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Generic properties of subgroups of free groups and finite
presentations

Frédérique Bassino, Cyril Nicaud, and Pascal Weil

Abstract. Asymptotic properties of finitely generated subgroups of free groups,

and of finite group presentations, can be considered in several fashions, depend-

ing on the way these objects are represented and on the distribution assumed
on these representations: here we assume (as is often done) that they are

represented by tuples of reduced words (generators of a subgroup) or of cycli-
cally reduced words (relators). Classical models consider fixed size tuples of

words (e.g. the few-generator model) or exponential size tuples (e.g. Gro-

mov’s density model), and they usually consider that equal length words are
equally likely. We generalize both the few-generator and the density models

with probabilistic schemes that also allow variability in the size of tuples and

non-uniform distributions on words of a given length.
Our first results rely on a relatively mild prefix-heaviness hypothesis on

the distributions, which states essentially that the probability of a word de-

creases exponentially faster than its length. Under this hypothesis, we gen-
eralize the classical results on the free basis property (generically a randomly

chosen tuple is a basis of the subgroup it generates), on malnormality or on

small cancellation properties. We then refine our results when the distribu-
tion is specified by a Markovian scheme, and in particular we give a phase

transition theorem which generalizes the classical results on the densities up

to which a tuple of cyclically reduced words generically satisfies a small can-
cellation property, and beyond which it presents a trivial group.

This paper is part of the growing body of literature on asymptotic properties of
subgroups of free groups and of finite group presentations, which goes back at least
to the work of Gromov [9] and Arzhantseva and Ol’shanskii [1]. As in much of the
recent literature, the accent is on so-called generic properties, that is, properties
whose probability tends to 1 when the size of instances grows to infinity. A theory
of genericity and its applications to complexity theory was initiated by Kapovich,
Myasnikov, Schupp and Shpilrain [13], and developed in a number of papers, see
Kapovich for a recent discussion [12].

Genericity, and more generally asymptotic properties, depends on the fashion
in which input is represented: finitely presented groups are usually given by finite

1991 Mathematics Subject Classification. Primary 20E05, 60J10 ; Secondary 20E07, 05A16,

68Q17.
Key words and phrases. Asymptotic properties, generic properties, random subgroups, ran-

dom presentations, Markovian automata, malnormality, small cancellation.
The authors acknowledge partial support from ANR projects ANR 2010 Blan 0202 01 Frec

and ANR 2010 Blan 0204 07 Magnum, as well as from ERC grant PCG-336983.

1



2 F. BASSINO, C. NICAUD, AND P. WEIL

presentations, i.e. tuples of cyclically reduced words; finitely generated subgroups
of free groups can be represented by tuples of words (generators) or Stallings graphs.
The representation by Stallings graphs is investigated by the authors, along with
Martino and Ventura in [3, 2, 4] but we will not discuss it in this paper: we are
dealing, like most of the literature, with tuples of words.

There are, classically, two main models (see Section 2.2): the few words model,
where an integer k is fixed and one considers k-tuples of words of length at most n,
when n tends to infinity, see e.g. [1, 11, 2, 4]; and the density model, where we con-
sider tuples of cyclically reduced words of length n, whose size grows exponentially
with n, see e.g. [9, 23, 6, 21].

Typical properties investigated include the following (see in particular Sec-

tions 1.2 and 1.3): whether a random tuple ~h freely generates the subgroup H = 〈~h〉
[1, 11], whether H is malnormal [11, 2] or Whitehead minimal [25, 4], whether

the finite presentation with relators ~h has a small cancellation property, or whether
the group it presents is infinite or trivial [21].

All these models implicitly assume the uniform distribution on the set of re-
duced words of equal length (Ollivier also considers non-uniform distributions in
[21]).

We introduce (Section 3) a model for probability distributions on tuples of re-
duced words that is sufficiently general to extend the few words model and Gromov’s
density model mentioned above, and to leave space for non uniform distributions.

Like these two models, ours assumes that a tuple ~h of words is generated by in-
dependently drawing words of given lengths, but it also handles independently the

size of ~h and the lengths of the words in ~h.
Our first set of results assumes a prefix-heaviness hypothesis on the probability

distribution on words: the probability of drawing a word decreases exponentially
faster than its length (precise definitions are given in Section 3). It is a natural
hypothesis if we imagine that our probabilistic source generates words one letter
at a time, from left to right. This relatively mild hypothesis suffices to obtain
general results on the exponential genericity of a certain geometric property of the

Stallings graph of the subgroup H generated by a randomly chosen tuple ~h (the
central tree property, implicitly considered in [1, 11] and explicitly in [4]), of the

fact that ~h freely generates H, and on the malnormality of H, see Section 3.5.
In particular we extend Jitsukawa’s result on malnormality [11], from fixed size
tuples under uniform distribution, to prefix-heavy non-uniform distributions and
exponential size tuples, up to a certain density which depends on the parameters
of the probabilistic source.

We then introduce Markovian automata, a probabilistic automata-theoretic
model, to define explicit instances of prefix-heavy distributions (Section 4). Addi-
tional assumptions like irreducibility or ergodicity lead to the computation of precise
bounds for the parameters of prefix-heaviness. In particular, we prove a phase tran-
sition theorem for ergodic Markovian automata (Section 4.4), showing that small
cancellation properties generically hold up to a certain density, and generically do
not hold at higher densities. We also show that at sufficiently high densities, a tuple
of cyclically reduced words generically presents a degenerate group (see Proposi-
tion 4.23 for a precise definition). The exact values of the densities that trigger the
phase transitions depend on the coincidence probability of the Markovian automa-
ton, generalizing the classical results on uniform density.
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1. Free groups, subgroups and presentations

In this section, we set the notation and basic definitions of the properties of
subgroups of free groups and finite presentations which we will consider.

1.1. Free groups and reduced words. Let A be a finite non-empty set,
which will remain fixed throughout the paper, with |A| = r, and let Ã be the
symmetrized alphabet, namely the disjoint union of A and a set of formal inverses
A−1 = {a−1 ∈ A | a ∈ A}. By convention, the formal inverse operation is extended

to Ã by letting (a−1)−1 = a for each a ∈ A. A word in Ã∗ (that is: a word written

on the alphabet Ã) is reduced if it does not contain length 2 factors of the form

aa−1 (a ∈ Ã). If a word is not reduced, one can reduce it by iteratively deleting
every factor of the form aa−1. The resulting reduced word is uniquely determined:
it does not depend on the order of the cancellations. For instance, u = aabb−1a−1

reduces to aaa−1, and thence to a.
The set F of reduced words is naturally equipped with a group structure, where

the product u · v is the (reduced) word obtained by reducing the concatenation uv.
This group is called the free group on A. More generally, every group isomorphic
to F , say, G = ϕ(F ) where ϕ is an isomorphism, is said to be a free group, freely
generated by ϕ(A). The set ϕ(A) is called a basis of G. Note that if r ≥ 2, then F
has infinitely many bases: if, for instance, a 6= b are elements of A, then replacing
a by bnabm (for some integers n,m) yields a basis. The rank of F (or of any
isomorphic free group) is the cardinality |A| of A, and one shows that this notion
is well-defined in the following sense: isomorphic free groups have the same rank.

Let x, y be elements of a group G. We say that y is a conjugate of x if there
exists an element g ∈ G such that y = g−1xg, which we write y = xg. The notation
is extended to subsets of G: if H ⊆ G, then Hg = {xg | x ∈ H}. Conjugacy
of elements of the free group F is characterized as follows. Say that a word u
is cyclically reduced word if it is non-empty, reduced and its first and last letters
are not mutually inverse (or equivalently, if u2 is non-empty and reduced). For
instance, ab−1a−1bbb is cyclically reduced, but ab−1a−1bba−1 is not.

For every reduced word u, let κ(u) denote its cyclic reduction, which is the short-
est word v such that u = wvw−1 for some word w. For instance, κ(ab−1a−1bba−1) =
a−1b. It is easily verified that two reduced words u and v are conjugates if and only
if κ(u) = κ(v).

Let Rn (resp. Cn) denote the set of all reduced (resp. cyclically reduced) words
of length n ≥ 1, and let R =

⋃
n≥1Rn and C =

⋃
n≥1 Cn be the set of all reduced

words, and all cyclically reduced words, respectively.
Every word of length 1 is cyclically reduced, so |R1| = |C1| = 2r. A reduced

word of length n ≥ 2 is of the form ua, where u is reduced and a is not the inverse of
the last letter of u. An easy induction shows that there are |Rn| = 2r(2r−1)n−1 =
2r

2r−1 (2r − 1)n reduced words of length n ≥ 2.
Similarly, if n ≥ 2, then Cn is the set of words of the form ua, where u is a

reduced word and a ∈ Ã is neither the inverse of the first letter of u, nor the inverse
of its last letter: for a given u, there are either 2r−1 or 2r−2 such words, depending
whether the first and last letter of u are equal. In particular, the number of words
in Cn satisfies 2r

2r−1 (2r − 1)n−1(2r − 2) ≤ |Cn| ≤ 2r
2r−1 (2r − 1)n, and in particular,

|Cn| = Θ((2r − 1)n).
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1.2. Subgroups and presentations. Given a tuple ~h = (h1, . . . , hk) of ele-

ments of F , let ~h± = (h1, h
−1
1 , . . . , hk, h

−1
k ) and let 〈~h〉 denote the subgroup of F

generated by the elements of ~h, that is, the set of all the elements of F which can

be written as a product of elements of ~h±. It is a classical result of Nielsen that
every such subgroup is free [20].

An important property of subgroups is malnormality, which is related to geo-
metric considerations (e.g. [8, 16]): a subgroup H of a group G is malnormal if
H ∩Hx = 1 is trivial for every x 6∈ H. It is decidable whether a finitely generated

subgroup 〈~h〉 is malnormal ([11, 14], see Section 1.3), whereas malnormality is not
decidable in general hyperbolic groups [5].

A tuple ~h of elements of F (A) can also be considered as a set of relators in a

group presentation. More precisely, we denote by 〈A | ~h〉 the group with generator

set A and relators the elements of ~h, namely the quotient of F (A) by the normal

subgroup generated by ~h. It is customary to consider such a group presentation

only when ~h consists only of cyclically reduced words, since 〈A | ~h〉 = 〈A | κ(~h)〉.
The small cancellation property is a combinatorial property of a group presen-

tation, with far-reaching consequences on the quotient group. Let ~h be a tuple of

cyclically reduced words. A piece in ~h is a word u with at least two occurrences as

a prefix of a cyclic conjugate of a word in ~h±. Let 0 < λ < 1. The tuple ~h (or the

group presentation 〈A | ~h〉) has the small cancellation property C ′(λ) if whenever a

piece u occurs as a prefix of a cyclic conjugate w of a word in ~h±, then |u| < λ|w|.
The following properties are well-known. We do not give the definition of the

group-theoretic properties in this statement and refer the reader to [18] or to the
comprehensive survey [22].

Proposition 1.1. If ~h is a tuple of cyclically reduced words satisfying C ′( 1
6 ),

then G = 〈A | ~h〉 is infinite, torsion-free and word-hyperbolic. In addition, it has
solvable word problem (by Dehn’s algorithm) and solvable conjugacy problem.

Moreover, if ~h and ~g both have property C ′( 1
6 ) and if they present the same

group, then ~h± = ~g± up to the order of the elements in the tuples.

1.3. Graphical representation of subgroups and the central tree prop-
erty. A privileged tool for the study of subgroups of free groups is provided by
Stallings graphs: if H is a finitely generated subgroup of F , its Stallings graph
Γ(H) is a finite graph of a particular type, uniquely representing H, whose com-
putation was first made explicit by Stallings [29]. The mathematical object itself
is already described by Serre [27]. The description we give below differs slightly
from Serre’s and Stallings’, it follows [33, 14, 31, 19, 28] and it emphasizes the
combinatorial, graph-theoretical aspect, which is more conducive to the discussion
of algorithmic properties.

A finite A-graph is a pair Γ = (V,E) with V finite and E ⊆ V × A × V , such
that if both (u, a, v) and (u, a, v′) are in E then v = v′, and if both (u, a, v) and
(u′, a, v) are in E then u = u′. Let v ∈ V . The pair (Γ, v) is said to be admissible
if the underlying graph of Γ is connected (that is: the undirected graph obtained
from Γ by forgetting the letter labels and the orientation of edges), and if every
vertex w ∈ V , except possibly v, occurs in at least two edges in E.

Every admissible pair (Γ, 1) represents a unique subgroup H of F (A) in the
following sense: if u is a reduced word, then u ∈ H if and only if u labels a loop
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at 1 in Γ (by convention, an edge (u, a, v) can be read from u to v with label a,
or from v to u with label a−1). One can show that H is finitely generated. More
precisely, the following procedure yields a basis of H: choose a spanning tree T of
Γ; for each edge e = (u, a, v) of Γ not in T , let be = xuax

−1
v , where xu (resp. xv) is

the only reduced word labeling a path in T from 1 to u (resp. v); then the be freely
generate H and as a result, the rank of H is exactly |E| − |V |+ 1.

Conversely, if ~h = (h1, . . . , hk) is a tuple of reduced words, then the subgroup

H = 〈~h〉 admits a Stallings graph, written (Γ(H), 1), which can be computed
effectively and efficiently. A quick description of the algorithm is as follows. We
first build a graph with edges labeled by letters in Ã, and then reduce it to an
A-graph using foldings. First build a vertex 1. Then, for every 1 ≤ i ≤ k, build
a loop with label hi from 1 to 1, adding |hi| − 1 new vertices. Change every edge
(u, a−1, v) labeled by a letter of A−1 into an edge (v, a, u). At this point, we have
constructed the so-called bouquet of loops labeled by the hi.

Then iteratively identify the vertices v and w whenever there exists a vertex
u and a letter a ∈ A such that either both (u, a, v) and (u, a, w) or both (v, a, u)
and (w, a, u) are edges in the graph (the corresponding two edges are folded, in
Stallings’ terminology).

The resulting graph Γ is such that (Γ, 1) is admissible, the reduced words
labeling a loop at 1 are exactly the elements of H and, very much like in the (1-
dimensional) reduction of words, that graph does not depend on the order used to
perform the foldings. The graph (Γ(H), 1) can be computed in time almost linear
(precisely: in time O(n log∗ n) [31]).

Some algebraic properties of H can be directly seen on its Stallings graph
(Γ(H), 1). For instance, one can show that H is malnormal if and only if there
exists no non-empty reduced word u which labels a loop in two distinct vertices of
Γ(H) [11, 14]. This property leads to an easy decision procedure of malnormality
for subgroups of a free group. We refer the reader to [29, 33, 14, 19] for more
information about Stallings graphs.

