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Generic properties of subgroups of free groups and finite
presentations

Frédérique Bassino, Cyril Nicaud, and Pascal Weil

Abstract. Asymptotic properties of finitely generated subgroups of free groups,

and of finite group presentations, can be considered in several fashions, depend-

ing on the way these objects are represented and on the distribution assumed
on these representations: here we assume that they are represented by tuples

of reduced words (generators of a subgroup) or of cyclically reduced words
(relators). Classical models consider fixed size tuples of words (e.g. the few-

generator model) or exponential size tuples (e.g. Gromov’s density model), and

they usually consider that equal length words are equally likely. We general-
ize both the few-generator and the density models with probabilistic schemes

that also allow variability in the size of tuples and non-uniform distributions

on words of a given length.
Our first results rely on a relatively mild prefix-heaviness hypothesis on

the distributions, which states essentially that the probability of a word de-

creases exponentially fast as its length grows. Under this hypothesis, we gen-
eralize several classical results: exponentially generically a randomly chosen

tuple is a basis of the subgroup it generates, this subgroup is malnormal and

the tuple satisfies a small cancellation property, even for exponential size tu-
ples. In the special case of the uniform distribution on words of a given length,

we give a phase transition theorem for the central tree property, a combina-

torial property closely linked to the fact that a tuple freely generates a sub-
group. We then further refine our results when the distribution is specified

by a Markovian scheme, and in particular we give a phase transition theorem
which generalizes the classical results on the densities up to which a tuple of

cyclically reduced words chosen uniformly at random exponentially generically

satisfies a small cancellation property, and beyond which it presents a trivial
group.

This paper is part of the growing body of literature on asymptotic properties of
subgroups of free groups and of finite group presentations, which goes back at least
to the work of Gromov [10] and Arzhantseva and Ol’shanskii [1]. As in much of the
recent literature, the accent is on so-called generic properties, that is, properties
whose probability tends to 1 when the size of instances grows to infinity. A theory
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2 F. BASSINO, C. NICAUD, AND P. WEIL

of genericity and its applications to complexity theory was initiated by Kapovich,
Myasnikov, Schupp and Shpilrain [14], and developed in a number of papers, see
Kapovich for a recent discussion [13].

Genericity, and more generally asymptotic properties, depends on the fashion
in which input is represented: finitely presented groups are usually given by finite
presentations, i.e. tuples of cyclically reduced words; finitely generated subgroups
of free groups can be represented by tuples of words (generators) or Stallings graphs.
The representation by Stallings graphs is investigated by the authors, along with
Martino and Ventura in [4, 3, 5] but we will not discuss it in this paper: we are
dealing, like most of the literature, with tuples of words.

There are, classically, two main models (see Section 2.2): the few words model,
where an integer k is fixed and one considers k-tuples of words of length at most n,
when n tends to infinity, see e.g. [1, 12, 3, 5]; and the density model, where we con-
sider tuples of cyclically reduced words of length n, whose size grows exponentially
with n, see e.g. [10, 25, 7, 23].

Typical properties investigated include the following (see in particular Sec-

tions 1.2 and 1.3): whether a random tuple ~h freely generates the subgroup H = 〈~h〉
[1, 12], whether H is malnormal [12, 3] or Whitehead minimal [27, 5], whether

the finite presentation with relators ~h has a small cancellation property, or whether
the group it presents is infinite or trivial [23].

All these models implicitly assume the uniform distribution on the set of re-
duced words of equal length (Ollivier also considers non-uniform distributions in
[23]).

We introduce (Section 3) a model for probability distributions on tuples of re-
duced words that is sufficiently general to extend the few words model and Gromov’s
density model mentioned above, and to leave space for non uniform distributions.

Like these two models, ours assumes that a tuple ~h of words is generated by in-
dependently drawing words of given lengths, but it also handles independently the

size of ~h and the lengths of the words in ~h.
Our first set of results assumes a prefix-heaviness hypothesis on the probability

distribution on words: the probability of drawing a word decreases exponentially
fast as its length grows (precise definitions are given in Section 3). It is a natural
hypothesis if we imagine that our probabilistic source generates words one letter at
a time, from left to right. This relatively mild hypothesis suffices to obtain general
results on the exponential genericity of a certain geometric property of the Stallings

graph of the subgroup H generated by a randomly chosen tuple ~h (the central tree

property, implicitly considered in [1, 12] and explicitly in [5]), of the fact that ~h
freely generates H, and of the malnormality of H, see Section 3.5.

In Section 3.6, we apply these general results to the uniform distribution and
generalize known results in two directions. Firstly we consider random exponen-
tial size tuples, for which we give a phase transition theorem for the central tree
property: it holds exponentially generically up to density 1

4 , and fails exponentially

generically at densities greater than 1
4 (Proposition 3.21). In particular, a random

tuple is exponentially generically a basis of the subgroup it generates up to density
1
4 , but we cannot say anything of that property at higher densities.

We also extend Jitsukawa’s result on malnormality [12], from fixed size to expo-
nential size tuples under uniform distribution up to density 1

16 (Proposition 3.22).
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In view of the methods used to establish this result, it is likely that the value 1
16 is

not optimal.
Secondly, we show that the height of the central tree of a random fixed size

tupe ~h, which measures the amount of initial cancellation between the elements of ~h

and ~h−1, is generically less than any prescribed unbounded non-decreasing function
(Proposition 3.24). Earlier results only showed that this height was exponentially
generically bounded by any linear function.

We then introduce Markovian automata, a probabilistic automata-theoretic
model, to define explicit instances of prefix-heavy distributions (Section 4). Ad-
ditional assumptions like irreducibility or ergodicity lead to the computation of
precise bounds for the parameters of prefix-heaviness. In particular, we prove a
phase transition theorem for ergodic Markovian automata (Section 4.4), showing
that small cancellation properties generically hold up to a certain density, and
generically do not hold at higher densities. More precisely, if α[2] is the coincidence
probability of the Markovian automaton, Property C ′(λ) holds exponentially gener-

ically at α[2]-density less than λ
2 (that is: for random tuples of size α−dn[2] for some

d < λ
2 ), and fails exponentially generically at α[2]-densities greater than λ

2 . We

also show that at α[2]-densities greater than 1
2 , a random tuple of cyclically reduced

words generically presents a degenerate group (see Proposition 4.23 for a precise
definition). These results generalize the classical results on uniform distribution in
Ollivier [23, 24]. It remains to be seen whether our methods can be applied to
fill the gap, say, between α[2]-density 1

12 and 1
2 , where small cancellation property

C ′( 1
6 ) generically does not hold yet the presented group might be hyperbolic, see

[23, 24].
Some of the definitions in this paper, notably that of Markovian automata, were

introduced by the authors in [2], and some of the results were announced there as
well. The results in the present paper are more precise, and subsume those of [2].

1. Free groups, subgroups and presentations

In this section, we set the notation and basic definitions of the properties of
subgroups of free groups and finite presentations which we will consider.

1.1. Free groups and reduced words. Let A be a finite non-empty set,
which will remain fixed throughout the paper, with |A| = r, and let Ã be the
symmetrized alphabet, namely the disjoint union of A and a set of formal inverses
A−1 = {a−1 ∈ A | a ∈ A}. By convention, the formal inverse operation is extended

to Ã by letting (a−1)−1 = a for each a ∈ A. A word in Ã∗ (that is: a word written

on the alphabet Ã) is reduced if it does not contain length 2 factors of the form

aa−1 (a ∈ Ã). If a word is not reduced, one can reduce it by iteratively deleting
every factor of the form aa−1. The resulting reduced word is uniquely determined:
it does not depend on the order of the cancellations. For instance, u = aabb−1a−1

reduces to aaa−1, and thence to a.
The set F of reduced words is naturally equipped with a group structure, where

the product u · v is the (reduced) word obtained by reducing the concatenation uv.
This group is called the free group on A. More generally, every group isomorphic
to F , say, G = ϕ(F ) where ϕ is an isomorphism, is said to be a free group, freely
generated by ϕ(A). The set ϕ(A) is called a basis of G. Note that if r ≥ 2, then F
has infinitely many bases: if, for instance, a 6= b are elements of A, then replacing



4 F. BASSINO, C. NICAUD, AND P. WEIL

a by bnabm (for some integers n,m) yields a basis. The rank of F (or of any
isomorphic free group) is the cardinality |A| of A, and one shows that this notion
is well-defined in the following sense: every basis of F has the same cardinality.

Let x, y be elements of a group G. We say that y is a conjugate of x if there
exists an element g ∈ G such that y = g−1xg, which we write y = xg. The notation
is extended to subsets of G: if H ⊆ G, then Hg = {xg | x ∈ H}. Conjugacy
of elements of the free group F is characterized as follows. Say that a word u
is cyclically reduced word if it is non-empty, reduced and its first and last letters
are not mutually inverse (or equivalently, if u2 is non-empty and reduced). For
instance, ab−1a−1bbb is cyclically reduced, but ab−1a−1bba−1 is not.

For every reduced word u, let κ(u) denote its cyclic reduction, which is the short-
est word v such that u = wvw−1 for some word w. For instance, κ(ab−1a−1bba−1) =
a−1b. It is easily verified that two reduced words u and v are conjugates if and only
if κ(u) and κ(v) are cyclic conjugates (that is: there exist words x and y such that
κ(u) = xy and κ(v) = yx).

Let Rn (resp. Cn) denote the set of all reduced (resp. cyclically reduced) words
of length n ≥ 1, and let R =

⋃
n≥1Rn and C =

⋃
n≥1 Cn be the set of all reduced

words, and all cyclically reduced words, respectively.
Every word of length 1 is cyclically reduced, so |R1| = |C1| = 2r. A reduced

word of length n ≥ 2 is of the form ua, where u is reduced and a is not the inverse of
the last letter of u. An easy induction shows that there are |Rn| = 2r(2r−1)n−1 =
2r

2r−1 (2r − 1)n reduced words of length n ≥ 2.
Similarly, if n ≥ 2, then Cn is the set of words of the form ua, where u is a

reduced word and a ∈ Ã is neither the inverse of the first letter of u, nor the inverse
of its last letter: for a given u, there are either 2r−1 or 2r−2 such words, depending
whether the first and last letter of u are equal. In particular, the number of words
in Cn satisfies 2r

2r−1 (2r − 1)n−1(2r − 2) ≤ |Cn| ≤ 2r
2r−1 (2r − 1)n, and in particular,

|Cn| = Θ((2r − 1)n).

1.2. Subgroups and presentations. Given a tuple ~h = (h1, . . . , hk) of ele-

ments of F , let ~h± = (h1, h
−1
1 , . . . , hk, h

−1
k ) and let 〈~h〉 denote the subgroup of F

generated by the elements of ~h, that is, the set of all the elements of F which can

be written as a product of elements of ~h±. It is a classical result of Nielsen that
every such subgroup is free [22].

An important property of subgroups is malnormality, which is related to geo-
metric considerations (e.g. [9, 17]): a subgroup H of a group G is malnormal if
H ∩ Hx is trivial for every x 6∈ H. It is decidable whether a finitely generated

subgroup 〈~h〉 is malnormal ([12, 15], see Section 1.3), whereas malnormality is not
decidable in general hyperbolic groups [6].

A tuple ~h of elements of F (A) can also be considered as a set of relators in a

group presentation. More precisely, we denote by 〈A | ~h〉 the group with generator

set A and relators the elements of ~h, namely the quotient of F (A) by the normal

subgroup generated by ~h. It is customary to consider such a group presentation

only when ~h consists only of cyclically reduced words, since 〈A | ~h〉 = 〈A | κ(~h)〉.
The small cancellation property is a combinatorial property of a group presen-

tation, with far-reaching consequences on the quotient group. Let ~h be a tuple of

cyclically reduced words. A piece in ~h is a word u with at least two occurrences as

a prefix of a cyclic conjugate of a word in ~h±. Let 0 < λ < 1. The tuple ~h (or the
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group presentation 〈A | ~h〉) has the small cancellation property C ′(λ) if whenever a

piece u occurs as a prefix of a cyclic conjugate w of a word in ~h±, then |u| < λ|w|.
The following properties are well-known. We do not give the definition of the

group-theoretic properties in this statement and refer the reader to [19] or to the
comprehensive survey [24].

Proposition 1.1. If ~h is a tuple of cyclically reduced words satisfying C ′( 1
6 ),

then G = 〈A | ~h〉 is infinite, torsion-free and word-hyperbolic. In addition, it has
solvable word problem (by Dehn’s algorithm) and solvable conjugacy problem.

Moreover, if ~h and ~g both have property C ′( 1
6 ) and if they present the same

group, then ~h± = ~g± up to the order of the elements in the tuples.

1.3. Graphical representation of subgroups and the central tree prop-
erty. A privileged tool for the study of subgroups of free groups is provided by
Stallings graphs: if H is a finitely generated subgroup of F , its Stallings graph
Γ(H) is a finite graph of a particular type, uniquely representing H, whose com-
putation was first made explicit by Stallings [31]. The mathematical object itself
is already described by Serre [29]. The description we give below differs slightly
from Serre’s and Stallings’, it follows [35, 15, 33, 21, 30] and it emphasizes the
combinatorial, graph-theoretical aspect, which is more conducive to the discussion
of algorithmic properties.

A finite A-graph is a pair Γ = (V,E) with V finite and E ⊆ V × A × V , such
that if both (u, a, v) and (u, a, v′) are in E then v = v′, and if both (u, a, v) and
(u′, a, v) are in E then u = u′. Let v ∈ V . The pair (Γ, v) is said to be admissible
if the underlying graph of Γ is connected (that is: the undirected graph obtained
from Γ by forgetting the letter labels and the orientation of edges), and if every
vertex w ∈ V , except possibly v, occurs in at least two edges in E.

Every admissible pair (Γ, 1) represents a unique subgroup H of F (A) in the
following sense: if u is a reduced word, then u ∈ H if and only if u labels a loop
at 1 in Γ (by convention, an edge (u, a, v) can be read from u to v with label a,
or from v to u with label a−1). One can show that H is finitely generated. More
precisely, the following procedure yields a basis of H: choose a spanning tree T of
Γ; for each edge e = (u, a, v) of Γ not in T , let be = xuax

−1
v , where xu (resp. xv) is

the only reduced word labeling a path in T from 1 to u (resp. v); then the be freely
generate H and as a result, the rank of H is exactly |E| − |V |+ 1.

Conversely, if ~h = (h1, . . . , hk) is a tuple of reduced words, then the subgroup

H = 〈~h〉 admits a Stallings graph, written (Γ(H), 1), which can be computed
effectively and efficiently. A quick description of the algorithm is as follows. We
first build a graph with edges labeled by letters in Ã, and then reduce it to an
A-graph using foldings. First build a vertex 1. Then, for every 1 ≤ i ≤ k, build
a loop with label hi from 1 to 1, adding |hi| − 1 new vertices. Change every edge
(u, a−1, v) labeled by a letter of A−1 into an edge (v, a, u). At this point, we have
constructed the so-called bouquet of loops labeled by the hi.

