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Event-triggered attitude control for flying robots using an event
approach based on the control

J.F. Guerrero-Castellanos, N. Marchand, S. Durand, A. Vega-Alonzo, J.J. Téllez-Guzmán

Abstract— This paper presents the development of a
quaternion-based nonlinear event-triggered control for the
attitude stabilization of Flying robots. Firstly, it is proved
the existence of a Control Lyapunov Function. Unlike some
previously proposed schemes, the aim of this paper is to
propose a new and simpler event function. The control law
ensures the asymptotic stability of the closed-loop system to
the desired attitude. The approach is validated in real-time
using a quadrotor mini-helicopter. The experiments show that
the event driven controller reduces the control update without
deteriorating the closed-loop system performance.

I. INTRODUCTION

Flying robots and Unmanned Aerial Vehicles (UAVs)
have received growing interest in industrial and academic
research. They may prove useful for many civilian missions.
Furthermore, among miniature rotorcraft-based UAVs, the
mini quadrotor helicopter gives rise to great interest because
of its high manoeuvrability, its payload capacity and its
ability to hover, as explained in [1]. Such a Vertical Take-Off
and Landing (VTOL) vehicle has some advantages over
conventional helicopters: owing to symmetry, it is relatively
simple to design and construct. In fact, the quadrotor is
an under-actuated dynamic system with four input forces
and six output coordinates (attitude and position). However,
this system can be broken down into two subsystems,
one defining the translation movement and the other one
the rotation movement. These subsystems are coupled in
cascade since the translational subsystem depends on the
rotational one, but the rotational subsystem is independent
of the translational one. Self-governing flights require the
generation of low-level control signals sent to actuators as
well as decision-making related to guidance, navigation.
Low-level flight control is known as attitude control and it is
responsible for maintaining the desired vehicle orientation.
Consequently, the attitude controller design is, in itself, a
challenge.
Some linear and nonlinear control techniques have been
applied for the attitude stabilization of the quadrotor,
like for example in [2], [3], [4], [5], [6], [7], [8].
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Actually, all proposed attitude control laws previously
listed were developed in continuous time framework and
their implementation under digital platforms is carried
out by means of “emulation”. This procedure consists in
implementing a continuous time control algorithm with a
constant and sufficiently small periodic sampling period.
However, this approach can be constrained by hardware
and reducing the sampling period to a level that guarantees
acceptable closed-loop performance may be impossible.

On the other hand, in the recent years, some works
addressed resource-aware implementations of the control law
using event-triggered sampling, where the control value is
updated only when some events occur. An event is usually
generated by an event-function that indicates if the control
signal must be updated or not. Typical event-detection
mechanisms are functions on the variation of the state (or
at least the output) of the system, like in [9], [10], [11],
[12], [13], [14]. In [15] in particular, it is proved that such
an approach reduces the number of sampling instants for the
same final performance. An event-triggered paradigm hence
calls for resources whenever they are indeed necessary. In the
same idea, an alternative approach consists in taking events
related to the variation of a Lyapunov function between the
current state and its value at the last sampling, like in [16], or
in taking events related to the time derivative of the Control
Lyapunov Function (CLFs), like in [17], [18], [19]. In this
latter case, the updates ensure the strict decrease of a Control
Lyapunov function, and so is ensured the asymptotically
stability of the closed-loop system.
Although the advantages of event-triggered control are
well-motivated and theoretical results show its potential, few
results in the framework of unmanned aircraft systems have
been presented in literature, e.g. [20], [21]. In these works
linear event-triggered controllers are proposed for attitude
stabilization of a 3D helicopter model. Unfortunately, these
controllers only work in a limited attraction region of the
state-space.
In the present work, we developed an event-triggered non
linear control strategy for the attitude stabilization of Flying
Robots. The feedback is quaternion-based and it is derived
from the universal formula for event-triggered stabilization
of general nonlinear systems affine in the control [18] but
using an event function based in the control as proposed
in [19] . The proposed feedback ensures the asymptotic
stability and it is smooth everywhere and continuous at the
origin. Moreover, we propose to test such a proposal on a
real-time system, namely, a quadrotor mini-helicopter. The
idea is to show that an event-triggered scheme could reduce



the number of samples even in such a case where rotor blades
have to be actively controlled.
The paper is organized as follows. First, in section II we
present some mathematical definitions and the event-based
control strategy for affine in the control nonlinear systems
is detailed. The quaternion notion is also introduced. The
section III states the problem and presents the design
of the control law for the attitude stabilization. The
quadrotor mini-helicopter model is given in section IV where
experimental results are presented and discussed. Some
reflections conclude the paper.