If ~h is a tuple of elements of F , let min(~h) be the minimum length of an element

of ~h and let lcp(~h) be the length of the longest common prefix between two words in
~h±, see Figure 11. We say that ~h has the central tree property if 2 lcp(~h) < min(~h).

Proposition 1.2. Let ~h = (h1, . . . , hk) be a tuple of elements of F (A) with the

central tree property and let H = 〈~h〉. Then the Stallings graph Γ(H) consists of a

central tree of height t = lcp(~h) and of k outer loops, one for each hi, connecting
the length t prefix and the length t suffix of hi (two leaves of the central tree), of
length |hi| − 2t respectively. The set of vertices of the central tree can be identified

with the set of prefixes of length at most t of the words of ~h±.

In particular, ~h is a basis of H. Moreover, if ~g is a basis of H also with the

central tree property, then ~h± and ~g± coincide up to the order of their elements.

Proof. The central tree property shows that the cancellation (folding) that
occurs when one considers the bouquet of hi-labeled loops around the origin, stops
before canceling entirely any one of the hi. The result follows immediately. �

1This definition is closely related with the notion of trie of ~h±. The height of the trie of ~h±

is 1 + lcp(~h).
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Figure 1. The Stallings graph of the subgroup generated by
~h = (ba−1cb2a2b−1, a2c2a−2cbc, c−1b−1aba−1c−2ba−1c2), has the

central tree property and satisfies lcp(~h) = 2. The origin is de-
noted by • and the central tree is depicted in bold arrows.

Under the central tree property, we record an interesting sufficient condition
for malnormality.

Proposition 1.3. Let ~h = (h1, . . . , hk) be a tuple of elements of F (A) with the

central tree property and let H = 〈~h〉. Let us assume additionally that 3 lcp(~h) <

min(~h) and that no word of length at least 1
2 (min(~h) − 3 lcp(~h)) has several occur-

rences as a factor of an element of ~h±, then H is malnormal.

Remark 1.4. In the proof below, and in several other statements and proofs
later in the paper, we consider words whose length is specified by an algebraic

expression which does not always compute to an integer (e.g., 1
2 (min(~h)−3 lcp(~h))).

To be rigorous, we should consider only the integer part of these expressions. For
the sake of simplicity, we dispense with this extra notation, and implicitly consider
that if a word of length ` is considered, then we mean that its length is b`c.

Proof. Let m = min(~h) and t = lcp(~h). Proposition 1.2 shows that Γ(H)
consists of a central tree of height t and of outer loops, one for each hi, of length
|hi| − 2t ≥ m− 2t.

If H is not malnormal, then a word u labels a loop at two distinct vertices
of Γ(H). Without loss of generality, u is cyclically reduced. Moreover, given the
particular geometry of Γ(H), both loops visit the central tree. Without loss of
generality, we may assume that one of the u-labeled loops starts in the central tree,
at distance exactly t from the base vertex 1, and travels away from 1. In particular,
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|u| ≥ m− 2t, and if v is the prefix of u of length m− 2t, then v is a factor of some
h±1i .

Let s be the start state of the second u-labeled loop: reading this loop starts
with reading the word v. Suppose that s is in the central tree: either reading u
(and v) from s takes us away from 1 towards a leaf of the central tree and into an
outer loop, and v is a factor of some h±1j ; or reading v from s moves us towards
1 for a distance at most t, after which the path travels away from 1, along a path
labeled by a factor of some h±1j , for a distance at least m − 3t. In either case, a

factor of u of length m− 3t > 1
2 (m− 3t) has two occurrences in ~h±.

Suppose now that s is on an outer loop (say, associated to h±1j ) and that s′

is the first vertex of the central tree reached along the loop. If s′ is reached after
reading a prefix of u of length greater than 1

2 (m−3t), then the prefix of v of length
1
2 (m− 3t) is a factor of h±1j . Otherwise v labels a path from s which first reaches

s′, then travels towards 1 in the central tree for a distance at most t, and thence
away from 1, along a path labeled by some h±1` , which it follows over a length at
least equal to (m− 2t)− 1

2 (m− 3t)− t = 1
2 (m− 3t).

Thus, in every case, u contains a factor of length 1
2 (m − 3t) with two distinct

occurrences as a factor of an element of ~h± and this concludes the proof. �

To conclude this section, we note that the properties discussed above are pre-

served when going from a tuple ~h to a sub-tuple: say that a tuple ~g is contained in

a tuple ~h, written ~g ≤ ~h, if every element of ~g is an element of ~h.

Proposition 1.5. Let ~g,~h be tuples of reduced words such that ~g ≤ ~h.

• If ~h has the central tree property, so does ~g.

• If ~h consists of cyclically reduced words and ~h has Property C ′(λ), then
so does ~g.

• 〈~g〉 is a free factor of 〈~h〉, and 〈~g〉 is malnormal if 〈~h〉 is.

Proof. The first two properties are immediate from the definition. It is also
immediate from the definition that malnormality is transitive (if H1 ≤ H2 ≤ H3, H1

is malnormal in H2 and H2 is malnormal in H3, then H1 is malnormal in H3). There
remains to verify that a free factor is always malnormal, which is elementary. �

2. Random models and generic properties

We will discuss several models of randomness for finitely presented groups and
finitely generated subgroups, or rather, for finite tuples of cyclically reduced words
(group presentations) and finite tuples of reduced words. In this section, we fix
a general framework for these models of randomness and we survey some of the
known results.

2.1. Generic properties and negligible properties. Let us say that a
function f , defined on N and such that lim f(n) = 0, is exponentially (resp. super-
polynomially, polynomially) small if f(n) < e−dn for some d > 0 (resp. f(n) =
o(n−d) for every positive integer d, f(n) = o(n−d) for some positive integer d) and
for n large enough.
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Given a sequence of probability laws (Pn)n on a set S, we say that a subset
X ⊆ S is negligible if limn Pn(X) = 0, and generic if its complement is negligible.2

We also say that X is exponentially (resp. super-polynomially, polynomially)
negligible if Pn(X) tends to 0 and is exponentially (resp. super-polynomially, poly-
nomially) small. And it is exponentially (resp. super-polynomially, polynomially)
generic if its complement is exponentially (resp. super-polynomially, polynomially)
negligible.

In this paper, the set S will be the set of all finite tuples of reduced words, or
cyclically reduced words, and the probability laws Pn will be such that every subset
is measurable: we will therefore not specify in the statements that we consider only
measurable sets.

The notions of genericity and negligibility have elementary closure properties
that we will use freely in the sequel. For instance, a superset of a generic set is
generic, as well as the intersection of finitely many generic sets. Dual properties
hold for negligible sets.

2.2. The few-generator model and the density model. In this section,
we review the results known on two random models, originally introduced to discuss
finite presentations. We discuss more general models in Section 3 below.

2.2.1. The few-generator model. In the few-generator model, an integer k ≥ 1
is fixed, and we let Pn be the uniform probability on the set of k-tuples of words
of F of length at most n. Proposition 2.1 is established by elementary counting
arguments, see Gromov [9, Prop. 0.2.A] or Arzhantseva and Ol’shanskii [1, Lemma
3].

Proposition 2.1. Let k ≥ 1, 0 < α < 1
2 , 2α < β < 1 and 0 < λ < 1.

Then a k-tuple ~h of elements of F of length at most n picked uniformly at random,
exponentially generically satisfies the following properties:

• min(~h) > βn,

• lcp(~h) < αn,

• no word of length λn has two occurrences as a factor of an element of ~h±.

In view of Propositions 1.2 and 1.3, this yields the following corollary ([2], and
[11] for the malnormality statement).

Corollary 2.2. Let k ≥ 1. If ~h is a k-tuple of elements of F of length at

most n picked uniformly at random and H = 〈~h〉, then

• exponentially generically, ~h has the central tree property, and in particular,
Γ(H) can be constructed in linear time (in k and n), simply by computing

the initial cancellation of the elements of ~h±; H is freely generated by the

elements of ~h, and H has rank k;
• exponentially generically, H is malnormal.

Moreover, if ~h and ~g generate the same subgroup, then exponentially generically,
~h± = ~g± up to the order of the elements in the tuples.

The following statement follows from Proposition 1.5, and from Theorem 2.4
below (which is independent).

2This is the same notion as with high probability or with overwhelming probability, which are
used in the discrete probability literature.
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Corollary 2.3. In the few-generator model, if ~h is a k-tuple of cyclically
reduced words of length at most n, then

• for any 0 < λ < 1
2 , ~h exponentially generically satisfies the small cancel-

lation property C ′(λ) ;

• exponentially generically, the group 〈A | ~h〉 is infinite, torsion-free, word-
hyperbolic, it has solvable word problem (by Dehn’s algorithm) and solvable
conjugacy problem.

2.2.2. The density model. In the density model, a density 0 < d < 1 is fixed,
and a tuple of cyclically reduced elements of the n-sphere of density d is picked

uniformly at random: that is, the tuple ~h consists of |Cn|d cyclically reduced words
of length n. This model was introduced by Gromov [10] and complete proofs were
given by Ol’shanskii [23], Champetier [6] and Ollivier [21].

Theorem 2.4. Let 0 < α < d < β < 1. In the density model, the following
properties hold:

(1) exponentially generically, every word of length αn occurs as a factor of a

word in ~h, and some word of length βn fails to occur as a factor of a word

in ~h±;

(2) if d < 1
2 , then exponentially generically, ~h satisfies property C ′(λ) for

λ > 2d but ~h does not satisfy C ′(λ) for λ < 2d; in particular, at density

d < 1
12 , ~h satisfies exponentially generically property C ′( 1

6 ) and the group

〈A | ~h〉 is infinite and hyperbolic; and at density d > 1
12 , exponentially

generically, ~h does not satisfy C ′( 1
6 );

(3) at density d > 1
2 , exponentially generically, 〈~h〉 is equal to F (A), or has

index 2. In particular, the group 〈A | ~h〉 is either trivial or Z/2Z;

(4) at density d < 1
2 , the group 〈A | ~h〉 is generically infinite and hyperbolic.

Properties (1)-(3) in Theorem 2.4 are obtained by counting arguments. Prop-
erty (4) is the “hard part” of the theorem, where hyperbolicity does not follow from
a small cancellation property.

As pointed out by Ollivier [22, Sec. I.2.c], the statement of Theorem 2.4 still
holds if a tuple of cyclically reduced elements is chosen uniformly at random at
density d in the n-ball rather than in the n-sphere (that is, it consists of words of
length at most n). We will actually verify this fact again in Section 3.6.

3. A general probabilistic model

We introduce a fairly general probabilistic model, which generalizes both the
few-generator and the density models.

3.1. Prefix-heavy sequences of measures on reduced words. For every
reduced word u ∈ R, let P(u) be the set of all reduced words v of which u is a

prefix (that is: P(u) = uÃ∗ ∩R). Let also Pn(u) be the set Rn ∩ P(u).
Let (Rn)n≥0 be a sequence of probability measures on R and let C ≥ 1 and

α ∈ (0, 1). We say that the sequence (Rn)n≥0 is a prefix-heavy sequence of measures
on R of parameters (C,α) if:

(1) for every n ≥ 0, the support of the measure Rn is included in Rn;
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(2) for every n ≥ 0 and for every u ∈ R, if Rn(P(u)) 6= 0 then for every v ∈ R
Rn
(
P(uv) | P(u)

)
≤ Cα|v|.

This prefix-oriented definition is rather natural if one thinks of a source as gener-
ating reduced words from left to right, as is usual in information theory.

Remark 3.1. Taking u = ε in the definition yields Rn
(
P(v)

)
≤ Cα|v|. For

n = |v|, we have P(v) ∩ Rn = {v}, so the probability of v decreases exponentially
with the length of v.

Example 3.2. The sequence of uniform distributions on Rn is a prefix-heavy
sequence of measures with parameters C = 1 and α = 1

2r−1 . Indeed, if u is a

reduced word of length at most n ≥ 0 (for a longer u, Rn(P(u)) = 0), and if uv is
reduced, we have

Rn
(
P(uv) | P(u)

)
=


1

(2r−1)|v| if |u|+ |v| ≤ n and u 6= ε,
1

2r(2r−1)|v|−1 if |v| ≤ n and u = ε,

0 otherwise.

Example 3.3. By a similar computation, one verifies that the sequence of
uniform distributions on Cn, the cyclically reduced words, is also a prefix-heavy
sequence of measures, with parameters C = (2r − 2) and α = 1

2r−1 .

For the rest of this section, we fix a sequence of measures (Rn)n≥0 on R, which
is prefix-heavy with parameters (C,α). All probabilities refer to this sequence, that
is: the probability of a subset of Rn is computed according to Rn.

Remark 3.4. If X and Y are subsets of R, the notation Rn(X | Y ) is tech-
nically defined only if Rn(Y ) 6= 0. To avoid stating cumbersome hypotheses, we
adopt the convention that Rn(X | Y ) Rn(Y ) = 0 whenever Rn(Y ) = 0.

3.2. Repeated factors in random reduced words. We first consider the
case of a factor occurring as a prefix of a word and its inverse.

Lemma 3.5. For every positive integers n, t such that n > 2t, the probability
that a reduced word u ∈ Rn is of the form vwv−1, for some word v of length t, is
at most Cαt.

Proof. The probability P that u is of the form vwv−1 is∑
v∈Rt

∑
w∈Rn−2t

Rn(vwv−1).

For a fixed v, w, we have

Rn(vwv−1) = Rn(vwv−1 | P(vw)) Rn(P(vw)) ≤ Cαt Rn(P(vw)).

Now observe that
∑
w∈Rn−2t

Rn(P(vw)) = Rn(P(v)), so we have

P ≤ Cαt
∑
v∈Rt

Rn(P(v)) = Cαt,

as announced. �

Next we consider the probability for fixed factors to occur without overlap in
a random reduced word. Recall that a word v occurs as a factor of a word u at
position i if there exists a word w of length i− 1 such that wv is a prefix of u.
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Lemma 3.6. Let 1 ≤ i, t ≤ n such that i+ t ≤ n and let v be reduced word v of
length t. Then the probability that v is a factor at position i of an element of Rn,
is at most Cαt.

Proof. Let Xn be the set of reduced words in Rn that admit v as a factor at
position i. Then Xn is the disjoint union of the sets wvÃ∗ ∩Rn, when w runs over
the reduced words of length i− 1. Therefore

Rn(Xn) =
∑

w∈Ri−1

Rn(P(wv)) =
∑

w∈Ri−1

Rn(P(wv) | P(w)) Rn(P(w)).