Then iteratively identify the vertices v and w whenever there exists a vertex
u and a letter a ∈ A such that either both (u, a, v) and (u, a, w) or both (v, a, u)
and (w, a, u) are edges in the graph (the corresponding two edges are folded, in
Stallings’ terminology).
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The resulting graph Γ is such that (Γ, 1) is admissible, the reduced words
labeling a loop at 1 are exactly the elements of H and, very much like in the (1-
dimensional) reduction of words, that graph does not depend on the order used to
perform the foldings. The graph (Γ(H), 1) can be computed in time almost linear
(precisely: in time O(n log∗ n) [33]).

Some algebraic properties of H can be directly seen on its Stallings graph
(Γ(H), 1). For instance, one can show that H is malnormal if and only if there
exists no non-empty reduced word u which labels a loop in two distinct vertices of
Γ(H) [12, 15]. This property leads to an easy decision procedure of malnormality
for subgroups of a free group. We refer the reader to [31, 35, 15, 21] for more
information about Stallings graphs.

If ~h is a tuple of elements of F , let min(~h) be the minimum length of an element

of ~h and let lcp(~h) be the length of the longest common prefix between two words in
~h±, see Figure 11. We say that ~h has the central tree property if 2 lcp(~h) < min(~h).

• ◦ ◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦◦

◦
◦

◦

◦◦

◦

◦

b a

c

c

b

b

c

c

b

a

b

c

c

a

b

a

c
a

a

c c

a

a

Figure 1. The Stallings graph of the subgroup generated by
~h = (ba−1cb2a2b−1, a2c2a−2cbc, c−1b−1aba−1c−2ba−1c2), has the

central tree property and satisfies lcp(~h) = 2. The origin is de-
noted by • and the central tree is depicted in bold arrows.

Proposition 1.2. Let ~h = (h1, . . . , hk) be a tuple of elements of F (A) with the

central tree property and let H = 〈~h〉. Then the Stallings graph Γ(H) consists of a

central tree of height t = lcp(~h) and of k outer loops, one for each hi, connecting

1This definition is closely related with the notion of trie of ~h±. The height of the trie of ~h±

is 1 + lcp(~h).
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the length t prefix and the length t suffix of hi (two leaves of the central tree), of
length |hi| − 2t respectively. The set of vertices of the central tree can be identified

with the set of prefixes of length at most t of the words of ~h±.

In particular, ~h is a basis of H. Moreover, if ~g is a basis of H also with the

central tree property, then ~h± and ~g± coincide up to the order of their elements.

Proof. The central tree property shows that the cancellation (folding) that
occurs when one considers the bouquet of hi-labeled loops around the origin, stops
before canceling entirely any one of the hi. The result follows immediately. �

Under the central tree property, we record an interesting sufficient condition
for malnormality.

Proposition 1.3. Let ~h = (h1, . . . , hk) be a tuple of elements of F (A) with the

central tree property and let H = 〈~h〉. Let us assume additionally that 3 lcp(~h) <

min(~h) and that no word of length at least 1
2 (min(~h) − 3 lcp(~h)) has several occur-

rences as a factor of an element of ~h±, then H is malnormal.

Remark 1.4. In the proof below, and in several other statements and proofs
later in the paper, we consider words whose length is specified by an algebraic

expression which does not always compute to an integer (e.g., 1
2 (min(~h)−3 lcp(~h))).

To be rigorous, we should consider only the integer part of these expressions. For
the sake of simplicity, we dispense with this extra notation, and implicitly consider
that if a word of length ` is considered, then we mean that its length is b`c.

Proof. Let m = min(~h) and t = lcp(~h). Proposition 1.2 shows that Γ(H)
consists of a central tree of height t and of outer loops, one for each hi, of length
|hi| − 2t ≥ m− 2t.

If H is not malnormal, then a word u labels a loop at two distinct vertices
of Γ(H). Without loss of generality, u is cyclically reduced. Moreover, given the
particular geometry of Γ(H), both loops visit the central tree. Without loss of
generality, we may assume that one of the u-labeled loops starts in the central tree,
at distance exactly t from the base vertex 1, and travels away from 1. In particular,
|u| ≥ m− 2t, and if v is the prefix of u of length m− 2t, then v is a factor of some
h±1i .

Let s be the start state of the second u-labeled loop: reading this loop starts
with reading the word v. Suppose that s is in the central tree: either reading u
(and v) from s takes us away from 1 towards a leaf of the central tree and into an
outer loop, and v is a factor of some h±1j ; or reading v from s moves us towards
1 for a distance at most t, after which the path travels away from 1, along a path
labeled by a factor of some h±1j , for a distance at least m − 3t. In either case, a

factor of u of length m− 3t > 1
2 (m− 3t) has two occurrences in ~h±.

Suppose now that s is on an outer loop (say, associated to h±1j ) and that s′

is the first vertex of the central tree reached along the loop. If s′ is reached after
reading a prefix of u of length greater than 1

2 (m−3t), then the prefix of v of length
1
2 (m− 3t) is a factor of h±1j . Otherwise v labels a path from s which first reaches

s′, then travels towards 1 in the central tree for a distance at most t, and thence
away from 1, along a path labeled by some h±1` , which it follows over a length at
least equal to (m− 2t)− 1

2 (m− 3t)− t = 1
2 (m− 3t).
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Thus, in every case, u contains a factor of length 1
2 (m − 3t) with two distinct

occurrences as a factor of an element of ~h± and this concludes the proof. �

To conclude this section, we note that the properties discussed above are pre-

served when going from a tuple ~h to a sub-tuple: say that a tuple ~g is contained in

a tuple ~h, written ~g ≤ ~h, if every element of ~g is an element of ~h.

Proposition 1.5. Let ~g,~h be tuples of reduced words such that ~g ≤ ~h.

• If ~h has the central tree property, so does ~g.

• If ~h consists of cyclically reduced words and ~h has Property C ′(λ), then
so does ~g.

• If ~h has the central tree property, then 〈~g〉 is a free factor of 〈~h〉, and 〈~g〉
is malnormal if 〈~h〉 is.

Proof. The first two properties are immediate from the definition. Supose

now that ~h has the central tree property. Then by Proposition 1.2, ~h is a basis of

〈~h〉, and by the first statement of the current proposition, ~g is a basis of 〈~g〉. Since

~g ≤ ~h, 〈~g〉 is a free factor of 〈~h〉.
In particular, 〈~g〉 is malnormal in 〈~h〉 (a free factor always is, by elementary

reasons). It is immediate from the definition that malnormality is transitive, so if

〈~h〉 is malnormal in F , then so is 〈~g〉. �

2. Random models and generic properties

We will discuss several models of randomness for finitely presented groups and
finitely generated subgroups, or rather, for finite tuples of cyclically reduced words
(group presentations) and finite tuples of reduced words. In this section, we fix
a general framework for these models of randomness and we survey some of the
known results.

2.1. Generic properties and negligible properties. Let us say that a
function f , defined on N and such that lim f(n) = 0, is exponentially (resp. super-
polynomially, polynomially) small if f(n) = o(e−dn) for some d > 0 (resp. f(n) =
o(n−d) for every positive integer d, f(n) = o(n−d) for some positive integer d).

Given a sequence of probability laws (Pn)n on a set S, we say that a subset
X ⊆ S is negligible if limn Pn(X) = 0, and generic if its complement is negligible.2

We also say that X is exponentially (resp. super-polynomially, polynomially)
negligible if Pn(X) tends to 0 and is exponentially (resp. super-polynomially, poly-
nomially) small. And it is exponentially (resp. super-polynomially, polynomially)
generic if its complement is exponentially (resp. super-polynomially, polynomially)
negligible.

In this paper, the set S will be the set of all finite tuples of reduced words, or
cyclically reduced words, and the probability laws Pn will be such that every subset
is measurable: we will therefore not specify in the statements that we consider only
measurable sets.

The notions of genericity and negligibility have elementary closure properties
that we will use freely in the sequel. For instance, a superset of a generic set is

2This is the same notion as with high probability or with overwhelming probability, which are
used in the discrete probability literature.
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generic, as well as the intersection of finitely many generic sets. Dual properties
hold for negligible sets.

2.2. The few-generator model and the density model. In this section,
we review the results known on two random models, originally introduced to discuss
finite presentations. We discuss more general models in Section 3 below.

2.2.1. The few-generator model. In the few-generator model, an integer k ≥ 1 is
fixed, and we let Pn be the uniform probability on the set of k-tuples of words of F of
length at most n. Proposition 2.1 is established by elementary counting arguments,
see Gromov [10, Prop. 0.2.A] or Arzhantseva and Ol’shanskii [1, Lemma 3].

Proposition 2.1. Let k ≥ 1, 0 < α < 1
2 , 2α < β < 1 and 0 < λ < 1.

Then a k-tuple ~h of elements of F of length at most n picked uniformly at random,
exponentially generically satisfies the following properties:

• min(~h) > βn,

• lcp(~h) < αn,

• no word of length λn has two occurrences as a factor of an element of ~h±.

In view of Propositions 1.2 and 1.3, this yields the following corollary ([3], and
[12] for the malnormality statement).

Corollary 2.2. Let k ≥ 1. If ~h is a k-tuple of elements of F of length at

most n picked uniformly at random and H = 〈~h〉, then

• exponentially generically, ~h has the central tree property, and in particular,
Γ(H) can be constructed in linear time (in k ·n), simply by computing the

initial cancellation of the elements of ~h±; H is freely generated by the

elements of ~h, and H has rank k;
• exponentially generically, H is malnormal.

Moreover, if ~h and ~g generate the same subgroup, then exponentially generically,
~h± = ~g± up to the order of the elements in the tuples.

The following statement follows from Proposition 1.5, and from Theorem 2.4
below (which is independent).

Corollary 2.3. In the few-generator model, if ~h is a k-tuple of cyclically
reduced words of length at most n, then

• for any 0 < λ < 1
2 , ~h exponentially generically satisfies the small cancel-

lation property C ′(λ) ;

• exponentially generically, the group 〈A | ~h〉 is infinite, torsion-free, word-
hyperbolic, it has solvable word problem (by Dehn’s algorithm) and solvable
conjugacy problem.

2.2.2. The density model. In the density model, a density 0 < d < 1 is fixed,
and a tuple of cyclically reduced elements of the n-sphere of density d is picked

uniformly at random: that is, the tuple ~h consists of |Cn|d cyclically reduced words
of length n. This model was introduced by Gromov [11] and complete proofs were
given by Ol’shanskii [25], Champetier [7] and Ollivier [23].

Theorem 2.4. Let 0 < α < d < β < 1. In the density model, the following
properties hold:



10 F. BASSINO, C. NICAUD, AND P. WEIL

(1) exponentially generically, every word of length αn occurs as a factor of a

word in ~h, and some word of length βn fails to occur as a factor of a word

in ~h±;

(2) if d < 1
2 , then exponentially generically, ~h satisfies property C ′(λ) for

λ > 2d but ~h does not satisfy C ′(λ) for λ < 2d; in particular, at density

d < 1
12 , ~h satisfies exponentially generically property C ′( 1

6 ) and the group

〈A | ~h〉 is infinite and hyperbolic; and at density d > 1
12 , exponentially

generically, ~h does not satisfy C ′( 1
6 );

(3) at density d > 1
2 , exponentially generically, 〈~h〉 is equal to F (A), or has

index 2. In particular, the group 〈A | ~h〉 is either trivial or Z/2Z;

(4) at density d < 1
2 , the group 〈A | ~h〉 is generically infinite and hyperbolic.

Properties (1)-(3) in Theorem 2.4 are obtained by counting arguments. Prop-
erty (4) is the “hard part” of the theorem, where hyperbolicity does not follow from
a small cancellation property.

As pointed out by Ollivier [24, Sec. I.2.c], the statement of Theorem 2.4 still
holds if a tuple of cyclically reduced elements is chosen uniformly at random at
density d in the n-ball rather than in the n-sphere (that is, it consists of words of
length at most n). We will actually verify this fact again in Section 3.6.

3. A general probabilistic model

We introduce a fairly general probabilistic model, which generalizes both the
few-generator and the density models.

3.1. Prefix-heavy sequences of measures on reduced words. For every
reduced word u ∈ R, let P(u) be the set of all reduced words v of which u is a prefix

(that is: P(u) = uÃ∗ ∩ R). Let also Pn(u) be the set Rn ∩ P(u). The notation P
can also be extended to a set U of reduced words: P(U) =

⋃
u∈U P(u).

Let (Rn)n≥0 be a sequence of probability measures on R and let C ≥ 1 and
α ∈ (0, 1). We say that the sequence (Rn)n≥0 is a prefix-heavy sequence of measures
on R of parameters (C,α) if:

(1) for every n ≥ 0, the support of the measure Rn is included in Rn;
(2) for every n ≥ 0 and for every u ∈ R, if Rn(P(u)) 6= 0 then for every v ∈ R

Rn
(
P(uv) | P(u)

)
≤ Cα|v|.

This prefix-oriented definition is rather natural if one thinks of a source as gener-
ating reduced words from left to right, as is usual in information theory.

Remark 3.1. Taking u = ε in the definition yields Rn
(
P(v)

)
≤ Cα|v|. For

n = |v|, we have P(v) ∩ Rn = {v}, so the probability of v decreases exponentially
with the length of v.

Example 3.2. The sequence of uniform distributions on Rn is a prefix-heavy
sequence of measures with parameters C = 1 and α = 1

2r−1 . Indeed, if u is a

reduced word of length at most n ≥ 0 (for a longer u, Rn(P(u)) = 0), and if uv is
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reduced, we have

Rn
(
P(uv) | P(u)

)
=


1

(2r−1)|v| if |u|+ |v| ≤ n and u 6= ε,
1

2r(2r−1)|v|−1 if |v| ≤ n and u = ε,

0 otherwise.

Example 3.3. By a similar computation, one verifies that the sequence of
uniform distributions on Cn, the cyclically reduced words, is also a prefix-heavy
sequence of measures, with parameters C = 2r−1

2r−2 and α = 1
2r−1 (see Section 1.1).

For the rest of this section, we fix a sequence of measures (Rn)n≥0 on R, which
is prefix-heavy with parameters (C,α). All probabilities refer to this sequence, that
is: the probability of a subset of Rn is computed according to Rn.

Remark 3.4. If X and Y are subsets of R, the notation Rn(X | Y ) is tech-
nically defined only if Rn(Y ) 6= 0. To avoid stating cumbersome hypotheses, we
adopt the convention that Rn(X | Y ) Rn(Y ) = 0 whenever Rn(Y ) = 0.

