖̟4 <∞

}

is a separable Fréchet space.
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11 STRUCTURE OF THE GRAVITATIONAL

FIELD

Force Fields present several specific features, which can be easily identified in
the representation with fiber bundles.

11.1 Quantization of the gravitational field

We consider as variables sections of the vector bundle as defined above. We can
implement the theorem (QMR Th.22). There are a Hilbert space HG, and an
isometry ΥG which associate a vector to each map  (FG) :

ΥG : L1
G → HG

ÛG = ΥG ◦Ad−1 ×Ad ◦Υ−1
G(

HG, ÛG

)
is a unitary representation of Spin (3, 1) ,

Moreover we can also implement the theorem (QMR Th.24) by adding the
variable 〈 (FG) ,  (FG)〉 = YG. To each level of energy of the fields in the system

is associated a subset HG (YG) invariant by ÛG, that is belonging to one of the

irreducible representations of
(
HG, ÛG

)
.

The only unitary representations of Spin (3, 1) are infinite dimensional, and
parametrized by two scalars z ∈ Z, k ∈ R.

As a consequence, for a given level of energy, the gravitational field is char-
acterized by two scalars z ∈ Z, k ∈ R. The real k can be linked to YG and we
will see below that z is linked to the spin of the field.

11.2 Spin of the Gravitational Field

With the Cartan decomposition in Cl (3, 1)
∗ ⊗ Cl (3, 1) :

T1Spin (3, 1)
∗⊗T1Spin (3, 1) = (L∗

0 ⊕ P ∗
0 )⊗(L0 ⊕ P0) = (L∗

0 ⊗ L0)⊕(L∗
0 ⊗ P0)⊕

(P ∗
0 ⊗ L0)⊕ (P ∗

0 ⊗ P0)
The projection :
π : T1Spin (3, 1)

∗ ⊗ T1Spin (3, 1) → L∗
0 ⊗L0 is well defined and L∗

0 ⊗L0 has
the structure T1Spin (3)

∗ ⊗ T1Spin (3)

π ( (FG)) =
∑3

a,b=1 [ (FG)]
a
b
−→κ b (m)⊗−→κ a (m)

= 4
∑3

a=1

(
F a
r32

−→κ 1 + F a
r13

−→κ 2 + F a
r21

−→κ 3
)
⊗−→κ a

π ( (FG)) = 4

3∑

a=1

3∑

αβ=0

Fa
rαβ

(
Pα
3 P

β
2
−→κ 1 + Pα

3 P
β
2
−→κ 2 + Pα

3 P
β
2
−→κ 3
)
⊗−→κ a (132)

We can define a relation of equivalence on
X
(
PG

[
T1Spin (3, 1)

∗ ⊗ T1Spin(3, 1),Ad−1 ×Ad
])

:
 (FG) ∼  (F ′

G) ⇔ π ( (FG)) = π ( (F ′
G))

and the class of equivalence of  (FG) does not depend on a spatial basis.
π ( (FG)) can be defined as the spin of the gravitational field. It is quantized
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: π ( (FG)) belongs to a 2j+1 dimensional vector space, isomorphic to
(
P j , Dj

)

with j ∈ N. The gravitational field has an integer Spin. The spin depends only
on the components Fa

rαβ.

An elementary representation of the gravitational field, on a given Ω3 (t) ,
involves only π ( (FG)) : a tensor defined in an euclidean, spatial basis. The
vacuum, on a hypersurface Ω3 (t) ,is invariant by the action of SO(3).For t fixed
the maps π ( (FG)) (ϕo (t, x)) are sum of harmonic polynomials, and clearly one
can identify the arguments of the functions, at least locally, with coordinates
of points in Ω3 (t) . Harmonic polynomials have been introduced originally as
solutions of the gravitational field, and so we are lead to identify π ( (FG)) with
the spatial component of the gravitational field, as it is usually understood.
Which gives a physical meaning to the decomposition of FG in Fr,Fw.

11.3 Scalar curvature

The tensor  (FG) reads, with the dual basis

 (FG) = 4{∑6
a=1 F

a
G32

−→κ 1⊗−→κ a+F
a
G13

−→κ 2⊗−→κ a+F
a
G21

−→κ 3⊗−→κ a+F
a
G01

−→κ 4⊗
−→κ a + F a

G02
−→κ 5 ⊗−→κ a + F a

G03
−→κ 6 ⊗−→κ a}

Thus we can contract the tensor, and the scalar :
R′ = 4

(
F 1
G32 + F 2

G13 + F 3
G21 + F 4

G01 + F 5
G02 + F 6

G03

)

= 4
∑3

αβ=0 F1
rαβP

α
3 P

β
2 +F2

rαβP
α
3 P

β
2 +F3

rαβP
α
3 P

β
2 +F1

wαβP
α
0 P

β
1 +F2

wαβP
α
0 P

β
2 +

F3
wαβP

α
0 P

β
3

R′ = 2
(
−∑3

aij=1

∑
αβ ǫ (a, i, j)Fa

rαβP
α
i P

β
j + 2

∑3
a=1

∑3
α=1 Fa

w0αP
α
a

)

is invariant in a change of gauge or chart. And we retrieve the usual scalar
curvature, up to a constant :

R =
∑3

a=1 2
∑3

α=1 Fa
wα0 [P ]

α
a +

∑
αβ Fa

rαβ

∑3
p,q=1 ǫ (a, q, p) [P ]

β
p [P ]

α
q

R′ = −2R
From the quantization of  (FG) one can deduce that the scalar curvature

should be related to the level of energy and to the spin.
The curvature is comprised of a translational and a rotational part. The

latter is fully defined by the spin :
R′

R = 4
(
F 1
G32 + F 2

G13 + F 3
G21

)

It is invariant by a change of spatial gauge, and its value is quantized.

The decomposition of FG in its transversal and spatial components seems
physically significant. FG is equivalent to the Riemann tensor, for which the
decomposition is less obvious. The physical meaning of the torsion has perhaps
been wrongly understood. So this remark suggests that the right variable to
study the gravitational field is (Gr , Gw) with 24 components, and not the Levi-
Civita connection.

11.3.1 Symmetry of the force field

It is common to assume that a field is symmetric : a geometric transformation
in the space Ω (t) of an observer is such that the field looks the same. This
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problem is simple in the fiber bundle representation : a symmetry of the field is
equivalent to a global change of observer given by an element s (t) ∈ Spin (3) .

