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Abstract This paper presents a new learning con-
trol framework for digital human models in a physics-
based virtual environment. The novelty of our con-

troller is that it combines multi-objective control based
on human properties (combined feedforward and feed-
back controller) with a learning technique based on hu-

man learning properties (human-being’s ability to learn
novel task dynamics through the minimization of insta-
bility, error and effort). This controller performs multi-

ple tasks simultaneously (balance, non-sliding contacts,
manipulation) in real time and adapts feedforward force
as well as impedance to counter environmental distur-

bances. It is very useful to deal with unstable manipula-
tions, such as tool-use tasks, and to compensate for per-
turbations. An interesting property of our controller is

that it is implemented in cartesian space with joint stiff-
ness, damping and torque learning in a multi-objective
control framework. The relevance of the proposed con-

trol method to model human motor adaptation has
been demonstrated by various simulations.
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1 Introduction

Digital human model (DHM) technique is rapidly
emerging as an enabling technology and a unique line

of research for the verification of human factors issues
in industry, which is the general purpose of our work.

In order to evaluate the physical (biomechanical) as-

pects of working conditions, several software packages
have been developed to facilitate ergonomic assessment,
such as SAMMIE [55], JACK [4], Ergoman [59] and

SANTOSHuman [69,68]. Simulations computed with
these software packages usually rely on kinematic an-
imation frameworks. Such frameworks use either pre-

recorded motions obtained by a tracking system and
motion capture or interactive manual positioning of the
DHM body through a mouse, menus and keyboard. In

the first case, simulations are realistic but they require
extensive instrumentation of a full scale mock-up of
the future workstation or a similar existing one. They

are extremely time consuming because of motion cap-
ture data processing [6]. Furthermore, their ability to
predict complex human postures and movements for

various sizes and dimensions in a timely and realistic
manner is strictly dependent on the accuracy of the
motion database. In the second case, simulations are

clearly subjective (the designer, possibly with no spe-
cific skill in ergonomics, chooses arbitrarily a posture or
trajectory). Again, they are time consuming (built up

like a cartoon) and usually appear unnatural [13], even
though these digital manikins possess semi-automatic
controls provided by a set of behaviours, such as gaz-

ing, reaching, walking and grasping. These issues do
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Fig. 1: Adaptive and Learning controller

not encourage designers to consider alternative scenar-

ios, which would be beneficial for a comprehensive as-
sessment of the future work situation. Moreover, such
software packages are subject to numerous limitations:

since they are restricted to static models and calcu-
lation, they neglect dynamic aspects. Neither do they
consider contact forces between the DHM and objects

(at best the designer has to arbitrarily set both contact
force magnitude and direction manually). For these rea-
sons, assessment of biomechanical risk factors based on

simulations of industrial or experimental situations may
lead to real stress underestimation of up to 40-50% [43].

A challenging aim therefore consists in developing

a DHM capable of performing tasks as an artificial
human-being through dynamically consistent motions,
behaviours and internal characteristics (positions, ve-

locities, accelerations and torques) based on a simple
description of the future work task, in order to achieve
realistic ergonomics assessments of various work task

scenarii at an early stage of the design process.

2 Human behaviours

To achieve this goal, a multi-objective DHM controller
based on human behaviours using simulated physics is

presented in this article. In our simulation framework,
the entire motion of the human model in the virtual
environment is ruled by real-world Newtonian physi-

cal and mechanical simulation, along with automatic
control of applied forces and torques. To develop this
controller, we chose to take into account the following

important behaviours of human motor control:

1. spring-like behaviour : Won and Hogan [71] noted

that muscle elastic properties and reflexes produce
a restoring force to an undisturbed trajectory when
the hand is slightly perturbed, as a spring between

the hand and the planned trajectory. The mechan-
ical impedance (strength of these spring-like prop-
erties) increases with endpoint force [25] or muscle

activation [39] and it is adapted to counter environ-
mental disturbances [48]. This behaviour is imple-
mented in the feedback part of our controller.

2. anticipatory capabilities: When a multibody system
gets in touch with an object, it is important to make
the limb more compliant to avoid “contact instabil-

ity” [31]. An important conclusion, which consis-
tently emerges from the theoretical analysis, is that
mechanics needs a feedforward control.

A number of studies have shown that the nervous
system uses internal representations to anticipate
the consequences of dynamic interaction forces. In

particular, Lackner and Dizio [40] demonstrated
that the central nervous system (CNS) is able to
predict the centripetal and Coriolis forces; Grib-

ble and Ostry [26] demonstrated the compensation
of interaction torques during multijoint limb move-
ment. These studies suggest that the nervous sys-

tem has sophisticated anticipatory capabilities. We
therefore need to design accurate internal models of
body dynamics and contacts.

Generally, a feedforward control model is based on
the anticipatory computation of the forces that will
be needed to carry out a desired motion plan, with-

out sensory information. The CNS therefore needs
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an internal representation or an inverse model of the

human model and environment.
This control technique is fast and does not have the
instability risk, but has an obvious drawback: the

sensitivity to unexpected disturbances. The feedfor-
ward control is not able to compensate for perturba-
tions. If these disturbances can be measured, we can

make on-the-fly correction of the movement. This
method corresponds to the feedback control of our
controller.

3. motion error minimization: Shadmehr and Mussa-
Ivaldi [61] demonstrated that, trial after trial, the
CNS reduces motion error through the compensa-

tion of the environmental forces and the feedfor-
ward control adaptation. An illustrative example is
Kawato’s feedback error learning model [37], based

on cooperation between two control mechanisms: a
feedback loop, which operates in an initial train-
ing phase, and a feedforward model, which subse-

quently emerges. In this model, a feedback error
is used as the learning signal for the feedforward
model, which gradually compensates for any dy-
namic disturbances, and thereby learns an internal

model of the body dynamics. This learning con-
trol model does not converge in unstable situations
[52], while the controller described in this paper is

more adapted to unstable interaction (see [72] and
Sect. 9).

4. metabolic cost minimization: the CNS optimizes the

arm impedance to achieve a desired margin of sta-
bility while minimizing metabolic cost [10].

Following these human motor control behaviours, we

developed a new whole body control based on feedfor-
ward and feedback mechanisms (Fig. 1) inspired by the
human ability to adapt force and impedance to deal

with stable or unstable situations and to compensate
for perturbations [72,24].

3 Overview on adaptive and learning control

Adaptive and learning controls found in the literature

can be distributed into four groups:

1. Classical Adaptive
– Gain Scheduling [2]

– Model Reference Adaptive Control (MRAC) [35]
– Self-tuning regulator [3]
– Self-Oscillating Adaptive Systems (SOAS) [33]

2. Periodic Adaptive/Learning
– Iterative Learning Control (ILC) [5]
– Repetitive Control (RC) [41]

– Run-to-Run control (R2R) [12]

3. Machine Learning

– Reinforcement Learning [9,8]
4. Non-symbolic learning tool

– Artificial neural network [32]

– Fuzzy logic [16]
– Genetic algorithms [62]

In our study, we wanted to develop an algorithm

adapted to unstable interactions, which are inevitable
in our context (namely, verification of human factors
in industrial work task design). In particular, our case

study dealt with the task of clipping small metal parts
to a plastic instrument panel of a vehicle [19]. In this
work-task, we observed subjects performing the same

task repeatedly. When we tried to simulate this task
with a DHM, one way to compensate for the repetitive
part of the error is to use periodic adaptive/learning

control. With this type of controller, a robot performs
the same task for numerous iterations, reducing the pe-
riodic error at each following trial.

If a task has reproducible dynamics or fixed envi-

ronment, impedance control is used to impose a desired
dynamic behaviour to the interaction between the robot
end-effector and the environment [30,14]. The common

control impedance techniques requires a reproducible
dynamics (the target impedance model is fixed). For
this reason, it is not adapted when the environment

changes (the interaction may become unstable).

One possible solution to perform unstable tasks is

to increase impedance in order to deal with incorrect
force arising from unknown dynamics. Yet, while higher
impedance may increase stability in movement task, it

may also lead to instability during interactions with a
stiff environment.

Common periodic adaptive control learns only force
from the feedback error. Thus, it is inefficient in un-

stable situations because the force will be different in
each trial due to noise or external perturbations [70].
In addition, common ILC algorithms do not require a

low mechanical impedance to obtain safety and energy
minimization [28].

