\

Writing Software Specifications

Konrad Hinsen

» To cite this version:

Konrad Hinsen. Writing Software Specifications. Computing in Science and Engineering, 2015, 17
(3), pp.54-61. 10.1109/MCSE.2015.64 . hal-01171458

HAL Id: hal-01171458
https://hal.science/hal-01171458v1

Submitted on 27 Nov 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

https://hal.science/hal-01171458v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Writing software specifications

Konrad Hinsen

One aspect of validating a piece of software is to check that it does
what it is expected to do. But how do you write down your expecta-
tions?

A question that computational scientists should constantly worry about is
whether their software actually computes what they think it computes. After
all, computer programs are complex artifacts and thus likely to contain mistakes.
This becomes painfully evident when a program crashes or produces nonsense
output, but even an apparently credible result may well be wrong. The most
widely used technique today to improve the correctness of computations is testing,
a subject that comes up frequently in the Scientific Programming department
(see e.g. [1]). A better approach, at least in principle, is formal validation, which
involves either a mathematical proof of correctness, or an exhaustive validation
for all possible program inputs. Such techniques are under active development,
but for now applied only to small and/or safety-critical software projects because
of the heroic efforts they demand (see [2] for an example). However, this is likely
to change in the near future.

No matter how you go about checking that your program does what you think
it does, a necessary first step is to write down precisely what the program should
do, and what error tolerance, if any, you are willing to accept. This is called a
specification. In scientific computing, a specification most often takes the form
of a verbal description plus some mathematical equations, i.e. it uses the same
notation that we use in scientific articles to explain computational methods to our
peers. For simple specifications, this works quite well. However, as computational
methods are applied to ever more complex systems, the limits of such an informal
notation become apparent. One problem is that it is difficult to be certain that
an informal specification is complete and free of contradictions. Another problem
is that it cannot be processed by computer programs. Testing against an informal
specification requires a manual translation of the specification into test cases -
another step where mistakes can easily creep in. A formal specification, which is
a specification in a computer-readable language, is a first step to solving these
problems, although of course one should never expect miracles: to err is human,
and no formalism or automated procedure will ever guarantee the absence of
mistakes.

In the following, I will motivate the need for formal specifications using an
example from own field of research, biomolecular simulation. However, I am sure
that readers with different backgrounds will recognize the fundamental problem
of specifications that are too complex to work with on paper. I will then present a
specification language, Maude [3], that can be used to create formal specifications
for such situations. I will admit from the start that neither Maude nor to my
knowledge any other existing specification language is adequate for the task of
specifying complex scientific computations. The aim of this article is not to
present you a ready-to-use technique, but to prepare you for a long-term evolution
in computational science that is in my opinion inevitable.

An illustration from biomolecular simulation

The most widely used computational model for biological macromolecules (pro-
teins, DNA, etc.) is known as the Molecular Mechanics model. It treats each
atom as a point mass obeying the laws of classical mechanics, i.e. Newton’s equa-
tions of motion. The interactions in a system of point masses are described by a
potential energy function, which assigns a number (the potential energy) to any
specific configuration of the atoms. In molecular simulation, that potential en-
ergy function is called a force field. The parameters of a force field must be fitted
to a combination of experimental data and results of computations at a more
fundamental level, which is quantum chemistry. That is a significant effort, and
therefore there are only a few widely used biomolecular force fields. The one I use
here for illustration is called AMBER. In a typical scientific article describing a
simulation-based study, the AMBER force field is summarized by a formula such
as

U = Z kij (rij — T’,L(jo))Q

bonds i;
0\ 2
+ > ki <¢z‘jk - ¢§j2:)
angles ijk
+ > Kijri cos (nijri0ijrr — Oijrr)
dihedrals ijki
o2 46
ij iJ
+ Z 4eij <r12 o 746>
all pairs ij
. 99

- Amegry;
all pairs ij 0%

This conveys the important information that the potential energy is the sum
of five distinct terms, and describes the general form of these terms. But it
leaves many open questions. For computing a sum over all bonds, we need to

know where exactly these bonds are, and how each bond’s parameters, the force
constant k;; and the equilibrium length TS-)), are obtained. Moreover, the above
formula contains white lies and omissions. The last two terms are not really sums
over all pairs of atoms, because some pairs must be excluded, and the functional
forms of the last two terms are in practice always approximated for efficiency
reasons.