˜[ (FG)] = [Ads] [ (FG)] [Ads−1 ] = [ (FG)] ⇔ [Ads] [ (FG)] = [ (FG)] [Ads]
with the 6× 6 matrix :

[ (FG)] =

[
F r
r F r

w

Fw
r Fw

w

]

and s (t) = ar (t) + υ (r (t) , 0) it sums up to the matricial equations :
F r
r =

([
1 + arj (r) +

3
4 j (r) j (r)

]
F r
r +

[
1− a2r +

1
4j (r) j(r)

]
Fw
r

) [
1− arj (r) +

3
4j (r) j (r)

]

Fw
r =

[
a2r + arj (r) +

1
2j (r) j (r)

]
Fw
r

[
1− arj (r) +

3
4j (r) j (r)

]
=

F r
w = {

([
1 + arj (r) +

3
4j (r) j (r)

]
F r
r +

[
1− a2r +

1
4j (r) j(r)

]
Fw
r

) [
1− a2r +

1
4j (r) j(r)

]

+
([
1 + arj (r) +

3
4j (r) j (r)

]
F r
w +

[
1− a2r +

1
4j (r) j(r)

]
Fw
w

) [
a2r − arj (r) +

1
2j (r) j (r)

]

Fw
w =

[
a2r + arj (r) +

1
2j (r) j (r)

]
Fw
r

[
1− a2r +

1
4j (r) j(r)

]

+
[
a2r + arj (r) +

1
2j (r) j (r)

]
Fw
w

[
a2r − arj (r) +

1
2j (r) j (r)

]
=

The set of polynomials of 3× 3 matrices A+ Bj (r) + Cj (r) j (r) is a com-
mutative algebra, so the solution is :

[ (FG)] =

[
[Ar

r +Br
rj (r) + Cr

r j (r) j (r)] [Ar
w +Br

wj (r) + Cr
wj (r) j (r)]

[Aw
r +Bw

r j (r) + Cw
r j (r) j (r)] [Aw

w +Bw
wj (r) + Cw

w j (r) j (r)]

]

and the equations give 3 potential solutions :
i) r = 0 : this is the spherical solution
ii) a2r = 3

5 ;A
w
r = 0;[

− 2
5 − 1

4j (r) j (r)
]
F r
w +

[
2
5 + 1

4j (r) j(r)
] (
F r
r + 3

5F
w
w

)
= 0

iii) Fw
r = 0;[

a2r − 1 +
(
5
4a

2
r − 1

)
j (r) j (r)

]
F r
w +

[
1− a2r +

1
4j (r) j(r)

] (
F r
r + a2rF

w
w

)
= 0
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12 CONCLUSION

In the first part of this paper we have shown that the geometry of GR can be
set up in a comprehensive and consistent framework, in the second part we have
shown that the kinematic of particles can be represented in a formalism which is
consistent with QTF and GR, and in the third part that gauge theories can be
extended to the gravitational field. Moreover the tools which have been defined
enable to deal, more easily and in a general way, with the usual problems. In
particular we have proposed the definition of a deformable solid, which can be
used in Astro-Physics.

Of course all the material presented here can be put at work. The natural
successive step is to introduce a lagrangian. Its perturbative formulation is :∫

Ω
{∑αβ CG 〈FG,FG〉+ CIµ

1
i 〈S,∇V S〉}̟4

which leads to first order differential equations :
A1 (r)

dr
dt +A2 (r, w)

dw
dt +A3 (r, w) Ĝr +A4 (r, w) Ĝw = rKr

B1 (r, w)
dr
dt+B2 (r, w)

dw
dt +B3 (r, w) Ĝr+B4 (r, w) Ĝw = − caw

2a2
w−1

∑3
α,i=1 P

α
i

(
ktXα + Àα

)
εi+

wKw

ktX̂ = 0
for the spinor field, where A1 (r) , ... are matrices, Kr,Kw are scalars, and

to the equations :

∀a, ∀α = 0..3 :
∑3

β=0 ∂β

(
Faαβ

G detP ′
)
= 0

CI

4CG
µV ⊗ υ∗ (kt [Dr (r, w)] ,−kt [Dw (r)]) =

∑
β

[
Fαβ

G , Gβ

]
⊗ ∂ξα

for the gravitational field. The energy of the system is conserved, and we
have the additional equation :

∀α, β : CIµ
1
iV

β 〈S, ∂αS〉+ 4CG

∑3
γ=0

〈
Fβγ

G , ∂αGγ − ∂γGα

〉

= δαβ

(
1
4CIµ

1
i

〈
S, dSdt

〉
+ 2CG

∑3
λµ=0

〈
Fλµ

G , ∂λGµ

〉)

Moreover the formalism helps to have a glimpse at the gravitons.
All these additions are seen in the book “Mathematics in Physics”.

The representation of the gravitational field by connections on one hand,
and of the gravitational charges by spinors on the other hand, shows striking
similarities with the EM field : indeed they are the only fields which have an
infinite range, the EM charge can be incorporated in the gravitational charge,
and their propagation equations are similar. This similitude has been remarked
by many authors, Heaviside, Negut, Jefimenko, Tajmar, de Matos,...and it has
been developed in a full Theory, which has sometimes be opposed to GR. We
find here that these similitudes exist in the frame of a GR theory which al-
lows for a more general connection and the use of the Riemann tensor, so it
seems more promising to explore this avenue than to fight against GR. As we
have seen the gravitational field shows in all its aspects two components. The
“magnetic” component can be assimilated to the usual gravity : this is the
one which acts in the 3 dimensional space. The “electric” component acts in
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the time dimension, and it seems logical to give it a cosmological interpreta-
tion : it would be the engine which moves matter on its world line. Both
components have opposite effects, and there is no compelling reason that it
should always be attractive. The representation of the gravitational field in
the bundle PG

[
T1Spin (3, 1)

∗ ⊗ T1Spin (3, 1) ,Ad−1 ×Ad
]
enables to explore

more efficiently the structure of the field than the usual Petrov-Pirani-Penrose
classification based on the Weyl’s tensor.
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14 ANNEX 1 : CLIFFORD ALGEBRAS

This annex gives proofs of some results presented in the core of the paper.

14.1 Products in the Clifford algebra

Many results are consequences of the computation of products in the Clifford
algebra. The computations are straightforward but the results precious. In the
following 〈ε0, ε0〉 = −1 with the signature (3,1) and +1 with the signature (1,3).
The operator j is reminded in the Formulas at the end of this Annex.

14.1.1 Product υ (r, w) · υ (r′, w′)

υ (r, w) = 1
2

(
w1ε0 · ε1 + w2ε0 · ε2 + w3ε0 · ε3 + r3ε2 · ε1 + r2ε1 · ε3 + r1ε3 · ε2

)

υ (r′, w′) = 1
2

(
w′1ε0 · ε1 + w′2ε0 · ε2 + w′3ε0 · ε3 + r′3ε2 · ε1 + r′2ε1 · ε3 + r′1ε3 · ε2

)

With signature (3,1) :

υ (r, w)·υ (r′, w′) = 1
4 (w

tw′ − rtr′)+ 1
2υ (j (r) r

′ − j (w)w′, j (w) r′ + j (r)w′)−
1
4 (w

tr′ + rtw′) ε0 · ε1 · ε2 · ε3
From there the bracket on the Lie algebra :
[υ (r, w) , υ (r′, w′)] = υ (r, w) · υ (r′, w′)− υ (r′, w′) · υ (r, w)

[υ (r, w) , υ (r′, w′)] = υ (j (r) r′ − j (w)w′, j (w) r′ + j (r)w′) (133)

With signature (1,3) :

υ (r, w)·υ (r′, w′) = 1
4 (w

tw′ − rtr′)− 1
2υ (−j (r) r′ + j (w)w′, j (w) r′ + j (r)w′)−

1
4 (w

tr′ + rtw′) ε0 · ε1 · ε2 · ε3
From there the bracket on the Lie algebra :

[υ (r, w) , υ (r′, w′)] = −υ (j (r) r′ − j (w)w′, j (w) r′ + j (r)w′) (134)