The algorithm developed below is more adapted to
unstable interactions than common ILC algorithms, be-
cause it allows to change the force in each trial [11] and

to obtain low impedance. Learning the optimal force
and impedance appropriate for different tasks can help
the robot achieve them with minimum error and least

amount of energy (as humans do [23]).
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Fig. 2: DHM with skinning and collision geometry (left). Right hand model with skinning and collision geometry
(right)

4 Digital human model using simulated physics

4.1 Model of human body and dynamics

In our study, the human body is kinematically modelled
as a set of articulated rigid bodies (Fig. 2) organized

into a redundant tree structure, which is characterized
by its degrees of freedom (dof). Each articulation can
be modelled into a number of revolute joints depending

on the function of the corresponding human segment.
Our DHM therefore comprises of 39 joint dof and 6 root
dof, with 8 dof for each leg and 7 for each arm. The

root is not controlled. For validation purposes, several
DHMs have been dimensioned based on each subject’s
anthropometry [29].

The dynamics of the DHM are described as a second
order system as:

MṪ +NT +G = Lτ+
∑
j

JT
cjWcj +

∑
k

JT
endk

W i
endk

(1)

M is the generalized inertia matrix; Ṫ is the accelera-
tion in generalized coordinates; NT is the centrifugal

and coriolis forces; G is the gravity force in generalized
coordinates; L is the matrix to select the actuated de-
grees of freedom (L = [0 I]T with 0 the zero matrix and

I the identity matrix); τ is the set of joint torques; J is
the jacobian matrix; W is the wrench applied by digital
human models on environments (W = [ΓT FT ]T with

Γ the moment in cartesian space and F the force in
cartesian space).

In the notation of this paper, frames are denoted by

subscripts as follows:

– com: center of mass frame
– c: non-sliding contacts at known fixed locations

such as the contact points between the feet and the

ground
– end : end-effector frame
– q : joint space

– ρ: ρ-space
– K, B, τ : the learning rate of stiffness, damping or

torque

Moreover the following superscripts are used:

– min: joint stiffness, damping and feedforward torque
required to maintain posture stability and to reduce

the systematic deviation caused by the interaction
with the environment

– d : ”desired” values

– l : the learned torque, stiffness or damping
– ini : the initial torque, stiffness or damping
– i : wrench derived from unknown contacts with en-

vironment - interaction wrench
– ff : feedforward
– fb: feedback

– ob: object

4.2 Contacts model

Simulations were based on the XDE physics sim-

ulation module developed at the CEA-LIST
(http://www.kalisteo.fr/lsi/en/aucune/a-propos-
de-xde). This module manages the whole physics

simulation in real time, including accurate and robust
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constraint-based methods for contact and collision

resolution [45,46]. Friction effects were modelled in
compliance with Coulomb’s friction law, which can be
formulated as:

∥fxy∥ ≤ µ ∥fz∥ (2)

with ∥fxy∥ being the tangential contact force, µ the dry
friction factor and ∥fz∥ the normal contact force.

4.3 Hand model

The hand model, illustrated in Fig. 2, has 20 dof. To
control joint positions θ, we use a simple Proportional-
Derivative controller. The desired joint positions θ are

a set of desired positions θd corresponding to different
preset grasps.

5 Adaptive controller based on human
behaviours

Corresponding to the above analysis of human motion
control, we propose a human-like learning controller
(Fig. 1) composed of feedforward and feedback controls,

both of which are adapted during movements. This con-
troller is inspired by the works of Yang et al [72] and
Ganesh et al [24].

The proposed controller can deal with both stable
and unstable conditions. The learned stiffness, damping
and feedforward torque compensate for external pertur-

bations. This behaviour is similar to human adaptation
[65].

5.1 Cartesian controller with joint stiffness, damping
and torque learning

We describe a cartesian controller that, given a target
in cartesian space, learns joint space parameters. An in-
teresting property of this controller is that although it is

a cartesian controller, its impedance is learned and dis-
tributed according to the limbs’ dynamics. As demon-
strated in [44], to control limb stiffness and stability,

the CNS must increase joint stiffness when an external
force is applied to the hand. This result is obtained with
our controller in Sect. 9.

The desired cartesian space impedance is:

Kend = J†T
end,ρ

(
Kρ −

∂JT
end,ρ

∂ρ W i
end

)
J†
end,ρ

Bend = J†T
end,ρBρJ

†
end,ρ

(3)

K is the stiffness matrix; B is the damping matrix;
J† = M−1JT (JM−1JT )−1 is the dynamic pseudoin-

verse matrix with J a full rank matrix; ρ = Sq. S is a

matrix to select a part of the actuated degrees of free-

dom (S = [I 0]) to obtain a dyamic model independent
of non-sliding contact forces at known fixed locations
in Eq. 1 such as the contacts between the feet and the

ground (see Appendix A).

5.2 Overall cost function

As explained in Sect. 2, the CNS minimizes the motion

error cost ME(t) (Eq. 5) and the metabolic cost MC(t)
[10] (to learn impedance and feedforward torque, a hu-
man does not spend extra effort (Eq. 6)). We therefore

set our overall cost function C(t) as:

C(t) = ME(t) +MC(t) (4)

with:

ME(t) =
1

2
ϵT (t)[J†T

end,ρMρJ
†
end,ρ]ϵ(t) (5)

and:

MC(t) =
1

2

∫ t

t−D

Φ̃T (σ)Q−1Φ̃(σ)dσ (6)

Mρ is the inertia matrix (see Appendix A) and Q =

diag(I ⊗QK , I ⊗QB, Qτ ).

ϵ is the tracking error commonly used in robotics

[63] defined as:

ϵ = δ(V d, V r) + bδ(Hd,Hr) ∈ se(3) (7)

with Hr ∈ SE(3), Hd ∈ SE(3), V r ∈ se(3) and V d ∈
se(3), where SE(3) is the special Euclidian group and
se(3) is the Lie algebra of SE(3).

δ(Hd,Hr) denotes the displacement (position and
orientation) error between the desired and current

state; δ(V d, V r) denotes the velocity (linear and an-
gular velocity) error between the desired and current
state.

Φ̃(t) = Φ(t)− Φd(t)
= [vec(Kl

ρ(t))
T , vec(Bl

ρ(t))
T , (τ lρ(t))

T ]T

−[vec(Kmin
ρ (t))T , vec(Bmin

ρ (t))T , (τmin
ρ (t))T ]T

= [vec(K̃(t))T , vec(B̃(t))T , τ̃(t)T ]T

(8)

where vec(·) is the column vectorization operator, K̃ =

Kl
ρ(t) − Kmin

ρ (t), K̃ = Bl
ρ(t) − Bmin

ρ (t) and τ̃ =
τ lρ(t)−τmin

ρ (t).Kmin
ρ , Bmin

ρ and τmin
ρ are joint stiffness,

damping and feedforward torque required to maintain

posture stability and to reduce systematic deviation
caused by the interaction with the environment (see
Appendix B).

In Eq. 8, the function Φ(t) that adapts stiffness,
damping and feedforward torque tends to the minimal

value Φd(t) with a metabolic cost minimization [10].
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To measure stability, we use the motion error cost

ME in Eq. 5. If there exists δ > 0 such that

∫ t1

t

ṀE(σ)dσ < δ, (9)

then human interaction with an environment is stable
in [t, t1] [36].

5.3 DHM Torques

Following the important behaviours of human motor
control listed in Sect. 2, we propose a DHM controller
composed of feedforward and feedback parts that are

adapted during trials:

τρ = Sτff + Sτfb − τ lρ (10)

where τff is the torque to compensate for DHM dynam-
ics (feedforward part of our controller in Sect. 8.1); τ lρ
(Eq. 16) is the learned feedforward torque that depends
on the feedback error.

τfb = −LT (JT
comFcom + JT

endW
d
end + JT

c ∆fc) is the
torque to compensate trajectory errors (feedback part

of our controller in Sect. 8.2). ∆fc is the contact forces.

W d
end is the desired task wrench in Eq. 11 that

adapts stiffness and damping in Eq. 8.