By definition of a prefix-heavy sequence, it follows that

Rn(Xn) ≤ Cαt
∑

w∈Ri−1

Rn(P(w)) = Cαt

as announced. �

We now generalize Lemma 3.6 above to handle tuples of non-overlapping fac-
tors. Let m,n ≥ 1 be positive integers, ~v = (v1, . . . , vm) be a vector of non-empty
reduced words and ~ı = (i1, . . . , im) be a vector of integers such that

(1) 1 ≤ i1 < i1 + |v1| ≤ i2 < i2 + |v2| ≤ . . . ≤ im + |vm| ≤ n.
Let En(~v,~ı) denote the set of reduced words of length n, admitting vj as a factor
at position ij for every 1 ≤ j ≤ m. We first consider the case of a word occurring
twice as a factor, or of a word and its inverse occurring both, that is, the sets of
the form En((v, v), (i, j)) and En((v, v−1), (i, j)).

Lemma 3.7. Let 1 ≤ i, j, t ≤ n be such that i + t ≤ j. The probability that a
word of length t occurs (resp. a word of length t and its inverse occur) at positions
i and j in a reduced word of length n is at most equal to Cαt.

The probability that a reduced word of length n has two non-overlapping oc-
currences of a factor of length t (resp. occurrences of a factor of length t and its
inverse) is at most equal to Cn2αt.

Proof. Let En(t, i, j) be the set of reduced words of length n in which the
same factor of length t occurs at positions i and j. Then En(t, i, j) is the union of
the sets En((v, v), (i, j)), where v runs over the reduced words of length t.

Note that En((v, v), (i, j)) = Ej−1(v, i)Pn−j+1(v). It follows that

Rn(En((v, v), (i, j))) =
∑

w∈Ej−1(v,i)

Rn(P(wv))

=
∑

w∈Ej−1(v,i)

Rn(P(wv) | P(w)) Rn(P(w))

≤ Cαt
∑

w∈Ej−1(v,i)

Rn(P(w)).

The last sum is the Rn-probability of Pn(Ej−1(v, i)) = En(v, i), so we have

(2) Rn(En((v, v), (i, j))) ≤ Cαt Rn(P(En(v, i))).

Summing over all values of v (and using the fact that
⋃
v En(v, i) = Rn), we find

that Rn(En(t, i, j)) ≤ Cαt, as announced.
The second inequality follows by summing over all possible values of i and j.
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Consider now the situation where a word v of length t and its inverse occur as
factors of a reduced word u. It is readily seen that a non-empty reduced word cannot
overlap with its inverse, so these two factor occurrences are necessarily disjoint.
Then with the same reasoning as above, one sees that, for each 1 ≤ i < i+t ≤ j ≤ n,
Rn(En((v, v−1), (i, j))) ≤ Cαt Rn(P(En(v, i))). The announced result follows, after
summing over all words v, and then over all choices of i and j. �

The same proof pattern can be used without the constraint that the same word
or its inverse is repeated as a factor.

Lemma 3.8. Let ~v = (v1, . . . , vm) be a sequence of non-empty reduced words
and ~ı = (i1, . . . , ik) be a sequence of integers satisfying Equation (1). Then the
following inequality holds:

Rn (En(~v,~ı)) ≤ Cmα|v1v2···vm|.

Proof. The proof is by induction on m and the case m = 1 is covered by
Lemma 3.6. We now assume that m ≥ 2 and that the inequality holds for vectors
of length m− 1, and we let ~x = (v1, . . . , vm−1) and ~ = (i1, . . . , im−1).

Then En(~v,~ı) = Eim−1(~x,~)Pn−im+1(vm) and we have

Rn(En(~v,~ı)) =
∑

w∈Eim−1(~x,~)

Rn(P(wvm))

=
∑

w∈Eim−1(~x,~)

Rn(P(wvm) | P(w)) Rn(P(w))

≤ Cα|vm|
∑

w∈Eim−1(~x,~)

Rn(P(w)).

The last sum is the Rn-probability of Pn(Eim−1(~x,~)) = En(~x,~), so we find, by
induction, that Rn(En(~v,~ı)) ≤ Cα|vm|Cm−1α|v1v2···vm−1| = Cmα|v1v2···vm| as an-
nounced. �

Corollary 3.9. Let v1, . . . , vm be non-empty reduced words. The probability
that a word of length n admits v1, . . . , vm in that order as non-overlapping factors,
is at most Cmnmα|v1···vm|.

Proof. This is a direct consequence of Lemma 3.8, summing over all possible
position vectors. �

Finally, we also estimate the probability that a word has two overlapping oc-
currences of a factor.

Lemma 3.10. Let 1 ≤ t < n. The probability that a reduced word of length n
has overlapping occurrences of a factor of length t is at most Cntαt.

Proof. If a word v overlaps with itself, more precisely, if xv = vz for some
words x, z such that 0 < |x| = |z| < |v|, then it is a classical result from combina-

torics on words that v = xjy where j =
⌊
|v|
|x|

⌋
≥ 1 and y is the prefix of x of length

|v| − j|x| (see Figure 2).
It follows that, if a reduced word u has (overlapping) occurrences of a factor

of length t at positions i and i+ s (1 ≤ s < t), then u admits a factor of the form
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x x x x x y y′ y

v
v

Figure 2. A classical result from combinatorics of words: if xv =
vz with 0 < |x| < |v|, then v is of the form v = xjy for some
positive integer j and some prefix y of x.

xj+1y at position i, with |x| = s, j = b tsc and y is the prefix of x of length t− js.
The probability P of this event satisfies

P ≤
n∑
i=1

t−1∑
s=1

∑
|x|=s

P ′(x, i),

where P ′(x, i) is the probability that a reduced word of length n admits xj+1y as
a factor at position i. By the definition of a prefix-heavy sequence, we have

P ′(x, i) =
∑
|w|=i−1

Rn(P(wxj+1y) =
∑
|w|=i−1

Rn(P(wxj+1y | P(wx)) Rn(P(wx))

≤ Cαt
∑
|w|=i−1

Rn(P(wx)).

The sum in the last term is the probability P ′′(x, i) that x occurs as a factor at
position i. We observe that

∑
|x|=s P

′′(x, i) = 1, so we find that
∑
|x|=s P

′(x, i) ≤
Cαt, and P ≤ Cntαt, as announced. �

3.3. Repeated cyclic factors in random reduced words. A word v is a
cyclic factor of a word u if either u ∈ Ã∗vÃ∗, or v = v1v2 and u ∈ v2Ã∗v1 – in
which case we say that v is a straddling factor. For now, we only assume that u
is reduced, but we will be ultimately interested in the cyclically reduced case, see
Corollary 3.15.

Lemma 3.11. Let 1 ≤ i, t ≤ n such that i + t ≤ n and let v be reduced word v
of length t. Then the probability that v is a cyclic factor at position i of an element
of Rn, is at most (Cn+ C2t)αt ≤ 2C2nαt.

Proof. The probability that v occurs as a (regular) factor of u is at most
Cnαt by Lemma 3.6.

For each 1 ≤ ` < t, let v1 be the prefix of v of length ` and let v2 be the
corresponding suffix. Then Rn(v2Ã

∗v1) = Rn(En((v2, v1), (1, n − ` + 1))) ≤ C2αt

by Lemma 3.8. Summing over the possible values of `, we find that the probability
that v is a straddling factor is at most C2tαt.

Therefore the probability that v occurs in u as a cyclic factor is at most (Cn+
C2t)αt, as announced. �

We now consider multiple occurrences of cyclic factors of a given length.

Lemma 3.12. Let 1 ≤ t < n. The probability that a reduced word of length n has
two non-overlapping occurrences of a cyclic factor of length t (resp. an occurrence
of a cyclic factor of length t and its inverse), is at most (Cn2+C2nt)αt ≤ 2C2n2αt.
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Proof. The probability that a reduced word of length n admits two non-
overlapping occurrences of a factor of length t (resp. occurrences of a factor of
length t and its inverse), is at most Cn2αt by Lemma 3.7.

We now consider the situation where one of the two cyclic factors is in fact
straddling, that is, u ∈ v2Ã∗v1v2Ã∗v1 for some non-empty words v1, v2 such that
|v1v2| = t. The probability P of this event satisfies

P ≤
t−1∑
`=1

∑
v1∈R`

∑
v2∈Rt−`

Rn(v2Ã
∗v1v2Ã

∗v1)

≤
t−1∑
`=1

∑
v1∈R`

∑
v2∈Rt−`

n−2t∑
s=0

∑
w1∈Rs

∑
w2∈Rn−2t−s

Rn(v2w1v1v2w2v1).

Since the sequence of measures is prefix-heavy, we have

Rn(v2w1v1v2w2v1) ≤ Cα` Rn(P(v2w1v1v2w2))

and hence∑
w2∈Rn−2t−s

Rn(v2w1v1v2w2v1) ≤ Cα`
∑
w2

Rn(P(v2w1v1v2w2))

= Cα` Rn(P(v2w1v1v2))

≤ C2αt Rn(P(v2w1v1)) by prefix-heaviness again.

Summing over all reduced words w1 of length s, we get∑
w1∈Rs

∑
w2∈Rn−2t−s

Rn(v2w1v1v2w2v1) ≤ C2αt Rn(En((v2, v1), (1, s+ `+ 1))).

Now the sets En((v2, v1), (1, s+ `+ 1)) form a partition of Rn when v2 and v1 run
over all reduced words of length ` and t− `, respectively, so we find that

P ≤
t−1∑
`=1

n−2t∑
s=0

C2αt ≤ C2ntαt.

Thus the probability that a reduced word of length n has two non-overlapping
occurrences of a same word of length t as a cyclic factor is at most equal to (Cn2 +
C2nt)αt ≤ 2C2n2αt, as announced.

Finally, we consider the situation where a factor of length t and its inverse
occur in u, with one of the occurrences straddling, that is u ∈ v2Ã

∗v−12 v−11 Ã∗v1
for some non-empty words v1, v2 such that |v1v2| = t. Following the same steps as
above, the probability P ′ of this event satisfies

P ′ ≤
t−1∑
`=1

∑
v1∈R`

∑
v2∈Rt−`

Rn(v2Ã
∗v−12 v−11 Ã∗v1)

≤
t−1∑
`=1

∑
v1∈R`

∑
v2∈Rt−`

n−2t∑
s=0

∑
w1∈Rs

∑
w2∈Rn−2t−s

Rn(v2w1v
−1
2 v−11 w2v1)

≤
t−1∑
`=1

∑
v1∈R`

∑
v2∈Rt−`

n−2t∑
s=0

∑
w1∈Rs

∑
w2∈Rn−2t−s

Cα` Rn(v2w1v
−1
2 v−11 w2).
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Summing over all reduced words w2 of length n− 2t− s and v1 of length `, we get

P ′ ≤
t−1∑
`=1

∑
v2∈Rt−`

n−2t∑
s=0

∑
w1∈Rs

Cα` Rn(v2w1v
−1
2 ).

Summing again over all reduced words w1 of length s and v2 of length t − ` and
using Lemma 3.5, it follows that

P ′ ≤
t−1∑
`=1

n−2t∑
s=0

C2αt ≤ C2ntαt.

Thus the probability that a reduced word of length n has an occurrence of a word of
length t and its inverse as a cyclic factor is, again, at most equal to (Cn2+C2nt)αt ≤
2C2n2αt, as announced. �

Finally, we give an upper bound to the probability that a reduced word has
overlapping occurrences of a cyclic factor of length t (observing again that a reduced
word cannot have overlapping occurrences of a (cyclic) factor and its inverse).

Lemma 3.13. Let 1 ≤ t < n. The probability that a reduced word of length n
has overlapping occurrences of a cyclic factor of length t word is at most equal to(
Cnt+ 2 C2t2

)
αt ≤ 3 C2ntαt.

Proof. The probability that a reduced word of length n has overlapping oc-
currences of a non-straddling factor of length t is at most Cntαt by Lemma 3.10.

Let us now assume that the reduced word u ∈ Rn has overlapping occurrences
of a cyclic factor v, with one at least of these occurrences straddling. Note that a
word z is a cyclic factor of u if and only if z is a factor of u2. Therefore, using the
same proof arguments as for Lemma 3.10, u has a straddling cyclic factor of the

form xj+1y, where |x| > 0, y is a prefix of x and j =
⌊
t
|x|

⌋
.

It follows that u is in v2Ã
∗v1, for some v1, v2 such that v1v2 = xj+1y. If

|v2| ≥ |x|, then there exists a cyclic conjugate z of x, an integer 1 ≤ m ≤ j + 1 and
a prefix z′ of z such that v2 = zmz′. If instead |v2| < |x|, we can write v2 = z0z′,
with z′ = v2 and z the length |x| suffix of v1. Thus, in either case, we have v2 = zmz′

with z a cyclic conjugate of x, z′ a prefix of z and 0 ≤ m = b |v2||x| c ≤ j+ 1. Observe

that the values of z, z′ and m completely determine the value of v1: v1z
mz′ is the

length t+ |z| suffix of zt+1z′. To make this dependency visible, we write v1(z, z′,m)
for v1. In particular, |v1(z, z′,m)| = t− (m− 1)|z| − |z′|.

Thus the probability P that a reduced word in Rn has overlapping occurrences
of a cyclic factor of length t, with at least one of these occurrences straddling,
satisfies the following inequalities. We denote by pref`(z) the prefix of length ` of a
word z.

P ≤
t−1∑
s=1

∑
z∈Rs

s−1∑
`=0

1+b ts c∑
m=0

Rn(zmpref`(z)Ã
∗v1(z, pref`(z),m))

≤
t−1∑
s=1

∑
z∈Rs

s−1∑
`=0

1+b ts c∑
m=0

∑
w∈Rn−t−s

Rn(zm pref`(z)w v1(z, pref`(z),m))
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Distinguishing two cases, depending on whether m = 0 or not, we get:

P ≤ P0 + P≥1 with

P0 =

t−1∑
s=1

∑
z∈Rs

s−1∑
`=0

∑
w∈Rn−t−s

Rn(pref`(z)w v1(z, pref`(z), 0)) and

P≥1 =

t−1∑
s=1

∑
z∈Rs

s−1∑
`=0

1+b ts c∑
m=1

∑
w∈Rn−t−s

Rn(zmpref`(z)w v1(z, pref`(z),m)).

Let us first consider P≥1.