In both signatures the basis of the Lie algebra is denoted :
−→κ 1 = 1

2ε3 · ε2,−→κ 2 = 1
2ε1 · ε3,−→κ 3 = 1
2ε2 · ε1,−→κ 4 = 1
2ε0 · ε1,−→κ 5 = 1
2ε0 · ε2,−→κ 6 = 1
2ε0 · ε3

a, b, c = 1, 2, 3
[−→κ a,

−→κ b] = ǫ (c, a, b)−→κ c

[−→κ a,
−→κ 3+b] = ǫ (c, a, b)−→κ 3+c

[−→κ 3+a,
−→κ 3+b] = ǫ (c, a, b)−→κ 3+c
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14.1.2 Product on Spin(3, 1)

Because they belong to Cl0 (3, 1) the elements of Spin(3, 1) can be written :
s = a+ 1

2

(
w1ε0 · ε1 + w2ε0 · ε2 + w3ε0 · ε3 + r3ε2 · ε1 + r2ε1 · ε3 + r1ε3 · ε2

)
+

bε0 · ε1 · ε2 · ε3
where a, (wj , rj)3j=1, b are real scalar which are related. That we will write

with

ε5 = ε0 · ε1 · ε2 · ε3 (135)

s = a+ υ (r, w) + bε5 (136)

And similarly in Cl (1, 3)
s = a+ υ (r, w) + bε0 · ε1 · ε2 · ε3
The product of two elements of the spin group expressed as :
s = a+ υ (r, w) + bε5
s′ = a′ + υ (r′, w′) + b′ε5
can be computed with the previous formulas.

i) With signature (3,1)
υ (r, w) ε5 = υ (r,−w)
ε5υ (r

′, w′) = υ (r′,−w′)
ε5 · ε5 = −1
s · s′ = a” + υ (r”, w”) + b”ε0 · ε1 · ε2 · ε3
with :
a” = aa′ − b′b+ 1

4 (w
tw′ − rtr′)

b” = ab′ + ba′ − 1
4 (w

tr′ + rtw′)
r” = 1

2 (j (r) r
′ − j (w)w′) + a′r + ar′ − b′w − bw′

w” = 1
2 (j (w) r

′ + j (r)w′) + a′w + aw′ + b′r + br′

So we have in particular :
(a+ υ (0, w)) · (a′ + υ (0, w′)) = aa′ + 1

4w
tw′ + υ

(
− 1

2 (j (w)w
′, a′w + aw′)

)

(a+ υ (r, 0)) · (a′ + υ (r′, 0)) = aa′ − 1
4r

tr′ + υ
(
1
2j (r) r

′ + (a′r + ar′) , 0
)

(aw + υ (0, w)) · (ar + υ (r, 0)) = awar + υ (awr, arw) − 1
2 (w

tr) ε5

ii) With signature (1,3)
s = a+ υ (r, w) + bε5
s′ = a′ + υ (r′, w′) + b′ε5
υ (r, w) · ε5 = υ (w, r)
ε5υ (r

′, w′) = υ (w′, r′)
ε5 · ε5 = −1
s · s′ = a” + υ (r”, w”) + b”ε0 · ε1 · ε2 · ε3
with :
a” = aa′ − b′b+ 1

4 (w
tw′ − rtr′)

b” = ab′ + ba′ − 1
4 (w

tr′ + rtw′)
r” = 1

2 (j (r) r
′ − j (w)w′) + a′r + ar′ + b′w + bw′
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w” = − 1
2 (j (w) r

′ + j (r)w′) + a′w + aw′ + b′r + br′

14.2 Characterization of the elements of the Spin group

14.2.1 Inverse

The elements of Spin(3, 1) are the product of an even number of vectors of norm
±1. Consequently we have :

s · st = (v1 · ...v2p) · (v2p · ... · v1) = 1
The transposition is an involution on the Clifford algebra, thus :

(a+ υ (r, w) + bε0 · ε1 · ε2 · ε3) ·
(
a+ υ (r, w)

t
+ bε3 · ε2 · ε1 · ε0

)
= 1

(a+ υ (r, w) + bε0 · ε1 · ε2 · ε3) · (a− υ (r, w) + bε0 · ε1 · ε2 · ε3) = 1

⇔ (a+ υ (r, w) + bε0 · ε1 · ε2 · ε3)−1
= (a− υ (r, w) + bε0 · ε1 · ε2 · ε3)

and we have the same result in Cl (1, 3)

(a+ υ (r, w) + bε5)
−1 = a− υ (r, w) + bε5 (137)

14.2.2 Relation between a,b, r, w

By a straightforward computation this identity gives the following relation be-
tween a,b,r,w :

1. With signature (3,1)
(a+ υ (r, w) + bε0 · ε1 · ε2 · ε3) · (a− υ (r, w) + bε3 · ε2 · ε1 · ε0) = 1
= a” + υ (r”, w”) + b”ε0 · ε1 · ε2 · ε3
with :
a” = a2 − b2 + 1

4 (−wtw + rtr) = 1
b” = ab+ ba− 1

4 (−wtr − rtw) = 0
r” = 1

2 (−j (r) r + j (w)w) + ar − ar − bw + bw = 0
w” = 1

2 (−j (w) r − j (r)w) + aw − aw + br − br = 0
a2 − b2 = 1 + 1

4 (w
tw − rtr)

So, for any element : a+ υ (r, w) + bε0 · ε1 · ε2 · ε3
we have :

a2 − b2 = 1 + 1
4 (w

tw − rtr) (138)

ab = − 1
4r

tw (139)

and we keep only 6 free parameters. a, b are defined from r, w, up to sign,
with the conditions:

i) rtw 6= 0 : b = − 1
4ar

tw

a2 = 1
2

((
1 + 1

4 (w
tw − rtr)

)
+

√(
1 + 1

4 (w
tw − rtr)

)2
+ 1

4 (r
tw)2

)

ii) rtw = 0 :

(wtw − rtr) ≥ −4 : a = ǫ
√
1 + 1

4 (w
tw − rtr); b = 0
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(wtw − rtr) ≤ −4 : b = ǫ
√
−
(
1 + 1

4 (w
tw − rtr)

)
; a = 0

So :

if r = 0 then : s = ǫ
√
1 + 1

4w
tw + υ (0, w)

if w = 0 then

rtr ≤ 4 : s = ǫ
√
1− 1

4r
tr + υ (r, 0)

rtr ≥ 4 : s = υ (r, 0) + ǫ
√

1
4r

tr − 1ε5

2. With signature (1,3)
(a− υ (r, w) + bε0 · ε1 · ε2 · ε3) · (a+ υ (r, w) + bε3 · ε2 · ε1 · ε0) = 1
= a” + υ (r”, w”) + b”ε0 · ε1 · ε2 · ε3
with :
r” = 1

2 (−j (r) r + j (w)w) + ar − ar + bw − bw = 0
w” = − 1

2 (−j (w) r − j (r)w) + aw − aw + br − br′

a” = a2 − b2 + 1
4 (−wtw + rtr)

b” = ab+ ba− 1
4 (−wtr − rtw)

we get the same relations.

14.3 Homogeneous Space

The Clifford Algebras as well as the corresponding Spin groups, for any vector
space E of the same dimension and bilinear form g of the same signature are
isomorphic. The Clifford Algebra Cl (3) is a subalgebra of Cl (3, 1) and Spin (3)
a subgroup of Spin (3, 1) .

The Clifford algebras and Spin Group structures are built from the product
of vectors. The structure Cl (3) can be defined from a set of vectors only if their
scalar product is always definite positive. So, in a given vector space (E, g) with
Clifford Algebra isomorphic to Cl (3, 1) the set isomorphic to Cl (3) is not unique
: there is one set for each choice of a vector ε0 ∈ E such that g (ε0, ε0) = −1.