While most of these aspects are discussed somewhere in the scientific litera-
ture, there is no comprehensive specification that says “this is the AMBER force
field”. In fact, some details of the potential energy computation are not docu-
mented anywhere else than in the actual source code of a program that performs
the computation. And since there are several such programs, each of them ac-
tually implements its own variant, meaning that the AMBER force field is not a
precisely specified model, but rather a family of models. However, many practi-
tioners of biomolecular simulation are not even aware of this fact. Unless you try
to write your own implementation, you may never realize that the specification
in the scientific literature is incomplete.

One may be tempted to say that a scientific model as complex as the AM-
BER force field should be specified by the program that computes it, and accept
that each scientific article only describes selected aspects of this model. However,
this doesn’t work for several reasons. First of all, there is more than one pro-
gram that claims to implement the AMBER force field. The scientific community
would have to declare one of them to be the authoritative implementation. And
since program source code changes in the course of ongoing maintenance, the
community would have to choose a specific version as well. A second problem
is that a program’s source code is not a precise specification of its results. The
results depend also on the compiler being used and on the computer the program
is run on. This is particularly true for programs using floating-point operations,
which are subject to compiler-specific optimizations that can lead to changes in
the results. Finally, on a more fundamental level, the whole point of a specifica-
tion is to have something to test programs against. Defining the program as its
own specification makes any testing impossible.

Formal specifications

The above example illustrates that a formal specification must be somewhere in
between an informal specification and a piece of software. Like an informal speci-
fication, it must limit itself to defining the results of a computation, leaving aside
technical details such as performance, memory management, I/O, and variations
in computational platforms. Like software source code, it must be amenable to
automated processing. This includes execution, i.e. computing concrete results
for concrete inputs, but also automatic code generation, e.g. for creating test
cases, and automated proofs. Such a specification must therefore be expressed in

a formal language, with well-defined syntax and semantics, called a specification
language.

There are several fundamental approaches to specification languages, which
however I will not discuss here. The language Maude, which I will use for il-
lustration, belongs to the category of algebraic specification languages and more
specifically to the OBJ family of languages, derived from the language OBJ which
was published in 1976. The theoretical foundation of the OBJ family is provided
by equational logic and term rewriting. Equational logic is a formal system of rea-
soning whose rules are based on the principle that replacing equals by equals in a
true statement yields another true statement. Term rewriting is a computational
paradigm based on modifying expressions by applying transformation rules. It is
widely used in computer algebra systems.

A term rewriting system is built on a single data structure, called not sur-
prisingly a term, which is very similar to what is called a term in mathematics.
Formally, a term is defined as any expression of the form op(arg,...,argy),
where op is an operator and the arguments arg, to argy are terms. Each oper-
ator has a fixed number of arguments, and the special case of a zero-argument
operator is used to represent constant values. The specification of a term algebra
includes a list of the allowed operators and the number of arguments required for
each one. Maude uses a variant called order-sorted term algebra, in which each
term also has a declared sort, which is what many programming languages call
a type. Moreover, sorts can be declared to be subsorts of other sorts, creating a
partial order on the set of all sorts. This resembles inheritance in object-oriented
languages, but is much more flexible.

As a first example, a basic Maude definition for a Boolean algebra is shown in
Figure 1. The stars around the operator names are there to keep them distinct
from Maude’s built-in operators for Boolean logic. This piece of code defines
a functional module called BOOLEAN. Maude offers another type of module, the
system module, but we won’t need it in this introduction. The module BOOLEAN
defines a new sort Boolean, two constants of sort Boolean for true and false,
and the three Boolean operators not, and, and or. The variable declaration for
A says that in the following, A stands for any term of sort Boolean.