II. PRELIMINARIES

In this section some facts for event-triggered stabilization
of general nonlinear systems affine in the control [18] are
reviewed and the system model is introduced [7].

A. Event-triggered stabilization for affine in the control
dynamical systems

In this paper, the study will focus on affine in the control
dynamical systems defined by:

ẋ = f(x) + g(x)u (1)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rp, and f a Lipschitz
function vanishing at the origin. For the sake of simplicity,
we only consider in this paper null stabilization with initial
time instant t0 = 0. If the system (1) admits an asymptotic
stabilizing feedback k : X → U then there exists a Control
Lyapunov Function (CLF) V : X → R, that is a smooth
function, positive definite and such that:

V̇ =
∂V

∂x

T

f(x)︸ ︷︷ ︸
:=a(x)

+
∂V

∂x

T

g(x)︸ ︷︷ ︸
:=b(x)

k(x) < 0 (2)

It is worth noting that if k is assumed to be smooth, then V
is known to exist and to be as smooth as k. In the present
paper, only the smoothness of V is required which is less
restrictive than the one of k. An equivalent requirement on
the time derivative of V is that:

b(x) = 0⇒ a(x) < 0

Event-triggered feedback usually means a set of two
functions:
• an event function e : X × X → R that indicates if one

needs (e ≤ 0) or not (e > 0) to update the control value.
Event function e takes the current state x as input and
a memory m of x last time e became negative.

• a feedback function k : X → U . Which is used as in
the classical frame.

We recall here the definition of semi-uniform Minimum
Sampling Interval (MSI) event-triggered control:

Definition 2.1: [18] An event-triggered feedback (k, e)
is said to be semi-uniformly MSI if for all δ > 0, and
all x0 in the ball of radius δ centred at the origin B(δ)
the inter-execution times, that is the duration between two
successive events, can be below bounded by some τ > 0.

Remark 2.2: This minimal sampling period is useful for
implementation purpose but also when the feedback k
is discontinuous for robustness purpose [22] as this one
proposed in the present paper.

It is known that a nonlinear system of the form (1) with
a semi-uniformly MSI event-based feedback (e, k), the
solution of (1) starting in x0 ∈ X at t = 0 is defined for all
positive t as the solution of the differential system:

ẋ = f(x) + g(x)k(m)) (3){
m = x if e(x,m) ≤ 0, x 6= 0
ṁ = 0 elsewhere (4)

withx(0) := x0 and m(0) = x(0) (5)

Theorem 2.3: (Event-Triggered universal formula with an
event function based on the control) If there exists a CLF
for system (1), then the event-based feedback (e, k) defined
below is semi-uniformly MSI, smooth on X\ {0}, and such
that:

∂V

∂x
f(x) +

∂V

∂x
g(x)k(m) < 0, x ∈ X\ {0} (6)

where m is defined in (4) and:

ki(x) := −bi(x)δi(x)γ(x) (7)

e(x,m) :=

{
infi∈{1,...,p} θ̄(x)δi(x)− p [ki(m)− ki(x)]

2 on S
1 otherwise

(8)

where
• a(x) := ∂V

∂x f(x) and b(x) := ∂V
∂x g(x),

• x → ∆(x) := diag(δ1(x), δ2(x), . . . , δp(x)) is a
smooth function of X\ {0} to Rp×p, positive definite
on:

S := {x ∈ X | ‖b(x)‖ 6= 0}

• x→ θ̄(x) is a smooth positive function of X to R, such
that θ̄(x) ‖∆(x)‖ vanishes at the origin, and ensuring on
S\ {0} the inequality a(x)2 + θ̄(x)b(x)∆(x)b(x)T > 0

• γ : X → R is defined by:

γ(x) :=

{
a(x)+

√
a(x)2+θ̄(x)b(x)∆(x)b(x)T

b(x)∆(x)b(x)T
if x ∈ S

0 if x /∈ S
(9)

The proof of Theorem 2.3 was given in [19]. However,
here one would like to mention the advantages and properties
of the control law (7) and the idea behind the construction
of the event function (8).
First, the feedback (7) is based on the general formula for
the stabilization of nonlinear systems proposed by E. Sontag
in [23] in the continuous framework. In [18] and [19] we
extended the results to the event-triggered framework and
we showed that this control law is smooth everywhere and
continuous at the origin. It is well known that, there do
not exist systematic techniques for finding CLFs for general
nonlinear systems, but the proposed approach can be applied
successfully to many types of systems for which CLFs can



be found. On the another hand, one would like to determine
when it is indeed necessary to applied the control law in order
to guarantee the closed-loop stability. To derive a stabilizing
triggering rule, one looks at the discrepancy between the
control that should be applied if in this moment there is an
event, that is, k(x) and the last applied control, i.e. k(m). For
this, one looks the time derivative of V along the trajectories
of the system using the control law (7):

V̇ = a(x) + b(x)k(m)

= a(x) + b(x)k(x) + b(x) (k(m)− k(x))

= −
√
a(x)2 + θ(x)b(x)∆(x)b(x)T + b(x) (k(m)− k(x))

Note that right after an event occurs k(m) = k(x)
and the time derivative of V becomes negative, which is
evidently the desired behaviour. However, in inter-event
period, stability of the closed loop system can be guaranteed
if |b(x) (k(m)− k(x))| <

√
a(x)2 + θ(x)b(x)∆(x)b(x)T .

Furthermore, in the case b(x) = 0 the stability remains due
to the definition of CLF and thanks to the small control
property the control is continuous at the origin. Hence,
closed-loop stability can be enforced by executing the control
task whenever√

a(x)2 + θ(x)b(x)∆(x)b(x)T > |b(x) (k(m)− k(x))|
(10)

This last inequality can be further transformed:

θ(x)δi(x) > p [ki(m)− ki(x)]
2 (11)

where i ∈ {1, . . . , p}. Since inequality (11) is
computationally less consuming than (10), this last is
used for the construction of the event function (8).

B. Flying robots attitude kinematics and dynamics

In practice, the body of the flying robots can be
considered rigid. The attitude of the flying robots can be
parametrized by many ways. These parametrizations can
be Euclidean, as in the case of Euler angles, which lie in
R3, or non-Euclidean, as in the case of rotation matrices or
quaternions. In this work, the unit quaternion is used and
the mathematical background is presented below.
Consider two orthogonal right-handed coordinate frames:
the body coordinate frame, Eb = [~e b1 , ~e

b
2 , ~e

b
3 ], located

at the center of mass of the rigid body and the inertial
coordinate frame, Ef = [~e f1 , ~e

f
2 , ~e

f
3 ], located at some

point in the space. The rotation of the body frame Eb with
respect to the fixed frame Ef is represented by the attitude
matrix R ∈ SO(3) = {R ∈ R3×3 : RTR = I, detR = 1}.
The cross product between two vectors ξ, χ ∈ R3 is
represented by a matrix multiplication [ξ×]χ = ξ×χ, where
[ξ×] is the well known skew-symmetric matrix.

