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ABSTRACT  

This chapter introduces the principles underlying the simulation of the probability 

distributions which typically characterize the life/failure processes of engineered 

components and systems. The basic procedures for sampling random numbers are 

reviewed and examples are provided with reference to the uniform, exponential and 

Weibull distributions which are among the most commonly used probability distributions 

in reliability, availability and safety analysis. 
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SAMPLING RANDOM VALUES FROM A PROBABILITY DISTRIBUTION  

Let X be a random variable (rv) obeying a cumulative distribution function (cdf) 

  xFX defined as 

 

     1)(  ; 0)(F  ;  xFxXProb XX  F X           (1) 

 

In the following, if the rv X obeys a cdf   xFX  we shall write  xFX X~ . 

From the definition it follows that   xFX  is a non-decreasing function and we further 

assume that it is continuous and differentiable as well. The corresponding probability 

density function (pdf) is then 

 

 
 

dx

xdF
xf x

X     ;      0xf X    ;   1)( 




dxxf x                 (2) 

 

We now aim at sampling numbers from the cdf   xFX . This amounts to obtaining a 

sequence of N >>1 values  NXXXX ,...,,}{ 21  such that: 

i) the number n of sampled values within an interval minmax XXx   , where minX and 

maxX  are the minimum and maximum values in }{X , should be such that 
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 




x

X dxxf
N

n
                    (3) 

 

In other words, we require that the histogram of the sampled data should approximate 

  xf X ; 

ii) the iX  values should be uncorrelated; 

iii) if the sequence {X} is periodic, the period after which the numbers start repeating 

should be as large as possible. 

Among all the distributions, the uniform distribution in the interval [0,1), denoted as 

U[0,1) or, more simply U(0,1), plays a role of fundamental importance since sampling 

from this distribution allows obtaining rv‟s obeying any other distribution. 

 

 Sampling from the uniform distribution U[0,1) 

 

The cdf and pdf of the distribution U[0,1) are: 

 

101)(;)(  rrurrU RR                    (4) 

 

The generation of random numbers R uniformly distributed in [0,1) has represented, 

and still represents, an important subject of active research. In the beginning, the 

outcomes of intrinsically random phenomena were used (e.g. throwing a coin or dice, 
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spinning the roulette, counting of radioactive sources of constant intensity, etc.), but soon 

it was realized that, apart from the disuniformity due to imperfections of the mechanisms 

of generation or detection, the frequency of data thus obtained was too low and the 

sequences could not be reproduced, so that it was difficult to find and fix the errors in the 

computer codes in which the sampled random numbers were used. 

To overcome these difficulties, the next idea was to fill Tables of random numbers to 

store in the computers (in 1955 RAND corporation published a Table with 10
6
 numbers), 

but the access to the computer memory decreased the calculation speed and, above all, 

the sequences that had been memorized were always too short with respect to the 

growing necessities.  

Finally, in 1956 von Neumann proposed to have the computer directly generate the 

“random” numbers by means of an appropriate function )(g  which should allow one to 

find the next number 1kR  from the preceding one kR , i.e. )(1 kk RgR  . 

The sequence thus generated is inevitably periodic: in the course of the sequence, when 

a number is obtained that had been obtained before, the subsequence between these two 

numbers repeats itself cyclically, i.e. the sequence enters a loop. Furthermore, the 

sequence itself can be reproduced so that it is obviously not “random”, but rather 

deterministic.  However, if the function )(g  is chosen correctly, it can be said to have a 

pseudo-random character if it satisfies a number of randomness tests.  

In particular, Von Neumann proposed to obtain 1kR  by taking the central digits of the 

square of kR . For example, for a computer with a four digit word, if kR = 4567, then 2
kR = 

20857489 and 1kR = 8574, 2kR = 5134, and so on. This function turns out to be lengthy 
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to calculate and to give rise to rather short periods; furthermore, if one obtains kR = 0000, 

then all the following numbers are also zero. 

 Presently the most commonly used methods for generating sequences {R} of numbers 

from a uniform distribution are inspired by the Monte Carlo roulette game [1-6]. 