The rest of the module consists of equations, which in Maude have an interest-
ing double interpretation. First, they state that two terms, or term patterns con-
taining variables, are mathematically equal. Second, each equation can be used
as a simplification rule. When asked to reduce a term, which is term rewriting
jargon for “simplify as much as possible”, Maude checks if any subterm matches
the left-hand side of an equation, and if it does, replaces it by the right-hand
side. It goes on doing such replacements until there is no more subterm that
matches any left-hand side of an equation. Such a non-reducible term is called
a normal form. It is not evident that a given set of equations leads to a unique
normal form for each possible term, and in fact this doesn’t hold in general. For
an in-depth discussion of this and related issues, see Reference [4].

4

If you put the above definition into a file called boolean.maude, you can then
start a Maude session and type

load "boolean.maude"

being careful not to forget the space before the period at the end. You can then
ask Maude to evaluate terms, i.e.

reduce *and* (*not* (*truex), *or*(xfalse*, *not*(xfalsex)))

which yields *false* as a result. For your convenience, the file boolean.maude
and the other examples from this article are available at http://github.com/
khinsen/cise-software-specifications.

From these examples it becomes clear that terms do double duty as data struc-
tures and code. A function or procedure in a traditional programming language
is the equivalent of an operator with arguments and equations, e.g. our *notx*
or *and*. Zero-argument operators represent constants, such as our *truex.
However, this analogy isn’t complete because a term rewriting system admits
terms that could be rewritten but aren’t. For example, if I remove the equa-
tion *not*(xfalse*) = *truex from the module BOOLEAN, then any subterm
not (xfalsex*) will simply remain as it is, whereas *not* (*true*) is replaced
by *false*. In fact, term rewriting is more similar to algebraic manipulations
done on mathematical formula than to function evaluation in programming lan-
guages. Reduction to normal form is exactly what a computer algebra system
calls simplification of a formula: if there is a simplification rule, it is applied,
otherwise a term remains as it is.

This is almost all you need to know about Maude for now. Maude offers a
number of convenience features that make writing specifications a lot simpler.
For example, terms can be written with different syntax than op(arg, ..., argy),
allowing for better readability in complex expressions. Maude also allows numbers
(natural, integer, rational, and floating-point) as terms, and provides a more
concise notation for associative and commutative operators, which avoids having
to write equations for both *and*(*true*, A) and *and*(A, *truex) in the
above example. I will use such features sparingly to keep the examples easy to
follow.

A specification for an atomic simulation

The full AMBER force field discussed above is much too big to serve as an
example. I will therefore limit myself to a single term, the next-to-last one,
known as a Lennard-Jones potential. On its own it describes the noble gases
rather well, which is why I use a simulation of atomic argon as an example. Our

potential energy then is

-y () 5

")4 re.
all pairs ij ” &

where for argon the parameters are € = 1kJ/mol and ¢ = 0.34nm. For efficiency
reasons, the potential energy is set to zero, and thus not computed at all, for
pairs whose r;; is larger than a cutoff value r., which I choose to be 1.5nm.

There is one more aspect that needs to be addressed. Simulations in material
science are usually done with periodic boundary conditions. This means that one
simulates a small box (I will use a cubic one) filled with atoms or molecules, which
one imagines surrounded by an infinite number of copies of itself on a lattice.
The goal is to have a system without surfaces and thus eliminate surface effects
that, for the size of system one can actually afford to simulate, would be much
bigger than in real-life situations. Another way to describe this construction is
as replacing each atom by an infinite cubic lattice of identical atoms that always
move together. This raises the question of how the “sum over all pairs” is defined.
The most common convention, which yields an exact result for systems whose
edge length is larger than 2r., is to consider only pairs of atoms inside a single
image of the cubic box, but define the distance between them as the shortest
possible distance between any image of atom ¢ and any image of atom j. This is
called the minimum-image convention.

The two preceding paragraphs are an informal specification for the potential
energy in our argon simulation. Please convince yourself that it is complete.
Imagine that you are given N positions r;, describing the configuration of N
argon atoms in a cubic simulation box. You also get the edge length [of the box.
Can you compute the potential energy with this information? Can you write a
computer program for doing this computation?