14.3.1 The sets isomorphic to Cl (3)

In E let be E⊥ the orthogonal complement to ε0 : E⊥ = {u ∈ E : g (ε0, u) = 0} .
This is a 3 dimensional vector space. The scalar product g⊥ induced on E⊥ by
g is definite positive : in a basis of E⊥ the matrix of g⊥ has 3 positive eigen
values, otherwise with ε0 we would have another signature. The Clifford Algebra
Cl
(
E⊥, g⊥

)
generated by

(
E⊥, g⊥

)
is a subset of Cl (E, g) , Clifford isomorphic

to Cl (3) . There is a morphism of Clifford algebras : π : Cl (E, g) → Cl
(
E⊥, g⊥

)

such that : ∀u ∈ E : u = π (u) + u0ε0, g (π (u) , π (u)) > 0 iff u 6= 0.
The Spin Group Spin (E, g) isomorphic to Spin (3, 1) is projected into a

subgroup Sp
(
E⊥, g⊥

)
isomorphic to Spin(3).

Spin
(
E⊥, g⊥

)
is characterized by the following theorem, which can be proven

with any orthonormal basis of E containing ε0 :
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Theorem 57 The subset of Spin(3, 1) of the elements which commute with ε0
is a subgroup of Spin(3, 1). They leave ε0 unchanged : Adsrε0 = sr · ε0 · s−1

r =

ε0 = [g]
i
0 εi. They read : sr = a+ υ (r, 0)

Proof. sr = a+ υ (r, w) + bε0 · ε1 · ε2 · ε3
sr · ε0 = ε0 · sr
In Cl(3, 1) :
s · ε0 = aε0 + υ (r, w) ε0 − bε1 · ε2 · ε3 = ε0 · s = aε0 + ε0υ (r, w) + bε1 · ε2 · ε3
υ (r, w) ε0 =
1
2

(
w1ε0 · ε1 · ε0 + w2ε0 · ε2 · ε0 + w3ε0 · ε3 · ε0 + r3ε2 · ε1 · ε0 + r2ε1 · ε3 · ε0 + r1ε3 · ε2 · ε0

)

= 1
2

(
w1ε1 + w2ε2 + w3ε3 − r3ε0 · ε1 · ε2 + r2ε0 · ε1 · ε3 − r1ε0 · ε2 · ε3

)

ε0υ (r, w)
= 1

2

(
w1ε0ε0 · ε1 + w2ε0ε0 · ε2 + w3ε0ε0 · ε3 + r3ε0ε2 · ε1 + r2ε0ε1 · ε3 + r1ε0ε3 · ε2

)

= 1
2

(
−w1ε1 − w2ε2 − w3ε3 − r3ε0ε1 · ε2 + r2ε0ε1 · ε3 − r1ε0ε2 · ε3

)

aε0+
1
2

(
w1ε1 + w2ε2 + w3ε3 − r3ε0 · ε1 · ε2 + r2ε0ε1 · ε3 − r1ε0ε2 · ε3

)
−bε1 ·

ε2 · ε3
= aε0 +

1
2

(
−w1ε1 − w2ε2 − w3ε3 − r3ε0ε1 · ε2 + r2ε0ε1 · ε3 − r1ε0ε2 · ε3

)
+

bε1 · ε2 · ε3
⇒ w = 0, b = 0
In Cl(1, 3) :
s ·ε0 = aε0−υ (g) ε0−bε1 ·ε2 ·ε3 = ε0 ·s = aε0−ε0υ (g)+bε1 ·ε2 ·ε3 ⇒ b = 0
υ (g) ε0 =
1
2

(
w1ε0 · ε1 · ε0 + w2ε0 · ε2 · ε0 + w3ε0 · ε3 · ε0 + r3ε2 · ε1 · ε0 + r2ε1 · ε3 · ε0 + r1ε3 · ε2 · ε0

)

= 1
2

(
−w4ε1 − w2ε2 − w3ε3 − r3ε0 · ε1 · ε2 + r2ε0ε1 · ε3 − r1ε0ε2 · ε3

)

ε0υ (g) =
1
2

(
w1ε0ε0 · ε1 + w2ε0ε0 · ε2 + w3ε0ε0 · ε3 + r3ε0ε2 · ε1 + r2ε0ε1 · ε3 + r1ε0ε3 · ε2

)

= 1
2

(
w41ε1 + w2ε2 + w3ε3 − r3ε0ε1 · ε2 + r2ε0ε1 · ε3 − r1ε0ε2 · ε3

)

⇒ w = 0

So the elements such that s = υ (r, 0) + ǫ
√

1
4r

tr − 1ε5 are excluded and we

are left with

s = ǫ

(√
1− 1

4
rtr + υ (r, 0)

)
(140)

These elements constitute a subgroup, as it can easily be checked with the
formula for the product. They are generated by vectors belonging to the sub-
space spanned by the vectors (εi)

3
i=1 so they belong to Cl

(
E⊥, g⊥

)
and can be

identified with Spin
(
E⊥, g⊥

)
, isomorphic to Sp(3).

The scalars ǫ = ±1 belong to the group. The group is not connected. The

elements s =
√
1− 1

4r
tr + υ (r, 0) constitute the component of the identity.

14.3.2 Decomposition of the Lie algebra

The Lie algebra T1Spin (3, 1) is the direct sum of the two vector vector subspaces
:

X ∈ T1Spin (3, 1) :: X = υ (r, w) = υ (r, 0) + υ (0, w)
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The Lie bracket reads :
[υ (r, w) , υ (r′, w′)] = υ (j (r) r′ − j (w)w′, j (w) r′ + j (r)w′)
thus :
[υ (r, 0) , υ (r′, 0)] = υ (j (r) r′, 0)
[υ (0, w) , υ (0, w′)] = υ (−j (w)w′, 0)
The vector subspace υ (r, 0) can be identified with T1Spin (3) . It is generated

by the vectors (ε1, ε2, ε3) if 〈ε0, ε0〉 = −1. And similarly in Cl (1, 3) .
For any element υ (r, w) of T1Spin (3, 1) we have the identity :
υ (r, w) · ε0 − ε0 · υ (r, w) = w
Thus υ (r, w) ∈ T1Spin (3) ⇔ υ (r, w) · ε0 − ε0 · υ (r, w) = 0 ⇔ w = 0

14.3.3 Homogeneous space

The quotient space Spin (3, 1) /Spin (3) (called a homogeneous space) is not
a group but a 3 dimensional manifold. It is characterized by the equivalence
relation :

s = a+ υ (r, w) + bε0 · ε1 · ε2 · ε3 ∼ s′ = a′ + υ (r′, w′) + b′ε0 · ε1 · ε2 · ε3
⇔ ∃sr ∈ Spin (3) : s′ = s · sr
As any quotient space its elements are subsets of Spin (3, 1) .

Theorem 58 In each class of the homogeneous space there are two elements,
defined up to sign, which read : sw = ± (aw + υ (0, w))

Proof. Each coset [s] is in bijective correspondence with Spin (3) .