3.2. Repeated factors in random reduced words. Let us first evaluate
the probability of occurrence of prescribed, non-overlapping factors in a reduced
word. Let m ≥ 0, ~v = (v1, . . . , vm) be a vector of non-empty reduced words
and ~ı = (i1, . . . , im) be a vector of integers. We denote by E(~v,~ı) denote the set
of reduced words of length n, admitting vj as a factor at position ij for every
1 ≤ j ≤ m (if m = 0, then E(~v,~ı) = R). If n ≥ 1, we also write En(~v,~ı) for
E(~v,~ı) ∩Rn.

Lemma 3.5. Let ~v = (v1, . . . , vm) be a sequence of non-empty reduced words
and ~ı = (i1, . . . , im) be a sequence of integers satisfying

1 ≤ i1 < i1 + |v1| ≤ i2 < i2 + |v2| ≤ . . . ≤ im + |vm| ≤ n.
Then the following inequality holds:

Rn (E(~v,~ı)) ≤ Cmα|v1v2···vm|.
In addition, if m ≥ 1 and ~x = (v1, . . . , vm−1) and ~ = (i1, . . . , im−1), then

Rn(E(~v,~ı)) ≤ Cα|vm|Rn(E(~x,~)).

Proof. The proof is by induction on m and the case m = 0 is trivial. We now
assume that m ≥ 1 and that the inequality holds for vectors of length m− 1. Since
(Rn)n is prefix-heavy, we have

Rn(P(uvm)) = Rn(P(uvm) | P(u)) Rn(P(u)) ≤ Cα|vm]Rn(P(u))

for each u. Since E(~v,~ı) = P(Eim−1(~x,~)vm), summing the previous inequality
over all u ∈ Eim−1(~x,~) yields

Rn(E(~v,~ı)) ≤ Cα|vm|Rn(P(Eim−1(~x,~))) = Cα|vm|Rn(E(~x,~))

since n ≥ im + |vm|. This concludes the proof. �

Corollary 3.6. Let v1, . . . , vm be non-empty reduced words. The probability
that a word of length n admits v1, . . . , vm in that order as non-overlapping factors,
is at most Cmnmα|v1···vm|.

Proof. This is a direct consequence of Lemma 3.5, summing over all possible
position vectors. �
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We now consider repeated non-overlapping occurrences of factors of a pre-
scribed length.

Lemma 3.7. Let 1 ≤ i, j, t ≤ n be such that i + t ≤ j. The probability that a
word of length t occurs (resp. a word of length t and its inverse occur) at positions
i and j in a reduced word of length n is at most equal to Cαt.

The probability that a reduced word of length n has two non-overlapping oc-
currences of a factor of length t (resp. occurrences of a factor of length t and its
inverse) is at most equal to Cn2αt.

Proof. Let En(t, i, j) be the set of reduced words of length n in which the
same factor of length t occurs at positions i and j. Then En(t, i, j) is the disjoint
union of the sets En((v, v), (i, j)), where v runs over Rt. By Lemma 3.5, we have

Rn(En(t, i, j)) =
∑
v∈Rt

Rn(E((v, v), (i, j))) ≤ Cαt
∑
v∈Rt

Rn(E((v), (i))) = Cαt,

where the last equality is due to the fact that the En((v), (i)) form a partition of
Rn when v runs over Rt.

The same reasoning applied to the vectors (v, v−1) yields the analogous inequal-
ity for words containing non-overlapping occurrences of a word and its inverse.

The last part of the statement follows by summing over all possible values of i
and j. �

Applying Lemma 3.7 with i = 1 and j = n− t+ 1, we get the following useful
statement.

Corollary 3.8. For every positive integers n, t such that n > 2t, the proba-
bility that a reduced word u ∈ Rn is of the form vwv−1, for some word v of length
t, is at most Cαt.

Finally, we also estimate the probability that a word has two overlapping oc-
currences of a factor. Note that we do not need to consider overlapping occurrences
of a word v and its inverse, since a reduced word cannot overlap with its inverse.

Lemma 3.9. Let 1 ≤ t < n. The probability that a reduced word of length n has
overlapping occurrences of a factor of length t is at most Cntαt.

Proof. If a word v overlaps with itself, more precisely, if xv = vz for some
words x, z such that 0 < |x| = |z| < |v|, then it is a classical result from combina-

torics on words that v = xsy where s =
⌊
|v|
|x|

⌋
≥ 1 and y is the prefix of x of length

|v| − s|x| (see Figure 2).

x x x x x y y′ y

v
v

Figure 2. A classical result from combinatorics of words: if xv =
vz with 0 < |x| < |v|, then v is of the form v = xsy for some
positive integer s and some prefix y of x.
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It follows that, if a reduced word u has (overlapping) occurrences of a factor v
of length t at positions i and j (j < i + t), then u admits a factor of the form xv
at position i, where x is the prefix of v of length j − i. Note that, once t and j − i
are fixed, v is entirely determined by x. Therefore this occurs with probability

P ≤
n∑
i=1

i+t−1∑
j=i+1

∑
x∈Rj−i

Rn(E((xv), (i))) =

n∑
i=1

i+t−1∑
j=i+1

∑
x∈Rj−i

Rn(E((x, v), (i, j))).

It follows that

P ≤
n∑
i=1

i+t−1∑
j=i+1

Cαt
∑

x∈Rj−i
Rn(E((x), (i))) =

n∑
i=1

i+t−1∑
j=i+1

Cαt ≤ Cntαt.

by Lemma 3.5 and using the fact that the En((x), (i)) form a partition of Rn when
x runs over Rj−i. �

3.3. Repeated cyclic factors in random reduced words. A word v is a
cyclic factor of a word u if either u ∈ Ã∗vÃ∗, or v = v1v2 and u ∈ v2Ã∗v1 – in
which case we say that v is a straddling factor. For now, we only assume that u
is reduced, but we will be ultimately interested in the cyclically reduced case, see
Corollary 3.14.

Lemma 3.10. Let 1 ≤ i, t ≤ n such that i + t ≤ n and let v be reduced word v
of length t. Then the probability that v is a cyclic factor at position i of an element
of Rn, is at most (Cn+ C2t)αt ≤ 2C2nαt.

Proof. The probability that v occurs as a (regular) factor of an element of
Rn is at most Cnαt by Corollary 3.6.

On the other hand, v occurs as a straddling factor of u ∈ Rn if v = v2v1,
with 1 ≤ ` = |v2| < t and u ∈ v1Ã

∗v2, that is, u ∈ E((v1, v2), (1, n − ` + 1)).
By Lemma 3.5, this happens with probability at most C2αt. Summing over the
possible values of `, we find that that v occurs as a straddling factor of an element
of Rn with probability at most C2tαt.

Therefore the probability that v occurs in u as a cyclic factor is at most (Cn+
C2t)αt, as announced. �

We now consider multiple occurrences of cyclic factors of a given length.

Lemma 3.11. Let 1 ≤ t < n. The probability that a reduced word of length n has
two non-overlapping occurrences of a cyclic factor of length t (resp. an occurrence
of a cyclic factor of length t and its inverse), is at most (Cn2+C2nt)αt ≤ 2C2n2αt.

Proof. Again there are several cases, depending whether the occurrences of
the word (or the word and its inverse) are both standard factors, or one of them is
straddling.

The probability that a reduced word u ∈ Rn admits two non-overlapping oc-
currences of a (standard) factor of length t (resp. occurrences of a factor of length
t and its inverse), is at most Cn2αt by Lemma 3.7.

We now consider the situation where u has two occurrences of the same word
of length t, one as a standard factor and one straddling: there exist integers `, i and
reduced words v1, v2 such that 0 < ` < t, ` ≤ i ≤ n− 2t+ `, |v2| = `, |v1v2| = t and

u ∈ E((v2, v1v2, v1), (1, i, n− t+ `+1)) = E((v2, v1, v2, v1), (1, i, i+ `, n− t+ `+1)).
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Applying Lemma 3.5 twice, we find that the probability of this event according to
Rn is at most equal to C2αtRn(E((v2, v1), (1, i))).

Then the probability P that a word in Rn admits two non-overlapping occur-
rences of a factor of length t, one standard and one straddling, is bounded above
by the sum of these values when `, i, v1, v2 run over all possible values:

P ≤
t∑
`=0

n−2t+`∑
i=`

∑
v2∈R`

∑
v1∈Rt−`

C2αtRn(E((v2, v1), (1, i))).

For fixed values of ` and i, Rn is the disjoint union of the E((v2, v1), (1, i)) when
v2 runs over R` and v1 runs over Rt−`. So we get

P ≤
t∑
`=0

n−2t+`∑
i=`

C2αt ≤ C2ntαt.

Thus the probability that a reduced word of length n has two non-overlapping
occurrences of a word of length t as cyclic factors is at most equal to (Cn2 +
C2nt)αt ≤ 2C2n2αt, as announced.

Finally, we consider the situation where a factor of length t and its inverse
occur in u, with one of the occurrences straddling: that is, there exist integers `, i
and reduced words v1, v2 such that 0 < ` < t, ` ≤ i ≤ n− 2t+ `, |v2| = `, |v1v2| = t
and u lies in

E((v2, v
−1
2 v−11 , v1), (1, i, n−t+`+1)) = E((v2, v

−1
2 , v−11 , v1), (1, i, i+`, n−t+`+1)).

As above, the probability of this event according to Rn is at most

Cαt−`Rn(E((v2, v
−1
2 , v−11 ), (1, i, i+ `)))

and the probability P ′ that a reduced word of length n has two non-overlapping
occurrences of a word of length t as cyclic factors, with one of them straddling,
satisfies

P ′ ≤
t−1∑
`=1

n−2t+`∑
i=`

∑
v2∈R`

∑
v1∈Rt−`

Cαt−`Rn(E((v2, v
−1
2 , v−11 ), (1, i, i+ `))).

For fixed values of `, i and v2, En((v2, v
−1
2 ), (1, i)) is the disjoint union of the

En((v2, v
−1
2 , v−11 ), (1, i, i+ `)) when v1 runs over Rt−`. Therefore we have

P ′ ≤
t−1∑
`=1

n−2t+`∑
i=`

∑
v2∈R`

Cαt−`Rn(E((v2, v
−1
2 ), (1, i))).

By Lemma 3.5 again, Rn(E((v2, v
−1
2 ), (1, i))) ≤ Cα`Rn(E((v2)(1))) and we get, by

the same reasoning as above,

P ′ ≤
t−1∑
`=1

n−2t+`∑
i=`

∑
v2∈R`

C2αtRn(E((v2), (1))) =

t−1∑
`=1

n−2t+`∑
i=`

C2αt ≤ C2ntαt.

Thus the probability that a reduced word of length n has an occurrence of a word of
length t and its inverse as a cyclic factor is, again, at most equal to (Cn2+C2nt)αt ≤
2C2n2αt, as announced. �

Finally, we give an upper bound to the probability that a reduced word has
overlapping occurrences of a cyclic factor of length t (observing again that a reduced
word cannot have overlapping occurrences of a (cyclic) factor and its inverse).
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Lemma 3.12. Let 1 ≤ t < n. The probability that a reduced word of length
n has overlapping occurrences of a cyclic factor of length t is at most equal to(
Cnt+ 2C2t2

)
αt ≤ 3 C2ntαt.

Proof. The probability that a reduced word of length n has overlapping oc-
currences of a non-straddling factor of length t is at most Cntαt by Lemma 3.9.

Let us now assume that the reduced word u ∈ Rn has overlapping occurrences
of a cyclic factor v of length t, with one at least of these occurrences straddling. Note
that any cyclic factor of u is a factor of u2. Therefore, using the same arguments
as for Lemma 3.9, u has a straddling cyclic factor of the form xv = xs+1y, where
|x| > 0, y is a prefix of x and s ≥ 1. In particular, v = xsy and t = s|x|+ |y|.

It follows that u is in v2Ã
∗v1, for some v1, v2 such that v1v2 = xs+1y. Denote by

pref`(z) and suff`(z) the prefix and the suffix of length ` of a word z. Then there exist
a cyclic conjugate z of x and integers 0 ≤ h, ` < |z| = |x| and m,m′ ≥ 0 such that

v1 = suffh(z)zm
′

and v2 = zmpref`(z). Note that xs+1y = suffh(z)zm+m′pref`(z)
and

h+ ` = |y| (mod |z|)

m+m′ =

{
s+ 1 if h+ ` = |y|
s if h+ ` = |z|+ |y|

t+ |z| = (m+m′)|z|+ h+ `.

Observe also that |y| is determined by |z| (|y| = t (mod |z|)), that h is determined
by ` and |z|, and that m′ is determined by m, ` and |z|. Then

u ∈
t−1⋃
k=1

k−1⋃
`=0

1+b tk c⋃
m=0

⋃
z∈Rk

Xz,m,`, where

Xz,`,m = E((zmpref`(z), suffh(z)zm
′
), (1, n−m′|z| − h+ 1))

and h and m′ take the values imposed by those of k = |z|, ` and m. In particular,
the probability P that a reduced word in Rn has overlapping occurrences of a cyclic
factor of length t, with at least one of these occurrences straddling, satisfies

P ≤
t−1∑
k=1

k−1∑
`=0

1+b tk c∑
m=0

∑
z∈Rk

Rn(Xz,`,m),

If m ≥ 1, then

Xz,`,m = E((z, zm−1pref`(z), suffh(z)zm
′
), (1, |z|+ 1, n−m′|z| − h+ 1))

and a double application of Lemma 3.5 shows that

Rn(Xz,`,m) ≤ C2αm
′|z|+hα(m−1)|z|+`Rn(E((z), (1))) = C2αtRn(E((z), (1))).

Summing these over z ∈ Rk (with k, ` and m fixed, m ≥ 1), we get∑
z∈Rk

Rn(Xz,`,m) ≤
∑
z∈Rk

C2αtRn(E((z), (1))) ≤ C2αt,

since Rn is partitioned by the Rn(E((z), (1))) (z ∈ Rk).
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If m = 0 and h+ ` = |y|, then m′|z| = t+ |z| − |y| and we note that

Xz,`,0 = E((pref`(z), suffh(z)zm
′
), (1, n− t− |z|+ `+ 1))

⊆ E((pref`(z), suffh(z), suff|y|(z)z
m′−1), (1, n− t− |z|+ `+ 1, n− t+ 1)).

By Lemma 3.5, we get

Rn(Xz,`,0) ≤ CαtRn(E((pref`(z), suffh(z)), (1, n− t− |z|+ `+ 1))).

Summing over all z ∈ Rk (k and ` fixed), we get∑
z∈Rk

Rn(Xz,`,0) ≤
∑
z∈Rk

CαtRn(E((pref`(z), suffh(z)), (1, n− t− k + `+ 1)))

≤
∑
z1∈R`

∑
z2∈Rh

CαtRn(E((z1, z2), (1, n− t− k + `+ 1)))

≤ Cαt,
since Rn is partitioned by the Rn(E((z1, z2), (1, n − t − k + ` + 1))) (z1 ∈ R`,
z2 ∈ Rh).