P≥1 ≤
t−1∑
s=1

∑
z∈Rs

s−1∑
`=0

1+b ts c∑
m=1

∑
w∈Rn−t−s

Cαt−(m−1)s−`Rn(P(zmpref`(z)w))

≤
t−1∑
s=1

∑
z∈Rs

s−1∑
`=0

1+b ts c∑
m=1

Cαt−(m−1)s−`Rn(P(zzm−1pref`(z)))

≤
t−1∑
s=1

∑
z∈Rs

s−1∑
`=0

1+b ts c∑
m=1

C2αtRn(P(z)) by prefix-heaviness again.

Since Rn is partitioned by the P(z) (|z| = s), summing over all reduced words z of
length s, we get

P≥1 ≤
t−1∑
s=1

s−1∑
`=0

1+b ts c∑
m=1

C2αt ≤ C2 3

2
t(t− 1)αt.

Now consider P0: denoting by suffs−`(z) the length s− ` suffix of z, we have

P0 ≤
t−1∑
s=1

∑
z∈Rs

s−1∑
`=0

∑
w∈Rn−t−s

CαtRn(P(pref`(z) w suffs−`(z)))

≤
t−1∑
s=1

s−1∑
`=0

∑
z1∈R`

∑
z2∈Rs−`

∑
w∈Rn−t−s

CαtRn(P(z1 w z2))

≤
t−1∑
s=1

s−1∑
`=0

Cαt since we are summing over a partition

≤ C
t(t− 1)

2
αt.

Finally

P ≤ P0 + P≥1 ≤ C2 3

2
t(t− 1)αt + C

t(t− 1)

2
αt ≤ 2C2t2αt.

This concludes the proof. �

In order to extend the results of this section to cyclically reduced words, we
need an additional hypothesis, essentially stating that the probability of cyclically
reduced words does not vanish. In fact, we have the following general result.
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Lemma 3.14. Let (Rn)n≥0 be a sequence of measures satisfying lim inf Rn(Cn) =
p > 0. Let X be a subset of R. Then for each δ > 1 and for every large enough n,
the probability Rn(X | C) that a cyclically reduced word of length n is in X is at most
equal to δ

pRn(X). In particular, if X is exponentially (resp. super-polynomially,

polynomially, simply) negligible, then so is X ∩ C in C.

Proof. By definition, Rn(X | C) = Rn(X ∩ C | C) = Rn(X∩C)
Rn(Cn) ≤

δ
pRn(X),

which concludes the proof. �

The following statement is an immediate consequence.

Corollary 3.15. Let (Rn)n≥0 be a prefix-heavy sequence of parameters (C,α),
with the property that lim infnRn(Cn) = p > 0. Then for every δ > 1 and every
large enough n, the probability that a cyclically reduced word of length n has two non-
overlapping occurrences of a cyclic factor of length t (resp. an occurrence of a cyclic
factor of length t and its inverse, two overlapping occurrences of a cyclic factor of
length t) is at most δ

p (Cn2+C2nt)αt (resp. δ
p (Cn2+C2nt)αt, δ

p

(
Cnt+ 2C2t2

)
αt).

Proof. LetX be the set of reduced words of length n with two non-overlapping
occurrences of a cyclic factor of length t (resp. an occurrence of a cyclic factor of
length t and its inverse, two overlapping occurrences of a cyclic factor of length t).
It suffices to apply Lemma 3.14 to the set X, and to use the results of Lemmas 3.12
and 3.13. �

3.4. Measures on tuples of lengths and on tuples of words. For every
positive integer k, let Tk denote the set of k-tuples of non-negative integers and
T Wk denote the set of k-tuples of reduced words. Let also T =

⋃
k Tk and T W =⋃

k T Wk be the sets of all tuples of non-negative integers, and of reduced words
respectively.

For a given ~h = (h1, . . . , hk) of T Wk, let ‖~h‖ be the element of Tk given by

‖~u‖ = (|h1|, . . . , |hk|) .
A prefix-heavy sequence of measures on tuples of reduced words is a sequence (Pn)n≥0
of measures on T W such that for every ~h = (h1, . . . , hk) of T W,

Pn(~h) = Tn(‖~h‖)
k∏
i=1

R|hi|(hi),

where (Tn)n≥0 is a sequence of measures on T and (Rn)n≥0 is a prefix-heavy se-
quence of measures on R. Recall that the definition of a prefix-heavy sequence of
measures on reduced words depends on parameters (C,α).

Remark 3.16. In the definition above, to draw a tuple of words according to
Pn, one can first draw a tuple of lengths (`1, . . . , `k) following Tn, and then draw,
independently for each coordinate, an element of R`i following R`i .

Example 3.17. Let ν(n) be an integer-valued function. The uniform distri-
bution on the ν(n)-tuples of reduced words of length exactly n is a prefix-heavy
sequence of measures: one needs to take Tn to be the measure whose weight is
entirely concentrated on the ν(n)-tuple (n, . . . , n) and Rn to be the uniform distri-
bution on Rn (see Example 3.2).

The uniform distribution on the ν(n)-tuples of reduced words of length at
most n is also a prefix-heavy sequence of measures. Here the support of Tn
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must be restricted to the tuples (x1, . . . , xν(n)) such that xi ≤ n for each i, with

Tn(x1, . . . , xν(n)) =
∏
i
|Rxi |
|R≤n| .

Both can be naturally adapted to handle the uniform distribution on the ν(n)-
tuples of cyclically reduced words of length exactly (resp. at most) n.

For appropriate functions ν(n), we retrieve the few-generator and the density
models discussed in Section 2.2. We will see a more general class of examples in
Section 4.

3.5. General statements. If ~x ∈ T , we denote by max(~x) and min(~x) the
maximum and minimum element of ~x. We also denote by size(~x) the integer k such
that ~x ∈ Tk.

The statistics min, max, and size are extended to tuples of words by setting

min(~h) = min(‖~h‖), max(~h) = max(‖~h‖) and size(~h) = size(‖~h‖). In the sequel we
consider sequences of probability spaces on T W and min, max, and size are seen as
random variables.

The following statements give general sufficient conditions for a tuple to have
the central tree property, to generate a malnormal subgroup, or to satisfy a small
cancellation property.

Proposition 3.18. Let (Pn)n≥0 be a prefix-heavy sequence of measures on

tuples of reduced words of parameters (C,α). Let f : N→ N such that f(`) ≤ `
2 for

each `. If there exists a sequence (ηn)n≥0 of positive real numbers such that

(3) lim
n→∞

Pn
(
size2 αf(min) > ηn

)
= 0 and lim

n→∞
ηn = 0,

then a random tuple of words generically satisfies lcp(~h) < f(min(~h)).

Proof. The set of all tuples ~h that fail to satisfy the inequality lcp(~h) <

f(min(~h)) is the union G1 ∪ G2 of the two following sets:

• the set G1 of all tuples ~h = (h1, . . . , hk) such that for some 1 ≤ i < j ≤ k,

a word of length f(min(~h)) occurs as a prefix of hi or h−1i , and also of hj
or h−1j ,

• the set G2 of all tuples ~h = (h1, . . . , hk) such that for some 1 ≤ i ≤ k, hi
and h−1i have a common prefix of length f(min(~h)),

and we only need to prove that limn Pn(G1) = limn Pn(G2) = 0.

Let k, ` be positive integers and let Xk,` be the set of tuples ~h ∈ T Wk such

that min(~h) = `. If ~h ∈ Xk,` and 1 ≤ i < j ≤ k, then the probability that hi and
hj have the same prefix of length t = f(`) is∑

w∈Rt
R|hi|(P(w))R|hj |(P(w)) ≤ Cαt

∑
w∈Rt

R|hj |(P(w)) ≤ Cαt.

Then we have Pn(G1 | Xk,`) ≤ 4k2Cαf(`), or rather at most Pn(G1 | Xk,`) ≤
min(1, 4k2Cαf(`)), where the factor k2 corresponds to the choice of i and j and the
factor 4 corresponds to the possibilities that hi or h−1i , and hj or h−1j have a common

prefix of length f(`). Therefore we have Pn(G1∩Xk,`) ≤ min(1, 4k2Cαf(`)) Pn(Xk,`)
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We can split the set of pairs (k, `) into those pairs such that k2αf(`) > ηn and
the others, for which k2αf(`) ≤ ηn. Then we have

Pn(G1) =
∑
k,`

Pn(G1 ∩Xk,`) ≤ Pn(size2 αf(min) > ηn) + 4C ηn,

which tends to 0 under the hypothesis in Equation (3).

Similarly, if ~h ∈ Xk,` and i ≤ k, the probability that hi and h−1i have a

common prefix of length f(`) is at most Cαf(`) by Lemma 3.5. It follows that
Pn(G2 | Xk,`) ≤ min(1, kCαf(`)), and Pn(G2 ∩Xk,`) ≤ min(1, kCαf(`)) Pn(Xk,`).

Splitting the set of pairs (k, `) into those pairs such that kαf(`) > ηn and those
for which kαf(`) ≤ ηn, yields

Pn(G2) =
∑
k,`

Pn(G2 ∩Xk,`) ≤ Pn(sizeαf(min) > ηn) + C ηn.

Now sizeαf(min) < size2 αf(min), so Pn(sizeαf(min) > ηn) ≤ Pn(size2 αf(min) > ηn).
It follows that limn Pn(sizeαf(min) > ηn) = 0, and hence limn Pn(G2) = 0, which
concludes the proof. �

Theorem 3.19 (Central tree property). Let (Pn)n≥0 be a prefix-heavy sequence
of measures on tuples of reduced words of parameters (C,α). If there exists a
sequence (ηn)n≥0 of positive real numbers such that

(4) lim
n→∞

Pn
(
size2 α

min
2 > ηn

)
= 0 and lim

n→∞
ηn = 0,

then a random tuple of words generically has the central tree property. In particular,
such a tuple is a basis of the subgroup it generates.

Proof. By definition, a tuple ~h ∈ T W satisfies the central tree property if

lcp(~h) < min(~h)
2 , so the theorem is a direct application of Proposition 3.18 to the

function f(`) = `
2 , and of Proposition 1.2. �

Theorem 3.20 (Malnormality). Let (Pn)n≥0 be a prefix-heavy sequence of mea-
sures on tuples of reduced words of parameters (C,α). If there exists a sequence
(ηn)n≥0 of positive real numbers such that

(5) lim
n→∞

Pn
(
size2 max2 α

min
8 > ηn

)
= 0 and lim

n→∞
ηn = 0,

then a random tuple of words generically generates a malnormal subgroup.

Proof. By Proposition 1.3, a sufficient condition for a tuple ~h ∈ T W to

generate a malnormal subgroup is to have lcp(~h) < 1
3 min(~h), and to not have two

occurrences of a word of length 1
2 (min(~h) − 3 lcp(~h)) as a factor of a word in ~h±.

This condition is satisfied in particular if lcp(~h) < 1
4 min(~h) and no word of length

1
8 min(~h) has two occurrences as a factor of a word in ~h±.

Therefore the set of all tuples ~h that generate a non malnormal subgroup is
contained in the union G1 ∪ G2 ∪ G3 ∪ G4 of the following sets:

• the set G1 of all tuples ~h = (h1, . . . , hk) such that lcp(~h) ≥ 1
4 min(~h),

• the set G2 of all tuples ~h = (h1, . . . , hk) such that for some 1 ≤ i < j ≤ k,

a word of length 1
8 min(~h) occurs as a factor of hi, and also of hj or h−1j ,
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• the set G3 of all tuples ~h = (h1, . . . , hk) such that for some 1 ≤ i ≤ k, hi
and h−1i have a common factor of length 1

8 min(~h),

• the set G4 of all tuples ~h = (h1, . . . , hk) such that for some 1 ≤ i ≤ k, hi
has at least two occurrences of a factor of length 1

8 min(~h),

and we want to verify that Pn(G1), Pn(G2), Pn(G3) and Pn(G4) all tend to 0 when
n tends to infinity.

By Proposition 3.18, the set G1 is negligible as soon as limn Pn(sizeα
min
4 > ηn) =

0. This is true under the hypothesis in Equation (5) since sizeα
min
4 < size2 max2 α

min
8 ,

and hence Pn(sizeα
min
4 > ηn) ≤ Pn(size2 max2 α

min
8 > ηn).

Let now Xk,`,M be the set of tuples ~h ∈ Xk,` such that max(~h) = M . Let

1 ≤ i < j ≤ k and ~h ∈ Xk,`,M . By Lemma 3.6, the probability that hj has a given

factor v of length `
8 is at most equal to CMα

`
8 . Summing this probability over all

words v which occur as a factor of hi (at most |hi| ≤M such words), it follows that
the probability that hi and hj have a common factor of length t = `

8 is at most

equal to CM2α
`
8 . Summing now over the possible values of i and j, we find that

Pn(G2 ∩Xk,`,M ) ≤ min(1, k2CM2α
`
8 ) Pn(Xk,`,M ) and therefore, as above

Pn(G2) ≤ Pn(size2 max2 α
min
8 > ηn) + C ηn.

It follows from Equation (5) that G2 is negligible.
By Lemma 3.7, the probability that hi and h−1i have a common factor of length

`
8 is at most CM2α

`
8 . Summing over all choices of i, we find that

Pn(G3) ≤ Pn(size max2 α
min
8 > ηn) + C ηn.

Since size max2 α
min
8 < size2 max2 α

min
8 , we conclude that G3 is negligible.

Finally, we have Pn(G4) ≤ C
8 size max minα

min
8 by Lemma 3.10, and hence

Pn(G4) ≤ Pn(size max minα
min
8 > ηn) +

C

8
ηn.

Since size max minα
min
8 < size2 max2 α

min
8 , it follows as above that the set G4 is neg-

ligible. �

Theorem 3.21 (Small cancellations property). Let (Pn)n≥0 be a prefix-heavy
sequence of measures on tuples of reduced words of parameters (C,α), such that
lim infnRn(Cn) = p > 0. For any λ ∈ (0, 12 ), if there exists a sequence (ηn)n≥0 of
positive real numbers such that

(6) lim
n→∞

Pn
(
(size2 max2 + sizemaxmin)αλmin > ηn

)
= 0 and lim

n→∞
ηn = 0,

then the property C ′(λ) generically holds.