The desired task wrench W d
end is computed by us-

ing an adaptive proportional-derivative (PD) feedback
control law:

W d
end = Kl

endδ(H
d,Hr) +Bl

endδ(V
d, V r) +Bini

endϵ
= (Kl

end + bBini
end)δ(H

d,Hr) + (Bl
end +Bini

end)δ(V
d, V r)

(11)

Kend and Bend denote the cartesian stiffness and damp-
ing matrix respectively.

As explained in Sect. 5.1, our controller learn joint
space parameters using Eqs. 13 and 14. To pass from

joint to cartesian stiffness and damping, we use the Eq.
3. It is important to remember that joint-space and
ρ-space are related by the relationship ρ = Sq.

The Bini
end is chosen according to:

Bini
end = J†T

end,ρB
ini
ρ J†

end,ρ (12)

with Bini
ρ being a symmetric positive definite matrix

with minimal eigenvalue λmin(B
ini
ρ ) ≥ λB > 0. This

minimal feedback matrix insures stable and compliant
motion control. It corresponds to the mechanical prop-
erties of the passive muscles of the human relaxed arm

[54].

5.4 Learning laws

In order to vary the mechanical control of a limb over
time, the cerebellum plays an important role in the hu-

man motor learning process, forming and storing asso-
ciated muscle activation patterns. According to Smith
[64], stiffness varies throughout the movement. Based

on human properties detailed in Sect. 2, stiffness Kl
ρ(t)

and damping Bl
ρ(t) are adapted as follows:

Kl
ρ(t, k + 1) = Kl

ρ(t, k)

+QK{J†
end,ρ[ϵ(t, k)δ(H

d,Hr)T ]J†T
end,ρ − γ(t)Kl

ρ(t, k)}
(13)

Bl
ρ(t, k + 1) = Bl

ρ(t, k)

+QB{J†
end,ρ[ϵ(t, k)δ(V

d, V r)T ]J†T
end,ρ − γ(t)Bl

ρ(t, k)}
(14)

with Kl
ρ(t, k = 0) = 0[nρ,nρ] and Bl

ρ(t, k = 0) = 0[nρ,nρ],
t ∈ [0, D), QK and QB are symmetric positive definite
constant gain matrices.

The forgetting factor of learning γ is defined by:

γ(t) =
p

1 + u ∥ϵ(t)∥2
(15)

with positive p and u values. To obtain convergence, we
need γ(t) > 0 (see Appendix B). The learning response

speed can be tuned through the choice of p and u. If γ(t)
is large, torque and impedance learning will be slow; if
γ(t) is small, we will obtain slow torque and impedance

unlearning.
Unlike the constant value of γ in [24], the time vary-

ing definition of γ in Eq. 15 has the following advan-

tage: when ϵ(t) is large, γ(t) is small and vice versa.
For this reason, we have a controller that quickly in-
creases torque and impedance during bad tracking per-

formance and quickly decreases torque and impedance
during good tracking performance.

The learned feedforward torque is adapted through:

τ lρ(t, k + 1) = τ lρ(t, k) +Qτ [J
†
end,ρϵ(t, k)− γ(t, k)τ lρ(t, k)] (16)

with τ lρ(t, k = 0) = 0[nρ,1], t ∈ [0, D], Qτ a symmetric
positive definite constant matrix.

The diagonal learning rate matrices QK , QB and
Qτ are empirically chosen. In particular we choose
QK > Qτ because human stiffness increases faster than

feedforward torque [10] and QB = QK/b according to
Eq. 11.

6 Trajectory planner based on human

psychophysical principles

A movement can be characterized, independently of the

end-effector, by:

– the initial and final points of the trajectory (position

and orientation)
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– obstacle positions (via-points of the trajectory)

– duration

Experimental study of human movements has shown
that voluntary movements obey the following three ma-

jor psychophysical principles:

– Hick-Hyman’s law: the average reaction time
TRave required to choose among n probable choices

depends on their logarithm [34]:

TRave = d log2(n+ 1) (17)

– Fitts’ law: the movement time depends on the log-
arithm of the relative accuracy (the ratio between
movement amplitude and target dimension) [21]:

D = g + z log2(2ΥP ) (18)

where D is the duration time, Υ is the amplitude,
P is the accuracy, and g and z are empirically de-
termined constants.

– Kinematics invariance: hand movements have a

bell-shaped speed profile in straight reaching move-
ments [50]. The speed profile is independent of the
movement direction and amplitude. For more com-

plex trajectories (i.e. handwriting) the same princi-
ple predicts a correlation between speed and curva-
ture [51] described as a 2/3 power law:

ṡ(t) = ZsR
1− 2

3 (19)

where ṡ(t) is the tangential velocity, R is the radius
of curvature and Zs is a proportionality constant,

also termed ”velocity gain factor”.
For this reason, more complex trajectories can be
divided into overlapping basic trajectory similar to

reaching movements. Such spatio-temporal invari-
ant features of normal movements can be explained
by a variety of criteria of maximum smoothness,

such as the minimum jerk criterion [22] or the min-
imum torque-change criterion [67].

We implemented a modified minimum jerk criterion

with via-points to calculate trajectories and avoid ob-
stacles.

The original minimum-jerk model in [22] may fail to

predict the hand path and can only be applied to av-
erage data because it predicts a single optimum move-
ment for given via-points. Unlike the original minimum

jerk model, the 2/3 power law can be applied to all
movements. The main problem with this method is the
formula, which predicts speed from paths. In this study,

we therefore chose Todorov’s model [66], which com-
bines the original minimum-jerk model and the 2/3
power law model and uses a path observed in a spe-

cific trial to predict the speed profile. Todorov’s model

substitutes a smoothness constraint for the 2/3 power

law (see Appendix C.2). This model is validated and
compared to the 2/3 power law in [66] for four tasks
with a specified path.

For a given hand path in space, Todorov’s model [66]
assumes that the speed profile is the one that minimizes
the third derivative of position (also named ”jerk”):

Jerk =

∫ D

0

∥∥∥∥ d3

dt3
r[s(t)]

∥∥∥∥2 (20)

with r(s) = [x(s), y(s), z(s)] a 3D hand path and s is
the curvilinear coordinate. According to this approach,
minimization is performed only over the speed profiles

because the path is specified. Formal definition of the
inside term of the integral in Eq. 20 is in Appendix C.1.

In the original minimum jerk model [22], the mini-

mum jerk trajectory is a 5th-order polynomial in t. Us-
ing the end-point constraints, we can compute the coef-
ficients of this polynomial. The trajectory and speed are

found by a given set of via-points and thus, the hand
is constrained to pass through the via-points at defi-
nite times. To calculate the minimum jerk trajectory, it

is necessary to give passage times TP , positions x, ve-
locities v and accelerations a. In the Todorov’s model,
the passage times TP are not defined a priori, but are

determined by the algorithm explained below.

To find the optimal jerk for any given passage times
TP and intermediate points x, Todorov’s model mini-

mizes the jerk with respect to v and a by setting the
gradient to zero and solving the resulting system of lin-
ear equations. To find the intermediate times TP , the

method uses a nonlinear simplex method to minimize
the optimal jerk over all possible passage times.

In the same way as for translations, the speed profile
of a rotation is the one that minimizes the third deriva-

tive of orientation (or ”jerk”), with a 3D rotation path
r(s) = [α(s), β(s), γ(s)].

In brief, to calculate the minimum jerk trajectory

for the rotations and the translations, we need to pro-
vide the positions X, the initial and final velocities V
and the initial and final accelerations A.

An illustrative example of a minimum jerk trajec-
tory simulation is given in [19] and a comparison be-
tween real human data and simulations is given in [20].

7 Duration time based on human laws

Duration times are a-priori chosen following the 3D
Fitt’s law proposed in [27] for a pointing task. The reach
and position states are similar to a pointing task at

trivariate targets, and therefore we use the equation in
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Fig. 3: w, h and d measurements for the 3D Fitt’s law

[27] to calculate movement time D:

D ≈ 56 + 5208 log2

(√
fw (θ)

(
Υ
w

)2
+ 1

9.2

(
Υ
h

)2
+ fd (θ)

(
Υ
d

)2
+ 1

)
(21)

with fw (0◦) = 0.211, fw (45◦) = 0.242, fw (90◦) =

0.717, fd (0
◦) = 0.194, fd (45

◦) = 0.147 and fd (90
◦) =

0.312. Υ is the distance (or amplitude), θ is the move-
ment angle (the human user’s axis of movement), w

is the width measured along movement axis, h is the
height measured along Z-axis, and d is perpendicular
to both (see Fig. 3).