So [s] =
{
s′ = s ·

(
ǫ
√
1− 1

4ρ
tρ+ υ (ρ, 0)

)
, ρtρ ≤ 4

}

In Spin(3, 1) :
s = a+ υ (r, w) + bε5
s′ = a′ + υ (r′, w′) + b′ε5

a′ = aǫ
√
1− 1

4ρ
tρ− 1

4r
tρ

b′ = bǫ
√
1− 1

4ρ
tρ− 1

4w
tρ

r′ = 1
2j (r) ρ+ rǫ

√
1− 1

4ρ
tρ+ aρ

w′ = 1
2j (w) ρ+ wǫ

√
1− 1

4ρ
tρ+ bρ

a2 − b2 = 1 + 1
4 (w

tw − rtr)
ab = − 1

4r
tw

We can always choose in the class an element s’ such that : r′ = 0. It requires

:
(
1
2j (r) + aI

)
ρ = −rǫ

√
1− 1

4ρ
tρ

This linear equation in ρ has always a unique solution :

ρ = −ǫ
√
1− 1

4ρ
tρ 1

a(4a2+rtr)

((
4a2 + rtr

)
I − 2aj(r) + j (r) j(r)

)
r

= −ǫ
√
1− 1

4ρ
tρ 1

a(4a2+rtr)

(
4a2 + rtr

)
r

= −ǫ
√
1− 1

4ρ
tρ 1

ar

ρtρ =
(
1− 1

4ρ
tρ
)

1
a2 (r

tr) ⇒
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(
a2 + 1

4 (r
tr)
)
ρtρ = (rtr)

ρtρ =
4(rtr)

4a2+(rtr) ≤ 4√
1− 1

4ρ
tρ =

√
4a2

4a2+(rtr) =
2a√

4a2+(rtr)

ρ = −ǫ 2√
4a2+(rtr)

r

a′ = aǫ
√
1− 1

4ρ
tρ− 1

4r
tρ = 1

2
ǫ√

4a2+(rtr)

(
4a2 + rtr

)
= 1

2ǫ
√
4a2 + rtr

w′ = 1
2j (w) ρ+ wǫ

√
1− 1

4ρ
tρ+ bρ = ǫ 2√

4a2+(rtr)

(
1
2j (r)w + aw − br

)

b′ = bǫ
√
1− 1

4ρ
tρ− 1

4w
tρ = ǫ 2√

4a2+(rtr)

(
ab+ 1

4w
tr
)
= 0

s =
(
ǫ
√
4a2 + rtr

)
×

(
1
2 + υ

(
0, ǫ 2

4a2+(rtr)

(
1
2j (r)w + aw − br

)))
·
(
ǫ 2√

4a2+(rtr)

)
(a+ υ (r, 0))

So any element of Spin (3, 1) can be written uniquely (up to sign) :
s = a+ υ (r, w) + bε0 · ε1 · ε2 · ε3 = sw · sr = (aw + υ (0, ww)) · (ar + υ (0, rr))
and :
(aw + υ (0, ww)) · (ar + υ (0, rr)) = awar + υ (awrr , arww)− 1

2 (w
t
wrr) ε5

In Cl(1, 3) we have the same decomposition with the same components.
s = a+ υ (r, w) + bε0 · ε1 · ε2 · ε3 =
r” = awrr = 1

2ǫ
√
4a2 + rtrǫ 2√

4a2+(rtr)
r = r

w” = 1
2j (ww) rr + arww

= 1
2j
((
ǫ
√
4a2 + rtr

)
ǫ 2
4a2+(rtr)

(
1
2j (r)w + aw − br

))(
ǫ 2√

4a2+(rtr)

)
r

+

(
ǫ 2√

4a2+(rtr)

)
a
(
ǫ
√
4a2 + rtr

)
ǫ 2
4a2+(rtr)

(
1
2j (r)w + aw − br

)

= 2j
(
ǫ 1
4a2+(rtr)

(
1
2j (r)w + aw − br

))
r + aǫ 4

4a2+(rtr)

(
1
2j (r)w + aw − br

)

=
(
ǫ 2
4a2+(rtr)

) (
j
((

1
2j (r)w + aw − br

))
r + a2

(
1
2j (r)w + aw − br

))

=
(
ǫ 2
4a2+(rtr)

) (
1
2j (j (r)w) r − aj (w) r + aj (r)w + 2a2w − 2abr

)

=
(
ǫ 2
4a2+(rtr)

) (
1
2 (wr

t − rwt) r + 2a2w + 1
2 (r

tw) r
)

=
(
ǫ 2
4a2+(rtr)

) (
1
2w (rtr)− 1

2r (w
tr) + 2a2w + 1

2 (r
tw) r

)

=
(
ǫ 1
4a2+(rtr)

) ((
4a2 + (rtr)

)
w
)
= w

Remark : the elements ±sw are equivalent :
(aw + υ (0, ww)) ∼ − (aw + υ (0, ww))
Take sr = −1 ∈ Spin (3) : −sw = sw · sr
So ±sw belong to the same class of equivalence. In the decomposition :

s = ǫsw · ǫsr, ǫsw is a specific projection of s on the homogenous space.

14.4 Adjoint map

The translations on Spin (3, 1) are :
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Lgh = g · h,Rgh = h · g
and their derivatives :
L′
gh : ThSpin (3, 1) → Tg·hSpin (3, 1) :: L′

gh (Xh) = g ·Xh

R′
gh : ThSpin (3, 1) → Th·gSpin (3, 1) :: R′

gh (Xh) = Xh · g
Their inverse are, as in any Lie groups :(
L′
gh
)−1

= L′
g−1 (g · h) ;

(
R′

gh
)−1

= R′
g−1 (h · g)

TgSpin (3, 1) ⊂ Cl (3, 1) and there are two linear maps :
L′
g−1g : TgSpin (3, 1) → T1Spin (3, 1) :: L

′
g−1g (Zg) = g−1 · Zg

R′
g−1g : TgSpin (3, 1) → T1Spin (3, 1) :: R

′
g−1g (Zg) = Zg · g−1

And the adjoint map:
Adg : T1Spin (3, 1) → T1Spin (3, 1) :: Adg = L′

gg
−1 ◦R′

g−11 = R′
g−1g ◦ L′

g1

AdgZ = L′
gg

−1 ◦R′
g−11 (Z) = L′

gg
−1
(
Z · g−1

)
= g · Z · g−1

AdgZ = (AdgZ)
′
x=1 = AdgZ

With
g = a+ υ (r, w) + bε5
Z = υ (x, y)
AdgX = (a+ υ (r, w) + bε5) · υ (x, y) · (a− υ (r, w) + bε5)
A straightforward computation gives :
Adgυ (x, y) = υ (X,Y )
with
X =[
(a+ b)

2 − ab+ 1
4r

tr + (a+ b) j (r) + 1
4 (j (w) j (r) − 2j (w) j (w) + 3j (r) j (r))

]
x

+
[
ab+ 1

4r
tr + (b− a) j (w)− 1

4 (3j (w) j (r) + 2j (r) j (w)− j (r) j(r))
]
y

Y =[
1
4w

tw − ab+ (a+ b) j (w) + 1
4 (j (w) j (w) + 2j (w) j (r) + 3j (r) j (w))

]
x

+
[
(a− b)

2 − 1
4w

tw − ab+ (a− b) j (r)− 1
4 (3j (w) j (w)− j (r) j (w) − 2j (r) j (r))

]
y

14.5 Derivatives

Let g :M → Spin (3, 1)) :: g (m) = a (m) + υ (r (m) , w (m)) + b (m) ε5
g′ (m) : TmM → TgSpin (3, 1) ::
g′ (m)um = a′ (m)um + υ (r′ (m)um, w