In a real roulette game, the ball, thrown with high initial speed, performs a large 

number of revolutions around the wheel and finally it comes to rest within one of the 

numbered compartments. In an ideal machine nobody would doubt that the final 

compartment, or its associated number, is actually uniformly sampled among all the 

possible compartments or numbers. In the domain of the real numbers, within the interval 

[0,1), the game could be modelled by throwing a point on the positive x-axis very far 

from the origin, utilizing a method having an intrinsic dispersion much larger than unity. 

The difference between the value so obtained and the largest integer smaller than this 

value may then be reasonably assumed as sampled from U[0,1). Obviously this statement 

is true if a suitable method is utilized for throwing the point. In a computer, the above 

procedure is performed by means of a mixed congruential relationship of the kind 

 

  m. mod1 caRR kk 
                (5) 

 

In words, the new number 
1kR  is the remainder, modulo m (a positive integer), of an 

affine transform of the old kR , with non-negative integer coefficients a and c. The above 

expression in some way resembles the uniform sampling in the roulette game, caRk   

playing the role of the distance travelled by the ball and m that of the wheel 
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circumference. The sequence so obtained is made up of numbers mRk   and it is periodic 

with period p<m. For example, if we choose 50  caR  and m=7, the sequence is {5, 2, 

1, 3, 6, 0, 5, …}, with a period p=6. The sequences generated with the above described 

method are actually deterministic so that the sampled numbers are more appropriately 

called pseudorandom numbers. However, the constants a,c,m may be selected so that: 

- the sequence satisfies essentially all randomness tests; 

- the period p is very large. 

Clearly the numbers generated by the above procedure are always smaller than m so 

that, when divided by m, they lie in the interval [0,1). 

Research to develop algorithms for generating pseudorandom numbers is still ongoing. 

Good statistical properties, low speed in numbers generation and reproducibility are 

central requirements for these algorithms to be suitable for MC simulation. 

Other Pseudo - Random Number Generation (PRNG) algorithms include the 

Niederreiter [7], Sobol [8], and Mersenne Twister [9] algorithms. For example, this latter 

allows generating numbers with an almost uniform distribution in the range [0, 2k-1], 

where k is the computer word length (nowadays, k=32 or 64). Further details on other 

methods are given in [10]-[21], with wide bibliographies which we suggest to the 

interested reader.  

Before leaving this issue, it is important to note that for the generation of pseudo-random 

numbers U[0,1) many computer codes do not make use of machine subroutines, but 

use congruential subroutines which are part of the program itself. Thus, for example, 

it is possible that an excellent program executed on a machine with a word of length 
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different from the one it was written for, gives absurd results. In this case it should 

not be concluded that the program is „garbage‟, but it would be sufficient to 

appropriately modify the subroutine that generates the random numbers. 

Sampling by the inverse transform method: continuous distributions 

 

Let   ,X  be a rv with cdf  xFX  and pdf  xf X , viz., 

     xXdxxfxF

x

XX  


Pr''                (6) 

 

Since  xFX  is a non decreasing function, for any y   [0,1), its inverse may be defined 

as 

 

    yxFxyF XX  :inf1         (7) 

 

With this definition, we take into account the possibility that in some interval 

)(],[ xFxx Xds  is constant (and )(xf X  zero), that is 

 

dsX xxxxF  for )(          (8) 
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In this case, from the definition in equation (1) it follows that corresponding to the 

value  , the minimum value xs is assigned to the inverse function )(1 
XF . This is actually 

as if )(xFX  were not defined in (xs,xd]: however, this does not represent a disadvantage, 

since values in this interval can never be sampled because the pdf )(xf X  is zero in that 

interval. Thus, in the following, we will suppose that the intervals (xs,xd] (open to the left 

and closed to the right), in which )(xFX  is constant, are excluded from the definition 

domain of the rv X. By so doing the )(xFX  will always be increasing (instead of non-

decreasing). 