Proof. A sufficient condition for a tuple of cyclically reduced words ~h to

satisfy C ′(λ) is for every piece in ~h to have length less than λmin(~h). Then the set
G of tuples that fail to satisfy C ′(λ) is contained in the union G1 ∪ G2 ∪ G3 ∪ G4 of
the following sets:

• the set G1 of all tuples of cyclically reduced words ~h = (h1, . . . , hk) such

that for some 1 ≤ i < j ≤ k, a word of length λmin(~h) occurs as a factor
of hi, and also of hj or h−1j ,
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• the set G2 of all tuples of cyclically reduced words ~h = (h1, . . . , hk) such
that for some 1 ≤ i ≤ k, hi has two non-overlapping occurrences of a

factor of length λmin(~h),

• the set G3 of all tuples of cyclically reduced words ~h = (h1, . . . , hk) such
that for some 1 ≤ i ≤ k, hi has non-overlapping occurrences of a factor of

length λmin(~h) and its inverse,

• the set G4 of all tuples of cyclically reduced words ~h = (h1, . . . , hk) such
that for some 1 ≤ i ≤ k, hi has overlapping occurrences of a factor of

length λmin(~h),

and we want to verify that Pn(G1), Pn(G2), Pn(G3) and Pn(G4) all tend to 0 when
n tends to infinity.

As in the proof of Theorem 3.20, we find that the probability that a tuple of

reduced words ~h is such that a word of length λmin(~h) occurs as a factor of hi,
and also of hj or h−1j , for some i < j is at most Pn(size2 max2 αλmin > ηn) + C ηn.
Reasoning as in the proof of Corollary 3.15, it follows that, for every δ > 1,

Pn(G1) ≤ δ

p

(
Pn(size2 max2 αλmin > ηn) + C ηn

)
,

and it follows from Equation (6) that G1 is negligible.
Now using Corollary 3.15, we show that

Pn(G2),Pn(G3) ≤ δ

p

(
Pn(size(max2 + max min)αλmin > ηn) + C2ηn

)
,

Pn(G4) ≤ δ

p

(
Pn(size(max min + min2)αλmin > ηn) + 2C2ηn

)
,

therefore G2, G3 and G4 are negligible under the hypothesis in Equation (6), and
this concludes the proof. �

Remark 3.22. If the limits in Equations (3), (4), (5) or (6) (in the state-
ments of Proposition 3.18 and Theorems 3.19, 3.20 and 3.21) converge polynomially
(resp. super-polynomially, exponentially) fast, then the corresponding properties
are polynomially (resp. super-polynomially, exponentially) generic. This follows
immediately from the proofs of these statements.

3.6. Applications to the uniform distribution case. The few-generator
model and the density model, based on the uniform distribution on reduced words
of a given length and discussed in Section 2.2, are both instances of a prefix-heavy
sequence of measures on tuples, for which the parameter α is α = 1

2r−1 , see Exam-
ples 3.2 and 3.17.

The results of Section 3.5 above allow us to retrieve many of these results, and
to expand them as we now see. In this section, the measure Rn is the uniform
distribution on Rn.

Small cancellation properties. Let 0 < d < 1. In the density model, at density
d, we choose uniformly at random a ν(n)-tuple of cyclically reduced words of length

n, with ν(n) = |Cn|d. In particular, for every tuple ~h of that sort, we have size(~h) =

ν(n) and max(~h) = min(~h) = n.
Let 0 < λ < 1

2 and for each n, let

ηn =

(
2r

2r − 1

)2d

n2 (2r − 1)−(λ−2d)n +

(
2r

2r − 1

)d
n2 (2r − 1)−(λ−d)n.
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Note that |Cn| < |Rn| = 2r
2r−1 (2r−1)n. Therefore (size2 max2 + size max min)αλmin <

ηn with probability 1. Now observe that ηn converges exponentially fast to 0 when
d < λ

2 . In view of Theorem 3.21 and Remark 3.22, this provides a proof of part of

Theorem 2.4 (2), namely, of the fact that, at density less than λ
2 , Property C ′(λ)

holds exponentially generically.
The more difficult property that hyperbolicity holds generically at density less

than 1
2 can probably not be established with the same very general tools.

Observe that the set R≤n of reduced words of length at most n has cardinality
1 +

∑n
i=1 |Rn| = r

r−1 (2r − 1)n − 1
r−1 . By the same reasoning as above, at density

less than λ
2 , a tuple of cyclically reduced words of length at most n exponentially

generically has Property C ′(λ).
Properties of subgroups. We now return to tuples of reduced words like in the

few-generator model, but with a density type assumption on the size of the tuples.
For 0 < d < 1, we consider |R≤n|d-tuples of reduced words of length at most n,
and the asymptotic properties of the subgroups generated by these tuples. For such

tuples ~h, we have size(~h) ≤
(

r
r−1

)d
(2r − 1)dn and max(~h) = n.

In addition, for every 0 < µ < 1, Proposition 2.2.1 (1) shows that min(~h) > µn,
exponentially generically.

We first establish the central tree property.

Proposition 3.23. Let 0 < d < 1
4 . At density d, a tuple of reduced words

of length at most n chosen uniformly at random, exponentially generically has the
central tree property, and in particular it is a basis of the subgroup it generates.

Proof. For a fixed µ < 1, the following inequality holds exponentially generi-
cally:

size2 α
min
2 ≤

(
r

r − 1

)2d

(2r − 1)−(
µ
2−2d)n.

At every density d < 1
4 , one can choose µ < 1 such that µ

2 −2d > 0 (say, µ = 1+4d
2 ).

For such a value of µ, ηn =
(

r
r−1

)2d
(2r − 1)−(

µ
2−2d)n converges exponentially fast

to 0 and, in view of Theorem 3.19 and Remark 3.22, this proves the proposition. �

Along the same lines, we also prove the following result.

Proposition 3.24. Let 0 < d < 1
16 . At density d, a tuple of reduced words of

length at most n chosen uniformly at random, exponentially generically generates
a malnormal subgroup.

Proof. For a fixed µ < 1, we have

size2 max2 α
min
8 ≤

(
r

r − 1

)2d

n2(2r − 1)−(
µ
8−2d)n,

exponentially generically.
If d < 1

16 , one can choose µ < 1 such that µ
8 − 2d > 0 (say, µ = 1+16d

2 ), and we
conclude as above, letting

ηn =

(
r

r − 1

)2d

n2(2r − 1)−(
µ
8−2d)n

and using Theorem 3.20 and Remark 3.22. �
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Remark 3.25. Propositions 3.23 and 3.24 above generalize Corollary 2.2 (1)
and (2), from the few generator case to an exponential number of generators — up
to density 1

4 and 1
16 , respectively (see Proposition 1.5).

Proposition 3.23 can actually be radically refined if the tuples have less than
exponential size and if we drop the requirement of exponential genericity.

Proposition 3.26. Let f be an unbounded non-decreasing integer function.

Let k > 1 be a fixed integer. Then a k-tuple ~h of reduced words of length at
most n chosen uniformly at random, generically has the central tree property, with

lcp(~h) ≤ f(n).

Let c, c′ > 0 such that c′ log(2r− 1) > 2c. Then an nc-tuple ~h of reduced words
of length at most n chosen uniformly at random, generically has the central tree

property, with lcp(~h) ≤ c′ log n.

Proof. If k is a fixed integer, then as in the proof of Proposition 3.23, we
find that, for each µ < 1, size2 αf(min) is generically less than or equal to ηn =
k2(2r − 1)−f(µn), which tends to 0. This concludes the proof on the size of the
central tree of random k-tuples by Proposition 3.18.

If we now consider nc-tuples, we find that, for each µ < 1, size2 αc
′ log(µn)) is

generically less than or equal to ηn = n2c(2r−1)−c
′ logn = n−(c

′ log(2r−1)−2c), which
tends to 0. By Proposition 3.18 again, this concludes the proof. �

4. Markovian automata

We now switch from the very general settings of the previous section to a specific
and computable way to define prefix-heavy sequences of measures on reduced words.

We introduce Markovian automata (Section 4.1) which determine prefix-heavy
sequences of measures under a simple and natural non-triviality assumption. These
automata are a form of hidden Markov chain, and when they have a classical ergod-
icity property, then cyclically reduced words have asymptotically positive density.
We are then able to generalize the results of Section 3.6 about central tree property
and malnormality.

In the last part of the section, we give a generalization of Theorem 2.4 (2)
and (3) on small cancellation and the degeneracy of a finite presentation.

4.1. Definition and examples. A Markovian automaton3 A consists of

• a deterministic transition system (Q, ·) on alphabet X, where Q is a finite
non-empty set called the state set, and for each q ∈ Q, x ∈ X, q · x ∈ Q
or q · x is undefined;

• an initial probability vector γ0 ∈ [0, 1]Q, that is, a positive vector such
that

∑
q∈Q γ0(q) = 1;

• for each p ∈ Q, a probability vector (γ(p, x))x∈X ∈ [0, 1]X , such that
γ(p, x) = 0 if and only if p · x is undefined.

If u = x0 · · ·xn ∈ X∗ (n ≥ 0), we write γ(q, u) = γ(q, x0)γ(q · x0, x1) · · · γ(q ·
(x0 · · ·xn−1), xn). We let γ(q, u) = 1 if u is the empty word. We also write γ0(u) =∑
q∈Q γ0(q)γ(q, u).

3This notion is different from the two notions of probabilistic automata, introduced by Rabin
[24] and Segala and Lynch [26], respectively.
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Markovian automata are very similar to hidden Markov chain models, except
that symbols are output on transitions instead of on states. We will discuss this
further in Section 4.2 below. Markovian automata can be considered as more
intuitive since sets of words (languages) are naturally described by automata.

We observe that, for each n ≥ 0,
∑
|u|=n γ(u) = 1. Thus γ determines a

probability measure Rn on the set of elements of X∗ of length n: if |u| = n, then
Rn(u) = γ(u).

In the sequel, we consider only Markovian automata on alphabet Ã, where
only reduced words have non-zero probability. More precisely, the support of a
Markovian automaton A is the set of words that can be read in A, starting from a
state q such that γ0(q) 6= 0, that is, the set of all words u such that γ(u) 6= 0: we
assume that our Markovian automata are such that their support is contained in
R.

Example 4.1. Uniform distribution on reduced words of length n. It
is immediately verified that the Markovian automaton defined above yields the
uniform distribution on reduced words of each possible length. The state set is
Q = Ã. For each a ∈ Ã, there is an a-labeled transition from every state except
a−1, ending in state a. All these transitions have the same probability, namely

1
2r−1 , and the initial probability vector is uniform as well, with each coordinate

equal to 1
2r .

One can also tweak these probabilities, to favor certain letters over others, or
to favor positive letters (the letters in A) over negative letters.

Example 4.2. Distributions on rational subsets of F (A). The support
of a Markovian automaton A is always rational and closed under taking prefixes,
but it does not have to be equal to the set of all reduced words. We can consider
a rational subset L of F (A), or rather a deterministic transition system reading
only reduced words, and impose probabilistic weights on its transitions to form a
Markovian automaton. The resulting distribution gives non-zero weights only to
prefixes of elements of L.

(A)

1
3

2
3

a | 1

b−1 | 1
2

b | 1
2

1
3

1
3

1
3

b | 1

a | 1
2

b | 1
2

a | 1

(A′)

Figure 3. Markovian automata A and A′.

Figure 3 represents two such automata (transitions are labeled by a letter and a
probability, and each state is decorated with the corresponding initial probability),
which are related with the modular group, PSL(2,Z) = 〈a, b | a2, b3〉.

The support of the distribution defined by automaton A is the set of words over
alphabet {a, b, b−1} without occurrences of the factors a2, b2, (b−1)2, bb−1 and b−1b,
and the support of the distribution defined by A′ consists of the words on alphabet
{a, b}, without occurrences of a2 or b3. Both are regular sets of unique represen-
tatives of the elements of PSL(2,Z) (the first is the set of geodesics of PSL(2,Z),
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and also the set of Dehn-reduced words with respect to the given presentation of
that group; the second is a set of quasi-geodesics of PSL(2,Z)). Notice that the
distribution produced by A′ is not uniform on words of length n of its support.

Example 4.1 shows that the sequence (Rn)n of uniform measures on reduced
words, discussed in Sections 2.2 and 3.6 can be specified by a Markovian automaton.
We also know that this sequence is prefix-heavy (Example 3.2). This is a general
fact, under mild assumptions on the Markovian automaton.

Proposition 4.3. Let A be a Markovian automaton and let (Rn)n the sequence
of probability measures it determines. If A does not have a cycle with probability
1, then (Rn)n is a prefix-heavy sequence of measures, with computable parameters
(C,α).

Proof. Let ` be the maximum length of an elementary cycle (one that does
not visit twice the same state) and let δ be the maximum value of γ(q, κ) where κ
is an elementary cycle at state q. Under our hypothesis, δ < 1.

Every cycle κ can be represented as a composition of at least |κ|/` elementary
cycles (here, the composition takes the form of a sequence of insertions of a cycle

in another). Consequently γ(q, κ) ≤ δ
|κ|
` . Finally, every path can be seen as a

product of cycles and at most |Q| individual edges. So, if u is a word and q ∈ Q,

then γ(q, u) ≤ δ |u|−|Q|` , that is γ(q, u) ≤ Cα|u| where C = δ
−|Q|
` and α = δ

1
` .

Let u, v be reduced words such that uv is reduced and let n ≥ |uv|. We have

Rn(P(uv)) = γ0(uv) =
∑
p∈Q

γ0(p)γ(p, u)γ(p · u, v)

≤

∑
p∈Q

γ0(p)γ(p, u)

 Cα|v|

= γ0(u) Cα|v| = Rn(P(u)) Cα|v|,

and hence Rn(P(uv) | P(u)) ≤ Cα|v|, which concludes the proof. �

Remark 4.4. The parameters C and α described in the proof of Proposition 4.3
may be far from optimal. If β < 1 is a uniform bound on the probabilities of the
transitions of A, then γ0(v), γ(q, v) ≤ β|v| for each word v, and the computation
in the proof above shows that Rn(P(uv) | P(u)) ≤ β|v|. We will see in Section 4.2
that we can be more precise under additional hypotheses.

Now let A be a Markovian automaton without a probability 1 cycle, such that
the sequence of probability measures it induces is prefix-heavy with parameters

(C,α). If 0 < d < 1, we say that a tuple ~h of reduced words of length at most

(resp. exactly) n is chosen at random according to A, at α-density d if ~h consists
of α−dn words. Observe that this generalizes the concept discussed in Section 2.2.2
and 3.6.

With the same proofs as in Section 3.6, we have the following generalization of
Propositions 3.23 and 3.24 related to ventral tree property and malnormality.