If you answered “yes” to both questions, you have probably fallen into my
well-prepared trap, but let’s continue. Figure 2 shows a simple Python program
that implements the above specification. It has intentionally not been optimized
in any way. For ease of use in testing, it provides both the periodic geometry
discussed above, to be used for liquids and gases, and standard “infinite box”
geometry, which is suitable for atom clusters. Even if what you really want
to simulate is periodic systems, it helps to have the simpler infinite geometry
available as well because it makes for simpler test cases. If a “periodic” test case
fails but the “infinite” ones pass, you know that your bug is probably in the
application of the minimum-image convention.

If you answered “yes” to my two questions and the program you had in mind
resembles the one in Figure 2, then you have definitely fallen into my trap. This
program uses floating-point numbers wherever the informal specification uses ...
well, probably real numbers, though it could also be rational numbers. It doesn’t
really matter because the potential energy equation is equally valid for both.

For floating-point numbers, the equation is insufficient because the order of all
operations must be specified. In particular, a specific order of summation over the
atom pairs must be chosen. For bigger systems, different summation orders do
lead to visibly different results, so this is not just an academic exercise. Moreover,
round-off errors in floating-point computations mean that the resulting potential
energy is not the same as the correct one computed using rational numbers.
It’s an approximation, and approximations need to be spelled out explicitly in a
specification.

If you answered “yes” to my two questions and you did plan to use rational
arithmetic in your program, you may now pat yourself on the back for having
successfully avoided the floating-point trap. However, you should also realize that
you have been very lucky: of the five terms in the AMBER force field, I have
chosen the only one for my example that can in fact be computed using rational
arithmetic because it contains no square roots or transcendental functions. To
be precise, the Python code and the upcoming Maude specification do use square
roots in order to be as close as possible to the informal specification, but the
potential energy could also be written in terms of 2.

A formal specification in Maude for the argon potential energy is shown in
Figure 3, and the test cases in Figure 4. First of all, I will explain some additional
Maude features used in this code.

A much-used Maude feature is the inclusion of a previously defined module
into another module, indicated by the keyword including. This permits decom-
posing a specification into small units which are easy to understand and easy to
reuse.

In addition to functional modules (fmod), you see functional theories (fth)
and views (view). Theories take their name not from scientific theories, but from
theories in mathematical logic. Their closest analog in standard programming
languages are interface specifications. A Maude theory defines sorts, operators,
and equations that a complying module must define as well, and that client mod-
ules can rely on. The mapping from an interface to an implementation is very
flexible in Maude, but also rather verbose: it is necessary to define a view that
states which sorts and operators in a module correspond to which sorts and opera-
tors in a theory. The code in Figure 3 defines one theory, CELL, which corresponds
to the abstract base class in the Python version. It also uses a predefined theory,
TRIV, which defines the criteria that elements of a list must satisfy: none. In
fact, the theory TRIV contains nothing but a single sort, E1t, with no equations
attached. The use of TRIV means “if you want a list whose elements are of sort X,
you must define sort X”. In a programming language, such pedantry would be
considered cumbersome, but in a specification language, precision takes priority
over convenience, and parsimony in the language specification is more important
than expressivity.

In the test cases, I have chosen to write out explicitly the configurations for

7

the cubic lattices. It is possible to compute them in Maude in much the same
way as in the Python version, but this would have required introducing additional
Maude features.

With those explanations out of the way, we can now discuss the important
differences between the Python code in Figure 2 and the Maude specification in
Figure 3. Their overall structure is similar, so one might well believe to look at the
same program written in two different languages. This is not completely wrong, as
the difference between specification languages and programming languages is not
a fundamental one but a question of different priorities. The key difference is that
the Maude code defines equations, whereas the Python code contains statements,
i.e. instructions for the computer to carry out. This difference is somewhat
obscured by the fact that Maude equations do double duty as simplification rules,
which resemble statements. But equations are more versatile than statements,
because equations can be put to other uses, such as deductive proofs or code
generation. There are in fact a few Maude tools available that take modules as
input and perform certain kinds of proofs on their contents, but I won’t discuss
them here.