We now show that it is always possible to obtain values  xFX X~  starting from values 

R sampled from the uniform distribution UR[0,1) [1-6]. In fact, if R is uniformly 

distributed in [0,1), we have 

 

rrUrRrP R  )(}{                                            (9) 

 

Corresponding to a number R extracted from a )(rUR , we calculate the number X = 

)(1 RFX
  and wish to determine its distribution. As it can be seen in Figure 1, for the 

variable X we have 

 

})({}{ 1 xRFrPxXrP X           (10) 
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Because XF  is an increasing function, by applying XF  to the arguments at the rhs of 

equation (6), the inequality is conserved and from equation (8) we have 

 

)()}({}{ xFxFRrPxXrP XX         (11) 

 

It follows that )(1 RFX X
  is extracted from )(xFX . Furthermore, because rxFX )(  

 

}{}{ rRrPxXrP           (12) 

 

In terms of cdf, 

 

 


X

XXR dxxfRXFRU ')'(and)()(                      (13) 

 

This is the fundamental relationship of the inverse transform method which for any R 

value sampled from the uniform distribution RU [0,1) gives the corresponding X value 

sampled from the )(xFX  distribution (Figure 1). However, it often occurs that the cdf 

)(xFX  is non-invertibile analytically, so that from (13) it is not possible to find )(~ xFX X  

as a function of UR ~ [0,1). An approximate procedure that is often employed in these 

cases consists in interpolating )(xFX  with a polygonal function and in performing the 

inversion of equation (13) by using the polygonal. Clearly, the precision of this procedure 
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increases with the number of points of )(xFX  through which the polygonal passes. The 

calculation of the polygonal is performed as follows: 

- if the interval of variation of x is infinite, it is approximated by the finite interval 

 ba xx ,  in which the values of the pdf  xf X  are sensibly different from zero: for 

example, in case of the univariate s-normal distribution  2,N  with mean value   

and variance 2 , this interval may be chosen as   5,5  ; 

- the interval (0,1) in which both  xFX  and  rU R  are defined is divided in n equal 

subintervals of length 1/n and the points bna xxxxxx  ,...,,, 210  such that   nixF iX  , 

(i=0, 1,…, n)  are found, e.g. by a numerical procedure. 

At this point the sampling may start: for each R sampled from the distribution UR[0,1) 

we compute the integer  nRInti *  and then obtain the corresponding X value by 

interpolating between the points )
1

,x(  and  ),( 1ii
n

i

n

i
x







 . For example, in case of a linear 

interpolation we have 

 

  *

1
 *** inRxxxX

iii



        (14) 

 

For a fixed number n of points ix  upon which the interpolation is applied, the described 

procedure can be improved by interpolating with arcs of parabolas in place of line 

segments. The arcs can be obtained by imposing continuity conditions of the function and 

its derivatives at the points ix  (cubic splines). The expression of X as a function of R is in 
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this case more precise, but more burdensome to calculate.  Currently, given the ease with 

which it is possible to increase the RAM memory of the computers, to increase the 

precision it is possibly preferable to increase the number n of points and to use the 

polygonal interpolation: as a rule of thumb, a good choice is often n=500. 

 

Figure 1: Inverse transform method: continuous distributions 

  rrUR R ~  in [0, 1)  xXF~X    

 

Sampling by the inverse transform method: discrete distributions 

Let X be a rv which can only have the discrete values 
k

x , k=0,1,…, with probabilities  

 
 P 0

k k
f X x      k=0,1,… (Erreur ! Il n'y a pas de texte répondant à 

ce style dans ce document..1) 

Ordering the {x} sequence so that 
1k k

x x

 , the cdf is  

 

  1

0

P
k

k k i k k

i

F X x f F f




          k=0,1,… (Erreur ! Il n'y a pas de texte 

répondant à ce style dans ce document..2) 

where, by definition, 
1

0F

 . The normalization condition of the cdf (Equation Erreur ! Il n'y a 

pas de texte répondant à ce style dans ce document..2) now reads  

 
lim 1

k
k

F


  (Erreur ! Il n'y a pas de texte répondant à ce style 

dans ce document..3) 
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Following the scheme of the inverse transform method, given a value R sampled from the 

uniform distribution, the probability that R falls within the interval 
1

( , ]
k k

F F


 is, in the discrete 

case  

   
1

1 1
P P

k

k

F

k k k k k k
F

F R F dr F F f X x


 
         (Erreur ! Il n'y a pas de texte répondant 

à ce style dans ce document..4) 

In words, for any R∼U[0,1), we get the realization 
k

X x  where k is the index for which 

1k k
F R F


   (Figure.1). 