Corollary 4.5. Let A be a Markovian automaton without a probability 1
cycle, such that the induced sequence of probability measures is prefix-heavy with
parameters (C,α). Then a tuple of reduced words of length at most n chosen at
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random according to A, at α-density d < 1
4 , exponentially generically has the central

tree property.
At α-density d < 1

16 , it exponentially generically generates a malnormal sub-
group.

4.2. Irreducible Markovian automata and coincidence probability.
An (n, n)-matrix M is said to be irreducible if, for every i, j ≤ n, there exists t ≥ 1
such that M t(i, j) 6= 0. Equivalently, this means that M is not similar to a block
upper-triangular matrix. We record the following general property of irreducible
matrices.

Lemma 4.6. Let M be an irreducible matrix. Then its spectral radius ρ is a
(positive) eigenvalue with a positive eingenvector. In particular, there exist positive
vectors ~vmin and ~vmax such that, componentwise,

ρn~vmin ≤ Mn~1 ≤ ρn~vmax for all n > 0

where ~1 is the vector whose coordinates are all equal to 1. Moreover, there exist
cmin, cmax > 0 such that

cminρ
n ≤ t~1Mn~1 ≤ cmaxρ

n for all n > 0.

Proof. We refer the reader to [7, chap. 13, vol. 2] for a comprehensive pre-
sentation of the properties of irreducible matrices and in particular for the Perron-
Frobenius theorem, which establishes that the spectral radius of M is an eigenvalue
with a positive eigenvector: let ~v0 be such an eigenvector, and let ~vmin (resp. ~vmax)
be appropriate multiples of ~v0 with all coefficients less than 1 (resp. greater than 1).

Then we have, componentwise, ρn~vmin = Mn~vmin ≤ ~Mn~1 ≤Mn~vmax = ρn~vmax.
Let cmin (resp. cmax) be the sum of the coefficients of ~vmin (resp. ~vmax). Then,

summing over all components of Mn~vmin and Mn~vmax, we get cminρ
n ≤ t~1Mn~1 ≤

cmaxρ
n. �

Going back to automata, we note that a Markov chain can be naturally associ-
ated with a Markovian automaton: if A is a Markovian automaton on alphabet Ã,
with state set Q, we define the Markov chain M(A) on Q as follows: its transition
matrix is given by M(p, q) =

∑
a∈Ã s.t. p·a=q γ(p, a) for all p, q ∈ Q, and its initial

vector is γ0.
We say that the Markov chain M(A) (or, by extension, the Markovian automa-

ton A), is irreducible if this transition matrix is irreducible, which is equivalent to
the strong connectedness of A. We note that, in that case, if A does not consist
of a simple cycle, then A does not have a cycle of probability 1. In view of Propo-
sition 4.3, this implies that the sequence of probability measures determined by
A is prefix-heavy. We will see below (Proposition 4.9) that we can give a precise
evaluation of the parameters of this sequence.

To this end, we introduce the notion of local Markovian automata, where labels
can be read on states instead of edges.

More precisely a Markovian automaton is local if all the incoming transitions
into a given state are labeled by the same letter: for all states p, q and letters a, b,
if p · a = q · b then a = b. If A is a Markovian automaton, let A′ denote the local
Markovian automaton obtained as follows.

• its set of states is Q′ = {(q, a) ∈ Q× Ã | ∃p ∈ Q, p · a = q};
• its transition function ? is given by (p, a) ? b = (q, b) if p · b = q;
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• its initial probability vector γ′0 is given by

γ′0
(
(p, a)

)
=

{
γ0(p) if a is the least label of the transitions into p

0 otherwise

(we fix an arbitrary order on Ã)
• its transition probability vectors are given by γ′

(
(p, a), b

)
= γ(p, b).

1 2

a| 13
b| 23

c−1 | 1
2

b | 1
2

1, c−1

2, a

2, b

a | 1
3

b | 2
3

b | 1
2

b | 1
2

c−1 | 1
2

c−1 | 1
2

Figure 4. A Markovian automaton and its associated local automaton.

Proposition 4.7. Let A be a Markovian automaton. Then the associated local
Markovian automaton A′ assigns the same probability as A to every reduced word.
Moreover, if A is irreducible, then so is A′.

Proof. The first part of the statement follows directly from the definition, by
a simple induction on the length of the words: indeed, we retrieve a path in A by
forgetting the second coordinate on the states of A′; and every path of A starting
at some state q, can be lifted uniquely to a path in A′ starting at any vertex of the
form (q, a) of A′.

Assume that A is irreducible and let (p, a) and (q, b) be states of A′. By
definition of A′, there exists a state q′ of A such that q′ · b = q. Moreover, since

A is irreducible, there exists a path from p to q′ in A, say p
a1−→ q1

a2−→ . . .
at−→ q′.

Then

(p, a)
a1−→ (q1, a1)

a2−→ . . .
at−→ (q′, at)

b−→ (q′, b)

is a path in A′ from (p, a) to (q, b), so A′ is irreducible as well. �

If A is a Markovian automaton, we denote by MA (or just M when there is no
ambiguity) the stochastic matrix associated with its local automaton A′:

M
(
(p, a), (q, b)

)
=

{
γ′
(
(p, a), b

)
= γ(p, b) if p · b = q

0 otherwise.

We also denote by M[2] and M[3] the matrices defined by

M[2]

(
(p, a), (q, b)

)
=
(
M
(
(p, a), (q, b)

))2
and

M[3]

(
(p, a), (q, b)

)
=
(
M
(
(p, a), (q, b)

))3
,

and by α[2] the largest eigenvalue of M[2], called the coincidence probability of A,
which will play an important role in the sequel.
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Observe that if A is local, then A′ is equal to A, up to the name of the states.
We are interested in local automata for the following properties.

Lemma 4.8. Let A be a local Markovian automaton. Then the following holds

• for all states p, q there is at most one transition from p to q;
• two paths starting from the same state are labeled by the same word if and

only if they go through the same states in the same order;
• for every ` ≥ 0, we have M`(p, q) =

∑
u∈R`,p·u=q γ(p, u), M`

[2](p, q) =∑
u∈R`,p·u=q γ(p, u)2 and M`

[3](p, q) =
∑
u∈R`,p·u=q γ(p, u)3.

We can now give an upper bound for the parameters of the sequence of proba-
bility measures determined by an irreducible Markovian automaton.

Proposition 4.9. Let A be an irreducible Markovian automaton with coin-
cidence probability α[2], and let (Rn)n be the sequence of probability measures it
determines. If A does not consist of a single cycle, then there exists a constant

C > 0 such that (Rn)n is prefix-heavy with parameters (C,α
1/2
[2] ).

Proof. Let v be a reduced word of length ` and let q ∈ Q be a state of A. By
Lemma 4.8, we have

γ(q, v) =
√
γ(q, v)2 ≤

√
M`

[2](q, q · v) ≤
√
~1tM`

[2]
~1.

Lemma 4.6 then shows that there exists C > 0 such that γ(q, v) ≤ Cα
`
2

[2]. We can

now conclude as in the proof of Proposition 4.3. �

This yields the following refinement of Corollary 4.5.

Corollary 4.10. Let A be a Markovian automaton without a probability 1
cycle and with coincidence probability α[2]. Then a tuple of reduced words of length

at most n chosen at random according to A, at α[2]-density d < 1
8 (resp. d < 1

32),
exponentially generically has the central tree property (resp. generates a malnormal
subgroup).

4.3. Ergodic Markovian automata. If the Markovian automaton A is irre-
ducible and if, in addition, for all large enough n, M(A)n(q, q) > 0 for each q ∈ Q,
we say that A (resp. M(A)) is ergodic. This is equivalent to stating that A has a
collection of loops of relatively prime lengths, or also that all large enough integral
powers of M(A) have only positive coefficients. If A is ergodic, we can apply a
classical theorem on Markov chains, which states that there exists a stationary vec-
tor γ̃ such that the distribution defined by A converges to that stationary vector
exponentially fast (see [17, Thm 4.9]). In the vocabulary of Markovian automata,
this yields the following theorem.

If u ∈ Ã∗ has length n, let Qpn(u) = p ·u be the state of A reached after reading
the word u starting at state p. We treat Qpn as a random variable.

Theorem 4.11. Let A be an ergodic Markovian automaton on alphabet Ã, with
state set Q (|Q| ≥ 2). For each q ∈ Q, the limit limn→∞Rn[Qpn = q] exists, and if
we denote it by γ̃(q), then γ̃ is a probability vector (called the stationary vector).
In addition, there exist K > 0 and 0 < c < 1, such that |Rn[Qpn = q]− γ̃(q)| < Kcn

for all n large enough.
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Remark 4.12. The constant c in Theorem 4.11 is the maximal modulus of the
non-1 eigenvalues of M(A).

Example 4.13. The Markovian automaton discussed in Example 4.1, relative
to the uniform distribution on reduced words of length n, is ergodic. Its stationary
vector γ̃ is equal to γ0 (γ̃(q) = 1

2r for every state q), and the constant c is 1
2r−1 .

On the other hand, the Markovian automaton A in Example 4.2 is irreducible
but not ergodic (loops have even lengths), and it does not have a stationary vector.

We use Theorem 4.11 to show that, under a very mild additional hypothesis,
an ergodic Markovian automaton yields a prefix-heavy sequence of measures (Rn)n
such that lim inf Rn(C) > 0.

Proposition 4.14. Let A be an ergodic Markovian automaton, with initial
vector γ0 and stationary vector γ̃ and let (Rn)n be the sequence of measures it
induces on reduced words. If

∑
a∈Ã γ0(a)γ̃(a−1) 6= 1, then lim inf Rn(C) > 0.

Observe that the sum
∑
a∈Ã γ0(a)γ̃(a−1) is less than 1, since we are dealing

with probability vectors, unless there exists a (necessarily single) letter a such that
γ0(a) = γ̃(a−1) = 1.

Proof. The set C of cyclically reduced words is the complement in R of the
disjoint union of the sets aÃ∗a−1 (a ∈ Ã). Now we have

Rn(aÃ∗a−1) =
∑
p∈Q

γ0(p)γ(p, a)

 ∑
|u|=n−2

γ(p · a, u)γ(p · (au), a−1)


=
∑
p∈Q

γ0(p)γ(p, a)

∑
q∈Q

Rn(Qp·an−2 = q)γ(q, a−1)


=
∑
p∈Q

γ0(p)γ(p, a)

∑
q∈Q

(γ̃(q) + ε(q, n))γ(q, a−1)

 ,

where |ε(q, n)| ≤ Kcn−2, with K and c given by Theorem 4.11. Then we have

Rn(aÃ∗a−1) = γ0(a)γ̃(a−1) + γ0(a)

∑
q∈Q

ε(q, n)γ(q, a−1)


and limRn(aÃ∗a−1) = γ0(a)γ̃(a−1). It follows that

limRn(C) = 1−
∑
a∈Ã

γ0(a)γ̃(a−1),

thus concluding the proof. �

Proceeding as in Section 3.6, we can use Proposition 4.14, Corollary 3.15 and
the results of Section 3.5, to generalize part of Theorem 2.4 (2), and show that, up
to α[2]-density λ

4 , a tuple of cyclically reduced words of length at most n chosen
at random according to A, exponentially generically satisfies the small cancellation
property C ′(λ). We will now see (Theorem 4.15) that we can improve this bound,
and go up to α[2]-density λ

2 .
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4.4. Phase transitions for the Markovian model. We can now state a
phase transition theorem, which generalizes parts of Theorem 2.4. Let us say that
an ergodic Markovian automaton is non-degenerate if its initial distribution γ0 and
its stationary vector γ̃ satisfy

∑
a∈Ã γ0(a)γ̃(a−1) 6= 1.

Theorem 4.15. Let A be a non-degenerate ergodic Markovian automaton with
coincidence probability α[2]. Let 0 < d < 1 and let G be the group presented by a

tuple ~h of cyclically reduced words of length n, chosen independently and at random
according to A, at α[2]-density d. Then we have the following phase transitions:

• if 0 < λ < 1
2 and 0 < d < λ

2 , then exponentially generically ~h satisfies the

small cancellation property C ′(λ); if λ = 1
6 , then G is generically infinite

and hyperbolic;

• if d > λ
2 then exponentially generically ~h does not satisfy the small can-

cellation property C ′(λ);
• if d > 1

2 then exponentially generically G is degenerated in a sense that is
made precise in Proposition 4.23, and which implies that G is a free group
or the free product of a free group with Z/2Z.

The rest of the paper is devoted to the proof of Theorem 4.15. The first
statement is established in Theorem 4.16, while the second and third statements
are proved respectively in Theorems 4.22 and 4.23.

4.5. Long common factors at low density. In this section we estimate
the probability that random words share a long common factor. More precisely, we
show the following statement, the first part of Theorem 4.15.

Proposition 4.16. Let A be a non-degenerate ergodic Markovian automaton
with coincidence probability α[2]. Let λ ∈ (0, 12 ) and let d ∈ (0, λ2 ). A tuple of
cyclically reduced words of length n taken independently and randomly according to
A, at density d, exponentially generically satisfies the small cancellation property
C ′(λ).

The structure of the proof of Proposition 4.16 resembles that of the proof of
Theorem 3.21, and requires the consideration of several cases. This is the object of
the rest of Section 4.5.

To this end, we introduce additional notation: let ~γq(n) be the vector of coor-
dinates γ(q, u) when u ranges over Rn in lexicographic order, and let ‖~γq(n)‖k =

(
∑
u∈Rn γ(q, u)k)1/k be the `k-norm of this vector. We start with an elementary

result.

Lemma 4.17. Let A be a Markovian automaton, let 0 < i, ` < n be integers,
and let u ∈ R`. The probability p that u occurs as a cyclic factor at position i in a
reduced word of length n is bounded above by

{ ∑
q∈Q γ(q, u) if i ≤ n− `+ 1∑
q,q′∈Q γ(q, u1)γ(q′, u2) if i > n− `+ 1 and u = u1u2 with |u1| = n− i+ 1
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Proof. If i ≤ n− `+ 1, then p = Rn(Ãi−1uÃn−`−i+1) is equal to∑
p∈Q

γ0(p)
∑

w∈Ri−1

γ(p, w)γ(p · w, u) =
∑
p∈Q

γ0(p)
∑
q∈Q

∑
w∈Ri−1
p·w=q

γ(p, w)γ(q, u)

=
∑
p∈Q

γ0(p)
∑
q∈Q

Ri−1[Qpi−1 = q]γ(q, u)

≤
∑
p,q∈Q

γ0(p)γ(q, u) =
∑
q∈Q

γ(q, u).