Finally, if m = 0 and h+ ` = |z|+ |y|, then m′|z| = t− |y|. Therefore

Xz,`,0 = E((pref`(z), suffh(z)zm
′
), (1, n− t− |z|+ `+ 1))

= E((pref`(z), pref|z|−`(suffh(z)), suff|y|(z)z
m′), (1, n− t− |z|+ `+ 1, n− t+ 1)).

By Lemma 3.5, this yields

Rn(Xz,`,0) ≤ CαtRn(E((pref`(z), pref|z|−`(suffh(z))), (1, n− t+ |z|+ `+ 1))).

As in the previous case, summing over all z ∈ Rk (k and ` fixed) yields∑
z∈Rk

Rn(Xz,`,0) ≤ Cαt.

Then we get the following upper bound for the probability P :

P ≤
t−1∑
k=1

k−1∑
`=0

1+b tk c∑
m=1

C2αt +

t−1∑
k=1

k−1∑
`=0

Cαt

≤ C2 3

2
t(t− 1)αt + C

1

2
t(t− 1)αt

≤ 2C2t(t− 1)αt.

This concludes the proof. �

In order to extend the results of this section to cyclically reduced words, we
need an additional hypothesis, essentially stating that the probability of cyclically
reduced words does not vanish. In fact, we have the following general result.

Lemma 3.13. Let (Rn)n≥0 be a sequence of measures satisfying lim inf Rn(Cn) =
p > 0. Let X be a subset of R. Then for each δ > 1 and for every large enough n,
the probability Rn(X | C) that a cyclically reduced word of length n is in X is at most
equal to δ

pRn(X). In particular, if X is exponentially (resp. super-polynomially,

polynomially, simply) negligible, then so is X ∩ C in C.

Proof. By definition, Rn(X | C) = Rn(X ∩ C | C) = Rn(X∩C)
Rn(Cn) ≤

δ
pRn(X),

which concludes the proof. �
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The following statement is an immediate consequence.

Corollary 3.14. Let (Rn)n≥0 be a prefix-heavy sequence of parameters (C,α),
with the property that lim infnRn(Cn) = p > 0. Then for every δ > 1 and every
large enough n, the probability that a cyclically reduced word of length n has two
non-overlapping occurrences of a cyclic factor of length t (resp. an occurrence of
a cyclic factor of length t and its inverse, two overlapping occurrences of a cyclic
factor of length t) is at most δ

p (Cn2+C2nt)αt (resp. δ
p (Cn2+C2nt)αt, 3δ

p C
2ntαt).

Proof. LetX be the set of reduced words of length n with two non-overlapping
occurrences of a cyclic factor of length t (resp. an occurrence of a cyclic factor of
length t and its inverse, two overlapping occurrences of a cyclic factor of length t).
It suffices to apply Lemma 3.13 to the set X, and to use the results of Lemmas 3.11
and 3.12. �

3.4. Measures on tuples of lengths and on tuples of words. For every
positive integer k, let Tk denote the set of k-tuples of non-negative integers and
T Wk denote the set of k-tuples of reduced words. Let also T =

⋃
k Tk and T W =⋃

k T Wk be the sets of all tuples of non-negative integers, and of reduced words
respectively.

For a given ~h = (h1, . . . , hk) of T Wk, let ‖~h‖ be the element of Tk given by

‖~h‖ = (|h1|, . . . , |hk|) .
A prefix-heavy sequence of measures on tuples of reduced words is a sequence (Pn)n≥0
of measures on T W such that for every ~h = (h1, . . . , hk) of T W,

Pn(~h) = Tn(‖~h‖)
k∏
i=1

R|hi|(hi),

where (Tn)n≥0 is a sequence of measures on T and (Rn)n≥0 is a prefix-heavy se-
quence of measures on R. If (Rn)n≥0 is prefix-heavy with parameters (C,α), then
we say that (Tn)n≥0 is prefix-heavy with parameters (C,α).

Remark 3.15. In the definition above, to draw a tuple of words according to
Pn, one can first draw a tuple of lengths (`1, . . . , `k) following Tn, and then draw,
independently for each coordinate, an element of R`i following R`i .

Example 3.16. Let ν(n) be an integer-valued function. The uniform distri-
bution on the ν(n)-tuples of reduced words of length exactly n is a prefix-heavy
sequence of measures: one needs to take Tn to be the measure whose weight is
entirely concentrated on the ν(n)-tuple (n, . . . , n) and Rn to be the uniform distri-
bution on Rn (see Example 3.2).

The uniform distribution on the ν(n)-tuples of reduced words of length at
most n is also a prefix-heavy sequence of measures. Here the support of Tn
must be restricted to the tuples (x1, . . . , xν(n)) such that xi ≤ n for each i, with

Tn(x1, . . . , xν(n)) =
∏
i
|Rxi |
|R≤n| .

Both can be naturally adapted to handle the uniform distribution on the ν(n)-
tuples of cyclically reduced words of length exactly (resp. at most) n.

For appropriate functions ν(n), we retrieve the few-generator and the density
models discussed in Section 2.2. We will see a more general class of examples in
Section 4.
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3.5. General statements. If ~x ∈ T , we denote by max(~x) and min(~x) the
maximum and minimum element of ~x. We also denote by size(~x) the integer k such
that ~x ∈ Tk.

The statistics min, max, and size are extended to tuples of words by setting

min(~h) = min(‖~h‖), max(~h) = max(‖~h‖) and size(~h) = size(‖~h‖). In the sequel we
consider sequences of probability spaces on T W and min, max, and size are seen as
random variables.

The following statements give general sufficient conditions for a tuple to gener-
ically have the central tree property, generate a malnormal subgroup, or satisfy a
small cancellation property.

Proposition 3.17. Let (Pn)n≥0 be a prefix-heavy sequence of measures on

tuples of reduced words of parameters (C,α). Let f : N→ N such that f(`) ≤ `
2 for

each `. If there exists a sequence (ηn)n≥0 of positive real numbers such that

(1) lim
n→∞

Pn
(
size2 αf(min) > ηn

)
= 0 and lim

n→∞
ηn = 0,

then a random tuple of words generically satisfies lcp(~h) < f(min(~h)).
If the limits in Equation (1) converge polynomially (resp. super-polynomially,

exponentially) fast, then lcp(~h) < f(min(~h)) polynomially (resp. super-polynomially,
exponentially) generically.

Proof. The set of all tuples ~h that fail to satisfy the inequality lcp(~h) <

f(min(~h)) is the union G1 ∪ G2 of the two following sets:

• the set G1 of all tuples ~h = (h1, . . . , hk) such that for some 1 ≤ i < j ≤ k,

a word of length f(min(~h)) occurs as a prefix of hi or h−1i , and also of hj
or h−1j ,

• the set G2 of all tuples ~h = (h1, . . . , hk) such that for some 1 ≤ i ≤ k, hi
and h−1i have a common prefix of length f(min(~h)),

and we only need to prove that limn Pn(G1) = limn Pn(G2) = 0.

Let k, ` be positive integers and let Xk,` be the set of tuples ~h ∈ T Wk such

that min(~h) = `. If ~h ∈ Xk,` and 1 ≤ i < j ≤ k, then the probability that hi and
hj have the same prefix of length t = f(`) is∑

w∈Rt
R|hi|(P(w))R|hj |(P(w)) ≤ Cαt

∑
w∈Rt

R|hj |(P(w)) ≤ Cαt.

Then we have Pn(G1 | Xk,`) ≤ 4k2Cαf(`), or rather Pn(G1 | Xk,`) ≤ min(1, 4k2Cαf(`)),
where the factor k2 corresponds to the choice of i and j and the factor 4 corresponds
to the possibilities that hi or h−1i , and hj or h−1j have a common prefix of length

f(`). Therefore we have Pn(G1 ∩Xk,`) ≤ min(1, 4k2Cαf(`)) Pn(Xk,`)

We can split the set of pairs (k, `) into those pairs such that k2αf(`) > ηn and
the others, for which k2αf(`) ≤ ηn. Then we have

Pn(G1) =
∑
k,`

Pn(G1 ∩Xk,`) ≤ Pn(size2 αf(min) > ηn) + 4C ηn,

which tends to 0 under the hypothesis in Equation (1).

Similarly, if ~h ∈ Xk,` and i ≤ k, the probability that hi and h−1i have a

common prefix of length f(`) is at most Cαf(`) by Corollary 3.8. It follows that
Pn(G2 | Xk,`) ≤ min(1, kCαf(`)), and Pn(G2 ∩Xk,`) ≤ min(1, kCαf(`)) Pn(Xk,`).
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Splitting the set of pairs (k, `) into those pairs such that kαf(`) > ηn and those
for which kαf(`) ≤ ηn, yields

Pn(G2) =
∑
k,`

Pn(G2 ∩Xk,`) ≤ Pn(sizeαf(min) > ηn) + C ηn.

Now sizeαf(min) < size2 αf(min), so Pn(sizeαf(min) > ηn) ≤ Pn(size2 αf(min) > ηn).
It follows that limn Pn(sizeαf(min) > ηn) = 0, and hence limn Pn(G2) = 0, which
concludes the proof. �

Theorem 3.18 (Central tree property). Let (Pn)n≥0 be a prefix-heavy sequence
of measures on tuples of reduced words of parameters (C,α). If there exists a
sequence (ηn)n≥0 of positive real numbers such that

(2) lim
n→∞

Pn
(
size2 α

min
2 > ηn

)
= 0 and lim

n→∞
ηn = 0,

then a random tuple of words generically has the central tree property. In particular,
such a tuple is a basis of the subgroup it generates.

If the limits in Equation (2) converge polynomially (resp. super-polynomially,
exponentially) fast, then the central tree property holds polynomially (resp. super-
polynomially, exponentially) generically.

Proof. By definition, a tuple ~h ∈ T W satisfies the central tree property if

lcp(~h) < min(~h)
2 , so the theorem is a direct application of Proposition 3.17 to the

function f(`) = `
2 , and of Proposition 1.2. �

Theorem 3.19 (Malnormality). Let (Pn)n≥0 be a prefix-heavy sequence of mea-
sures on tuples of reduced words of parameters (C,α). If there exists a sequence
(ηn)n≥0 of positive real numbers such that

(3) lim
n→∞

Pn
(
size2 max2 α

min
8 > ηn

)
= 0 and lim

n→∞
ηn = 0,

then a random tuple of words generically generates a malnormal subgroup.
If the limits in Equation (3) converge polynomially (resp. super-polynomially,

exponentially) fast, then malnormality holds polynomially (resp. super-polynomially,
exponentially) generically.

Proof. By Proposition 1.3, a sufficient condition for a tuple ~h ∈ T W to

generate a malnormal subgroup is to have lcp(~h) < 1
3 min(~h), and to not have two

occurrences of a word of length 1
2 (min(~h) − 3 lcp(~h)) as a factor of a word in ~h±.

This condition is satisfied in particular if lcp(~h) < 1
4 min(~h) and no word of length

1
8 min(~h) has two occurrences as a factor of a word in ~h±.

Therefore the set of all tuples ~h that generate a non malnormal subgroup is
contained in the union G1 ∪ G2 ∪ G3 ∪ G4 of the following sets:

• the set G1 of all tuples ~h = (h1, . . . , hk) such that lcp(~h) ≥ 1
4 min(~h),

• the set G2 of all tuples ~h = (h1, . . . , hk) such that for some 1 ≤ i < j ≤ k,

a word of length 1
8 min(~h) occurs as a factor of hi, and also of hj or h−1j ,

• the set G3 of all tuples ~h = (h1, . . . , hk) such that for some 1 ≤ i ≤ k, hi
and h−1i have a common factor of length 1

8 min(~h),

• the set G4 of all tuples ~h = (h1, . . . , hk) such that for some 1 ≤ i ≤ k, hi
has at least two occurrences of a factor of length 1

8 min(~h),
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and we want to verify that Pn(G1), Pn(G2), Pn(G3) and Pn(G4) all tend to 0 when
n tends to infinity.

By Proposition 3.17, the set G1 is negligible as soon as limn Pn(sizeα
min
4 > ηn) =

0. This is true under the hypothesis in Equation (3) since sizeα
min
4 < size2 max2 α

min
8 ,

and hence Pn(sizeα
min
4 > ηn) ≤ Pn(size2 max2 α

min
8 > ηn).

Let now Xk,`,M be the set of tuples ~h ∈ Xk,` such that max(~h) = M . Let

1 ≤ i < j ≤ k and ~h ∈ Xk,`,M . By Corollary 3.6, the probability that hj has a

given factor v of length `
8 is at most equal to CMα

`
8 . Summing this probability

over all words v which occur as a factor of hi (at most |hi| ≤ M such words), it
follows that the probability that hi and hj have a common factor of length t = `

8

is at most equal to CM2α
`
8 . Summing now over the possible values of i and j, we

find that Pn(G2 ∩Xk,`,M ) ≤ min(1, k2CM2α
`
8 ) Pn(Xk,`,M ) and therefore, as above

Pn(G2) ≤ Pn(size2 max2 α
min
8 > ηn) + C ηn.

It follows from Equation (3) that G2 is negligible.
By Lemma 3.7, the probability that hi and h−1i have a common factor of length

`
8 is at most CM2α

`
8 . Summing over all choices of i, we find that

Pn(G3) ≤ Pn(size max2 α
min
8 > ηn) + C ηn.

Since size max2 α
min
8 < size2 max2 α

min
8 , we conclude that G3 is negligible.

Finally, we have Pn(G4) ≤ C
8 size max minα

min
8 by Lemma 3.9, and hence

Pn(G4) ≤ Pn(size max minα
min
8 > ηn) +

C

8
ηn.

Since size max minα
min
8 < size2 max2 α

min
8 , it follows as above that the set G4 is neg-

ligible. �

Theorem 3.20 (Small cancellations property). Let (Pn)n≥0 be a prefix-heavy
sequence of measures on tuples of reduced words of parameters (C,α), such that
lim infnRn(Cn) = p > 0. For any λ ∈ (0, 12 ), if there exists a sequence (ηn)n≥0 of
positive real numbers such that

(4) lim
n→∞

Pn
(
size2 max2 αλmin > ηn

)
= 0 and lim

n→∞
ηn = 0,

then the property C ′(λ) generically holds.
If the limits in Equation (4) converge polynomially (resp. super-polynomially,

exponentially) fast, then Property C ′(λ) holds polynomially (resp. super-polyn-
omially, exponentially) generically.

Proof. A sufficient condition for a tuple of cyclically reduced words ~h to

satisfy C ′(λ) is for every piece in ~h to have length less than λmin(~h). Then the set
G of tuples that fail to satisfy C ′(λ) is contained in the union G1 ∪ G2 ∪ G3 ∪ G4 of
the following sets:

• the set G1 of all tuples of cyclically reduced words ~h = (h1, . . . , hk) such

that for some 1 ≤ i < j ≤ k, a word of length λmin(~h) occurs as a factor
of hi, and also of hj or h−1j ,

• the set G2 of all tuples of cyclically reduced words ~h = (h1, . . . , hk) such
that for some 1 ≤ i ≤ k, hi has two non-overlapping occurrences of a

factor of length λmin(~h),
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• the set G3 of all tuples of cyclically reduced words ~h = (h1, . . . , hk) such
that for some 1 ≤ i ≤ k, hi has non-overlapping occurrences of a factor of

length λmin(~h) and its inverse,

• the set G4 of all tuples of cyclically reduced words ~h = (h1, . . . , hk) such
that for some 1 ≤ i ≤ k, hi has overlapping occurrences of a factor of

length λmin(~h),

and we want to verify that Pn(G1), Pn(G2), Pn(G3) and Pn(G4) all tend to 0 when
n tends to infinity.