8 Feedforward and feedback control

The optimization framework (see Fig. 4) is based on a

combined anticipatory feedforward and feedback con-
trols system based on underlying notions of the accel-
eration - based control method [1,15] and a Jacobian-

Transpose (JT) control method [57,42,18].
These controllers are formulated as two successive

Quadratic Programming (QP) controllers (Fig. 4), each

of them dealing with a great number of dof and solving
simultaneously all constraint equations.

The controller is introduced to compute joint

torques that achieve different objectives and satisfies
different constraints. In our multi-objective control, a
task means that a certain frame on the DHM body

should be transferred from an initial state to a desired
state.

8.1 Feedforward

During the feedforward phase, the objectives are:

1. Objective based on acceleration control. This feedfor-
ward action compensates for the low frequency, rigid

body behaviour of the DHM dynamics. The goal is

to minimize the difference between actual acceler-

ation A and desired acceleration Ad found by the
minimum jerk trajectory planner.
A is expressed in terms of the unknowns of the sys-

tem Ṫ as:{
V = JT

A = JṪ + J̇T
(22)

with J being the Jacobian matrix expressed in its

own frame.
2. Regularization for QP problem: To regularize the

QP problem, we set the desired torque τd, the de-

sired contact force fd
c and the desired acceleration

Ṫ d to zero.

During the feedforward phase, the constraints are:

1. Dynamic equation. As explained in Sect. 2, the CNS
is able to predict dynamics. We therefore set the
DHM dynamics in Eq. 1 as a feedforward constraint.

2. Contact point accelerations. To help maintain con-
tacts, contact acceleration must be null.

Ac = JcṪ + J̇cT = 0 (23)

3. Non-sliding contacts. The non-sliding contacts are
expressed as a set of inequality constraints. Con-

tact constraints are imposed at contact points be-
tween the feet and the ground. The contact force
fc should remain within the friction cone. The lin-

earized Coulomb friction model [1] is applied, in
which the friction cone of each contact is approx-
imated by a four-faced polyhedral convex cone. The

contact constraints are formularized as:

Ecifci + dci < 0 (24)

where Eci is the approximated friction cone, and
dci is a customer defined margin vector so that the
projection of fci on the normal vector of each facet

of the friction cone should be kept larger than dci .
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Fig. 4: Block diagram of the cartesian control framework

We summarize the feedforward phase as:

Ô = arg min
1

2
τff ,Ṫ ,fc

∥∥∥∥∥∥∥
 τff

Ṫ

fc

−

 τff
d

Ṫ d

fd
c


∥∥∥∥∥∥∥
2

Q

(25)

subject to:
MṪ +NT +G = Lτ + JT

c fc
Ecfc + dc ≥ 0

JcṪ + J̇cT = 0

(26)

The optimization objective is the same for each task,
which is to minimize the error between the variable and
its desired value. The objectives are combined in the

diagonal weight matrix Q. These values are chosen ac-
cording to the priorities of different objectives.

With this optimization, we obtain τff , fc, Ṫ .

8.2 Feedback

In the feedback part, for each task, we imagine that

a virtual wrench is applied at a certain frame on the

DHM body to guide its motion towards a given tar-
get. These virtual wrenches are computed by solving

an optimization problem.

To obtain this, in the feedback phase the objectives
are:

1. COM position. The dynamic controller maintains

the DHM balance by imposing that the horizontal
plane projection of the COM lie within a convex
support region [7]. For this COM-tracking objective,

we consider only the force component and F d
com is

obtained by using a PD control in ℜ3 to measure
the error between the actual and desired COM po-

sitions.

F d
com = Kcom(xd

com − xr
com) +Bcom(vdcom − vrcom) (27)

where Kcom and Bcom are the proportional and
derivative gain matrix respectively.

2. End-effector. The end-effector task is used for per-
forming some specific motions. In this paper the ob-
jective is to realize point to point movement with the

human-based learning controller in Eq. 11.
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3. Minimize the difference between actual contact force

and feedforward contact force. ∆fd
c = 0(3nfc ,1)

with
Q∆fc = w∆fcI3nfc

In the feedback phase the constraints are:

1. Static equilibrium. The wrenches are constrained by
the static equilibrium of the DHM:

Lτfb = −JT
comFcom−JT

endW
d
end−

∑
i

Jci
T∆fci (28)

2. Non-sliding contacts

Ec(fc +∆fc) + dc ≥ 0 (29)

We summarize the feedback phase as:

Ô = arg min
1

2
Fcom,τfb,∆fc

∥∥∥∥∥∥
 Fcom

Wend

∆fc

−

 F d
com

W d
end

∆fd
c

∥∥∥∥∥∥
2

Q

(30)

subject to:{
Lτfb=−JT

comFcom − JT
endW

d
end − JT

c ∆fc
Ec(fc +∆fc) + dc ≥ 0

(31)

The optimization objective is the same for each task,
which is to minimize the error between the variable and

its desired value. The objectives are combined in the
diagonal weight matrix Q. These values are chosen ac-
cording to the priorities of different objectives.

With this optimization, we obtain Fcom, Wend, ∆fc.

The feedback joint torque is equal to:

τfb = −LT (JT
comFcom + JT

endW
d
end + JT

c ∆fc) (32)

9 Results

Our simulation framework requires a PC running a

Python 2.7 environment with XDE modules.

With a simulation step of 0.01 s, the joint torques
are calculated in quasi-real-time (computation duration

is 1.5 times the simulation duration) on a PC equipped
with an Intel Xeon E5630 (12M Cache, 2.53 GHz Pro-
cessor, 24 Gb of RAM).

Several simulations have been made using our new
joint stiffness, damping and torque-learning cartesian
controller. A first case-study dealt with a fictional hand

task, a second case-study dealt with an experimental as-
sembly task. All simulations consisted of controlling a
45 dof DHM, with 6 dof for the root position and orien-

tation, using actuators/muscle producing joint torques
τ in a 6-dimensional Cartesian task space characterized
by an interaction external wrenchW i

end while tracking a

minimum-jerk task reference trajectory detailed in Sect.

6. The wrench is derived from the contacts or given by

an imposed wrench field.

There are four contact points on each foot.

During the experimental task, we observed that

torso orientation varied very little. We therefore add
an objective to maintain the desired torso orientation
equal to its initial orientation.

The optimization weights for the different objectives
are: 104 for the COM, 5·103 for the right hand task, 101

for the posture, 102 for the head, 102 for the torso, 100

for the contact task and 102 for the gravity compen-
sation. These weights are empirically chosen based on
the estimated importance and priorities of the different

objectives.

The learning rate matrices QK , QB and Qτ in [72]
have been changed for different applications and they

are empirically chosen based on the importance and
priorities of the different objectives.

We choose Qk > Qτ because human stiffness in-
crease faster than feedforward torque [10]. The con-
troller parameters are selected as QK = diag[8.](nρ,nρ),

QB = diag[0.8](nρ,nρ), Qτ = diag[1.](nρ,nρ), a = 0.2,
u = 5, b = 10 for all simulations.

In [20], we used this controller to simulate an ex-

perimental insert clipping activity in quasi-real-time
and applied the simulated postures, time and exertions
to an OCRA index-based ergonomic assessment [53].

Given only scant information on the scenario (typically
initial and final operator-positions and clipping force),
the simulated ergonomic evaluations were in the same

risk area as those based on experimental human data.
In addition, DHM trajectories are similar to real tra-
jectories.

9.1 Free hand movement

The first case studied is a point-to-point movement: the
right hand goes from the initial right hand position to
the insert position. At the start of the simulation, the

insert is placed on the table in Fig. 8a, and the DHM
body is upright and its arms are along the body. This
reproduces the grasping action of the experimental task

in [19].

The movement duration D = 1.3 s is chosen ac-
cording to the 3D Fitt’s law proposed in Sect. 7 for a

pointing task.