′ (m)um) + b′ (m)umε5
where um ∈ TmM,a′ (m)um, b

′ (m)um ∈ R, r′ (m)um, w
′ (m)um ∈ R3

Thus :
g−1 · (a′ (m)um + υ (r′ (m)um, w

′ (m)um) + b′ (m)umε5) ∈ T1Spin (3, 1)
(a′ (m)um + υ (r′ (m)um, w

′ (m)um) + b′ (m)umε5) · g−1 ∈ T1Spin (3, 1)
L′
g−1g (g′ (m)um) =

υ(− 1
2 (j (r) r

′ − j (w)w′)− a′r + ar′ + b′w − bw′,
− 1

2 (j (w) r
′ + j (r)w′)− a′w + aw′ − b′r + br′)

R′
g−1g (g′ (m)um) =

υ(− 1
2 (j (r) r

′ − j (w)w′)− a′r + ar′ + b′w − bw′,
− 1

2 (j (w) r
′ + j (r)w′)− a′w + aw′ − b′r + br′)
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14.6 Exponential on T1Spin

The exponential on a Lie algebra is the flow of left invariant vector fields
(Maths.22.2.6).

i) Left invariant vector fields on Spin(3, 1)
As Spin(3, 1) ⊂ Cl (3, 1) which is a vector space, a vector fieldX ∈ X (TSpin (3, 1))

reads X (σ) ∈ Cl (3, 1) with the relation :
L′
gσ (X (σ)) = X (Lgσ) = g ·X (σ) = X (g · σ)

Thus the left invariant vector fields read :
X (σ) = σ · υ (R,W ) with υ (R,W ) ∈ T1Spin (3, 1)
ii) The flow of X = σ · υ (R,W ) ∈ X (TSpin (3, 1)) reads:
ΦX (t, 1) = a (t) + υ (r (t) , w (t)) + b (t) ε5 ∈ Spin(3, 1)
ΦX (t, 1) = exp tX = exp υ (tR, tW )
exp υ (tR, tW ) = a (t) + υ (r (t) , w (t)) + b (t) ε5
d
dt expυ (tR, tW ) |t=θ = exp υ (θR, θW ) · υ (R,W )
d
dt (a (t) + υ (r (t) , w (t)) + b (t) ε5) |t=θ = (a (θ) + υ (r (θ) , w (θ)) + b (θ) ε5) ·

υ (R,W )
with :
a2 − b2 = 1 + 1

4 (w
tw − rtr)

ab = − 1
4r

tw
1 = a (0) + υ (r (0) , w (0)) + b (0) ε5
The derivations give :
∂a
∂t + υ

(
∂r
∂t ,

∂w
∂t

)
+ ∂b

∂t ε5|t=θ = (a (θ) + υ (r (θ) , w (θ)) + b (θ) ε5) · υ (R,W )
= a (θ) υ (R,W ) + b (θ) υ (R,−W ) + υ (r (θ) , w (θ)) · υ (R,W )
= υ ((a (θ) + b (θ))R, (a (θ)− b (θ))W )
+ 1

4 (W
tw −Rtr)+ 1

2υ (−j (R) r + j (W )w,−j (W ) r − j (R)w)− 1
4 (W

tr +Rtw) ε5
∂a
∂t |t=θ = 1

4 (W
tw −Rtr)

∂b
∂t |t=θ = − 1

4 (W
tr +Rtw)

∂r
∂t |t=θ = (a (θ) + b (θ))R+ 1

2 (−j (R) r + j (W )w)
∂w
∂t |t=θ = (a (θ)− b (θ))W + 1

2 (−j (W ) r − j (R)w)

a∂a
∂t |t=θ − b∂b∂t |t=θ = 1

4

(
wt ∂w

∂t − rt ∂r∂t
)

∂a
∂t b+ a∂b

∂t = − 1
4r

t ∂w
∂t − 1

4w
t ∂r
∂t

The last two equations give :
b (W +R)

t
(w + r) = 0

b (W +R)
t
(w − r) = 0

iii) We have the morphism :
Π : Spin(3, 1) → SO(3, 1) :: Π (±σ) = [h (σ)] such that :
∀u ∈ R4 : Adσu = σ · u · σ−1 = [h (σ)]u = Π(±σ)u
Take a vector field X (σ) = σ·υ (R,W ) ∈ X (TSpin (3, 1)) then (Maths.1460)

:
Π ◦ ΦX = ΦΠ∗X ◦Π
Π∗X ([h (σ)]) = Π′ (σ)X (σ)
Π′ (1)X (1) = K (W ) + J (R)
Π (exp tυ (R,W )) = ΦΠ′(1)υ(R,W ) (t,Π(1)) = exp t (K (W ) + J (R)) = exp tK (W ) exp tJ (R)
Π (exp tυ (R, 0)) = exp tJ (R)
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Π(exp tυ (0,W )) = exp tK (W )
Π (exp tυ (R,W )) = Π (exp tυ (0,W ))Π (exp tυ (R, 0))
and because this is a morphism :
exp tυ (R,W ) = exp tυ (0,W ) · exp tυ (R, 0)
iv) Coming back to the previous equations :
For exp υ (0, tW ) :
∂a
∂t |t=θ = 1

4W
tw

∂b
∂t |t=θ = − 1

4 (W
tr)

∂r
∂t |t=θ = 1

2j (W )w
∂w
∂t |t=θ = (a (θ)− b (θ))W − 1

2j (W ) r
bW t (w + r) = 0
bW t (w − r) = 0
if b 6= 0 :
W tw = −W tr =W tr = 0
b∂b∂t |t=θ = − 1

4b (W
tr) = 0 ⇒ b2 = Ct⇒ b = Ct⇒W tr = 0,

⇒W tw = 0 ⇒ a = Ct
⇒ r, w = Ct
Thus b = 0 ⇒ W tr = 0
d2w
dt2 = 1

4 (W
tw)W− 1

4j (W ) j (W )w = 1
4 (W

tw)W− 1
4 (WW tw − (W tW )w) =

1
4 (W

tW )w

w (t) = w1 exp
1
2 t
√
W tW + w2 exp

(
− 1

2 t
√
W tW

)

w (0) = 0 = w1 + w2
dw
dt (0) =W = w1 − w2

w (t) = 1
2

(
exp 1

2 t
√
W tW − exp

(
− 1

2 t
√
W tW

))
W =W sinh 1

2 t
√
W tW

∂r
∂t |t=θ = 1

2j (W )W sinh 1
2 t
√
W tW = 0

r (0) = R = 0 ⇒ r (t) = 0
wtw =W tW sinh2 1

2 t
√
W tW

a2 − b2 = a2 = 1 + 1
4

(
W tW sinh2 1

2 t
√
W tW

)

exp υ (0, tW ) =

√
1 + 1

4

(
W tW sinh2 1

2 t
√
W tW

)
+ sinh 1

2 t
√
W tWυ (0,W )

For exp υ (tR, 0)
∂a
∂t |t=θ = − 1

4R
tr

∂b
∂t |t=θ = − 1

4R
tw

∂r
∂t |t=θ = (a (θ) + b (θ))R− 1

2j (R) r
∂w
∂t |t=θ = − 1

2j (R)w
bRt (w + r) = 0
bRt (w − r) = 0
⇒ b = 0, Rtw = 0
d2r
dt2 = − 1

4 (R
tr)R − 1

2j (R)
(
aR− 1

2j (R) r
)
= − 1

4 (R
tr)R − 1

2aj (R)R +
1
4j(R)j (R) r

d2r
dt2 = − 1

4 (R
tr)R+ 1

4 ((R
tr)R−RtRr)

d2r
dt2 = − 1

4 (R
tR) r
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r (t) = r1 exp it
1
2