As in the proof of Theorem 3.19, we find that the probability that a tuple of

reduced words ~h is such that a word of length λmin(~h) occurs as a factor of hi,
and also of hj or h−1j , for some i < j is at most Pn(size2 max2 αλmin > ηn) + C ηn.
Reasoning as in the proof of Corollary 3.14, it follows that, for every δ > 1,

Pn(G1) ≤ δ

p

(
Pn(size2 max2 αλmin > ηn) + C ηn

)
,

and it follows from Equation (4) that G1 is negligible.
Now using Corollary 3.14, we show that

Pn(G2),Pn(G3) ≤ δ

p

(
Pn(size(max2 + max min)αλmin > ηn) + C2ηn

)
,

Pn(G4) ≤ δ

p

(
Pn(size(max min + min2)αλmin > ηn) + 2C2ηn

)
.

Since size max2, size max min and size min2 are less than size2 max2, the hypothesis
in Equation (4) shows that G2, G3 and G4 are negligible, and this concludes the
proof. �

3.6. Applications to the uniform distribution case. The few-generator
model and the density model, based on the uniform distribution on reduced words
of a given length and discussed in Section 2.2, are both instances of a prefix-heavy
sequence of measures on tuples, for which the parameter α is α = 1

2r−1 , see Exam-
ples 3.2 and 3.16. In this section, the measure Rn is the uniform distribution on
Rn.

The results of Section 3.5 above allow us to retrieve many of the results in
Section 2.2 — typically the results on the small cancellation property C ′(λ) up to
density λ

2 , whether one considers tuples of cyclically reduced words of length n or
of length at most n —, and to expand them. In particular, we show that the results
on the central tree property and malnormality in the few-generator model can be
extended to the density model, and that we have a phase transition theorem for
the central tree property (at density 1

4 ).

Small cancellation properties Let 0 < d < 1. In the density model, at density
d, we choose uniformly at random a ν(n)-tuple of cyclically reduced words of length

n, with ν(n) = |Cn|d. In particular, for every tuple ~h of that sort, we have size(~h) =

ν(n) and max(~h) = min(~h) = n.
Let 0 < λ < 1

2 and for each n, let

ηn =

(
2r

2r − 1

)2d

n2 (2r − 1)−(λ−2d)n +

(
2r

2r − 1

)d
n2 (2r − 1)−(λ−d)n.
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Note that |Cn| < |Rn| = 2r
2r−1 (2r − 1)n. Therefore size2 max2 αλmin < ηn with

probability 1. Now observe that ηn converges exponentially fast to 0 when d < λ
2 .

In view of Theorem 3.20, this provides a proof of part of Theorem 2.4 (2), namely, of
the fact that, at density less than λ

2 , Property C ′(λ) holds exponentially generically.
It is unclear whether the more difficult property, that hyperbolicity holds gener-

ically at density less than 1
2 , can be established with the same very general tools.

Observe that the set R≤n of reduced words of length at most n has cardinality
1 +

∑n
i=1 |Rn| = r

r−1 (2r − 1)n − 1
r−1 . By the same reasoning as above, at density

less than λ
2 , a tuple of cyclically reduced words of length at most n exponentially

generically has Property C ′(λ).

Properties of subgroups We now return to tuples of reduced words like in the
few-generator model, but with a density type assumption on the size of the tuples.
For 0 < d < 1, we consider |R≤n|d-tuples of reduced words of length at most n,
and the asymptotic properties of the subgroups generated by these tuples. For such

tuples ~h, we have size(~h) ≤
(

r
r−1
)d

(2r − 1)dn and max(~h) = n.

In addition, for every 0 < µ < 1, Proposition 2.1 shows that min(~h) > µn,
exponentially generically.

We first establish the central tree property.

Proposition 3.21. Let 0 < d < 1
4 . At density d, a tuple of reduced words

of length at most n chosen uniformly at random, exponentially generically has the
central tree property, and in particular it is a basis of the subgroup it generates.

If d > 1
4 , then at density d the central tree property exponentially generically

does not hold.

Proof. For a fixed µ < 1, the following inequality holds exponentially generi-
cally:

size2 α
min
2 ≤

(
r

r − 1

)2d

(2r − 1)−(
µ
2−2d)n.

At every density d < 1
4 , one can choose µ < 1 such that µ

2 −2d > 0 (say, µ = 1+4d
2 ).

For such a value of µ, ηn =
(

r
r−1

)2d
(2r − 1)−(

µ
2−2d)n converges exponentially fast

to 0 and, in view of Theorem 3.18, this proves the first part of the proposition.
If d > 1

4 , let d′ be such that 1
4 < d′ < min( 1

2 , d). By the classical Birthday

Paradox3, exponentially generically two words of the tuple share a prefix of length
2d′n. This prove the second part of the proposition. �

Along the same lines, we also prove the following result.

Proposition 3.22. Let 0 < d < 1
16 . At density d, a tuple of reduced words of

length at most n chosen uniformly at random, exponentially generically generates
a malnormal subgroup.

Proof. For a fixed µ < 1, we have

size2 max2 α
min
8 ≤

(
r

r − 1

)2d

n2(2r − 1)−(
µ
8−2d)n,

3If E is a set of size M and x is a uniform random tuple of Em, the probability that
the coordinates of x are pairwise distinct is (1 − 1

M
)(1 − 2

M
) · · · (1 − m−1

M
), which is at most

exp(−m(m−1)
2M

) by direct calculations.
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exponentially generically.
If d < 1

16 , one can choose µ < 1 such that µ
8 − 2d > 0 (say, µ = 1+16d

2 ), and we
conclude as above, letting

ηn =

(
r

r − 1

)2d

n2(2r − 1)−(
µ
8−2d)n

and using Theorem 3.19. �

Remark 3.23. Propositions 3.21 and 3.22 above generalize Corollary 2.2 (1)
and (2), from the few generator case to an exponential number of generators — up
to density 1

4 and 1
16 , respectively (see Proposition 1.5).

Proposition 3.21 can actually be radically refined if the tuples have less than
exponential size and if we drop the requirement of exponential genericity.

Proposition 3.24. Let f be an unbounded non-decreasing integer function.

Let k > 1 be a fixed integer. Then a k-tuple ~h of reduced words of length at
most n chosen uniformly at random, generically has the central tree property, with

lcp(~h) ≤ f(n).

Let c, c′ > 0 such that c′ log(2r− 1) > 2c. Then an nc-tuple ~h of reduced words
of length at most n chosen uniformly at random, generically has the central tree

property, with lcp(~h) ≤ c′ log n.

Proof. If k is a fixed integer, then as in the proof of Proposition 3.21, we
find that, for each µ < 1, size2 αf(min) is generically less than or equal to ηn =
k2(2r − 1)−f(µn), which tends to 0. This concludes the proof on the size of the
central tree of random k-tuples by Proposition 3.17.

If we now consider nc-tuples, we find that, for each µ < 1, size2 αc
′ log(µn)) is

generically less than or equal to ηn = n2c(2r−1)−c
′ logn = n−(c

′ log(2r−1)−2c), which
tends to 0. By Proposition 3.17 again, this concludes the proof. �

4. Markovian automata

We now switch from the very general settings of the previous section to a specific
and computable way to define prefix-heavy sequences of measures on reduced words.

We introduce Markovian automata (Section 4.1) which determine prefix-heavy
sequences of measures under a simple and natural non-triviality assumption. These
automata are a form of hidden Markov chain, and when they have a classical ergod-
icity property, then cyclically reduced words have asymptotically positive density.
We are then able to generalize the results of Section 3.6 about central tree property
and malnormality.

In the last part of the section, we give a generalization of Theorem 2.4 (2)
and (3) on small cancellation and the degeneracy of a finite presentation.

4.1. Definition and examples. A Markovian automaton4 A consists of

• a deterministic transition system (Q, ·) on alphabet X, where Q is a finite
non-empty set called the state set, and for each q ∈ Q, x ∈ X, q · x ∈ Q
or q · x is undefined;

4This notion is different from the two notions of probabilistic automata, introduced by Rabin
[26] and Segala and Lynch [28], respectively.
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• an initial probability vector γ0 ∈ [0, 1]Q, that is, a positive vector such
that

∑
q∈Q γ0(q) = 1;

• for each p ∈ Q, a probability vector (γ(p, x))x∈X ∈ [0, 1]X , such that
γ(p, x) = 0 if and only if p · x is undefined.

If u = x0 · · ·xn ∈ X∗ (n ≥ 0), we write γ(q, u) = γ(q, x0)γ(q · x0, x1) · · · γ(q ·
(x0 · · ·xn−1), xn). We let γ(q, u) = 1 if u is the empty word. We also write γ0(u) =∑
q∈Q γ0(q)γ(q, u).

Markovian automata are very similar to hidden Markov chain models, except
that symbols are output on transitions instead of on states. We will discuss this
further in Section 4.2 below. Markovian automata can be considered as more
intuitive since sets of words (languages) are naturally described by automata.

We observe that, for each n ≥ 0,
∑
|u|=n γ(u) = 1. Thus γ determines a

probability measure Rn on the set of elements of X∗ of length n: if |u| = n, then
Rn(u) = γ(u).

In the sequel, we consider only Markovian automata on alphabet Ã, where
only reduced words have non-zero probability. More precisely, the support of a
Markovian automaton A is the set of words that can be read in A, starting from a
state q such that γ0(q) 6= 0, that is, the set of all words u such that γ(u) 6= 0: we
assume that our Markovian automata are such that their support is contained in
R.

Example 4.1. Uniform distribution on reduced words of length n. It is imme-
diately verified that the following Markovian automaton yields the uniform distri-
bution on reduced words of each possible length. The state set is Q = Ã. For each
a ∈ Ã, there is an a-labeled transition from every state except a−1, ending in state
a. All these transitions have the same probability, namely 1

2r−1 , and the initial

probability vector is uniform as well, with each coordinate equal to 1
2r .

One can also tweak these probabilities, to favor certain letters over others, or
to favor positive letters (the letters in A) over negative letters.

Example 4.2. Distributions on rational subsets of F (A). The support of a
Markovian automaton A is always rational and closed under taking prefixes, but
it does not have to be equal to the set of all reduced words. We can consider
a rational subset L of F (A), or rather a deterministic transition system reading
only reduced words, and impose probabilistic weights on its transitions to form a
Markovian automaton. The resulting distribution gives non-zero weights only to
prefixes of elements of L.

(A)

1
3

2
3

a | 1

b−1 | 1
2

b | 1
2

1
3

1
3

1
3

b | 1

a | 1
2

b | 1
2

a | 1

(A′)

Figure 3. Markovian automata A and A′.

Figure 3 represents two such automata (transitions are labeled by a letter and a
probability, and each state is decorated with the corresponding initial probability),
which are related with the modular group, PSL(2,Z) = 〈a, b | a2, b3〉.
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The support of the distribution defined by automaton A is the set of words
over alphabet {a, b, b−1} without occurrences of the factors a2, b2, (b−1)2, bb−1 and
b−1b, and the support of the distribution defined by A′ consists of the words on
alphabet {a, b}, without occurrences of a2 or b3. Both are regular sets of unique
representatives of the elements of PSL(2,Z): the first is the set of geodesics of
PSL(2,Z), and also the set of Dehn-reduced words with respect to the given pre-
sentation of that group; the second is a set of quasi-geodesics of PSL(2,Z). Notice
that the distribution produced by A′ is not uniform on words of length n of its
support.

Example 4.1 shows that the sequence (Rn)n of uniform measures on reduced
words, discussed in Sections 2.2 and 3.6 can be specified by a Markovian automaton.
We also know that this sequence is prefix-heavy (Example 3.2). This is a general
fact, under mild assumptions on the Markovian automaton.

Proposition 4.3. Let A be a Markovian automaton and let (Rn)n the sequence
of probability measures it determines. If A does not have a cycle with probability
1, then (Rn)n is a prefix-heavy sequence of measures, with computable parameters
(C,α).

Proof. Let ` be the maximum length of an elementary cycle (one that does
not visit twice the same state) and let δ be the maximum value of γ(q, κ) where κ
is an elementary cycle at state q. Under our hypothesis, δ < 1.

Every cycle κ can be represented as a composition of at least |κ|/` elementary
cycles (here, the composition takes the form of a sequence of insertions of a cycle

in another). Consequently γ(q, κ) ≤ δ
|κ|
` . Finally, every path can be seen as a

product of cycles and at most |Q| individual edges. So, if u is a word and q ∈ Q,

then γ(q, u) ≤ δ |u|−|Q|` , that is γ(q, u) ≤ Cα|u| where C = δ
−|Q|
` and α = δ

1
` .

Let u, v be reduced words such that uv is reduced and let n ≥ |uv|. We have

Rn(P(uv)) = γ0(uv) =
∑
p∈Q

γ0(p)γ(p, u)γ(p · u, v)

≤

∑
p∈Q

γ0(p)γ(p, u)

 Cα|v|

= γ0(u) Cα|v| = Rn(P(u)) Cα|v|,

and hence Rn(P(uv) | P(u)) ≤ Cα|v|, which concludes the proof. �

Remark 4.4. The parameters C and α described in the proof of Proposition 4.3
may be far from optimal. If β < 1 is a uniform bound on the probabilities of the
transitions of A, then γ0(v), γ(q, v) ≤ β|v| for each word v, and the computation
in the proof above shows that Rn(P(uv) | P(u)) ≤ β|v|. We will see in Section 4.2
that we can be more precise under additional hypotheses.

Now let A be a Markovian automaton without a probability 1 cycle, such that
the sequence of probability measures it induces is prefix-heavy with parameters

(C,α). If 0 < d < 1, we say that a tuple ~h of reduced words of length at most

(resp. exactly) n is chosen at random according to A, at α-density d if ~h consists
of α−dn words. Observe that this generalizes the concept discussed in Section 2.2.2
and 3.6.
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With the same proofs as in Section 3.6, we have the following generalization of
Propositions 3.21 and 3.22 related to central tree property and malnormality.

Corollary 4.5. Let A be a Markovian automaton without a probability 1
cycle, such that the induced sequence of probability measures is prefix-heavy with
parameters (C,α). Then a tuple of reduced words of length at most n chosen at
random according to A, at α-density d < 1

4 , exponentially generically has the central
tree property.

At α-density d < 1
16 , it exponentially generically generates a malnormal sub-

group.