An immediate consequence of the lack of statements in Maude is that there are
no control structures in the standard sense, and in particular no loops. Readers
familiar with functional programming will see that this is not a problem, as loops
can be replaced by recursive function calls. There are no recursive function calls
either in Maude, because there are no functions. Recursion is expressed just like
in mathematics: as an equation involving the same operator applied to simpler
arguments. This is how the loop over atom pairs is defined in the last equation
of module LENNARD-JONES-ENERGY.

Finally, it is worth noting that in the Maude specification, floating-point op-
erations have a precisely defined order, which is not true in the majority of
programming languages. Python also happens to honor the order of operations
written down by the programmer, but doesn’t promise to do so. It is simply
how the current implementation happens to work. In contrast, the arithmetic
operators defined in Maude’s standard library specify associativity for integers
and rational numbers, but not for floating-point numbers. An attempt to prove
equality for two expressions that differ only in the order of operations would
succeed for the former but fail for the latter.

Specifications in real life

While the above example illustrates nicely how a specification language works,
and how it differs from a programming language, any attempt to use Maude, or
any similar language, for complex scientific models soon shows their limits. The
biggest problem with Maude is that it works in complete isolation from other

computational tools. You cannot even read files from Maude. The only input
to Maude is a sequence of Maude commands. All data you want to work on in
Maude must exist in the form of valid Maude modules. Imagine for example a
specification for the full AMBER force field. It must contain the few hundreds
of numerical parameters that all molecular simulation programs read from a file.
This information would have to be converted to a Maude module, which is an
error-prone process. It is thus not evident that Maude would use the same values
as numerical implementations of the force field. One could in principle require
that all numerical implementations read their parameters from Maude modules,
but implementing a parser for Maude modules is a non-trivial task. And numer-
ical parameters are only the simplest part of the data that make up the AMBER
force field: there is also a database of molecular fragments with associated pa-
rameters. While Maude makes it straightforward in principle to write code that
analyzes and transforms Maude modules, in practice such code has to be written
in Maude.

There is of course a reason why Maude accepts data only in its own language.
As I explained earlier, the mathematical theories underlying Maude rely on a very
simple data model: there is nothing but terms and equations, leaving no room for
files, nor for different basic data types, such as arrays. Introducing any of these
would reduce the fundamental simplicity that facilitates mathematical reasoning
about Maude modules. However, this does not mean that a better integration
of specification and programming languages is impossible. It is simply an aspect
that has not yet been explored well enough. For example, one solution that looks
feasible is to provide “data adaptors” that read in data in various formats and
present it to Maude as terms. But the problem of language isolation is more
general, and what computational scientists really need is an integrated system
for writing specifications and implementations at different levels of optimization,
with transitions between these levels made as painless as possible. I have written
about such a system before [5], but it remains a dream.

Ultimately there is a chicken-and-egg problem: developers of specification
languages won’t work on scientific applications unless there is a clear demand
from the scientific computing community, but computational scientists won’t get
interested in specification languages until they see a clear utility in them for their
daily work. I hope that this article contributes a bit to the establishment of closer
contacts between these two communities.

In the meantime, what can scientific software developers do to have something
better than informal specifications? One option is a simple reference implemen-
tation, of the kind shown in Figure 2. It is both easier to understand and easier
to debug than an optimized implementation for production use, and it can be
put to good use in a test suite. Using a programming language for writing speci-
fications requires a radical change of attitude: criteria such as simplicity, clarity,
and minimal dependencies take priority over efficiency and modularity. If you

are an experienced Python programmer and your first reaction to Figure 2 was
“I'd use NumPy here”, you have shown good habits for an application or library
developer, but also bad habits for a specification author. In fact, NumPy is a
non-trivial dependency whose use adds nothing in terms of precision, simplicity,
or clarity.