A constant interaction external wrench W ext
end =

[0N · m, 0N · m, 0N · m, 3N, 3N, 3N ]T is applied to

the right hand during the motion. Adaptation is simu-
lated for 225 iterations. At the end of each iteration the
joint position is reset to the start point and the joint

velocity and acceleration are reset to zero.
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In the first phase (iterations 1-75) interaction

wrench is absent. In the second phase (iterations 76-
149) a constant perturbation wrench W i

end = W ext
end is

applied to the right hand. In the third phase (iterations

150-225) interaction wrench is absent.

As demonstrated in Fig. 5, DHM increases its joint
stiffness in order to maintain limb stability in the pres-
ence of applied external forces at the hand [10,44].

We note that the error decreases (see Fig. 6) and
therefore, initial divergent trajectories become conver-

gent and successful after learning.

We observe similar pattern of stiffness and feedfor-
ward torque (Fig. 7) of the experiments in [10]. This is
derived from stiffness and damping adaptation to com-

pensate for unstable interaction, without a large modi-
fication of the feedforward torque.

We note that the limb stiffness converges to small
values when no forces are applied at the hand. The

lower-magnitude joint stiffness is typical of a human
subject acting with a zero force field [44].

9.2 Simulation of a insertion with a virtual object

In the second case-study, we simulate the insertion task
in [19]. The interaction external wrench is derived from
the contacts between the insert and the virtual object

represented in Fig. 8a.

The digital mock-up (DMU) scenario is represented
in Fig. 8a. This reproduces the experimental environ-
ment in [19] by ensuring geometric similarity. The in-

puts used to build the DMU scenario are the workplace
spatial organization (x, y and z dimensions), inserts and
tool descriptions (x, y, z positions and weight) and the

DHM position.

In Figs. 9 and 8b we show the results of the simula-
tion when the right hand goes from the virtual object
center xob to the x = xob + [0 m, 0.03 m,−0.02 m] po-

sition (the reference frame is represented in Fig. 8a).

Adaptation is simulated for 50 iterations.

We note in Fig. 8b that the asymptotic force slightly
decreases. We have demonstrated this human behavior
by human subject experiments [17].

10 Conclusion and future works

In this paper, we have described a multi-objective con-
trol of digital human models based on human-being’s

ability to learn novel task dynamics through the mini-
mization of instability, error and effort. Our controller
has been validated with a 45 dof DHM. For this paper,

we applied our algorithm to a rather simple case study,

of limited impact relatively to the complexity of ac-

tual work gestures. In order to confirm the encouraging
results and to give the desired genericity to our con-
troller and DHM, we plan to do additional theoretical

and practical works.

One improvement will be to enrich prehension sim-
ulation. For our case study, we explicitly specified the
type of grasp (palmar, pinch, full-handed) and orien-

tation of the object in the operator’s hand, according
to the final orientation (the object is attached to the
hand). In the near future, we plan to introduce prehen-

sion functions in our kinematic model. In order not to
make our kinematic model heavier (20 segments and
28 additional dof per hand [49]), we propose to replace

the wrist and fingers by a dedicated end-effector whose
characteristics (number of joints, types, rotational and
translational range) would mimic the dof observed for

each type of grasp [47]. For example, this effector would
have more dof in pinch mode than in full-handed grasp
mode.

Another improvement will involve the parametriza-
tion of the controller. Actually, our controller needs sev-
eral parameters to be set, for instance tasks weights.

In our case study, we set those parameters empirically.
To improve the genericity of our algorithm, the tasks
weights could be automatically calculated without re-

quiring any manual tuning [58].
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with frictional contacts. In: Proc. ACM SIGGRAPH/EG
Symposium on Computer Animation, pp. 249-258. Airela-
Ville, Switzerland (2007)

2. Andreiev, N.: A process controller that adapts to signal
and process conditions. Control Engineering 38 (1977)

3. Astrom, K., Borrison, U., Wittenmark, B.: Theory and
application of self-tuning regulators. Automatica 13, 457-
476 (1977)

4. Badler, N.: Virtual humans for animation, ergonomics, and
simulation. In: Proceedings of the IEEE workshop on non-
rigid and articulates motion, pp. 28-36 (1997)

5. Bien, Z., Xu, J.: Iterative learning control: analysis, design,
integration and applications. In: Kluwer Academic Publish-
ers Norwell. MA, USA (1998)

6. Bradwell, B., Li, B.: A tutorial on motion capture driven
character animation. In: Eight IASTED International Con-
ference Visualization, Imaging, and Image Processing.
Palma de Mallorca (2008)

7. Bretl, T., Lall, S.: Testing static equilibrium for legged
robots. IEEE Transactions on Robotics 24, 794-807 (2008)

8. Buchli, J., Stulp, F., Theodorou, E., Schaal, S.: Learning
variable impedance control. The International Journal of
Robotics 30, 820-833 (2011)

9. Buchli, J., Theodorou, E., Schaal, S.: Reinforcement learn-
ing of full-body humanoid motor skills. In: 10th IEEE-
RAS International Conference on Humanoid Robots (Hu-
manoids), pp. 405-410 (2010)



12 Giovanni De Magistris et al.

(a) Joint stiffness (b) Joint damping

Fig. 5: Learned joint stiffness and damping (mean over one period)

(a) (b)

Fig. 6: Cartesian position [m] and orientation [rad] error (mean over one period) (a); Cartesian linear [m/s] and
angular [rad/s] velocity error (mean over one period) (b)

Fig. 7: Learned force (mean over one period)



A human-like learning control for digital human models in a physics-based virtual environment 13

(a) (b)

Fig. 8: DMU scenario and virtual object to model insertion with the stiffness Kobj of the object equal to 1000 N/m

in the four direction (a); Average interaction force during insertion (b);

(a) (b)

Fig. 9: Learned joint stiffness during insertion (mean over one period) (a); Cartesian position [m] and orientation
[rad] error during insertion (mean over one period) (b)

10. Burdet, E., Osu, R., Franklin, D., Milner, T., Kawato, M.:
The central nervous system stabilizes unstable dynamics by
learning optimal impedance. Nature 414, 446-449 (2001)

11. Burdet, E., Tee, K.P., Mareels, I., Milner, T.E., Chew, C.,
Franklin, D.W., Osu, R., Kawato, M.: Stability and motor
adaptation in human arm movements. Biological Cybernet-
ics 94, 20-32 (1998)

12. Castillo, E.: Run-to-run process control: literature review
and extensions. J. Qual. Technol. 29, 184-196 (1997)

13. Chaffin, D.: Human motion simulation for vehicle and
workplace design. Human Factors and Ergonomics in Man-
ufacturing 17, 475-484 (2007)

14. Cheah, C., Wang, D.: Learning impedance control for
robotic manipulators. IEEE Transactions on Robotics and
Automation 14, 452-465 (1998)

15. Colette, C., Micaelli, A., Andriot, C., Lemerle, P.: Robust
balance optimization control of humanoid robots with mul-
tiple non coplanar grasps and frictional contacts. In: Pro-
ceedings of the IEEE International Conference on Robotics
and Automation, pp. 3187-3193. Pasadena, USA (2008)

16. Commuri, S., Lewis, F.: Adaptive-fuzzy logic control of
robot manipulators. In: IEEE International Conference on
Robotics and Automation, vol. 3, pp. 2604-2609. Minneapo-
lis, MN (1996)



14 Giovanni De Magistris et al.

17. De Magistris, G.: Dynamic digital human model control
design for the assessment of the workstation ergonomics.
PhD Thesis - Pierre and Marie Curie University (2013)

18. De Magistris, G., Micaelli, A., Andriot, C., Savin, J.,
Marsot, J.: Dynamic virtual manikin control design for
the assessment of the workstation ergonomy. In: First In-
ternational Symposium on Digital Human Modeling. Lyon
(2011)

19. De Magistris, G., Micaelli, A., Evrard, P., Andriot, C.,
Savin, J., Gaudez, C., Marsot, J.: Dynamic control of DHM
for ergonomic assessments. International Journal of Indus-
trial Ergonomics 43, 170-180 (2013)

20. De Magistris, G., Micaelli, A., Savin, J., Gaudez, C.,
Marsot, J.: Dynamic digital human model for ergonomic
assessment based on human-like behaviour and requiring a
reduced set of data for a simulation. In: Second Interna-
tional Digital Human Model Symposium 2013. Ann Arbor,
USA (2013)