√
RtR+ r1 exp

(
−it 12

√
RtR

)

r (0) = 0 = r1 + r2
dr
dt (0) = R = r1 − r2
r (t) = R sin t 12

√
RtR

rtr = RrR sin2 t 12
√
RtR

a2 − b2 = a2 = 1− 1
4R

rR sin2 t 12
√
RtR

exp tυ (R, 0) =
√
1− 1

4R
rR sin2 t 12

√
RtR+ sin t 12

√
RtRυ (R, 0)

exp tυ (R,W ) =

(√
1 + 1

4

(
W tW sinh2 1

2 t
√
W tW

)
+ sinh 1

2 t
√
W tWυ (0,W )

)
·

(√
1− 1

4R
rR sin2 t 12

√
RtR+ sin t 12

√
RtRυ (R, 0)

)
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15 ANNEX 2 : FORMULAS

15.1 Relativist Geometry

Divergence of a vector field V :
divV = 1

detP ′

∑3
α=0

d
dξα (V α detP ′) =

∑3
α=0

dV α

dξα + 1
detP ′

∑3
α=0 V

α d detP ′

dξα

For a motion on an integral curve of the vector field V : 1
detP ′

∑3
α=0 V

α d detP ′

dξβ
=

1
detP ′

d detP ′

dτ
Between the proper time τ of a particle and the time t of an observer :

dτ
dt =

√
1− ‖−→v ‖2

c2 = 1
c

√
−〈V, V 〉 = c

u0 = 1
2a2

w−1

Between the velocity u of a particle and the speed V as measured by an
observer :

u = dp
dτ = V c√

−〈V,V 〉
= 1√

1−‖−→v ‖2

c2

(−→v + cε0 (m))

= c
((

2a2w − 1
)
ε0 + ǫaw

∑3
i=1 wiεi

)

V = dp
dt = u

√
−〈V,V 〉

c = −→v + cε0 (m) = c
(
ε0 + ǫ aw

2a2
w−1

∑3
i=1 wiεi

)

V (t) = dq
dt = cε0 (q (t)) +

−→v

15.2 Operator j

Let r ∈ C3, w ∈ C3 :

[j (r)]w =




0 −r3 r2
r3 0 −r1
−r2 r1 0





w1

w2

w3


 =




r2w3 − r3w2

−r1w3 + r3w1

r1w2 − r2w1




[j (r)w]
a
=
∑3

b,c=1 ǫ (a, b, c) rbwc

j(r)t = −j(r) = j(−r)
j(x)y = −j(y)x
ytj(x) = −xtj(y)
j(x)y = 0 ⇔ ∃k ∈ R : y = kx

15.2.1 eigenvectors:

r =
√
rtr

0 :



r1
r2
r3




ir :




− (−r1r2 + ir3r)
−
(
r21 + r23

)

r2r3 + ir1r




−ir :




− (r1r2 + ir3r)(
r21 + r23

)

−r2r3 + r1ir



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15.2.2 Identities

j(x)j(y) = yxt − (ytx) I
j(x)j(x)j (x) = j (x) (xxt − (xtx) I) = − (xtx) j (x)
j(j(x)y) = yxt − xyt = j(x)j(y) − j(y)j(x)
j(j(x)j (x) y) = (ytx) j (x)− (xtx) j (y)
j(x)j(y)j(x) = − (ytx) j(x)
j(x)j(x)j(y) = j(x)yxt−(ytx) j (x) = −j(y)xxt−(ytx) j (x) = −j(y) (j (x) j (x) + xtx)−

(ytx) j (x)
xtj (r) j(s)y = xt (srt − rtsI) y = (xts) (rty)− (xty) (rts)

‖j(x)y‖2 = (xtx) (yty)− (xty)2

M ∈ L(3) :M tj(Mx)M = (detM) j(x)
M ∈ O(3) : j(Mx)My =Mj(x)y ⇔Mx×My =M (x× y)

k > 0 : j(r)2k = (−rtr)k−1
(rrt − (rtr) I) = (−rtr)k−1

j(r)j(r)

k ≥ 0 : J(r)2k+1 = (−rtr)k j(r)
exp [j (r)] = I3 + [j (r)] sin

√
rtr√

rtr
+ [j (r)] [j (r)] 1−cos

√
rtr

rtr

15.2.3 Polynomials

The set of polynomials aI + bj (z)+ cj (z) j(z) where z ∈ C3 is fixed, a, b, c ∈ C

is a commutative ring.
(a+ bj(z) + cj(z)j(z)) (a′ + b′j(z) + c′j(z)j(z))
= aa′+(ab′ + a′b− (ztz) (c′b+ b′c)) j(z)+(ac′ + b′b+ a′c− (ztz) c′c) j(z)j(z)
The inverse are :

[aI + bj (z) + cj (z) j(z)]
−1

= 1
aI− bc2

(a−cz2)2+b2z2
j (z)+

(b2+c2z2−a)
a((a−cz2)2+cb2z2)

j (z) j (z)

det (a+ bj (r) j (r) + cj(r)j(k) + dj(k)j(r)) =
cd2
(
r2k2z − z3

)
+ad2z2+c2d

(
r2k2z − z3

)
+bcd

(
r4k2 − r2z2

)
+acd

(
−k2r2 + 3z2

)
+

2abdr2z − 2a2dz + 2abcr2z − 2a2cz − 2a2cz
++ ab2r4 − 2a2br2 + a3

with z = rtk, r2 = rtr, k2 = ktk

15.3 Dirac’s matrices

σ1 =

[
0 1
1 0

]
;σ2 =

[
0 −i
i 0

]
;σ3 =

[
1 0
0 −1

]
;σ0 =

[
1 0
0 1

]

σiσj + σjσi = 2δijσ0
σ2
i = σ0
j 6= k, l = 1, 2, 3 : σjσk = ǫ (j, k, l) iσl
σ1σ2σ3 = iσ0(∑3.

a=1 Uaσa

)(∑3
b=1 Vbσb

)
=
∑3

a<b=1 (j (U)V )
a
iσa +

∑3
a=1 UaVaσ0

∑3
a=1 zaσa =

[
z3 z1 − iz2

z1 + iz2 −z3

]

(∑3
a=1 zaσa

)−1

= 1
z2

1
+z2

2
+z2

3

∑3
a=1 zaσa
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15.4 γ matrices

γ0 =

[
0 −iσ0
iσ0 0

]
; γ1 =

[
0 σ1
σ1 0

]
; γ2 =

[
0 σ2
σ2 0

]
; γ3 =

[
0 σ3
σ3 0

]
;

γiγj + γjγi = 2δijI4
γi = γ∗i = γ−1

i

γ1γ2γ3 = i

[
0 σ0
σ0 0

]

γ5 = γ0γ1γ2γ3 =

[
σ0 0
0 −σ0

]

γ5γa = −γaγ5
Cl (3, 1) : γC (εj) = γj , j = 1, 2, 3; γC (ε0) = iγ0; γC (ε5) = iγ5
Cl (1, 3) : γC′ (εj) = iγj , j = 1, 2, 3; γC′ (εj) = γ0; γC