4.2. Irreducible Markovian automata and coincidence probability.
An (n, n)-matrix M is said to be irreducible if it has non-negative coefficients and,
for every i, j ≤ n, there exists s ≥ 1 such that Ms(i, j) > 0. Equivalently, this
means that M is not similar to a block upper-triangular matrix. We record the
following general property of irreducible matrices.

Lemma 4.6. Let M be an irreducible matrix. Then its spectral radius ρ is a
(positive) eigenvalue with a positive eingenvector. In particular, there exist positive
vectors ~vmin and ~vmax such that, componentwise,

ρn~vmin ≤ Mn~1 ≤ ρn~vmax for all n > 0

where ~1 is the vector whose coordinates are all equal to 1. Moreover, there exist
cmin, cmax > 0 such that

cminρ
n ≤ ~1tMn~1 ≤ cmaxρ

n for all n > 0.

Proof. We refer the reader to [8, chap. 13, vol. 2] for a comprehensive pre-
sentation of the properties of irreducible matrices and in particular for the Perron-
Frobenius theorem, which establishes that the spectral radius of M is an eigenvalue
with a positive eigenvector: let ~v0 be such an eigenvector, and let ~vmin (resp. ~vmax)
be appropriate multiples of ~v0 with all coefficients less than 1 (resp. greater than 1).

Then we have, componentwise, ρn~vmin = Mn~vmin ≤ ~Mn~1 ≤Mn~vmax = ρn~vmax.
Let cmin (resp. cmax) be the sum of the coefficients of ~vmin (resp. ~vmax). Then,

summing over all components of Mn~vmin and Mn~vmax, we get cminρ
n ≤ ~1tMn~1 ≤

cmaxρ
n. �

Going back to automata, we note that a Markov chain can be naturally associ-
ated with a Markovian automaton: if A is a Markovian automaton on alphabet Ã,
with state set Q, we define the Markov chain M(A) on Q as follows: its transition
matrix is given by M(p, q) =

∑
a∈Ã s.t. p·a=q γ(p, a) for all p, q ∈ Q, and its initial

vector is γ0.
We say that the Markov chain M(A) (or, by extension, the Markovian automa-

ton A), is irreducible if this transition matrix is irreducible, which is equivalent to
the strong connectedness of A. We note that, in that case, if A does not consist
of a simple cycle, then A does not have a cycle of probability 1. In view of Propo-
sition 4.3, this implies that the sequence of probability measures determined by
A is prefix-heavy. We will see below (Proposition 4.9) that we can give a precise
evaluation of the parameters of this sequence.

To this end, we introduce the notion of local Markovian automata, where labels
can be read on states instead of edges.
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More precisely a Markovian automaton is local if all the incoming transitions
into a given state are labeled by the same letter: for all states p, q and letters a, b,
if p · a = q · b then a = b. If A is a Markovian automaton, let A′ denote the local
Markovian automaton obtained as follows.

• its set of states is Q′ = {(q, a) ∈ Q× Ã | ∃p ∈ Q, p · a = q};
• its transition function ? is given by (p, a) ? b = (q, b) if p · b = q;
• its initial probability vector γ′0 is given by

γ′0
(
(p, a)

)
=

{
γ0(p) if a is the least label of the transitions into p

0 otherwise

(we fix an arbitrary order on Ã)
• its transition probability vectors are given by γ′

(
(p, a), b

)
= γ(p, b).

1 2

a| 13
b| 23

c−1 | 1
2

b | 1
2

1, c−1

2, a

2, b

a | 1
3

b | 2
3

b | 1
2

b | 1
2

c−1 | 1
2

c−1 | 1
2

Figure 4. A Markovian automaton and its associated local automaton.

Proposition 4.7. Let A be a Markovian automaton. Then the associated local
Markovian automaton A′ assigns the same probability as A to every reduced word.
Moreover, if A is irreducible, then so is A′.

Proof. The first part of the statement follows directly from the definition, by
a simple induction on the length of the words: indeed, we retrieve a path in A by
forgetting the second coordinate on the states of A′; and every path of A starting
at some state q, can be lifted uniquely to a path in A′ starting at any vertex of the
form (q, a) of A′.

Assume that A is irreducible and let (p, a) and (q, b) be states of A′. By
definition of A′, there exists a state q′ of A such that q′ · b = q. Moreover, since

A is irreducible, there exists a path from p to q′ in A, say p
a1−→ q1

a2−→ . . .
at−→ q′.

Then

(p, a)
a1−→ (q1, a1)

a2−→ . . .
at−→ (q′, at)

b−→ (q′, b)

is a path in A′ from (p, a) to (q, b), so A′ is irreducible as well. �

If A is a Markovian automaton, we denote by MA (or just M when there is no
ambiguity) the stochastic matrix associated with its local automaton A′:

M
(
(p, a), (q, b)

)
=

{
γ′
(
(p, a), b

)
= γ(p, b) if p · b = q

0 otherwise.
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We also denote by M[2] and M[3] the matrices defined by

M[2]

(
(p, a), (q, b)

)
=
(
M
(
(p, a), (q, b)

))2
and

M[3]

(
(p, a), (q, b)

)
=
(
M
(
(p, a), (q, b)

))3
,

and by α[2] and α[3] the largest eigenvalue of M[2] and M[3], respectively. The value
α[2] is called the coincidence probability of A, and it will play an important role in
the sequel.

Observe that if A is local, then A′ is equal to A, up to the name of the states.
We are interested in local automata for the following properties.

Lemma 4.8. Let A be a local Markovian automaton. Then the following holds

• for all states p, q there is at most one transition from p to q;
• two paths starting from the same state are labeled by the same word if and

only if they go through the same states in the same order;
• for every ` ≥ 0, we have M`(p, q) =

∑
u∈R`,p·u=q γ(p, u), M`

[2](p, q) =∑
u∈R`,p·u=q γ(p, u)2 and M`

[3](p, q) =
∑
u∈R`,p·u=q γ(p, u)3.

We can now give an upper bound for the parameters of the sequence of proba-
bility measures determined by an irreducible Markovian automaton.

Proposition 4.9. Let A be an irreducible Markovian automaton with coin-
cidence probability α[2], and let (Rn)n be the sequence of probability measures it
determines. If A does not consist of a single cycle, then there exists a constant

C > 0 such that (Rn)n is prefix-heavy with parameters (C,α
1/2
[2] ).

Proof. Let v be a reduced word of length ` and let q ∈ Q be a state of A. By
Lemma 4.8, we have

γ(q, v) =
√
γ(q, v)2 ≤

√
M`

[2](q, q · v) ≤
√
~1tM`

[2]
~1.

Lemma 4.6 then shows that there exists C > 0 such that γ(q, v) ≤ Cα
`
2

[2]. We can

now conclude as in the proof of Proposition 4.3. �

This yields the following refinement of Corollary 4.5.

Corollary 4.10. Let A be a Markovian automaton without a probability 1
cycle and with coincidence probability α[2]. Then a tuple of reduced words of length

at most n chosen at random according to A, at α[2]-density d < 1
8 (resp. d < 1

32),
exponentially generically has the central tree property (resp. generates a malnormal
subgroup).

4.3. Ergodic Markovian automata. If the Markovian automaton A is irre-
ducible and if, in addition, for all large enough n, M(A)n(q, q) > 0 for each q ∈ Q,
we say that A (resp. M(A)) is ergodic. This is equivalent to stating that A has a
collection of loops of relatively prime lengths, or also that all large enough integral
powers of M(A) have only positive coefficients. If A is ergodic, we can apply a
classical theorem on Markov chains, which states that there exists a stationary vec-
tor γ̃ such that the distribution defined by A converges to that stationary vector
exponentially fast (see [18, Thm 4.9]). In the vocabulary of Markovian automata,
this yields the following theorem.
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If u ∈ Ã∗ has length n, let Qpn(u) = p ·u be the state of A reached after reading
the word u starting at state p. We treat Qpn as a random variable.

Theorem 4.11. Let A be an ergodic Markovian automaton on alphabet Ã, with
state set Q (|Q| ≥ 2). For each q ∈ Q, the limit limn→∞Rn[Qpn = q] exists, and if
we denote it by γ̃(q), then γ̃ is a probability vector (called the stationary vector).
In addition, there exist K > 0 and 0 < c < 1, such that |Rn[Qpn = q]− γ̃(q)| < Kcn

for all n large enough.

Remark 4.12. The constant c in Theorem 4.11 is the maximal modulus of the
non-1 eigenvalues of M(A).

Example 4.13. The Markovian automaton discussed in Example 4.1, relative
to the uniform distribution on reduced words of length n, is ergodic. Its stationary
vector γ̃ is equal to γ0 (γ̃(q) = 1

2r for every state q), and the constant c is 1
2r−1 .

On the other hand, the Markovian automaton A in Example 4.2 is irreducible
but not ergodic (loops have even lengths), and it does not have a stationary vector.

We use Theorem 4.11 to show that, under a very mild additional hypothesis,
an ergodic Markovian automaton yields a prefix-heavy sequence of measures (Rn)n
such that lim inf Rn(C) > 0.

Proposition 4.14. Let A be an ergodic Markovian automaton, with initial
vector γ0 and stationary vector γ̃ and let (Rn)n be the sequence of measures it
induces on reduced words. If

∑
a∈Ã γ0(a)γ̃(a−1) 6= 1, then lim inf Rn(C) > 0.

Observe that the sum
∑
a∈Ã γ0(a)γ̃(a−1) is less than 1, since we are dealing

with probability vectors, unless there exists a (necessarily single) letter a such that
γ0(a) = γ̃(a−1) = 1.

Proof. The set C of cyclically reduced words is the complement in R of the
disjoint union of the sets aÃ∗a−1 (a ∈ Ã). Now we have

Rn(aÃ∗a−1) =
∑
p∈Q

γ0(p)γ(p, a)

 ∑
|u|=n−2

γ(p · a, u)γ(p · (au), a−1)


=
∑
p∈Q

γ0(p)γ(p, a)

∑
q∈Q

Rn(Qp·an−2 = q)γ(q, a−1)


=
∑
p∈Q

γ0(p)γ(p, a)

∑
q∈Q

(γ̃(q) + ε(q, n))γ(q, a−1)

 ,

where |ε(q, n)| ≤ Kcn−2, with K and c given by Theorem 4.11. Then we have

Rn(aÃ∗a−1) = γ0(a)γ̃(a−1) + γ0(a)

∑
q∈Q

ε(q, n)γ(q, a−1)


and limRn(aÃ∗a−1) = γ0(a)γ̃(a−1). It follows that

limRn(C) = 1−
∑
a∈Ã

γ0(a)γ̃(a−1),

thus concluding the proof. �
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Proceeding as in Section 3.6, we can use Proposition 4.14, Corollary 3.14 and
the results of Section 3.5, to generalize part of Theorem 2.4 (2), and show that, up
to α[2]-density λ

4 , a tuple of cyclically reduced words of length at most n chosen
at random according to A, exponentially generically satisfies the small cancellation
property C ′(λ). We will now see (Theorem 4.15) that we can improve this bound,
and go up to α[2]-density λ

2 .

4.4. Phase transitions for the Markovian model. We can now state a
phase transition theorem, which generalizes parts of Theorem 2.4. Let us say that
an ergodic Markovian automaton is non-degenerate if its initial distribution γ0 and
its stationary vector γ̃ satisfy

∑
a∈Ã γ0(a)γ̃(a−1) 6= 1.

Theorem 4.15. Let A be a non-degenerate ergodic Markovian automaton with
coincidence probability α[2]. Let 0 < d < 1 and let G be the group presented by a

tuple ~h of cyclically reduced words of length n, chosen independently and at random
according to A, at α[2]-density d. Then we have the following phase transitions:

• if 0 < λ < 1
2 and 0 < d < λ

2 , then exponentially generically ~h satisfies the

small cancellation property C ′(λ); if λ = 1
6 , then G is generically infinite

and hyperbolic;

• if d > λ
2 then exponentially generically ~h does not satisfy the small can-

cellation property C ′(λ);
• if d > 1

2 then exponentially generically G is degenerated in a sense that is
made precise in Proposition 4.23, and which implies that G is a free group
or the free product of a free group with Z/2Z.

The rest of the paper is devoted to the proof of Theorem 4.15. The first
statement is established in Proposition 4.16, while the second and third statements
are proved respectively in Propositions 4.22 and 4.23.

4.5. Long common factors at low density. In this section we estimate
the probability that random words share a long common factor. More precisely, we
show the following statement, the first part of Theorem 4.15.

Proposition 4.16. Let A be a non-degenerate ergodic Markovian automaton
with coincidence probability α[2]. Let λ ∈ (0, 12 ) and let d ∈ (0, λ2 ). A tuple of
cyclically reduced words of length n taken independently and randomly according
to A, at α[2]-density d, exponentially generically satisfies the small cancellation
property C ′(λ).

The structure of the proof of Proposition 4.16 resembles that of the proof of
Theorem 3.20, and requires the consideration of several cases. This is the object of
the rest of Section 4.5.

To this end, we introduce additional notation: let ~γq(n) be the vector of coor-
dinates γ(q, u) when u ranges over Rn in lexicographic order, and let ‖~γq(n)‖k =

(
∑
u∈Rn γ(q, u)k)1/k be the `k-norm of this vector. We start with an elementary

result.

Lemma 4.17. Let A be a Markovian automaton, let 0 < i, ` < n be integers,
and let u ∈ R`. The probability p that u occurs as a cyclic factor at position i in a
reduced word of length n is bounded above by{ ∑

q∈Q γ(q, u) if i ≤ n− `+ 1∑
q,q′∈Q γ(q, u1)γ(q′, u2) if i > n− `+ 1 and u = u1u2 with |u1| = n− i+ 1
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Proof. If i ≤ n− `+ 1, then p = Rn(Ãi−1uÃn−`−i+1) is equal to∑
p∈Q

γ0(p)
∑

w∈Ri−1

γ(p, w)γ(p · w, u) =
∑
p∈Q

γ0(p)
∑
q∈Q

∑
w∈Ri−1
p·w=q

γ(p, w)γ(q, u)

=
∑
p∈Q

γ0(p)
∑
q∈Q

Ri−1[Qpi−1 = q]γ(q, u)

≤
∑
p,q∈Q

γ0(p)γ(q, u) =
∑
q∈Q

γ(q, u).