21. Fitts, P.: The information capacity of the human motor
system in controlling the amplitude of movement. Journal
of Experimental Psychology 47, 381-391 (1954)

22. Flash, T., Hogan, N.: The coordination of arm move-
ments: an experimentally confirmed mathematical model.
Journal of Neuroscience 7, 1688-1703 (1985)

23. Franklin, D., Burdet, E., Osu, R., Tee, K., Chew, C., Mil-
ner, T., Kawato, M.: CNS learns stable, accurate, and effi-
cient movements using a simple algorithm. J Neuroscience
28, 11165-11173 (2008)

24. Ganesh, G., Albu-Schaeffer, A., Haruno, M., Kawato, M.,
Burdet, E.: Biomimetic motor behavior or simultaneous
adaptation of force, impedance and trajectory in interac-
tion tasks. In: IEEE International Conference on Robotics
and Automation. Anchorage, Alaska, USA (2010)

25. Gomi, H., Osu, R.: Task-dependent viscoelasticity of hu-
man multijoint arm and its spatial characteristics for in-
teraction with environments. Journal of Neuroscience 18,
8965-8978 (1998)

26. Gribble, P., Ostry, D.: Compensation for interaction
torques during single and multijoint limb movement. Jour-
nal of Neurophysiology 82, 2310-2326 (1999)

27. Grossman, T., Balakrishnan, R.: Pointing at trivariate
targets in 3d environments. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp.
447-454. New York (2004)

28. Haddadin, S., Albu-Schffer, A., Hirzinger, G.: Require-
ments for safe robots: Measurements, analysis & new in-
sights. International Journal on Robotics Research 28,
1507-1527 (2009)

29. Hanavan, E.: A mathematical model of the human body.
Wright-Patterson Air Force Base Report No. AMRLTR-
102, 64-102 (1964)

30. Hogan, N.: Impedance control: an approach to
manipulation-part i: Theory; part ii: Implementation; part
iii: Applications. Transaction ASME J. Dynamic Systems,
Measurement and Control 107, 11-24 (1985)

31. Hogan, N.: Mechanical impedance of single- and multi-
articular systems. j. m. winters & s.l. woo. springerverlag.
Multiple muscle systems: Biomechanics and movement or-
ganization (1990)

32. Hovland, G., Sikka, P., McCarragher, B.: Skill acquisition
from human demonstration using a hidden markov model.
In: IEEE International Conference on Robotics and Au-
tomation, vol. 3, pp. 2706-2711. Minneapolis, MN (1996)

33. Hsu, L.: Self-oscillating adaptive systems (soas) without
limit-cycles. In: Proceedings of the American Control Con-
ference, vol. 13. Albuquerque, New Mexico (1997)

34. Hyman, R.: Stimulus information as a determinant of
reaction time. Journal of Experimental Psychology 45, 188-
196 (1953)
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A Relation between cartesian space and joint space

Using Eqs. 1, the interaction dynamics is:

MṪ +NT +G = Lτ + JT
c Wc + JT

endW
i
end (33)

Given an interaction wrench W i
end.

In this paper, we treat the DHM control where the floating base is the foot. We consider cases with the foot fixed to the ground. In
this way, we obtain a completely actuated DHM with fixed-base robots characteristics. The dynamic model of DHM is:

Mq q̈ +Nq q̇ +Gq = τ + JT
c,qWc + JT

end,qW
i
end (34)

with Mq = LTML, Nq = LTNL, Gq = LTG, JT
c,q = LT JT

c and JT
end,q = LT JT

end. When the only contact with the ground is the foot

and it is the root, we obtain JcL = 0.
Since ρ = Sq and S is a matrix to select a part of the actuated degrees of freedom (S = [I 0]) to obtain a dyamic model independent
of non-sliding contact forces at known fixed locations in Eq. 1 such as the contacts between the feet and the ground, we can write the
system as:

Mρρ̈+Nρρ̇+Gρ = τρ + JT
end,ρW

i
end (35)

with Mρ = SMqST , Nρ = SNqST , Gρ = SGq and JT
end,ρ = SJT

end,q .

From Eq. 35 and since δW i
end = Kendvec(H

−1
endδHend) = KendJend,qδq = KendJend,qδ(S

tρ) = KendJend,ρδρ, we obtain:

δτρ + δ(JT
end,ρW

i
end) = δτρ + (δJT

end,ρ)W
i
end + JT

end,ρδW
i
end = δτρ + (δJT

end,ρ)W
i
end + JT

end,ρKendJend,ρδρ = 0 (36)

Since δτρ = −Kρδρ and Eq. 36, we obtain:

Kρ = −
δτρ

δρ
= JT

end,ρKendJend,ρ +
∂JT

end,ρ

∂ρ
W i

end (37)

Finally, the cartesian impedance is:

Kend = J†T
end,ρ

(
Kρ −

∂JT
end,ρ

∂ρ
W i

end

)
J†
end,ρ (38)

with J†
end,ρ the dynamic pseudo-inverse [38] defined as:

J†
end,ρ = M−1

ρ JT
end,ρ(Jend,ρM

−1
ρ JT

end,ρ)
−1 (39)

It can be similarly obtained Bend = J†T
end,ρBρJ

†
end,ρ.

B Convergence Analysis

B.1 Motion error cost function

The first derivative of ME (Eq. 5) can be calculated as follows:

ṀE = 1
2
d
dt

[ϵT (J†T
end,ρMρJ

†
end,ρ)ϵ] =

1
2
[ϵ̇T (J†T

end,ρMρJ
†
end,ρ)ϵ

+ϵT (J̇†T
end,ρMρJ

†
end,ρ + J†T

end,ρṀρJ
†
end,ρ + J†T

end,ρMρJ̇
†
end,ρ)ϵ+ ϵT (J†T

end,ρMρJ
†
end,ρ)ϵ̇]

(40)

with

ϵ = V − V ∗, ϵ̇ = A−A∗ (41)

and V ∗ = V d − bδ(Hd, Hr). V d is the velocity obtained by minimum jerk planner. A∗ is the derivative of V ∗.
Matrix Mρ is symmetric, we therefore obtain:

ṀE = [ϵT (J†T
end,ρMρJ

†
end,ρ)ϵ̇] +

1

2
[ϵT (J†T

end,ρṀρJ
†
end,ρ)ϵ] + [ϵT (J†T

end,ρMρJ̇
†
end,ρ)ϵ] (42)

The relationship between ρ velocity and Cartesian space velocity can be expressed as:

V = Jend,ρρ̇ ⇒ ρ̇ = J†
end,ρV (43)

Differentiating Eq. 43, the cartesian acceleration term can be found as:

A = Jend,ρρ̈+ J̇end,ρρ̇ (44)
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then the equation of robot motion in joint space can also be represented in Cartesian space coordinates by the relationship:

ρ̈ = J†
end,ρ(A− J̇end,ρρ̇) = J†

end,ρ(A− J̇end,ρJ
†
end,ρV ) (45)

Substituting Eqs. 45 and 43 into Eq. 35 yields:

MρJ
†
end,ρ[A− J̇end,ρJ

†
end,ρV ] +NρJ

†
end,ρV +Gρ = τρ + JT

end,ρW
i
end (46)

Multiplying both side by J†T
end,ρ, we obtain:

(J†T
end,ρMρJ

†
end,ρ)A = [−J†T

end,ρNρJ
†
end,ρ + J†T

end,ρMρJ
†
end,ρJ̇end,ρJ

†
end,ρ]V − J†T

end,ρGρ + J†T
end,ρτρ +W i

end (47)

Using Eq. 10, we otbain:

(J†T
end,ρMρJ

†
end,ρ)A = [−J†T

end,ρNρJ
†
end,ρ + J†T

end,ρMρJ
†
end,ρJ̇end,ρJ

†
end,ρ]V − J†T

end,ρGρ + J†T
end,ρτ

ff
ρ −W d

end − J†T
end,ρτ

l
ρ +W i

end (48)

where τffρ is the torque to compensate for DHM dynamics. By definition, it can be written as:

τffρ ≡ Mρρ̈
∗ +Nρρ̇

∗ +Gρ ≡ MρJ
†
end,ρA

∗ + [NρJ
†
end,ρ −MρJ

†
end,ρJ̇end,ρJ

†
end,ρ]V

∗ +Gρ (49)