The n-dimensional unit sphere embedded in Rn+1 is
denoted as Sn = {x ∈ Rn+1 : xTx = 1}. Members of
SO(3) are often parametrized in terms of a rotation β ∈ R
about a fixed axis ev ∈ S2 by the map U : R×S2 → SO(3)

defined as

U(β, ev) := I3 + sin(β)[e×v ] + (1− cos(β))[e×v ]2 (12)

Hence, a unit quaternion, q ∈ S3, is defined as

q :=

(
cos β2
ev sin β

2

)
=

(
q0

qv

)
∈ S3 (13)

qv = (q1 q2 q3)T ∈ R3 and q0 ∈ R are known as the vector
and scalar parts of the quaternion respectively. q represents
an element of SO(3) through the map R : S3 → SO(3)
defined as

R := I3 + 2q0[q×v ] + 2[q×v ]2 (14)

Note that R = R(q) = R(−q) for each q ∈ S3, i.e.
quaternions q and −q represent the same physical attitude.
These two postures differ mathematically by a 2π rotation
about the fixed axis ev .
Denoting by ω = (ω1 ω2 ω3)T the angular velocity
vector of the body coordinate frame, Eb relative to the
inertial coordinate frame, Ef , expressed in Eb, the complete
attitude motion of a flying robot can be described by the
state equations:

q̇ =
1

2
Ξ(q)ω

Jω̇ = −[ω×]Jω + Γ
(15)

where
Ξ(q) =

(
−qTv

I3q0 + [q×v ]

)
(16)

J is the inertia matrix, which is positive definite, and Γ ∈ R3

is the applied control input.
The attitude error is used to quantify the mismatch between
two attitudes. If q defines the current attitude quaternion and
qd is the desired quaternion, i.e. the desired orientation, then
the error quaternion that represents the attitude error between
the current orientation and the desired one is given by

qe = q−1
d ⊗ q = (qe0 q

T
ev )T (17)

where q−1 is the complementary rotation of the quaternion
q which is given by q−1 = (q0 − qTv )T and ⊗ denotes the
quaternion multiplication [24]. In the case that the current
quaternion and the desired one coincide, the quaternion
error becomes qe = (±1 0T )T .
As it was mentioned before, the quaternion representation is
redundant. As a consequence, the error mathematical model
has two equilibrium and this fact must be considered in the
stability analysis [25].

III. EVENT-BASED CONTROL STRATEGY

A. Problem statement

The objective is to design a event-triggered control law
that drives the flying robot attitude to a specified constant
attitude starting from any initial condition. It follows that the
angular velocity vector must be approach zero and remains
null. In this paper, null stabilization is considered. Hence,



the inertial coordinate frame is selected to be the desired
orientation and the control objective is described by the
following asymptotic condition:

q → (±1 0T )T , ω → 0 as t→∞ (18)

Equation (18) represents two equilibrium points (q0 = 1,
qv = (0 0 0)T ) and (q0 = −1, qv = (0 0 0)T ). These
equilibrium points represent the same equilibrium point in
the physical space and they yield the same attitude matrix
in equation (14). However, they represent two-point set in
S3. This topological obstruction does not allows to state
any global property for the closed-loop system, using a
continuous quaternion-based feedback [26], [27].
In this study, the case qd = (1 0T )T is considered.
On the other hand, it is well known that the flying
robots are in general equipped of an Attitude Heading
Reference Systems (AHRS) which provides 3D orientation
by integrating gyroscopes and fusing this data with
accelerometer and magnetometer data via Kalman filters or
nonlinear observers (see Fig. 1). The AHRS continuously
monitors the state x (attitude and angular velocity). Based
on current state information and the last computed control
signal, which is piecewise constant, the event-function
decides when to broadcast the current state measurement
over the network which is denoted by xi. Whenever the
control block receives a new state value, it updates the
control law and the control signal for the actuators. Then,
it broadcasts the control signal over the network in order
to evaluate the event-triggered function and to detect a new
event.
Thus, the problem consists in showing that the attitude of
the flying robot can be asymptotically stabilized by means
of an event-triggered feedback as defined in section II-A,
i.e. with the control law (7) together with the event function
(8). Another motivation is that other traffic exists between
two successive events and after the update and broadcasting
of the control signal over the network. Reducing the traffic
used for control (thanks to an event-based approach) hence
allows i) to reduce traffic congestion in the network and ii)
to broadcast other sensors data, for instance GPS, infrared
sensors, laser range finder or vision.