In practice, a realization of X is sampled from the cdf 
k

F  through the following steps:   

a) Sample an R∼U[0,1); 

b) Set k=0; 
o

F f ; 

c) If R F , proceed to e); 

d) Viceversa, i.e., if R F , set 1k k   and then 
k

F F f   and proceed to c); 

e) The required realization is 
k

X x . 

If the 
k

F  values can be precomputed, e.g., if their number is finite, the cycle c)-d) may be 

simplified by comparing R and 
k

F  at step c) and increasing only k at step d).  

 

Figure.1: Inverse transform method: discrete distributions, 
2

2k X x   . 
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EXAMPLES OF APPLICATIONS OF THE SAMPLING METHODS 

 

Uniform distribution in the interval (a,b) 

A rv X is uniformly distributed in the interval (a,b) if 

 

 
ab

ax
xFX




           

ab
xf X




1
     for    bxa   

            0                     0           for     ax             (15) 

            1                     0           for     bx   

 

Substitution in equation (13) and solving with respect to X yields 

 

 RabaX                 (16) 

 

Exponential distribution 

A rv   ,0X  is said to be exponentially distributed if its cdf Fx(x) and pdf fx(x) are 

 

 




x

duu

X
exF 0

)(

1



;    
 




x

duu

X exxf 0



 for   x0      (17) 

       0   0              otherwise 



 14 

 

where    is the transition rate. 

In the following, we shall refer to the exponential distribution of the random variable T, 

representing the time to failure of a component, with cdf )(tFT  and pdf )(tfT . In this 

case, the transition rate  t  is called hazard function or failure rate.  

With regards to sampling a realization t of the exponentially distributed random 

variable T, this can be obtained by solving equation (13), i.e. 

 

    

t

Rduu

0

)1log()(                                                       (18) 

 

where the realization R ~ U [0,1). 

Let us first consider the time homogeneous case, i.e. with constant  . This situation 

corresponds to the useful life for which the component has been designed to operate and 

during which failures occur at random with no influence from the usage time. 

Correspondingly, equation (17) becomes: 

 

   tt etfetF     )(;1)(                  (19) 
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Realizations of the associated exponentially distributed rv T are easily obtained from 

the inverse transform method. The sampling of a given number N >> 1 of realizations is 

performed by repeating N times the following procedure: 

- sample a realization of R ~ U [0,1)  

- compute )1log(
1

Rt 


 

 

Weibull distribution 

A generalization of the above case in the time domain consists in assuming that the 

probability density of occurrence of an event (e.g. the failure of a component), namely , 

is time dependent. A case, commonly considered in practice is that in which the pdf is of 

the kind 

 

   1)(   tt                                                (20) 

 

with 0,0   . The corresponding distribution is called Weibull's distribution and was 

proposed in the 1950's by W. Weibull in the course of his studies on the strength of 

materials. The cdf and pdf of the Weibull distribution are:  

 

   tt ettfetF   1)(,1)(              (21) 
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In the particular case of 1  the Weibull distribution reduces to the exponential 

distribution with constant transition rate   . 

In practice, a realization t of the random variable T is sampled from the Weibull 

distribution through the following steps: 

 

- sampling of a realization of the random variable R ~ U [0,1) 

- computation of 




/1

)1ln(
1









 Rt  
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FIGURE CAPTIONS 

 

Figure 1: Inverse transform method: continuous distributions 

  rrUR R ~  in [0, 1)  xXF~X    

Figure.2: Inverse transform method: discrete distributions, 
2

2k X x   . 

 

 