Using Eq. 41 and substituting Eq. 49 into Eq. 48 yields:

(J†T
end,ρMρJ

†
end,ρ)ϵ̇ = [−J†T

end,ρNρJ
†
end,ρ + J†T

end,ρMρJ
†
end,ρJ̇end,ρJ

†
end,ρ]ϵ+W i

end − J†T
end,ρτ

l
ρ −W d

end (50)

Substituting Eq. 50 into Eq. 42 yields:

ṀE =ϵT [(−J†T
end,ρNρJ

†
end,ρ + J†T

end,ρMρJ̇
†
end,ρ + J†T

end,ρMρJ
†
end,ρJ̇end,ρJ

†
end,ρ)ϵ+W i

end − J†T
end,ρτ

l
ρ −W d

end]

+ 1
2
[ϵT (J†T

end,ρṀρJ
†
end,ρ)ϵ] + [ϵT (J†T

end,ρMρJ̇
†
end,ρ)ϵ]

= 1
2
ϵT [J†T

end,ρ(Ṁρ − 2Nρ)J
†
end,ρ]ϵ+ ϵT [W i

end − J†T
end,ρτ

l
ρ −W d

end] + ϵT [J†T
end,ρMρJ̇

†
end,ρ + J†T

end,ρMρJ
†
end,ρJ̇end,ρJ

†
end,ρ]ϵ

(51)

Matrix Ṁρ − 2N is skew-symmetry [60] and for this reason, we have:

ϵT (J†T
end,ρ(Ṁρ − 2Nρ)J

†
end,ρ)ϵ = 0 (52)

Let us now analyze the third term of Eq. 51. Using Eq. 39, since Jend,ρJ
†
end,ρ = I and J̇end,ρJ

†
end,ρ + Jend,ρJ̇

†
end,ρ = 0, we obtain:

J†T
end,ρMρJ̇

†
end,ρ = (Jend,ρM

−1
ρ JT

end,ρ)
−1Jend,ρM

−1
ρ MρJ̇

†
end,ρ = (Jend,ρM

−1
ρ JT

end,ρ)
−1Jend,ρJ̇

†
end,ρ

J†T
end,ρMρJ

†
end,ρJ̇end,ρJ

†
end,ρ = (Jend,ρM

−1
ρ JT

end,ρ)
−1Jend,ρM

−1
ρ MρJ

†
end,ρJ̇end,ρJ

†
end,ρ = −(Jend,ρM

−1
ρ JT

end,ρ)
−1Jend,ρJ̇

†
end,ρ

(53)

Substituting Eq. 52 and Eq. 53 into Eq. 51, we obtain:

ṀE = ϵT [W i
end − J†T

end,ρτ
l
ρ −W d

end] (54)

Using Eqs. 54, 11 and 38, we have:

ṀE=−ϵTBini
endϵ− ϵTKl

endδ(H
d, Hr)− ϵTBl

endδ(V
d, V r)− ϵT J†T

end,ρτ
l
ρ + ϵTW i

end

=−ϵTBini
endϵ− ϵT

[
J†T
end,ρ

(
Kρ −

∂JT
end,ρ

∂ρ
W i

end

)
J†
end,ρ

]
δ(Hd, Hr)− ϵT (J†T

end,ρB
l
ρJ

†
end,ρ)δ(V

d, V r)− ϵT J†T
end,ρτ

l
ρ + ϵTW i

end

(55)

We can derive δME(t) = ME(t)−ME(t−D) from Eqs. 55 and 8 as:

δME(t) =
∫ t
t−D{−ϵT (σ)Bini

end(σ)ϵ(σ)− ϵT (σ)[J†T
end,ρK̃J†

end,ρ](σ)δ(H
d, Hr)(σ)− ϵT (σ)[J†T

end,ρB̃J†
end,ρ](σ)δ(V

d, V r)(σ)

−ϵT (σ)[J†T
end,ρτ̃ ](σ)− ϵT (σ)[J†T

end,ρK
min
ρ J†

end,ρ](σ)δ(H
d, Hr)(σ)

−ϵT (σ)[J†T
end,ρB

min
ρ J†

end,ρ](σ)δ(V
d, V r)(σ)− ϵT (σ)[J†T

end,ρτ
min
ρ ](σ) + ϵT (σ)W i

end(σ)}dσ
(56)

Any smooth interaction force can be approximated by the linear terms of its Taylor expansion along the reference trajectory as follows:

W i
end(t) = W i,0

end(t) + [J†T
end,ρK

i
ρJ

†
end,ρ](t)δ(H

d, Hr) + [J†T
end,ρB

i
ρJ

†
end,ρ](t)δ(V

d, V r) (57)

where W i,0
end is the zero order term compensated by J†T

end,ρτ
min; [J†T

endK
i
ρJ

†
end] and [J†T

endB
i
ρJ

†
end] are the first order coefficients. From

Eqs. 57 and 41, we can obtain the values for Kmin
ρ (t), Bmin

ρ (t) and τmin
ρ (t) to guarantee stability (Eq. 58). Different W i

end will

yield different values of Kmin
ρ (t), Bmin

ρ (t) and τmin
ρ (t) and when W i

end is zero or is assisting the tracking task ||ϵ(t)|| → 0, Kmin
ρ (t),

Bmin
ρ (t) and τmin

ρ (t) will be 0.

Kmin
ρ (t), Dmin

ρ (t) and τmin
ρ (t) represent the minimal required effort of stiffness, damping and feedforward force required to guarantee∫ t

t−D{−ϵT (σ)(J†T
end,ρK

min
ρ J†

end,ρ)(σ)δ(H
d, Hr)(σ)− ϵT (σ)(J†T

end,ρB
min
ρ J†

end,ρ)(σ)δ(V
d, V r)(σ)

−ϵT (σ)J†T
end,ρτ

min
ρ (σ) + ϵT (σ)W i

end(σ)}dσ ≤ 0
(58)

so that from Eq. 55 we have
∫ t
t−D ṀE(σ)dσ ≤ 0.

From Eqs. 56 and 58, we can write:

δME(t) ≤
∫ t
t−D{−ϵT (σ)Bini

end(σ)ϵ(σ)− ϵT (σ)(J†T
end,ρK̃J†

end,ρ)(σ)δ(H
d, Hr)(σ)

−ϵT (σ)(J†T
end,ρB̃J†

end,ρ)(σ)δ(V
d, V r)(σ)− ϵT (σ)(J†T

end,ρτ̃)(σ)}dσ
(59)
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B.2 Metabolic cost function

The metabolic cost function is:

MC(t) =
1

2

∫ t

t−D
Φ̃T (σ)Q−1Φ̃(σ)dσ (60)

According to the definition of Φ(t) and Q, the following properties of vec(·), ⊗ and tr(·) operators:

vec(ΩY U) = (UT ⊗Ω)vec(Y ), tr(ΩY ) = vec(ΩT )T vec(Y ), tr(ΩY ) = tr(Y Ω) (61)

and using the symmetry of Q−1
K , we obtain:

vec(K̃T )T (I ⊗QK)−1vec(K̃T ) = vec(K̃T )T ((Q−1
K )T ⊗ I)vec(K̃T ) = vec(K̃T )T vec(K̃TQ−1

K ) = tr{K̃K̃TQ−1
K } = tr{K̃TQ−1

K K̃} (62)

In the same way, can be found the terms corresponding to B̃ and τ̃ .
For these reasons, we can define δMC(t) = MC(t)−MC(t−D) as:

δMC(t) = 1
2

∫ t
t−D{tr{[K̃T (σ)Q−1

K K̃(σ)]− [K̃T (σ −D)Q−1
K K̃(σ −D)]}+ tr{[B̃T (σ)Q−1

B B̃(σ)]− [B̃T (σ −D)Q−1
B B̃(σ −D)]}

+[τ̃T (σ)Q−1
τ τ̃(σ)]− [τ̃T (σ −D)Q−1

τ τ̃(σ −D)]}dσ
(63)

From Eqs. 13, 14 and 16, we obtain:

δK = QK{J†
end,ρ[ϵ(t)δ(H

d, Hr)T ]J†T
end,ρ − γ(t)Kl

ρ(t)}
δB = QB{J†

end,ρ[ϵ(t)δ(V
d, V r)T ]J†T

end,ρ − γ(t)Bl
ρ(t)}

δτ = Qτ{J†
end,ρϵ(t)− γ(t)τ lρ(t)}

(64)