B. Control design

Defining the variables x1 = q0 ∈ R, x2 = qv ∈ R3,
x3 = ω ∈ R3, (15) can be rewritten as

ẋ1 = −1

2
xT2 x3 (19)

ẋ2 =
1

2
(x1I3 + [x×2 ])x3 (20)

ẋ3 = −J−1[x×3 ]Jx3 + J−1u (21)

Actually, (19)-(21) have the following form

ẋ = f(x) + g(x)u (22)

which is a nonlinear system affine in the control with state
x = (x1 x

T
2 xT3 )T and vectors fields

Event-‐triggered	  
func/on	  	  

e(x, m)

Computa/on	  of	  
Control	  Law	  

xi

ti

AHRS

x

xi

k(xi)

k(xi)

Computa/on	  of	  
Control	  signals	  

Network	  
fabric	  	  

Physical	  system:	  
	  Flying	  Robot	  

Physical	  	  
Interface	  	  

Physical	  	  
Interface	  	  

Cyber	  system	  

Infrared	  module	  

GPS	  module	  

Laser	  range	  finder	  

Vision	  module	  

umj

j	  =	  Number	  of	  	  
	  	  	  	  	  actuators	  

Fig. 1. Quadrotor control system

f(x) =


− 1

2x
T
2 x3

1
2 (x1I3 + [x×2 ])x3

−J−1[x×3 ]Jx3


g(x) =

(
g1(x) gT2 (x) gT3 (x)

)T
(23)

where g1(x) = 0 ∈ R1×3, g2(x) = 0 ∈ R3×3 and g3(x) =
J−1 ∈ R3×3.
As a consequence, the control objective becomes

x1 → 1, x2, x3 → 0 as t→∞ (24)

In order to obtain a Control Lyapunov Function (CLF)
of the system, which is necessary for the design of the
event-triggered feedback, the Backsteeping procedure is
carried out.
Consider firstly the subsystem (19)-(20) with x3 a virtual
control and let the control law:

x3 = −K1x2 (25)

where K1 = I3k1 and k1 ∈ R+. With this control law, the
closed control-loop system becomes:(

ẋ1

ẋ2

)
= −1

2
K1

(
−x2

T

I3x1 + [x2
×]

)
x2

= −1

2
K1Ξ(x1, x2)x2

(26)

To analyzes the stability relative to the equilibrium
(xe1 xe

T

2 )T = (1 0T )T , consider the following candidate
Lyapunov function V1 : S3 −→ R

V1 = xT2 x2 + (x1 − 1)2 = 2(1− x1) (27)

Since xT2 x2 = 1 − x2
1 > 1 − x1, the derivative of V1 along

the trajectories of (26) with initial condition S3 \
(
−1 0T

)T
is given by:

V̇1 = −K1xT2 x2 6 −1

2
K1V1 6 0 for (x1 x

T
2 )T 6= (xe1 x

eT

2 )T

(28)



Then (26) is exponentially stable. Consider now the
following variable:

z = x3 +K1x2

Hence the system (19)-(20) can be rewritten as:(
ẋ1

ẋ2

)
= −1

2
K1Ξ(x1, x2)x2 +

1

2
Ξ(x1, x2)z (29)

The differential equation for z is:

ż = −J−1[x×3 ]Jx3 + J−1u+K1ẋ2 (30)

One wants to find a control u such that the system (29)-(30)
is asymptotically stable. For that consider the following
candidate Lyapunov function V : S3 × R3 −→ R defined
by

V = V1 +
1

2
zTK−1

3 Jz (31)

where K3 = I3k3 and k1 ∈ R+. The derivative of V along
the trajectories of (29)-(30) with initial condition S3 ×R3 \(
−1 0T 0T

)T
is given by:

V̇ = xT2 x3 + zT ż

= xT2 x3 + zTK−1
3 J

(
−J−1[x×3 ]Jx3 + J−1u+K1ẋ2

)
(32)

Now we can summarize the results of the above procedure
in the following proposition.