Writing a simple reference implementation is also a good way to “test” an
informal specification, which is what will get published in the scientific literature.
To make best use of this, the reference implementation should be written by
someone else than the informal specification. If the implementer requires any
additional information, or must make unstated assumptions, then the informal
specification needs a revision.

Like other quality assurance measures, writing specifications may initially
seem to be too much of an effort, taking time and resources that could be better
spent “doing science”. However, ensuring the correctness of computations s part
of “doing science”. My personal experience is that specifications pay off as early
as in the debugging phase of non-trivial scientific software. So, please, give it a
try.

Konrad Hinsen is a researcher at the Centre de Biophysique Moléculaire in
Orléans (France) and at the Synchrotron Soleil in Saint Aubin (France). His re-
search interests include protein structure and dynamics and scientific computing.
He has a PhD in theoretical physics from RWTH Aachen University (Germany).
Contact him at konrad.hinsen@cnrs-orleans.fr.

References

[1] Paul F. Dubois
"Testing Scientific Programs”
Computing in Science and Engineering 14(4), 69-73 (2012)

[2] Sylvie Boldo, Frangois Clément, Jean-Christophe Fillidtre, Micaela Mayero,
Guillaume Melquiond, Pierre Weis
"Trusting computations: A mechanized proof from partial differential equa-
tions to actual program”
Computers & Mathematics with Applications 68(3), 325-352 (2014)

[3] Manuel Clavel, Francisco Durdn, Steven Eker, Patrick Lincoln, Narciso
Marti-Oliet, Jose Meseguer, Carolyn Talcott
”All About Maude - a High-Performance Logical Framework”
Lecture Notes in Computer Science, Vol. 4350
Springer, 2007

10

[4] Franz Baader, Tobias Nipkow
"Term rewriting and all that”
Cambridge University Press, New York, 1998

[5] Konrad Hinsen
"Daydreaming about Scientific Programming”
Computing in Science and Engineering 15(5), 77-79 (2013)

11

fmod BOOLEAN is

sort Boolean

op xtruex : —> Boolean

op xfalsex : —> Boolean

op *notx : Boolean —> Boolean

op *xand*x : Boolean Boolean —> Boolean
op *xorx : Boolean Boolean —> Boolean

var A : Boolean

eq xnotx(xtruex) = xfalsex
eq *notx*(*falsex) = xtruex

eq *xandx*(*xtruex, A) = A .

eq *xand*(A, xtruex) = A .

eq xandx(xfalsex, A) = xfalsex
(

eq *andx*(A, xfalsex) = xfalsex

eq xorx(xtruex, A) = xtruex

eq xorx(A, struex) = xtruex

eq *xorx(xfalsex, A) = A .

eq xorx(A, xfalsex) = A .
endfm

Figure 1: A Maude module defining a simple Boolean algebra.

12

from math import sqrt
class Vector(object):

def __init__(self, x, y, z):

self.x = x
self.y =y
self.z = z

class Cell (object):

def check_configuration(self, configuration):
raise NotlmplementedError

def distance(self, pl, p2):
raise NotImplementedError

class InfiniteCell (object):

def check_configuration(self, configuration):
pass

def distance(self, pl, p2):
return sqrt ((p2.x—pl.x)*%*2 + (p2.y—pl.y)**2 4+ (p2.z—pl.z)*%2)

class OrthorhombicCell (object):

def __init__(self, edges):
self.edges = edges

def check_configuration(self, configuration):
for p in configuration:
assert p.x >= 0. and p.x < self.edges[0]
assert p.y >= 0. and p.y < self.edges[1]
assert p.z >= 0. and p.z < self.edges[2]

def distance(self, pl, p2):
Ix, ly, lz = self.edges
return sqrt(self.minimum_image(p2.x—pl.x, lx)*x=*2
+ self.minimum_image(p2.y—pl.y, ly)=*x2
+ self.minimum_image(p2.z—pl.z, lz)*%x2)

def minimum_image(self, d, 1):
if d > 0.5x1:
d —=1
elif d < —0.5%1:
d 4= 1
return d

def pair_energy(r):
LJEnergy = 1. # kJ/mol
LJRadius = 0.34 # nm
LJCutoff = 1.5 # nm
sr6 = LJRadius**6 / r*xx6 if (r < LJCutoff) else 0
return 4 x LJEnergy * (sr6 * sr6 — sr6)

def potential_energy (cell, configuration):
cell.check_configuration(configuration)
n = len(configuration)
e = 0.
for i in range(n):
for j in range(i+41, n):
r = cell.distance(configuration[i],
configuration[j])
pe = pair_energy (r)
e += pe
return e