If i > n− `+ 1 and u = u1u2 with |u1| = n− i+ 1, then

p = Rn(u2Ã
n−`u1) =

∑
q′∈Q

γ0(q′)γ(q′, u2)
∑

w∈Rn−`
γ(q′ · u2, w)γ(q′ · u2w, u1)

=
∑
q′∈Q

γ0(q′)γ(q′, u2)
∑
q∈Q

∑
w∈Rn−`
q′·u2w=q

γ(q′ · u2, w)γ(q, u1)

=
∑
q′∈Q

γ0(q′)γ(q′, u2)
∑
q∈Q

Rn−`[Qq
′·u2

n−` = q]γ(q, u1)

≤
∑
q,q′∈Q

γ(q, u1)γ(q′, u2),

which concludes the proof. �

Proposition 4.18. Let A be an irreducible Markovian automaton with coin-
cidence probability α[2]. Let n, `, i and j be positive integers such that ` ≤ n and
i, j ≤ n. Denote by L(n, `, i, j) the probability that two reduced words of length n
share a common cyclic factor of length ` at positions respectively i and j. Then
there exists a positive constant K such that

L(n, `, i, j) ≤ Kα`[2].

Proof. Without loss of generality (see Proposition 4.7), we may assume that
A is local. The proof is based on a case study.
Case 1: i, j ≤ n− `+ 1. Using Lemma 4.17, we have

L(n, `, i, j) ≤
∑
p,q∈Q

∑
u∈R`

γ(p, u)γ(q, u).

By a repeated application of the Cauchy-Schwarz inequality, we get

(7) L(n, `, i, j) ≤
∑
p,q∈Q

‖~γp(`)‖2‖~γq(`)‖2 ≤
∑
q∈Q
‖~γq(`)‖22.

Now, in view of Lemma 4.8 and since A is local, we have

(8) ~1tM`
[2]
~1 =

∑
p∈Q

∑
q∈Q

∑
u∈R`
p·u=q

γ(p, u)2 =
∑
q∈Q

∑
u∈R`

γ(q, u)2 =
∑
q∈Q
‖~γq(`)‖22.

Moreover, since M is irreducible, Lemma 4.6 shows that there exists a positive
constant K > 0 such that, for ` large enough, we have

~1tM`
[2]
~1 ≤ Kα`[2].

Together with Equation (7), this concludes the proof of the statement in that case.
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Case 2: i > n − ` + 1 and j ≤ n − ` + 1. (The case where i ≤ n − ` + 1 and
j > n− ` + 1 is symmetrical.) Let k = n− i + 1 (so 1 ≤ k < `). By Lemma 4.17,
we have

L(n, `, i, j) ≤
∑

u1∈Rk
u2∈R`−k

∑
p,p′,q∈Q

γ(p, u1)γ(p′, u2)γ(q, u1u2)

≤
∑

u1∈Rk
u2∈R`−k

∑
p,p′,q,q′∈Q

γ(p, u1)γ(p′, u2)γ(q, u1)γ(q′, u2)

≤

 ∑
u1∈Rk

∑
p,q∈Q

γ(p, u1)γ(q, u1)

  ∑
u2∈R`−k

∑
p′,q′∈Q

γ(p′, u2)γ(q′, u2)

 .

By Cauchy-Schwarz, it follows that

L(n, `, i, j) ≤

 ∑
p,q∈Q

‖~γp(k)‖2‖~γq(k)‖2

  ∑
p′,q′∈Q

‖~γp′(`− k)‖2‖~γq′(`− k)‖2


≤

∑
q∈Q
‖~γq(k)‖22

 ∑
q∈Q
‖~γq(`− k)‖22


≤
(
~1t Mk

[2]
~1
) (

~1t M`−k
[2]

~1
)

by Equation (8),

≤ ~1t M`
[2]
~1 ≤ Kα`[2] by Lemma 4.6.

Case 3: i, j > n − ` + 1. Without loss of generality, we may assume that i < j,
and we let k = n − j + 1 and k′ = ` − (n − i + 1). Then a word u of length `
occurs as a cyclic factor in two reduced words w1 and w2 of length n, at positions
i and j respectively, if u = u1u2u3 with |u1| = k, |u2| = j − i and |u3| = k′, and if

w1 ∈ u3Ãn−`u1u2 and w2 ∈ u2u3Ãn−`u1. Then we have

L(n, `, i, j) ≤
∑

u1∈Rk
u2∈Rj−i
u3∈Rk′

∑
p,p′∈Q
q,q′′∈Q

γ(q, u1u2)γ(q′′, u3) γ(p, u1)γ(p′, u2u3)

≤
∑

u1∈Rk
u2∈Rj−i
u3∈Rk′

∑
p,p′,p′′∈Q
q,q′,q′′∈Q

γ(q, u1)γ(q′, u2)γ(q′′, u3) γ(p, u1)γ(p′, u2)γ(p′′, u3)

≤
∑

u1∈Rk
p′,q∈Q

γ(q, u1)γ(p′, u1)
∑

u2∈Rj−i
p,q′′∈Q

γ(q′′, u2)γ(p, u2)
∑

u3∈Rk′
p′′,q′∈Q

γ(q′, u3)γ(p′′, u3).

By the Cauchy-Schwarz inequality, L(n, `, i, j) is at most equal to∑
p,q∈Q

‖~γp(k)‖2‖~γq(k)‖2
∑
p,q∈Q

‖~γp(j − i)‖2‖~γq(j − i)‖2
∑
p,q∈Q

‖~γp(k′)‖2‖~γq(k′)‖2

and hence to∑
q∈Q
‖~γq(k)‖22

∑
q∈Q
‖~γq(j − i)‖22

∑
q∈Q
‖~γq(`− i)‖22

= (~1t Mk
[2]
~1) (~1t Mj−i

[2]
~1) (~1t Mk′

[2]
~1) = ~1t M`

[2]
~1.
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This implies that L(n, `, i, j) ≤ Kα`[2] by Lemma 4.6. �

Proposition 4.19. Let A be an irreducible Markovian automaton with coinci-
dence probability α[2]. Denote by L(2)(n, `, i, j) the probability for two reduced words
of length n to have an occurrence of a factor of length ` in the first word at position
i, and an occurrence of its inverse in the second word, at position j, with ` ≤ n and
i, j ≤ n− `+ 1. Then there exists a positive constant K such that

L(2)(n, `, i, j) ≤ Kα`[2].
Proof. The proof follows the same steps as that of Proposition 4.18. In the

first case (i, j ≤ n− `+ 1), Lemma 4.17 shows that

L(2)(n, `, i, j) ≤
∑
p,q∈Q

∑
u∈R`

γ(p, u)γ(q, u−1).

Since the set of reduced words of length ` and the set of their inverses are equal,
we get, by the Cauchy-Schwarz inequality,

L(2)(n, `, i, j) ≤
∑
p,q∈Q

‖~γp(`)‖2‖~γq(`)‖2,

and the proof proceeds as in the corresponding case of Lemma 4.18.
In the second case (i > n− `+ 1 and j ≤ n− `+ 1), if k = n− i+ 1, then we

have

L(2)(n, `, i, j) ≤
∑

u1∈Rk
u2∈R`−k

∑
p,p′,q∈Q

γ(p, u1)γ(p′, u2)γ(q, u−12 u−11 )

≤
∑

u1∈Rk
u2∈R`−k

∑
p,p′,q,q′∈Q

γ(p, u1)γ(p′, u2)γ(q, u−12 )γ(q′, u−11 )

≤
( ∑
u1∈Rk

∑
p,q′∈Q

γ(p, u1)γ(q′, u−11 )
)( ∑

u2∈R`−k

∑
p′,q∈Q

γ(p′, u2)γ(q, u−12 )
)

and as in the previous case, the proof proceeds as in Lemma 4.18.
The situation is a little more complex in the last case (i, j > n−`+1). Without

loss of generality, we may assume that i < j. With the same notation as in the
proof of Lemma 4.18, we distinguish two cases. If |u3| < |u2| (that is, `−k < k′, or

`+i+j < 2n+2), we let u2 = u′2u
′′
2 with |u′2| = |u3|. Then w1 ∈ u3Ãn−`u1u′2u′′2 and

w2 ∈ u′2−1u−11 Ãn−`u−13 u′′2
−1

and, as in the previous proof, we find that L(2)(n, `, i, j)
is at most equal to the sum of the

γ(p, u1)γ(q, u−11 )γ(p′, u′2)γ(q′, u′2
−1

)γ(p′′, u′′2)γ(q′′, u′′2
−1

)γ(p′′′, u3)γ(q′′′, u−13 )

with u1 ∈ Rj−i, u′2 ∈ R`−k, u′′2 ∈ Rk′−(`−k), u3 ∈ R`−k, and p, p′, p′′, p′′′, q, q′, q′′, q′′′

are states in Q. The proof then proceeds as before, with multiple applications of
the Cauchy-Schwarz inequality.

The case where |u3| ≥ |u2| (that is, `+ i+ j ≥ 2n+ 2) is handled in the same
fashion. �

Corollary 4.20. Let A be a non-degenerated ergodic Markovian automaton
with coincidence probability α[2]. Let n, `, i, j be positive integers such that ` ≤ n
and i, j ≤ n. There exists a constant K > 0 such that the probability p that two
cyclically reduced words of length n have occurrences of the same word of length `
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(resp. of a word of length ` and its inverse) as cyclic factors at positions respectively
i and j, satisfies p ≤ Kα`[2].

Proof. The hypothesis on A guarantees that lim inf Rn(C) = p > 0 by Propo-
sition 4.14. Our statement then follows from Propositions 4.18 and 4.19, in view of
Lemma 3.14. �

We now consider the case of multiple occurrences of a length ` cyclic factor (or
of such a word and its inverse) within a single reduced word.

Proposition 4.21. Let A be a non-degenerate ergodic Markovian automaton
with coincidence probability α[2]. There exists a constant K > 0 such that the
probability that a cyclically reduced word of length n has two occurrences of a length
` word as cyclic factors, or occurrences of a length ` word and its inverse as cyclic

vactors, is at most K`2n2α
`/2
[2] .

Proof. By Proposition 4.9, the sequence (Rn)n induced by A is prefix-heavy

with parameters (c, α
1/2
[2] ) for some C. The result then follows from Corollary 3.15.

�

We can now proceed with the proof of Proposition 4.16. Let N = α−dn[2] . An

N -tuple of cyclically reduced words which fails to satisfy C ′(λ), must satisfy one
of the following conditions: either two words in the tuple have occurrences of the
same cyclic factor of length ` = λn or occurrences of such a word and its inverse;
or a word in the tuple has two occurrences of the same cyclic factor of length ` or
occurrences of such a word and its inverse.

By Corollary 4.20, the first event occurs with probability at most

K

(
N

2

)
n2α`[2] ≤ Kn2α

(λ−2d)n
[2]

for some K > 0. By Proposition 4.21, the second event occurs with probability at
most

KN`2n2α
`
2

[2] ≤ Kn4α
(λ2−d)n
[2] ,

for some K > 0. Thus both events occur with probabilities that vanish exponen-
tially fast, and this concludes the proof of Proposition 4.16.

4.6. Long common prefixes at high density. In this section, we estab-
lish the following propositions corresponding respectively to the second and third
statement of Theorem 4.15.

Proposition 4.22. Let A be a non-degenerate ergodic Markovian automaton
with coincidence probability α[2]. Let λ ∈ (0, 12 ) and let d ∈ (λ2 , 1). A tuple of
cyclically reduced words of length n taken independently and randomly according to
A, at density d, generically does not satisfy the small cancellation property C ′(λ).

Proposition 4.23. Let A be a non-degenerate ergodic Markovian automaton
with coincidence probability α[2]. Let E be the set of letters of Ã which label a

transition in A and let D = A \ (E ∪E−1). Let d > 1
2 and N ≥ α−dn[2] , and let G be

a group presented by an N -tuple of cyclically reduced words chosen independently
at random according to A.

If E ∩ E−1 = ∅, then G = F (|D|+ 1) exponentially generically.
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If E ∩ E−1 6= ∅, then exponentially generically G = F (D) ∗ Z/2Z (if n is odd)
or G = F (D) (if n is even).

Both proofs rely heavily on the methodology introduced by Szpankowski [30]
to study the typical heigth of a random trie. We first establish simple lower and
upper bounds for words to share a common prefix (Lemmas 4.24 and 4.25).

Lemma 4.24. Let A be an irreducible Markovian automaton with coincidence
probability α[2]. Let P (n, `) ( resp. P ′(n, `)) be the probability that two reduced (resp.
cyclically reduced) words of length n share a common prefix of length `. There exists
a constant K > 0 such that P (n, `) ≥ Kα`[2].

If A is non-degenerate and ergodic and t is large enough for all the coefficients of
Mt to be positive, then K can be chosen such that P ′(n, `) ≥ Kα`[2] when n ≥ `+t+1.

Proof. Let p be a state such that γ0(p) > 0. To establish the announced
lower bounds, we only need to consider the words that can be read from state p.
More precisely, when considering reduced words, we have

P (n, `) ≥ γ0(p)2
∑
u∈R`

γ(p, u)2.

We observe that
∑
u∈R` γ(p, u)2 is the p-component of M`

[2]
~1, and by Lemma 4.6,

it is greater than or equal to βα`[2], where β is the minimal component of ~vmin (in

the notation of Lemma 4.6). This completes the proof of the statement concerning
P (n, `).

We now consider cyclically reduced words, under the hypothesis that A is non-
degenerate and ergodic. Let t be such that all the coefficients of Mt are positive,
let p̄min be the least coefficient of this matrix, and let pmin be the least positive
coefficient of M. Finally, let p = lim inf Rn(C), which is positive by Proposition 4.14.
Let X (resp. Xp) be the set of pairs of cyclically reduced words of length n that
have a common prefix of length ` (resp. which can be read from state p). We note
that

P ′(n, `) =
Rn(X)

Rn(C)2 ≥ 1

p2
Rn(X) ≥ 1

p2
Rn(Xp),

so we only need to find a lower bound for Rn(Xp).
Suppose that n ≥ `+ t+ 1. Then Xp contains the set of pairs of reduced words

of the form (uu1u
′
1a, uu2u

′
2a) which can be read from p, where a is the first letter

of u, and u′1 and u′2 are words of length t such that p · (uu1u′1) = p · (uu2u′2) = p.
Since these words start and end with the same letters, they are guaranteed to be
cyclically reduced. Thus we have

Rn(Xp) ≥ γ0(p)2
∑
u∈R`

γ(p, u)2 p2min p̄
2
min ≥ β γ0(p)2 p2min p̄

2
min α

`
[2],

which concludes the proof. �

Lemma 4.25. Let A be an irreducible Markovian automaton with coincidence
probability α[2]. There exists a constant K > 0 such that the probability that three

reduced words share the same prefix of length ` is at most Kα`[3].