Proposition 3.1: The function V : S3×R3 −→ R defined
by

V = xT2 x2 + (x1 − 1)2 +
1

2
zTK−1

3 Jz (33)

with z = x3 +K1x2 is a Control Lyapunov Function (CLF)
for the system (22) relative to the equilibrium state xe =(
1 0T 0T

)T
with the stabilizing control:

u = [x×3 ]Jx3 − JK1ẋ2 −K2z −K3x2 (34)

where K1, K2, K3 ∈ R3×3 are diagonal positive definite
matrices.

Proof: Clearly V is smooth and positive definite.
Now, consider the derivative of (33) along the trajectories
of the closed-loop system with any initial condition in
S3 \

(
−1 0T 0T

)T
V̇ (x) =

∂V

∂x

T

f(x) +
∂V

∂x

T

g(x)u

= xT2 x3 + zTK−1
3

(
[x×3 ]Jx3 + JK1ẋ2

)︸ ︷︷ ︸
:=a(x)

+ zTK−1
3︸ ︷︷ ︸

:=b(x)

u

= −zTK−1
3 K2z −K1x

T
2 x2 < 0 for x 6= xe

(35)

Then this mean that x2, z → 0. That implies x3 → 0 and
due to the quaternion normality condition x1 → 1.
Besides, note that b(x) = 0 implies z = 0 i.e. x3 = −K1x2

as a consequence a(x) = −K1x
T
2 x2 < 0. Thus, the time

derivative of V meets the following requirement:

b(x) = 0⇒ a(x) < 0 for all x 6= xe

Then V given by (33) is a Control Lyapunov Function
relative to the equilibrium state xe =

(
1 0T 0T

)T
.

Corollary 3.2: (Event-triggered attitude stabilization
of Flying robots) Consider the Flying robot attitude
kinematics and dynamics and the CLF given by (22)
and (33), respectively. Then the event-triggered feedback
(k, e) defined by (7)-(8) with θ̄ = xT2 x2 + (x1 − 1)2

and ∆(x) = diag(δ1(x), δ2(x), δ3(x)) asymptotically
stabilizes the Flying robot at

(
1 0T 0T

)T
with a domain of

attraction equal to S3 × R3 \
(
−1 0T 0T

)T
. Furthermore,

the feedback (k, e) is semi-uniformly MSI and smooth on
S3 × R3 \

(
1 0T 0T

)T
.

Proof: The proof follows the one of Theorem 2.3.

Remark 3.3: Note that the stability analysis has
been carried out considering the asymptotic condition
qd = (1 0T )T . In the case where the asymptotic condition
q → qd with qd 6= (1 0T )T is considered, the feedback
becomes in function of x1 = qe0 ∈ R, x2 = qev ∈ R3,
x3 = ω ∈ R3, where the qe is given by (17) which
represents the attitude error between the current orientation
and the desired one.

Remark 3.4: The event-triggered feedback developed here
is carried out in a continuous-time framework and it satisfies
the Minimal inter-Sampling Interval property (MSI) (see
Definition 2.1) to avoid zero inter-sampling time leading to
Zeno phenomena. In practical, the digital implementation
forces the event function to be monitored periodically,
instead that continuously, which guarantees a minimum
sampling period (the control can not be updated more often
than the a priori given sampling period). The effects of this
bound will be addressed in the future.

IV. REAL-TIME APPLICATION

This section is devoted to proving the effectiveness of
the proposed attitude event-triggered control under a real
platform. For this, a four-rotor mini helicopter has been
developed for the “Dynamical Systems and Control” group
of the Autonomous University of Puebla (BUAP), Mexico,
see Fig. 3.