′ (ε5) = γ5

j = 1, 2, 3 : γ̃j =

[
σj 0
0 σj

]

j 6= k, l = 1, 2, 3 : γjγk = −γkγj = iǫ (j, k, l) γ̃l
a = 1, 2, 3 : γC (−→κ a) = − 1

2 iγ̃a

a = 4, 5, 6 : γC (−→κ a) =
1
2

[
σa 0
0 −σa

]

γ0γ̃j = γ̃jγ0 = i

[
0 −σj
σj 0

]

γ̃aγ̃a = I4
γ̃aγ̃b = iǫ (a, b, c) γ̃c
γ̃aγ̃b + γ̃bγ̃a = 2δabI4
γaγ̃b = iǫ (a, b, c)γc

γaγ̃a =

[
0 σ0
σ0 0

]

γ0γ̃a =

[
0 −iσa
iσa 0

]
= (γ0γ̃a)

∗
=

[
0 −iσ∗

a

iσ∗
a 0

]

j = 1, 2, 3 : γjγ0 = −γ0γj = i

[
σj 0
0 −σj

]
= iγ5γ̃j

γ1γ2 = −γ2γ1 = i

[
σ3 0
0 σ3

]
; γ2γ3 = −γ3γ2 = i

[
σ1 0
0 σ1

]
;

γ3γ1 = −γ1γ3 = i

[
σ2 0
0 σ2

]

γ1γ0 = −γ0γ1 = i

[
σ1 0
0 −σ1

]
; γ2γ0 = −γ0γ2 = i

[
σ2 0
0 −σ2

]
;

γ3γ0 = −γ0γ3 = i

[
σ3 0
0 −σ3

]

γC (a+ υ (r, w) + bε5) = aI + ibγ5 − i 12
∑3

a=1 (waγaγ0 + raγ̃a)
In Cl(3, 1):

γC (υ (r, w)) = −i 12
∑3

a=1 (waγaγ0 + raγ̃a)

= 1
2

[∑3
a=1 (wa − ira)σa 0

0 −∑3
a=1 (wa + ira)σa

]

In Cl(1, 3):
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γC′ (υ (r, w)) = −i 12
∑3

a=1 (waγaγ0 − raγ̃a)

15.5 Clifford algebra

εi · εj + εj · εi = 2ηij
ε5 · ε5 = −1

15.5.1 Lie Algebras

υ (r, w) = 1
2

(
w1ε0 · ε1 + w2ε0 · ε2 + w3ε0 · ε3 + r3ε2 · ε1 + r2ε1 · ε3 + r1ε3 · ε2

)
−→κ 1 = υ ((1, 0, 0) , (0, 0, 0)) = 1

2ε3 · ε2,−→κ 2 = υ ((0, 1, 0) , (0, 0, 0)) = 1
2ε1 · ε3,−→κ 3 = υ ((0, 0, 1) , (0, 0, 0)) = 1
2ε2 · ε1,−→κ 4 = υ ((0, 0, 0) , (1, 0, 0)) = 1
2ε0 · ε1,−→κ 5 = υ ((0, 0, 0) , (0, 1, 0)) = 1
2ε0 · ε2,−→κ 6 = υ ((0, 0, 0) , (0, 0, 1)) = 1
2ε0 · ε3

υ (r, w)·ε0 = 1
2

(
w1ε1 + w2ε2 + w3ε3 + r3ε2 · ε1 · ε0 + r2ε1 · ε3 · ε0 + r1ε3 · ε2 · ε0

)

ε0·υ (r, w) = 1
2

(
−w1ε1 − w2ε2 + w3ε3 + r3ε2 · ε1 · ε0 + r2ε1 · ε3 · ε0 + r1ε3 · ε2 · ε0

)

υ (r, w) · ε0 − ε0 · υ (r, w) = w
υ (r, w) · ε0 + ε0 · υ (r, w) = 2υ (r, 0) · ε0
In Cl(3, 1):
υ (r, w) · ε5 = ε5 · υ (r, w) = υ (r,−w)
υ (r′, w′) · υ (r, w)
= 1

4 (w
tw′ − rtr′)+ 1

2υ (−j (r) r′ + j (w)w′,−j (w) r′ − j (r)w′)− 1
4 (w

tr′ + rtw′) ε5
[υ (r, w) , υ (r′, w′)] = υ (j (r) r′ − j (w)w′, j (w) r′ + j (r)w′)
Adsυ (x, y) = υ (X,Y )
with
s = a+ υ (r, w) + bε5
X =[
(a+ b)

2 − ab+ 1
4r

tr + (a+ b) j (r) + 1
4 (j (w) j (r) − 2j (w) j (w) + 3j (r) j (r))

]
x

+
[
ab+ 1

4r
tr + (b− a) j (w)− 1

4 (3j (w) j (r) + 2j (r) j (w)− j (r) j(r))
]
y

Y =[
1
4w

tw − ab+ (a+ b) j (w) + 1
4 (j (w) j (w) + 2j (w) j (r) + 3j (r) j (w))

]
x

+
[
(a− b)

2 − 1
4w

tw − ab+ (a− b) j (r)− 1
4 (3j (w) j (w)− j (r) j (w) − 2j (r) j (r))

]
y

In Cl(1, 3):
υ (r, w) · ε5 = ε5 · υ (r, w) = υ (w, r)
υ (r, w) · υ (r′, w′)
= 1

4 (w
tw′ − rtr′)− 1

2υ (−j (r) r′ + j (w)w′, j (w) r′ + j (r)w′)− 1
4 (w

tr′ + rtw′) ε5
[υ (r, w) , υ (r′, w′)] = −υ (j (r) r′ − j (w)w′, j (w) r′ + j (r)w′)

15.5.2 Spin groups

s = a+ υ (r, w) + bε5
a2 − b2 = 1 + 1

4 (w
tw − rtr)

ab = − 1
4r

tw
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if r = 0 then a = ǫ
√
1 + 1

4w
tw; b = 0

if w = 0 then

rtr ≤ 4 : a = ǫ
√
1− 1

4r
tr; b = 0

rtr ≥ 4 : b = ǫ
√
−1 + 1

4r
tr; a = 0

Product :
(a+ υ (r, w) + bε5)

−1
= a− υ (r, w) + bε5

s · s′ = a” + υ (r”, w”) + b”ε0 · ε1 · ε2 · ε3
with :
a” = aa′ − b′b+ 1

4 (w
tw′ − rtr′)

b” = ab′ + ba′ − 1
4 (w

tr′ + rtw′)

i) In Cl(3, 1) :
r” = 1

2 (j (r) r
′ − j (w)w′) + a′r + ar′ − b′w − bw′

w” = 1
2 (j (w) r

′ + j (r)w′) + a′w + aw′ + b′r + br′

(a+ υ (0, w)) · (a′ + υ (0, w′)) = aa′ + 1
4w

tw′ + υ
(
− 1

2 (j (w)w
′, a′w + aw′)

)

(a+ υ (r, 0)) · (a′ + υ (r′, 0)) = aa′ − 1
4r

tr′ + υ
(
1
2j (r) r

′ + (a′r + ar′) , 0
)

(aw + υ (0, w)) · (ar + υ (r, 0)) = awar + υ
(
awr,

1
2j (w) r + arw

)
− 1

4 (w
tr) ε5

ii) In Cl(1, 3) :
r” = 1

2 (j (r) r
′ − j (w)w′) + a′r + ar′ + b′w + bw′

w” = − 1
2 (j (w) r

′ + j (r)w′) + a′w + aw′ + b′r + br′
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