If A is non-degenerate and ergodic, the same holds for triples of cyclically
reduced words.
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Proof. The probability p(u) that three reduced words have a common prefix
u is

p(u) =
∑

p1,p2,p3∈Q
γ0(p1) γ0(p2) γ0(p3) γ(p1, u) γ(p2, u) γ(p3, u).

The probability we are interested in is obtained by summing over all u ∈ R`. It is
bounded above by ∑

p1,p2,p3∈Q

∑
u∈R`

γ(p1, u) γ(p2, u) γ(p3, u).

By the Hölder and Cauchy-Schwarz inequalities, we have∑
u∈R`

γ(p1, u) γ(p2, u) γ(p3, u)

≤
(∑
u∈R`

γ(p1, u)3

) 1
3
(∑
u∈R`

γ(p2, u)
3
2 γ(p3, u)

3
2

) 2
3

≤
(∑
u∈R`

γ(p1, u)3

) 1
3
(∑
u∈R`

γ(p2, u)3

) 1
3
(∑
u∈R`

γ(p3, u)3

) 1
3

.

Moreover, we have ∑
p∈Q

∑
u∈R`

γ(p1, u)3 = t~1 ·M`
[3] ·~1.

We now get the announced result using Lemma 4.6, Lemma 4.8 and the spectral
properties of M`

[3]. The generalisation to cyclically reduced words follows from

Lemma 3.14. �

We now build on the previous lemmas to show that, exponentially generically,
large tuples of cyclically reduced words contain pairs of words with a common prefix
of a prescribed length.

Proposition 4.26. Let A be an irreducible Markovian automaton with coinci-
dence probability α[2]. Let (`n)n be an unbounded, monotonous sequence of positive

integers such that `n ≤ n for each n, and let d > 1
2 . Then an α−d`n[2] -tuple of reduced

words of length n drawn randomly according to A generically contains two words
with the same prefix of length `n.

If A is non-degenerate and ergodic, the same holds for α−d`n[2] -tuples of cyclically

reduced words.

Proof. We use the so-called second moment method, as developed in [30], and

we introduce the following notation to this end. Let N = α−d`n[2] and consider an

N -tuple ~h = (hi)1≤i≤N of reduced words, independently and randomly generated
according to A. For 1 ≤ i < j ≤ N , let Xi,j be the random variable computing
the length of the longest common prefix of hi and hj . We want to show that,
exponentially generically,

max
1≤i<j≤N

Xi,j ≥ `n.

Let us relabel the random variables Xi,j (i 6= j) as Y1, . . . , Ym, with m =
(
N
2

)
and,

say, Y1 = X1,2. We are therefore computing the maximum of m random variables,
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which are identically distributed but not independent. Fortunately, they behave
almost as if they were independent, as we will see.

Let d′ be such that 1
2 < d′ < d and for each m ≥ 1, let

rm = log
α−2d′

[2]

(m) =
log
(
N
2

)
logα−2d

′
[2]

∼
logα−2d`n[2]

logα−2d
′

[2]

=
d`n
d′
.

In particular, rm is asymptotically greater than `n, and we only need to show that

(9) lim
n→∞

Rn
(

max
k∈[m]

Yk ≥ rm
)

= 1.

Let ν(rm) denote the quantity

ν(rm) =
m∑
k=2

Rn(Y1 ≥ rm, Yk ≥ rm)

mRn(Y1 ≥ rm)2
.

We use Lemma 3 in [30], which states that the desired equation (9) holds if

lim
n→∞

mRn(Y1 > rm) = +∞ and lim
n→∞

ν(rm) = 1.

We now proceed with the proof of these two equalities. By Lemma 4.24, we have
Rn(Y1 ≥ rm) ≥ K αrm[2] . Then

log (mRn(Y1 ≥ rm)) ≥ logm+ logK + rm logα[2]

= rm log(α−2d
′

[2] ) + logK + rm logα[2]

= rm log(α1−2d′
[2] ) + logK,

which tends to +∞, since 1− 2d′ < 0 and α[2] < 1. Therefore,

lim
n→∞

mRn(Y1 ≥ rm) = +∞.

Let us now consider ν(rm). Note that, if the Yi were independent random
variables, we would have ν(rm) = m−1

m , which tends to 1 when n tends to ∞.
Observe that if 2 < i < j ≤ N , then X1,2 and Xi,j are independant and

identically distributed, so

Rn(X1,2 ≥ rm, Xi,j ≥ rm) = Rn(X1,2 ≥ rm)Rn(Xi,j ≥ rm) = Rn(Y1 ≥ rm)2.

Also, since h1 and h2 are drawn independently, we have Rn(X1,2 ≥ rm, X1,k ≥
rm) = Rn(X1,2 ≥ rm, X2,k ≥ rm) for each k ≥ 3. Therefore

ν(rm) = 2

N∑
k=3

Rn(X1,2 ≥ rm, X1,k ≥ rm)

mRn(Y1 ≥ rm)2
+

(
N − 2

2

)
1

m
.

Since m =
(
N
2

)
, we have limn

(
N−2
2

)
1
m = 1. Moreover, the joint probability

Rn(X1,2 ≥ rm, X1,k ≥ rm) is exactly the probability that three random reduced
words share a common prefix of length rm: by Lemma 4.25, this is at most equal
to K αrm[3] for some constant K > 0. Together with Lemma 4.24, this yields

N∑
k=3

P(X1,2 ≥ rm, X1,k ≥ rm)

mP(Y1 ≥ rm)2
≤ K ′

N

(
α[3]

α2
[2]

)rm
,
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for some K ′ > 0. In [15] it is proved that (α[m])
1/m is a decreasing sequence, so we

have α
1/3
[3] ≤ α

1/2
[2] and hence(

α[3]

α2
[2]

)rm
≤

α3/2
[2]

α2
[2]

rm

≤ α−
rm
2

[2] .

Therefore, for some K ′′ > 0, we have

log

(
1

N

(
α[3]

α2
[2]

)rm)
≤ − logN − rm

2
logα[2]

≤ −1

2
logm+K ′′ − rm

2
logα[2]

≤ −rm
2

log(α−2d
′

[2] ) +K ′′ − rm
2

logα[2] by definition of rm

≤ 1

2
rm(2d′ − 1) logα[2] +K ′′,

which tends to −∞ when n tends to −∞, since 2d′ − 1 > 0 and α[2] < 1. This
proves finally that limm→∞ ν(rm) = 1 and establishes Equation (9). That is, the
desired statement is proved for tuples of infinite reduced words, and therefore for
tuples of reduced words by truncation.

The generalisation to cyclically reduced words follows from Lemma 3.14. �

Proposition 4.26 directly proves Proposition 4.22.

Proof of Proposition 4.22. Let 0 < λ < 1
2 . Proposition 4.26, applied to `n = λn

shows that, if 1
2 < d < 1, then a random α−dλn[2] -tuple ~h of cyclically reduced words

of length n, generically has two components hi and hj with the same prefix of

length λn, which is sufficient to show that ~h does not satisfy Property C ′(λ). ut
We now translate the result of Proposition 4.26 into a result on the group

presented by a random α−dn[2] -tuple, when d > 1
2 . We will use repeatedly Uspensky’s

inequality [32, p. 102], which states that, in a binomial distribution with parameters
(k, p) — that is: Xk is the sum of k independent draws of 0 or 1 and p is the
probability of drawing 1 —, for each K > 0,

P (|Xk − kp| ≥ Kk) ≤ 2 exp

(
−k

2K

2

)
.

More precisely, we will apply this inequality with K = 1
2 , to get

(10) P
(
Xk ≥

kp

2

)
≥ 1− 2 exp

(
−k

2

4

)
.

If ~h is a vector of cyclically reduced words, G is the group presented by G =

〈A | ~h〉 and u, v are reduced words, we write that u =G v if u and v have the same

projection in G (that is: if uv−1 lies in the normal closure of ~h).

Proposition 4.27. Let A be an ergodic Markovian automaton with coincidence
probability α[2] and let a, b ∈ Ã be labels of transitions in A. Let d > 1

2 and

N ≥ α−dn[2] , and let G be a group presented by an N -tuple of cyclically reduced

words chosen at random according to A. Then a =G b exponentially generically.
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Proof. Let t > 0 be such that all the coefficients of Mt are positive (such an
integer exists since M is ergodic) and let τ > 0 be the minimum coefficient of Mt.

First step of the proof. We show that if x = x1 · · ·xs and y = y1 · · · ys are reduced
words of equal length s ≥ 1 which label paths in A out of the same state q, then
exponentially generically, we have xk =G yk for each 1 ≤ k ≤ s.

Recall that, in our model of Markovian automata, drawing a word of length
n amounts to drawing a state r ∈ Q according to γ0, and then drawing a word of

length n according to γ(r,−). Thus, when drawing a tuple ~h = (hi)i, we also draw
a tuple ~q = (qi)i of states such that, in particular, γ0(qi) > 0 and γ(qi, hi) > 0.

For each s ≥ 1, we say that a pair of indices (i, j) is an s-collision if hi and hj
have the same prefix of length n − t − s. If, in addition, qi = qj = r ∈ Q, we talk
of an s-collision at state r.

Let e be such that 0 < e < d − 1
2 and let N ′ = α

−(d−e)n
[2] . Then a random

α−dn[2] -tuple of cyclically reduced words is obtained by drawing a random N ′-tuple

α−en[2] times. Since d − e > 1
2 , Proposition 4.26 applied to `n = n − t − s shows

that a random N ′-tuple of cyclically reduced words generically exhibits at least one
s-collision.

We assume that n is large enough so that the probability of an s-collision in a
random N ′-tuple is at least 1

2 . Then Uspensky’s inequality (Equation (10) above,

applied with p = 1
2 and k = α−en[2] ) shows that the set T1 of s-collisions of a random

α−dn[2] -tuple of cyclically reduced words of length n satisfies |T1| ≥ 1
4α
−en
[2] with

probability greater than or equal to p = 1− 2 exp(− 1
4α
−2en
[2] ).

For each s-collision (i, j) ∈ T1, we let u(i, j) be the common length n − t − s
prefix of hi and hj and we let q′i and q′j be the states reached after reading u(i, j)
from states qi and qj , respectively. Since the drawing of hi and hj , and in particular,
of the start states qi and qj , is independent, and since A has a finite number of
states, there exists a state q0 ∈ Q such that γ(q0) > 0 and the subset T2 ⊆ T1 of

s-collisions at q0 satisfies |T2| ≥ |T1|
|Q|2 . Then, again by the same finiteness argument,

there exists a set q1 ∈ Q and a set T3 ⊂ T2 such that, for every (i, j) ∈ T3, u(i, j)

labels a path from q0 to q1 in A, and |T3| ≥ |T2|
|Q| .

To summarize, there exist states q0 and q1 such that γ0(q0) > 0 and such that
the set T3 of s-collisions at q0 for which u(i, j) labels a path from q0 to q1, satisfies
|T3| ≥ 1

4|Q|3α
−en
[2] with probability greater than or equal to p.

Now let v be a reduced word of length t, labeling a path in A from q1 to q: such
a word exists since all the coefficients of Mt are positive, and we have γ(q1, v) ≥ τ .
For each (i, j) ∈ T3, the probability that hi starts with u(i, j)v is γ(q1, v) ≥ τ ,
and the probability that uv is a prefix of both hi and hj is at least τ2. We can
apply again Uspensky’s inequality(10), with p = τ2 and k = |T3|: then the subset
T4 ⊆ T3 of pairs (i, j) such that u(i, j)v is a prefix of both hi and hj , has cardinality

|T4| ≥ 1
2 |T3|τ2 with probability at least p′ = p(1− 2 exp(− |T3|2

4 )).
Finally, we note that |u(i, j)v| = n − s, so for each (i, j) ∈ T4, we have

hi = u(i, j)vx with probability γ(q, x). Therefore the probability that (hi, hj) =
(u(i, j)vx, u(i, j)vy) is γ(q, x)γ(q, y) > 0. Applying Uspensky’s inequality one more

time (with k = |T4| and p = γ(q, x)γ(q, y)) shows that ~h contains a pair of words
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of the form (wx,wy) with probability at least

p′
(

1− 2e−
|T3|2

4

)
≥
(

1− 2e−
α
−2en
[2]
4

)(
1− 2e−

|T3|2
4

)(
1− 2e−

|T4|2
4

)
.

Note that 1
4α
−2en
[2] , |T3|2

4 and |T4|2
4 are all greater than or equal to τ4

256|Q|6α
−2en
[2] , so

this probability is greater than or equal to (1−2 exp( τ4

256|Q|2α
−2en
[2] ))3. In particular,

exponentially generically, ~h has a pair of the form (wx,wy), and hence we have
x =G y.

Applying this to the words x1 and y1, we find that x1 =G y1. Next, considering
the words x1x2 and y1y2, we find that x1x2 =G y1y2, and hence x2 =G y2. Iterating
this reasoning, we finally show that xk =G yk for each 1 ≤ k ≤ s.
Second step of the proof We now consider two transitions in A, one labeled a from
state q to state q′ and another labeled b from state r to state r′ (a, b ∈ Ã).

Let q0 ∈ Q be a state in A such that γ0(q0) > 0. Since A is irreducible,
there exists a word w1 which labels a loop at q0 and visits every transition of A.
Moreover, since A is ergodic, there exists a word w2 labeling another loop at q0,
such that |w1| and |w2| are relatively prime.

Since reading w1 from q0 visit all the transitions, let u1 (resp. v1) be a prefix of
w1 such that the last transition read after reading u1 (resp. v1) is the a-transition
out of state q (resp. the b-transition out of state r). Then the Chinese remainder
theorem shows that there exist words x ∈ {w1, w2}∗u1 and y ∈ {w1, w2}∗v1 of equal
length.

Since a and b are the last letters of x and y, respectively, the first step of the
proof shows that a =G b, which concludes the proof of the proposition. �

We can now complete the proof of Proposition 4.23. By Proposition 4.27,
exponentially generically, all the letters in E are equal in G. If a, a−1 ∈ E for some
letter a, then all these letters are equal to their own inverse in G, so the subgroup H
of G generated by E is a quotient of Z/2Z. Since all the relators in the presentation
have length n, it follows that H is isomorphic to Z/2Z if n is odd, and is trivial if
n is even. The result follows once we observe that the letters in D do not occur in
any relator. ut
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