Two test cases: a triangle and a cubic lattice

def triangle(h):
cell = InfiniteCell ()
configuration = [Vector (0, 0, 0),
Vector(h, 0, 0),
Vector (0.5%h, 0.5xsqrt(3)*h, 0)]
return potential_energy (cell, configuration)

def cubic_lattice(n, h):
cell = OrthorhombicCell(np.array ([nxh, nxh, nxh]))
configuration = [Vector(h*x, hxy, hxz)
for x in range(n)
for y in range(n)
for z in range(n)]
return potential_energy (cell, configuration)

print triangle (0.3)
print cubic_lattice (2, 0.375)
print cubic_lattice (4, 0.375)

Figure 2: A Python program implemér%ting the informal specification for the
argon potential energy.

fmod VECTOR is

including FLOAT

sort Vector

op v : Float Float Float —> Vector
endfm

view Vector from TRIV to VECTOR is
sort ElIt to Vector
endv

fmod CONFIGURATION is

including VECTOR .

including LIST{Vector} * (sort List{Vector} to Configuration)
endfm

fth CELL is

including VECTOR

sort Cell

op distance : Cell Vector Vector —> Float
endfth

fmod INFINITE—-CELL is
including FLOAT
including VECTOR

sort Cell

op universe : —> Cell

op distance : Cell Vector Vector —> Float
vars x1 yl zl x2 y2 z2 : Float

var u : Cell

eq distance(u, v(xl, yl, zl), v(x2, y2, z2)) =
sqrt (((x2 — x1) ~ 2.0) + ((y2 — y1) ~ 2.0) + ((z2 — z1) = 2.0))
endfm

view INFINITE—CELL from CELL to INFINITE—CELL is
endv

fmod ORTHORHOMBIG-CELL is
including FLOAT
including VECTOR

sort Cell
op universe : Float Float Float —> Cell
op distance : Cell Vector Vector —> Float

vars Ix ly lz x1 yl 2zl x2 y2 z2 dx : Float
eq distance (universe(lx, ly, 1z), v(xl, yl, zl1), v(x2, y2, z2)) =
sqrt ((d(Ilx, x2 — x1) ~ 2.0)
+ (d(ly, y2 — yl) = 2.0)
+ (d(lz, z2 — z1) =~ 2.0))
op d : Float Float —> Float
eq d(lx, dx) = if dx > (lx / 2.0)
then dx — Ix
else if dx < —(lx / 2.0)
then dx + Ix
else dx fi fi
endfm

view ORTHORHOMBIG-CELL from CELL to ORTHORHOMBIG-CELL is
endv

fmod LENNARD-JONES-PAIR is
including FLOAT

op LJRadius : —> Float

eq LJRadius = 0.34 . xxx nm

op LJEnergy : —> Float .

eq LJEnergy = 1.0 . s kJ/mol
op LJCutoff : —> Float

eq LJCutoff = 1.5 . *kk MM

var R : Float
op $sr6 : Float —> Float .
eq $sr6(R) = if (R < LJCutoff)
then (LJRadius ~ 6.0) / (R = 6.0)
else 0.0 fi
op pairEnergy : Float —> Float
eq pairEnergy (R) = 4.0 * LJEnergy * ($sr6(R) * $sr6(R) — $sr6(R))
endfm

fmod LENNARD-JONES-ENERGY{U :: CELL} is

including FLOAT

including LENNARD-JONES-PAIR

including VECTOR .

including CONFIGURATION

op potentialEnergy : U$Cell Configuration —> Float

var U : U$Cell

var R : Configuration

vars R1 R2 : Vector

eq potentialEnergy (U, R1) = 0.0 .