If i > n− `+ 1 and u = u1u2 with |u1| = n− i+ 1, then

p = Rn(u2Ã
n−`u1) =

∑
q′∈Q

γ0(q′)γ(q′, u2)
∑

w∈Rn−`
γ(q′ · u2, w)γ(q′ · u2w, u1)

=
∑
q′∈Q

γ0(q′)γ(q′, u2)
∑
q∈Q

∑
w∈Rn−`
q′·u2w=q

γ(q′ · u2, w)γ(q, u1)

=
∑
q′∈Q

γ0(q′)γ(q′, u2)
∑
q∈Q

Rn−`[Qq
′·u2

n−` = q]γ(q, u1)

≤
∑
q,q′∈Q

γ(q, u1)γ(q′, u2),

which concludes the proof. �

Proposition 4.18. Let A be an irreducible Markovian automaton with coin-
cidence probability α[2]. Let n, `, i and j be positive integers such that ` ≤ n and
i, j ≤ n. Denote by L(n, `, i, j) the probability that two reduced words of length n
share a common cyclic factor of length ` at positions respectively i and j. Then
there exists a positive constant K such that

L(n, `, i, j) ≤ Kα`[2].
Proof. Without loss of generality (see Proposition 4.7), we may assume that

A is local. The proof is based on a case study.
Case 1: i, j ≤ n− `+ 1. Using Lemma 4.17, we have

L(n, `, i, j) ≤
∑
p,q∈Q

∑
u∈R`

γ(p, u)γ(q, u).

By a repeated application of the Cauchy-Schwarz inequality, we get

(5) L(n, `, i, j) ≤
∑
p,q∈Q

‖~γp(`)‖2‖~γq(`)‖2 ≤
∑
q∈Q
‖~γq(`)‖22.

Now, in view of Lemma 4.8 and since A is local, we have

(6)
∑
q∈Q
‖~γq(`)‖22 =

∑
q∈Q

∑
u∈R`

γ(q, u)2 =
∑
p∈Q

∑
q∈Q

∑
u∈R`
p·u=q

γ(p, u)2 = ~1tM`
[2]
~1.

Since M is irreducible, Lemma 4.6 shows that there exists a positive constant K > 0
such that, for ` large enough, we have

L(n, `, i, j) ≤
∑
q∈Q
‖~γq(`)‖22 = ~1tM`

[2]
~1 ≤ Kα`[2],

which concludes the proof of the statement in that case.



32 F. BASSINO, C. NICAUD, AND P. WEIL

Case 2: i > n − ` + 1 and j ≤ n − ` + 1. (The case where i ≤ n − ` + 1 and
j > n− ` + 1 is symmetrical.) Let k = n− i + 1 (so 1 ≤ k < `). By Lemma 4.17,
we have

L(n, `, i, j) ≤
∑

u1∈Rk
u2∈R`−k

∑
p,p′,q∈Q

γ(p, u1)γ(p′, u2)γ(q, u1u2)

≤
∑

u1∈Rk
u2∈R`−k

∑
p,p′,q,q′∈Q

γ(p, u1)γ(p′, u2)γ(q, u1)γ(q′, u2)

≤

 ∑
u1∈Rk

∑
p,q∈Q

γ(p, u1)γ(q, u1)

  ∑
u2∈R`−k

∑
p′,q′∈Q

γ(p′, u2)γ(q′, u2)

 .

By Cauchy-Schwarz, it follows that

L(n, `, i, j) ≤

 ∑
p,q∈Q

‖~γp(k)‖2‖~γq(k)‖2

  ∑
p′,q′∈Q

‖~γp′(`− k)‖2‖~γq′(`− k)‖2


≤

∑
q∈Q
‖~γq(k)‖22

 ∑
q∈Q
‖~γq(`− k)‖22


≤
(
~1t Mk

[2]
~1
) (

~1t M`−k
[2]

~1
)

by Equation (6).

By Lemma 4.6, there exists a constant K1 such that these two factors are bounded
above, respectively, by K1α

k
[2] and K1α

`−k
[2] . Therefore

L(n, `, i, j) ≤ K2
1α

`
[2]

as announced.
Case 3: i, j > n − ` + 1. Without loss of generality, we may assume that i < j,
and we let k = n − j + 1 and k′ = ` − (n − i + 1). Then a word u of length `
occurs as a cyclic factor in two reduced words w1 and w2 of length n, at positions
i and j respectively, if u = u1u2u3 with |u1| = k, |u2| = j − i and |u3| = k′, and if

w1 ∈ u3Ãn−`u1u2 and w2 ∈ u2u3Ãn−`u1. Then we have

L(n, `, i, j) ≤
∑

u1∈Rk
u2∈Rj−i
u3∈Rk′

∑
p,p′∈Q
q,q′′∈Q

γ(q, u1u2)γ(q′′, u3) γ(p, u1)γ(p′, u2u3)

≤
∑

u1∈Rk
u2∈Rj−i
u3∈Rk′

∑
p,p′,p′′∈Q
q,q′,q′′∈Q

γ(q, u1)γ(q′, u2)γ(q′′, u3) γ(p, u1)γ(p′, u2)γ(p′′, u3)

≤
∑

u1∈Rk
p′,q∈Q

γ(q, u1)γ(p′, u1)
∑

u2∈Rj−i
p,q′′∈Q

γ(q′′, u2)γ(p, u2)
∑

u3∈Rk′
p′′,q′∈Q

γ(q′, u3)γ(p′′, u3).

By the Cauchy-Schwarz inequality, L(n, `, i, j) is at most equal to∑
p,q∈Q

‖~γp(k)‖2‖~γq(k)‖2
∑
p,q∈Q

‖~γp(j − i)‖2‖~γq(j − i)‖2
∑
p,q∈Q

‖~γp(k′)‖2‖~γq(k′)‖2
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and hence to ∑
q∈Q
‖~γq(k)‖22

∑
q∈Q
‖~γq(j − i)‖22

∑
q∈Q
‖~γq(k′)‖22.

Lemma 4.6 shows that these three factors are bounded above, respectively, by
K1α

k
[2], K1α

j−i
[2] and K1α

k′
[2] for some constant K1. Therefore

L(n, `, i, j) ≤ K3
1α

k+j−i+k′
[2] = K3

1α
`
[2],

as announced. �

Proposition 4.19. Let A be an irreducible Markovian automaton with coinci-
dence probability α[2]. Denote by L(2)(n, `, i, j) the probability for two reduced words
of length n to have an occurrence of a factor of length ` in the first word at position
i, and an occurrence of its inverse in the second word, at position j, with ` ≤ n and
i, j ≤ n− `+ 1. Then there exists a positive constant K such that

L(2)(n, `, i, j) ≤ Kα`[2].
Proof. The proof follows the same steps as that of Proposition 4.18. In the

first case (i, j ≤ n− `+ 1), Lemma 4.17 shows that

L(2)(n, `, i, j) ≤
∑
p,q∈Q

∑
u∈R`

γ(p, u)γ(q, u−1).

Since the set of reduced words of length ` and the set of their inverses are equal,
we get, by the Cauchy-Schwarz inequality,

L(2)(n, `, i, j) ≤
∑
p,q∈Q

‖~γp(`)‖2‖~γq(`)‖2,

and the proof proceeds as in the corresponding case of Lemma 4.18.
In the second case (i > n− `+ 1 and j ≤ n− `+ 1), if k = n− i+ 1, then we

have

L(2)(n, `, i, j) ≤
∑

u1∈Rk
u2∈R`−k

∑
p,p′,q∈Q

γ(p, u1)γ(p′, u2)γ(q, u−12 u−11 )

≤
∑

u1∈Rk
u2∈R`−k

∑
p,p′,q,q′∈Q

γ(p, u1)γ(p′, u2)γ(q, u−12 )γ(q′, u−11 )

≤
( ∑
u1∈Rk

∑
p,q′∈Q

γ(p, u1)γ(q′, u−11 )
)( ∑

u2∈R`−k

∑
p′,q∈Q

γ(p′, u2)γ(q, u−12 )
)

and as in the previous case, the proof proceeds as in Lemma 4.18.
The situation is a little more complex in the last case (i, j > n−`+1). Without

loss of generality, we may assume that i < j. With the same notation as in the
proof of Lemma 4.18, we distinguish two cases. If |u3| < |u2| (that is, `−k < k′, or

`+i+j < 2n+2), we let u2 = u′2u
′′
2 with |u′2| = |u3|. Then w1 ∈ u3Ãn−`u1u′2u′′2 and

w2 ∈ u′2−1u−11 Ãn−`u−13 u′′2
−1

and, as in the previous proof, we find that L(2)(n, `, i, j)
is at most equal to the sum of the

γ(p, u1)γ(q, u−11 )γ(p′, u′2)γ(q′, u′2
−1

)γ(p′′, u′′2)γ(q′′, u′′2
−1

)γ(p′′′, u3)γ(q′′′, u−13 )

with u1 ∈ Rj−i, u′2 ∈ R`−k, u′′2 ∈ Rk′−(`−k), u3 ∈ R`−k, and p, p′, p′′, p′′′, q, q′, q′′, q′′′

are states in Q. The proof then proceeds as before, with multiple applications of
the Cauchy-Schwarz inequality.
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The case where |u3| ≥ |u2| (that is, `+ i+ j ≥ 2n+ 2) is handled in the same
fashion. �

Corollary 4.20. Let A be a non-degenerated ergodic Markovian automaton
with coincidence probability α[2]. Let n, `, i, j be positive integers such that ` ≤ n
and i, j ≤ n. There exists a constant K > 0 such that the probability p that two
cyclically reduced words of length n have occurrences of the same word of length `
(resp. of a word of length ` and its inverse) as cyclic factors at positions respectively
i and j, satisfies p ≤ Kα`[2].

Proof. The hypothesis on A guarantees that lim inf Rn(C) = p > 0 by Propo-
sition 4.14. Our statement then follows from Propositions 4.18 and 4.19, in view of
Lemma 3.13. �

We now consider the case of multiple occurrences of a length ` cyclic factor (or
of such a word and its inverse) within a single reduced word.

Proposition 4.21. Let A be a non-degenerate ergodic Markovian automaton
with coincidence probability α[2]. There exists a constant K > 0 such that the
probability that a cyclically reduced word of length n has two occurrences of a length
` word as cyclic factors, or occurrences of a length ` word and its inverse as cyclic

vactors, is at most K`2n2α
`/2
[2] .

Proof. By Proposition 4.9, the sequence (Rn)n induced by A is prefix-heavy

with parameters (C,α
1/2
[2] ) for some C. The result then follows from Corollary 3.14.

�

We can now proceed with the proof of Proposition 4.16. Let N = α−dn[2] . An

N -tuple of cyclically reduced words which fails to satisfy C ′(λ), must satisfy one
of the following conditions: either two words in the tuple have occurrences of the
same cyclic factor of length ` = λn or occurrences of such a word and its inverse;
or a word in the tuple has two occurrences of the same cyclic factor of length ` or
occurrences of such a word and its inverse.

By Corollary 4.20, the first event occurs with probability at most

K

(
N

2

)
n2α`[2] ≤ Kn2α

(λ−2d)n
[2]

for some K > 0. By Proposition 4.21, the second event occurs with probability at
most

KN`2n2α
`
2

[2] ≤ Kn4α
(λ2−d)n
[2] ,

for some K > 0. Thus both events occur with probabilities that vanish exponen-
tially fast, and this concludes the proof of Proposition 4.16.

4.6. Long common prefixes at high density. In this section, we estab-
lish the following propositions corresponding respectively to the second and third
statement of Theorem 4.15.

Proposition 4.22. Let A be a non-degenerate ergodic Markovian automaton
with coincidence probability α[2]. Let λ ∈ (0, 12 ) and let d ∈ (λ2 , 1). A tuple of
cyclically reduced words of length n taken independently and randomly according to
A, at density d, generically does not satisfy the small cancellation property C ′(λ).
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Proposition 4.23. Let A be a non-degenerate ergodic Markovian automaton
with coincidence probability α[2]. Let E be the set of letters of Ã which label a

transition in A and let D = A \ (E ∪E−1). Let d > 1
2 and N ≥ α−dn[2] , and let G be

a group presented by an N -tuple of cyclically reduced words chosen independently
at random according to A.

If E ∩ E−1 = ∅, then G = F (|D|+ 1) exponentially generically.
If E ∩E−1 6= ∅, then exponentially generically G = F (D) ∗Z/2Z (if n is even)

or G = F (D) (if n is odd).

Both proofs rely heavily on the methodology introduced by Szpankowski [32]
to study the typical heigth of a random trie. We first establish simple lower and
upper bounds for words to share a common prefix (Lemmas 4.24 and 4.25).

Lemma 4.24. Let A be an irreducible Markovian automaton with coincidence
probability α[2]. Let P (n, `) ( resp. P ′(n, `)) be the probability that two reduced (resp.
cyclically reduced) words of length n share a common prefix of length `. There exists
a constant K > 0 such that P (n, `) ≥ Kα`[2].

If A is non-degenerate and ergodic and t is large enough for all the coefficients of
Mt to be positive, then K can be chosen such that P ′(n, `) ≥ Kα`[2] when n ≥ `+t+1.

Proof. Let p be a state such that γ0(p) > 0. To establish the announced
lower bounds, we only need to consider the words that can be read from state p.
More precisely, when considering reduced words, we have

P (n, `) ≥ γ0(p)2
∑
u∈R`

γ(p, u)2.

We observe that
∑
u∈R` γ(p, u)2 is the p-component of M`

[2]
~1, and by Lemma 4.6,

it is greater than or equal to βα`[2], where β is the minimal component of ~vmin (in

the notation of Lemma 4.6). This completes the proof of the statement concerning
P (n, `).

We now consider cyclically reduced words, under the hypothesis that A is non-
degenerate and ergodic. Let t be such that all the coefficients of Mt are positive,
let p̄min be the least coefficient of this matrix, and let pmin be the least positive
coefficient of M. Finally, let p = lim inf Rn(C), which is positive by Proposition 4.14.
Let X (resp. Xp) be the set of pairs of cyclically reduced words of length n that
have a common prefix of length ` (resp. which can be read from state p). We note
that

P ′(n, `) =
Rn(X)

Rn(C)2 ≥ 1

p2
Rn(X) ≥ 1

p2
Rn(Xp),

so we only need to find a lower bound for Rn(Xp).
Suppose that n ≥ `+ t+ 1. Then Xp contains the set of pairs of reduced words

of the form (uu1u
′
1a, uu2u

′
2a) which can be read from p, where a is the first letter

of u, and u′1 and u′2 are words of length t such that p · (uu1u′1) = p · (uu2u′2) = p.
Since these words start and end with the same letters, they are guaranteed to be
cyclically reduced. Thus we have

Rn(Xp) ≥ γ0(p)2
∑
u∈R`

γ(p, u)2 p2min p̄
2
min ≥ β γ0(p)2 p2min p̄

2
min α

`
[2],

and this concludes the proof. �
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Lemma 4.25. Let A be an irreducible Markovian automaton with coincidence
probability α[2]. There exists a constant K > 0 such that the probability that three

reduced words share the same prefix of length ` is at most Kα`[3].

If A is non-degenerate and ergodic, the same holds for triples of cyclically
reduced words.

Proof. The probability p(u) that three reduced words have a common prefix
u is

p(u) =
∑

p1,p2,p3∈Q
γ0(p1) γ0(p2) γ0(p3) γ(p1, u) γ(p2, u) γ(p3, u).