Using the symmetry of Q−1
K , K̃(σ)− K̃(σ −D) = δK(σ) and Eq. 64, the first term in the integrand of Eq. 63 can be written as:

tr{[K̃T (σ)Q−1
K K̃(σ)]− [K̃T (σ −D)Q−1

K K̃(σ −D)]} = tr{[K̃T (σ)− K̃T (σ −D)]TQ−1
K [2K̃T (σ)− K̃T (σ) + K̃T (σ −D)]}

= tr{δKT (σ)Q−1
K [2K̃(σ)− δK(σ)]} = −tr{δKT (σ)Q−1

K δK(σ)}+ 2 tr{δK(σ)Q−1
K K̃(σ)}

= −tr{δKT (σ)Q−1
K δK(σ)}+ 2ϵT (σ)(J†T

end,ρK̃J†
end,ρ)(σ)δ(H

d, Hr)(σ)− 2γ(σ)tr{(Kl
ρ)

T (σ)K̃(σ)}
(65)

In the same way, can be found the second terms in the integrand of Eq. 63 as:

tr{B̃T (σ)Q−1
B B̃(σ)− B̃T (σ −D)Q−1

B B̃(σ −D)}
= −tr{δBT (σ)Q−1

B δB(σ)}+ 2ϵT (σ)(J†T
end,ρB̃J†

end,ρ)(σ)δ(H
d, Hr)(σ)− 2γ(σ)tr{(Bl

ρ)
T (σ)B̃(σ)} (66)

and third terms in the integrand of Eq. 63 as:

[τ̃T (σ)Q−1
τ τ̃(σ)]− [τ̃T (σ −D)Q−1

τ τ̃(σ −D)] = −[δτT (σ)Q−1
τ δτ(σ)] + 2ϵT (σ)(J†T

end,ρτ̃)(σ)− 2γ(σ)(τ lρ)
T (σ)τ̃(σ) (67)

Replacing Eqs. 65, 66 and 67 into 63, we obtain:

δMC(t)=− 1
2

∫ t
t−D[δΦ̃T (σ)Q−1δΦ̃(σ)]dσ −

∫ t
t−D[γ(σ)Φ̃T (σ)Φ(σ)]dσ

+
∫ t
t−D[ϵ

T (σ)(J†T
end,ρK̃J†

end,ρ)(σ)δ(H
d, Hr)(σ) + ϵT (σ)(J†T

end,ρB̃J†
end,ρ)(σ)δ(V

d, V r)(σ)+ϵT (σ)(J†T
end,ρτ̃)(σ)]dσ

(68)

Combining Eqs. 59 and 68, we obtain the first difference of cost function:

δC(t) = C(t)− C(t−D) = δME(t) + δMC(t)

≤ − 1
2

∫ t
t−D[δΦ̃T (σ)Q−1δΦ̃(σ)]dσ −

∫ t
t−D[γ(σ)Φ̃T (σ)Φ̃+ γ(σ)Φ̃T (σ)Φd(σ) + ϵT (σ)Bini

end(σ)ϵ(σ)]dσ
(69)

To obtain δC(t) ≤ 0, a sufficient condition is:

ϵTBini
endϵ+ γΦ̃T Φ̃+ γΦ̃TΦd ≥ λB ||ϵ||2 + γ||Φ̃||2 − γ||Φ̃||||Φd|| ≥ 0 (70)

where λB as the infimum of the smallest eigenvalue of Bini
end.

Replacing γ(t) = p
1+u||ϵ(t)||2 into Eq. 70, we obtain:

λBu||ϵ||4 + λB ||ϵ||2 + p||Φ̃||2 − p||Φ̃||||Φd|| ≥ 0 (71)

To find the regions of points (||ϵ||2, ||Φ̃||) for each of which Eq. 71 holds, we need firstly to determine the set of points that satisfies:

λBu||ϵ||4 + λB ||ϵ||2 + p||Φ̃||2 − p||Φ̃||||Φd|| = 0 (72)

Eq. 72 is an ellipse passing trough the points (||ϵ||2 = 0, ||Φ̃|| = 0) and (||ϵ||2 = 0, ||Φ̃|| = ||Φd||).
To find the canonical equation of this ellipse, we need only to complete the squares and we obtain:

λBu(||ϵ||2 + 1
2u

)2 + p(||Φ̃|| − ||Φd||
2

)2

λB
4u

+
p||Φd||2

4

= 1 (73)
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By Krasovskii-LaSalle principle, ||ϵ||2 and ||Φ̃|| will converge to an invariant set Ωs ⊆ Ω on which δC(t) = 0, where Ω is the bounding
set defined as:

Ω ≡

(||ϵ||2, ||Φ̃||),
λBu(||ϵ||2 + 1

2u
)2 + p(||Φ̃|| − ||Φd||/2)2

λB
4u

+
p||Φd||2

4

≤ 1

 (74)

If the parameter γ is constant [24], the bounding set is:{
(||ϵ||2, ||Φ̃||),

4λB ||ϵ||2 + 4γ(||Φ̃|| − ||Φd||/2)2

γ||Φd||2
≤ 1

}
(75)

γ does not affect convergence, but the convergence speed and size of convergence set.

C Minjerk

C.1 Formal definition

Using Eq. 20, we can write the inside term of the integral as:

P =

∥∥∥∥ d3

dt3
r(s)

∥∥∥∥2 =

∥∥∥∥ d2

dt2
r′(s)ṡ

∥∥∥∥2 =

∥∥∥∥ d

dt
(r′′(s)ṡ2 + r′(s)s̈)

∥∥∥∥2 =
∥∥r′′′(s)ṡ3 + 3r′′(s)ṡs̈+ r′(s)

...
s
∥∥2 (76)

To explicit the invariance with respect to rotations and translations of the minimization problem in Eq. 76, we can define uniquely 3D
curve [56] by its curvature R(s) and its torsion η(s).

The path r satisfies Frenet’s formulas:

t = Rn n′ = ηb−Rt b′ = −ηn (77)

From geometry, we know that:

r′ = t′ r′′ = Rn r′′′ = R′n+R(ηb−Rt) (78)

We replacing Eq. 78 in Eq. 76 and we obtain:

P =
∥∥n(R′ṡ3 + 3Rṡs̈) + t(

...
s −R2ṡ3) + b(ṡ3Rη)

∥∥2 (79)

n, t and b are orthogonal and thus we obtain:

P = (R′ṡ3 + 3Rṡs̈)2 + (
...
s −R2ṡ3)2 + (ṡ3Rη)2 (80)

C.2 Relation to the 2/3 power law

We want to find the relation of Eq. 80 to 2/3 power law.
To obtain this, we define a function:

Zs = ṡ3R(s) (81)

Zs corresponds to the term multiplying the torsion η in Eq. 80.
We derive Eq. 81 respect to time and we obtain:

R′(s)ṡ4 + 3ṡ2s̈R(s) = Z′
sṡ

R′(s)ṡ3 + 3ṡs̈R(s) = Z′
s

(82)

The term R′(s)ṡ3 + 3ṡs̈R(s) is equal to the term multiplying n in Eq. 79. We now substitute Eq. 82 in Eq. 79:

P =
∥∥n(Z′

s) + t(
...
s − ZsR) + b(Zsη)

∥∥2 = Z′2
s + (

...
s − ZsR)2 + Z2

sη
2 (83)

From Eq. 81, we have:

ṡ(t) = Z
1
3
s R− 1

3 (84)

In the 2/3 power law Z
1
3
s = const and Z′

s = 0 and it is equivalent to setting the coefficient of n of the instantaneous jerk to zero, and
the coefficient of b proportional to the coefficient of t. To demonstrate this, we analyze the 2D power law:

(x′2 + y′2)1/2 = const

(√
(x′y′′ − y′x′′)2)

(x′2 + y′2)3/2

)
⇒ x′y′′ − y′x′′ = const (85)

Taking derivatives, we obtain:

x′

y′
=

x′′′

y′′′
, r′ = r′′′ (86)

The jerk vector points is orthogonal to n and aligned with t. Thus, the jerk along n is zero.