eq potentialEnergy (U, Rl R) = oneWithOthers(U, R1l, R)

+ potentialEnergy (U, R)

op oneWithOthers : U$Cell Vector Configuration —> Float

eq oneWithOthers (U, R1, R2) = pairEnergy(distance (U, R1, R2)) .

eq oneWithOthers (U, R1, R2 R) = pairEnergy(distance (U, R1l, R2))

+ oneWithOthers (U, R1, R) .

endfm

Figure 3: A Maude specification for the argon potential energy.

fmod TRIANGLE is
including INFINITE-CELL .
including LENNARD-JONES-ENERGY{INFINITE—-CELL}
including CONFIGURATION

op h : —> Float
eq h = 0.3
op conf : —> Configuration

eq conf = v(0.0, 0.0, 0.0) v(h, 0.0, 0.0)
v(0.5 * h, 0.5 « h = sqrt(3.0), 0.0)
endfm

fmod CUBIC-LATTICE is
including ORTHORHOMBIG-CELL .
including LENNARD-JONES-ENERGY{ORTHORHOMBIG-CELL }
including CONFIGURATION
including INT .
including CONVERSION

op u : —> Cell
op conf : —> Configuration
op h : —> Float

eq h = 0.375

vars X Y Z : Int

op point : Int Int Int —> Vector

eq point (X, Y, Z) = v(h * float(X), h * float(Y), h x float(Z))
endfm

fmod CUBIC-LATTICE—-2 is
including CUBIC-LATTICE
eq u = universe (2.0 * h, 2.0 * h, 2.0 =
eq conf = point(0, 0, 0) point(0, 0, 1
1

s s point (0, 1, 0) point(0, 1, 1)
point (1, 0, 0) point(1l, O,

) ,)
) point(l, 1, 0) point(1l, 1, 1)
endfm

fmod CUBIC-LATTICE—4 is
including CUBIC-LATTICE
eq u = universe (4.0 * h, 4.0 % h, 4.0 = h)

eq conf = point (0, 0, 0) point (0, 0, 1) point (0, 0, 2) point (0, 0, 3)
point (0, 1, 0) point (0, 1, 1) point (0, 1, 2) point (0, 1, 3)
point (0, 2, 0) point (0, 2, 1) point (0, 2, 2) point (0, 2, 3)
point (0, 3, 0) point (0, 3, 1) point (0, 3, 2) point (0, 3, 3)
point (1, 0, 0) point(l, 0, 1) point(l, 0, 2) point(l, 0, 3)
point (1, 1, 0) point(1l, 1, 1) point(l, 1, 2) point(1l, 1, 3)
point (1, 2, 0) point(l, 2, 1) point(l, 2, 2) point(l, 2, 3)
point (1, 3, 0) point(l, 3, 1) point(l, 3, 2) point(1l, 3, 3)
point (2, 0, 0) point(2, 0, 1) point(2, 0, 2) point(2, 0, 3)
point (2, 1, 0) point(2, 1, 1) point(2, 1, 2) point(2, 1, 3)
point (2, 2, 0) point(2, 2, 1) point(2, 2, 2) point(2, 2, 3)
point (2, 3, 0) point(2, 3, 1) point(2, 3, 2) point(2, 3, 3)
point (3, 0, 0) point(3, 0, 1) point(3, 0, 2) point(3, 0, 3)
point (3, 1, 0) point (3, 1, 1) point (3, 1, 2) point (3, 1, 3)
point (3, 2, 0) point(3, 2, 1) point(3, 2, 2) point(3, 2, 3)
point (3, 3, 0) point(3, 3, 1) point(3, 3, 2) point(3, 3, 3)

endfm

reduce in TRIANGLE : potentialEnergy (universe, conf)
reduce in CUBIC-LATTICE—2 : potentialEnergy (u, conf)
reduce in CUBIC-LATTICE—4 : potentialEnergy (u, conf)

Figure 4: Maude test cases for the argon potential energy.

15