The probability we are interested in is obtained by summing over all u ∈ R`. It is
bounded above by ∑

p1,p2,p3∈Q

∑
u∈R`

γ(p1, u) γ(p2, u) γ(p3, u).

By the Hölder and Cauchy-Schwarz inequalities, we have∑
u∈R`

γ(p1, u) γ(p2, u) γ(p3, u)

≤
(∑
u∈R`

γ(p1, u)3

) 1
3
(∑
u∈R`

γ(p2, u)
3
2 γ(p3, u)

3
2

) 2
3

≤
(∑
u∈R`

γ(p1, u)3

) 1
3
(∑
u∈R`

γ(p2, u)3

) 1
3
(∑
u∈R`

γ(p3, u)3

) 1
3

.

Moreover, we have ∑
p∈Q

∑
u∈R`

γ(p1, u)3 = ~1t M`
[3]
~1.

We now get the announced result using Lemma 4.6, Lemma 4.8 and the spectral
properties of M`

[3]. The generalisation to cyclically reduced words follows from

Lemma 3.13. �

We now build on the previous lemmas to show that, exponentially generically,
large tuples of cyclically reduced words contain pairs of words with a common prefix
of a prescribed length.

Proposition 4.26. Let A be an irreducible Markovian automaton with coinci-
dence probability α[2]. Let (`n)n be an unbounded, monotonous sequence of positive

integers such that `n ≤ n for each n, and let d > 1
2 . Then an α−d`n[2] -tuple of reduced

words of length n drawn randomly according to A generically contains two words
with the same prefix of length `n.

If A is non-degenerate and ergodic, the same holds for α−d`n[2] -tuples of cyclically

reduced words.

Proof. We use the so-called second moment method, as developed in [32],
and we introduce the following notation to this end. Since the results of [32] are
established for right-infinite words, we need to considered such words first; the result
on words of length n directly follows by truncation. A right-infinite reduced word is
an element u of ÃN such that for every i ∈ N, ui 6= u−1i+1. We define the probability
distribution R∞ on right-infinite words induced by the Markovian automaton A by
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first setting R∞(P∞(u)) = γ(u), where P∞(u) is the set of right-infinite reduced
words w such that the finite reduced word u is a prefix of w. The probability is
then extended to the σ-algebra generated by the P∞(u), when u ranges over all
finite reduced words (see [34] for more details on this kind of constructions). Let

N = α−d`n[2] and consider an N -tuple ~h = (hi)1≤i≤N of right-infinite reduced words,

independently and randomly generated according to A.
For 1 ≤ i < j ≤ N , let Xi,j be the random variable computing the length

of the longest common prefix of hi and hj . We want to show that, exponentially
generically,

max
1≤i<j≤N

Xi,j ≥ `n.

Let us relabel the random variables Xi,j (i 6= j) as Y1, . . . , Ym, with m =
(
N
2

)
and,

say, Y1 = X1,2. We are therefore computing the maximum of m random variables,
which are identically distributed but not independent. Fortunately, they behave
almost as if they were independent, as we will see.

Let d′ be such that 1
2 < d′ < d and for each m ≥ 1, let

rm = log
α−2d′

[2]

(m) =
log
(
N
2

)
logα−2d

′
[2]

∼
logα−2d`n[2]

logα−2d
′

[2]

=
d`n
d′
.

In particular, rm is asymptotically greater than `n, and we only need to show that

(7) lim
n→∞

R∞
(

max
k∈[m]

Yk ≥ rm
)

= 1.

Let ν(rm) denote the quantity

ν(rm) =

m∑
k=2

R∞(Y1 ≥ rm, Yk ≥ rm)

mR∞(Y1 ≥ rm)2
.

We use Lemma 3 in [32], which states that the desired equation (7) holds if

lim
n→∞

mR∞(Y1 > rm) = +∞ and lim
n→∞

ν(rm) = 1.

We now proceed with the proof of these two equalities. By Lemma 4.24, we have
R∞(Y1 ≥ rm) ≥ K αrm[2] . Then

log (mR∞(Y1 ≥ rm)) ≥ logm+ logK + rm logα[2]

= rm log(α−2d
′

[2] ) + logK + rm logα[2]

= rm log(α1−2d′
[2] ) + logK,

which tends to +∞, since 1− 2d′ < 0 and α[2] < 1. Therefore,

lim
n→∞

mR∞(Y1 ≥ rm) = +∞.

Let us now consider ν(rm). Note that, if the Yi were independent random
variables, we would have ν(rm) = m−1

m , which tends to 1 when n tends to ∞.
Observe that if 2 < i < j ≤ N , then X1,2 and Xi,j are independant and

identically distributed, so

R∞(X1,2 ≥ rm, Xi,j ≥ rm) = R∞(X1,2 ≥ rm)R∞(Xi,j ≥ rm) = R∞(Y1 ≥ rm)2.
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Also, since h1 and h2 are drawn independently, we have R∞(X1,2 ≥ rm, X1,k ≥
rm) = R∞(X1,2 ≥ rm, X2,k ≥ rm) for each k ≥ 3. Therefore

ν(rm) = 2

N∑
k=3

R∞(X1,2 ≥ rm, X1,k ≥ rm)

mR∞(Y1 ≥ rm)2
+

(
N − 2

2

)
1

m
.

Since m =
(
N
2

)
, we have limn

(
N−2
2

)
1
m = 1. Moreover, the joint probability

R∞(X1,2 ≥ rm, X1,k ≥ rm) is exactly the probability that three random reduced
words share a common prefix of length rm: by Lemma 4.25, this is at most equal
to K αrm[3] for some constant K > 0. Together with Lemma 4.24, this yields

N∑
k=3

R∞(X1,2 ≥ rm, X1,k ≥ rm)

mR∞(Y1 ≥ rm)2
≤ K ′

N

(
α[3]

α2
[2]

)rm
,

for some K ′ > 0. In [16] it is proved that (α[m])
1/m is a decreasing sequence, so we

have α
1/3
[3] ≤ α

1/2
[2] and hence(

α[3]

α2
[2]

)rm
≤

α3/2
[2]

α2
[2]

rm

≤ α−
rm
2

[2] .

Therefore

log

(
1

N

(
α[3]

α2
[2]

)rm)
= − logN − rm

2
logα[2] ≤ −

1

2
logm+K ′′ − rm

2
logα[2]

for some constant K ′′. By definition of rm, we have logm = −2d′rm logα[2] and it
follows that

log

(
1

N

(
α[3]

α2
[2]

)rm)
≤ rm

2
(2d′ − 1) logα[2] +K ′′.

This quantity tends to −∞ when n tends to ∞ since 2d′ − 1 > 0 and α[2] < 1.
This proves finally that limm→∞ ν(rm) = 1 and establishes Equation (7). That is,
the desired statement is proved for tuples of infinite reduced words. As `n ≤ n,
considering right-infinite words and truncating then at their prefix of length n
yields the same result. By construction, the probability distribution induced on
this truncated words is exactly Rn, concluding the proof.

The generalisation to cyclically reduced words follows from Lemma 3.13. �

We now use Proposition 4.26 to prove Proposition 4.22.

Proof of Proposition 4.22 Let 0 < λ < 1
2 . Proposition 4.26, applied to `n = λn

shows that, if 1
2 < d < 1, then a random α−dλn[2] -tuple ~h of cyclically reduced words

of length n, generically has two components hi and hj with the same prefix of

length λn, which is sufficient to show that ~h does not satisfy Property C ′(λ). ut
We now translate the result of Proposition 4.26 into a result on the group pre-

sented by a random α−dn[2] -tuple, when d > 1
2 . We will use repeatedly Chernoff

bounds [20, Th. 4.2 p.70], which state that, in a binomial distribution with param-
eters (k, p) — that is: Xk is the sum of k independent draws of 0 or 1 and p is the
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probability of drawing 1 —,

P
(
Xk ≤

kp

2

)
≤ exp

(
−kp

8

)
.

In other words,

(8) P
(
Xk ≥

kp

2

)
≥ 1− exp

(
−kp

8

)
.

If ~h is a vector of cyclically reduced words, G is the group presented by G =

〈A | ~h〉 and u, v are reduced words, we write that u =G v if u and v have the same

projection in G (that is: if uv−1 lies in the normal closure of ~h).

Proposition 4.27. Let A be an ergodic Markovian automaton with coincidence
probability α[2] and let a, b ∈ Ã be labels of transitions in A. Let d > 1

2 and

N ≥ α−dn[2] , and let G be a group presented by an N -tuple of cyclically reduced

words chosen at random according to A. Then a =G b exponentially generically.

Proof. Let t > 0 be such that all the coefficients of Mt are positive (such an
integer exists since M is ergodic) and let τ > 0 be the minimum coefficient of Mt.

We proceed in two steps. First we consider transitions starting in the same
state of the Markovian automaton and second we generalize the study to transitions
beginning in different states of the automaton.
First step of the proof. We show that if x = x1 · · ·xs and y = y1 · · · ys are reduced
words of equal length s ≥ 1 which label paths in A out of the same state q, then
exponentially generically, we have xk =G yk for each 1 ≤ k ≤ s.

Recall that, in our model of Markovian automata, drawing a word of length
n amounts to drawing a state r ∈ Q according to γ0, and then drawing a word of

length n according to γ(r,−). Thus, when drawing a tuple ~h = (hi)i, we also draw
a tuple ~q = (qi)i of states such that, in particular, γ0(qi) > 0 and γ(qi, hi) > 0.

Let r be a state such that γ0(r) > 0. Let T0 = {hi ∈ ~h such that qi = r} and
N0 = |T0|. Observe that drawing randomly and independently N words of length
n in our model and then keeping only those starting in state r to obtain T0 is the
same as first choosing N0 according to a binomial law of parameters (γ0(r), N) and
then drawing randomly and independently N0 words beginning in state r. Moreover
Chernoff bounds (Equation (8) above, applied with p = γ0(r) and k = N) show

that P
(
N0 ≥ γ0(r)N

2

)
≥ p0 with p0 = 1− exp

(
−γ0(r)N8

)
.

For each s ≥ 1, we say that a pair of indices (i, j) is an s-collision in T0 if
hi and hj belong to T0 and have the same prefix of length n − t − s. Let e be

such that 0 < e < d − 1
2 and let N ′ = α

−(d−e)n
[2] . Then a random N0-tuple of

cyclically reduced words starting in r is obtained by drawing N0

N ′ times a random
N ′-tuple starting in state r. Moreover choosing a random word in a Markovian
automaton given that the associated path begins in state r is the same as taking
for initial probability vector γ0 the probability vector such that γ0(r) = 1. Since
the conclusion of Proposition 4.26 does not depend on the initial probability vector
and d − e > 1

2 , Proposition 4.26 applied to `n = n − t − s shows that a random
N ′-tuple of cyclically reduced words that starts in r generically exhibits at least
one s-collision in T0.

We assume that n is large enough so that the probability of an s-collision in T0
of a random N ′-tuple is at least 1

2 . Then Chernoff bounds (Equation (8), applied
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with p = 1
2 and k = N0) show that the set T1 of s-collisions in T0 of a random α−dn[2] -

tuple of cyclically reduced words of length n satisfies |T1| ≥ 1
4N0 with probability

greater than or equal to p1 = 1− exp(−N0

16 ).
For each s-collision (i, j) ∈ T1, we let u(i, j) be the common length n − t − s

prefix of hi and hj . Then by a finiteness argument, there exists a state q1 ∈ Q and
a set T2 ⊂ T1 such that, for every (i, j) ∈ T2, u(i, j) labels a path from r to q1 in

A, and |T2| ≥ |T1|
|Q| . Hence |T2| ≥ N0

4|Q| with probability greater than or equal to p1.

Now let v be a reduced word of length t, labeling a path in A from q1 to
q: such a word exists since all the coefficients of Mt are positive, and we have
γ(q1, v) ≥ τ . For each (i, j) ∈ T2, the probability that hi starts with u(i, j)v is
γ(q1, v) ≥ τ , and the probability that uv is a prefix of both hi and hj is at least
τ2. We can apply Chernoff bounds (8) again, with p = τ2 and k = |T2|: then the
subset T3 ⊆ T2 of pairs (i, j) such that u(i, j)v is a prefix of both hi and hj , has

cardinality |T3| ≥ 1
2 |T2|τ2 with probability at least p2 = 1− exp(− τ

2|T2|
8 ).

Finally, we note that |u(i, j)v| = n − s, so for each (i, j) ∈ T3, we have
hi = u(i, j)vx with probability γ(q, x). Therefore the probability that (hi, hj) =
(u(i, j)vx, u(i, j)vy) is γ(q, x)γ(q, y), which is positive by hypothesis. Applying
Chernoff bounds one more time (with k = |T3| and p = γ(q, x)γ(q, y)) shows that
~h contains a pair of words of the form (wx,wy) with probability at least p3 with

p3 =
(

1− exp
(
− |T3|γ(q,x)γ(q,y)

8

))
.

In conclusion, exponentially generically N0 ≥ γ0(r)N2 which implies that p1

is exponentially close to 1. Hence T2 ≥ γ0(r)N
8|Q| exponentially generically, which

implies that p2 is exponentially close to 1. So |T3| ≥ γ0(r)Nτ
2

16|Q| exponentially generi-

cally, which implies that p3 is exponentially close to 1. In particular, exponentially

generically, ~h has a pair of the form (wx,wy), and hence we have x =G y.
Applying this to the words x1 and y1, we find that x1 =G y1. Next, considering

the words x1x2 and y1y2, we find that x1x2 =G y1y2, and hence x2 =G y2. Iterating
this reasoning, we finally show that xk =G yk for each 1 ≤ k ≤ s.
Second step of the proof We now consider two transitions in A, one labeled a from
state q to state q′ and another labeled b from state r to state r′ (a, b ∈ Ã).

Let q0 ∈ Q be a state in A such that γ0(q0) > 0. Since A is irreducible,
there exists a word w1 which labels a loop at q0 and visits every transition of A.
Moreover, since A is ergodic, there exists a word w2 labeling another loop at q0,
such that |w1| and |w2| are relatively prime.

Since reading w1 from q0 visit all the transitions, let u1 (resp. v1) be a prefix of
w1 such that the last transition read after reading u1 (resp. v1) is the a-transition
out of state q (resp. the b-transition out of state r). Then the Chinese remainder
theorem shows that there exist words x ∈ {w1, w2}∗u1 and y ∈ {w1, w2}∗v1 of equal
length.

Since a and b are the last letters of x and y, respectively, the first step of the
proof shows that a =G b, which concludes the proof of the proposition. �

We can now complete the proof of Proposition 4.23. By Proposition 4.27,
exponentially generically, all the letters in E are equal in G. If a, a−1 ∈ E for some
letter a, then all these letters are equal to their own inverse in G, so the subgroup H
of G generated by E is a quotient of Z/2Z. Since all the relators in the presentation
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have length n, it follows that H is isomorphic to Z/2Z if n is even, and is trivial if
n is odd. The result follows once we observe that the letters in D do not occur in
any relator. ut
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