A. System model

The quadrotor is a small aerial vehicle that belongs to the
VTOL (Vertical Taking Off and Landing) class of aircrafts. It
is lifted and propelled, forward and laterally, by controlling



the rotational speed of four blades mounted at the four ends
of a simple cross and driven by four DC Brushless motors
(BLDC). On such a platform (see Fig. 2), given that the front
and rear motors rotate counter-clockwise while the other
two rotate clockwise, gyroscopic effects and aerodynamic
torques tend to cancel each other out in trimmed flight.
The rotation of the four rotors generates a vertical force,
called the thrust T , equal to the sum of the thrusts of each
rotor (T = f1 + f2 + f3 + f4). The pitch movement θ
is obtained by increasing/decreasing the speed of the rear
motor while decreasing/increasing the speed of the front
motor. The roll movement φ is obtained similarly using
the lateral motors. The yaw movement ψ is obtained by
increasing/decreasing the speed of the front and rear motors
while decreasing/increasing the speed of the lateral motors.
In order to avoid any linear movement of the quadrotor, these
maneuvers should be achieved while maintaining a value of
the total thrust T that balances the aircraft weight. In order to
model the system’s dynamics, two frames are defined: a fixed
frame in the space Ef = [~e f1 , ~e

f
2 , ~e

f
3 ] and a body-fixed

frame Eb = [~e b1 , ~e
b

2 , ~e
b

3 ], attached to the quadrotor at its
center of gravity, as shown in Fig. 2.

Fig. 2. Quadrotor: fixed frame Ef = [~ef1 , ~e
f
2 , ~e

f
3 ] and body-fixed frame

Eb = [~eb1, ~e
b
2, ~e

b
3]

According to [28], [7] and II-B, the six degrees of
freedom model (position and attitude) of the system can
be separated into translational and rotational motions,
represented respectively by ΣT and ΣR in equation (36) and
(37).

ΣT :


ṗ = v

v̇ = ge3 −
1

mh
RT (q)Te3

(36)

ΣR :

 q̇ =
1

2
Ξ(q)ω

Jω̇ = −[ω×]Jω + Γ
(37)

where mh denotes the mass of the quadrotor and J its inertial
matrix expressed in Eb. g is the gravity acceleration and
e3 = (0 0 1)T . p = (x y z)T represents the position of the
quadrotor’s center of gravity, which coincides with the origin
of frame Eb, with respect to frame Ef , v = (vx vy vz)

T its

linear velocity in Ef , and ω denotes the angular velocity of
the quadrotor expressed in Eb. Γ ∈ R3 depend on the couples
generated by the actuators, aerodynamic couples and external
couples (environmental forces). In this paper, it is assumed
that these torques are only generated by the actuators. −Te3

is the total thrust expressed in Eb.
The reactive torque Qj due to the jth rotor drag, j ∈
{1, 2, 3, 4}, and the total thrust T generated by the four rotors
can be approximated by an algebraic relationship on function
of a PWM control signal applied to the BLDC-drivers:

Qj = kmumj T = bm

4∑
j=1

umj =

4∑
j=1

fj (38)

where the input signals umi are expressed in seconds, i.e.
the time during which the PWM control signal is in high
state. km > 0 and bm > 0 are two parameters that depend
on the air density, the dynamic pressure, the lift coefficient,
the radius and the angle of attack of the blades and they are
obtained experimentally.
The components of the control torque vector Γ generated by
the rotors are given by:

Γ1 = dbm(um3 − um4)

Γ2 = dbm(um1 − um2)

Γ3 = km(−um1 + um2 − um3 + um4)

(39)

with d being the distance from one rotor to the center of
mass of the quadrotor. Combining equations (38) and (39),
the forces and torques applied to the quadrotor are written
as:

(
Γ
T

)
=


0 0 dbm −dbm
dbm −dbm 0 0
−km km −km km
bm bm bm bm




um1

um2

um3

um4


= NUm

where Um = (um1 um2 um3 um4)T . Since N is an
invertible matrix, the vector of signals control Um is easily
obtained.

B. Experimental results

Considering the only the rotational motion of the quadrotor
helicopter represented by Σr in (37). The control law
(7)-(8) is executed on a Pipistrello Board which contains
a FPGA Spartan-6 LX45-3. The Spartan-6 has the ability
to implement a “MicroBlaze” soft processor running at
100 MHz. Furthermore, the Spartan-6 has the advantage
to develop custom modules such as PWM generators,
Digital input-output ports and USARTs ports. An AHRS
(Microstrain 3DM-GX3-45) is used to obtain the attitude
quaternion and angular velocity at 73 Hz. A Xbee -Pro
Module linked to a PC is used to exchange the processed
data. The desired attitude qd is provided by means of a
6-channel Radio-Control Futaba R2006GS with 2.4 GHz
radio technology. Four power modules are used to drive
the motors by means of a PWM signal. The frequency of



the PWM signal is fixed to 500 Hz. The power of the
whole system is supplied by a 11.1 Volts Li-Po battery. The
specification and parameters of the quadrotor prototype are
given in the Table I.

Parameter Description Value Units
m Mass 1.490 Kg
d Distance 0.27 m
Jx Inertia in x-axis 34.3 ×10−3 Kg· m2

Jy Inertia in y-axis 34.4 ×10−3 Kg· m2

Jz Inertia in z-axis 52.9 ×10−3 Kg· m2

bm Proportionality Constant 8548 N / s
km Proportionality Constant 1898 N· m / s

TABLE I
PARAMETERS OF THE SYSTEM

Fig. 3. The quadrotor mini-helicopter in flight

To evaluate the benefices of the control law defined in the
corollary 3.2, an experiment is performed. The objective is to
bring the quadrotor from any initial orientation, sufficiently
far from the desired attitude defined by qd = (1 0T )T i.e.
φd = θ = 0 = ψ = 0 and hold it there by maintaining
the angular velocity to zero. The desired thrust is taken
as T ≥ mg = 14.63 N such that it guarantees a balance
of the quadrotor’s weight. Experiments were performed
with the following gains: K1 = diag(7.2, 7.2, 3.6),
K3 = diag(1.51, 1.51, 0.151) whose are necessary for
the determination of a(x) and b(x) (see (35)) used in
the control law (7) . The value for the parameter ∆ is
fixed to ∆ = diag(0.25, 0.25, 0.18). These parameters are
choosing (in practical) such that one obtains an acceptable
stabilization time while satisfying bounds on control signal,
in order to avoid actuator saturation.

In the experiment, the control capabilities are
tested to stabilize the system, with initial conditions
(−20o, 20.4o,−43o). The results are depicted in Fig. 4
where it is showed that the stabilization takes about 2.5
seconds. The first (top) plot shows the Euler angles (since
they are more intuitive, however the control law uses
quaternions) whereas angular velocities are provided in the
second one. The third and fourth plots show the control
torques and the Control Lyapunov Function (one can see it
decreases while the system is stabilized). Finally, the last
(bottom) plots give the event function – an event occurs
when this function vanishes to zero, as defined in (3) – and
a representation of the call control instants (1 and 0 in the
last plot mean the control is updated or it is kept constant
respectively). In the classical frame (time-triggered control),
the control law should be updated 730 times for a span of
10 seconds, since the AHRS continuously provides the state
at a frequency of 73 Hz. With the proposed approach, one
could note in Fig. 4(f) that some large intervals without any
control update exist. Actually, the control law is updated
only 126 times during the 10 seconds experimental time,
which represents a reduction of 82.7 % w.r.t. the classical
frame. It is worth noting that this reduction in the number
of updates, reduces the data exchange between AHRS,
controller and actuators without sacrificing performance.

V. CONCLUSIONS

This paper proposes the development of a nonlinear
event-triggered feedback for the attitude stabilization of
Flying robots. The attitude is parameterized using the
unit quaternion. Firstly, it is proved the existence of a
smooth Control Lyapunov Function. Then, an event-triggered
static feedback is derived from the universal formula for
event-triggered stabilization of general nonlinear systems
affine in the control [18] with an event-function based on
the control proposed in [19]. The control law ensures the
asymptotic stability of the closed-loop system to the desired
attitude. The approach is validated in real-time using a
quadrotor mini-helicopter. The experiments reveals that the
event driven controller reduces by 82.7 % the control update
and as a consequence it reduce the communication traffic
in the local network without deteriorating the closed-loop
system performance.
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