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IMPACT OF DEPENDENCE ON SOME MULTIVARIATE RISK INDICATORS

V. MAUME-DESCHAMPS, D. RULLIÈRE, AND K. SAID

Abstract. The minimization of some multivariate risk indicators may be used as an allocation
method, as proposed in Cénac et al. [9]. The aim of capital allocation is to choose a point in
a simplex, according to a given criterion. In a previous paper [17] we proved that the proposed
allocation technique satisfies a set of coherence axioms. In the present one, we study the properties
and asymptotic behavior of the allocation for some distribution models. We analyze also the impact
of the dependence structure on the allocation using some copulas.

Introduction

Natural phenomena, financial events and risks are usually modeled through random vectors or
processes. In these fields, considering dependencies between random variables is necessary. In
actuarial science, this issue has led to the development of multivariate risk theories. Indeed, an
insurance company is generally exposed to several risks which cannot be assumed to be indepen-
dent. It is therefore necessary to adopt a multivariate approach that takes into account both the
marginal structures of risks and their dependence structure.

Multivariate risk theory is based on dependence modeling and includes multivariate ruin prob-
abilities and multivariate risk measures. In the univariate case, ruin probability has been widely
studied since the beginning of the 20th century (Lundberg (1903) [16], Cramer (1930) [7]). In mul-
tivariate contexts, several definitions are proposed for ruin probability. Hult and Lindskog (2006)
[14] defined a multivariate ruin probability based on a notion of ruin sets. Cai and Li (2007) [4]
defined different finite-time ruin probabilities. Risk measure theory was also enriched by some
multivariate risk measures definitions. Jouini et al. (2004) [15] defined vector-valued coherent risk
measures. Cousin and Di Bernardino (2013) [6] introduced some multi-dimensional extensions of
usual univariate risk measures such as the Value-at-Risk. These measure are multi-dimensional
valued, and thus cannot take benefit from a full order. Dhaene et al. (2012) introduced of real
valued family for risk measures for mono-periodic multivariate processes ([11]). In multi-periodic
context, Cénac et al. (2012) [9] defined new multivariate risk indicators as sum of expected local
ruin amounts using penalty functions.

Capital allocation may be seen as a direct application of multivariate risk theory. Allocating
a capital in actuarial contexts means distributing a positive quantity representing an allocation
capital in a simplex. For insurance industry the calculation of the regulatory economic capital,
which is called the Solvency Capital Requirement, is well controlled and its methodology is almost
imposed by the supervisory authorities of the sector. Nevertheless, the allocation of this capital
may be considered as an internal exercise for each company, and constitutes a management choice
whose success is a key factor for firm performance optimization. It can also be seen as an indicator
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of its good governance.

Several allocation methods were proposed in the actuarial literature. Some are driven from
ideas of risk allocation using Euler or Shapley principles (see as examples Tasche (2007) [21] for
the Euler allocation principle and Denault(2001) [10] for the Shapley allocation principle). Others
are based on the minimization of some ruin probabilities or multivariate risk indicators. In this
context, Cénac et al. (2012) [9] proposed a capital allocation by minimizing some multivariate
risk indicators. They presented a numerical optimization algorithm to find the optimal allocation
in some general cases. In [8] properties and asymptotic behavior of the allocation are studied in
some bivariate cases. The impact of dependence on capital allocation was studied for certain cases
of Euler’s method by Bargès et al. (2009) [2] and Cossette et al. (2012) [5].

In this paper, we give a further study on the allocation method by minimizing some multivariate
risk indicators. The idea of minimizing multivariate risk indicators seems from our point of view
more suited for the ORSA1 approach of Solvency 2 European norms. In a recent paper [17], we
show that this method satisfies a set of coherence axioms. In the present paper, we study the im-
pact of marginal distributions and dependence structure on the optimal allocation. We generalize
the results presented in bivariate cases by Cénac et al. (2014) [8]. Moreover, we study the impact
of the dependence structure on the allocation using some parametric copulas. Our main results
are explicit formulas for various classes of multivariate processes, as well as the limit behavior of
the allocation as the capital goes to infinity.

The paper is organized as follows. In the first section, we recall the allocation method by
minimizing multivariate risk indicators. The second section is a generalization in higher dimension
of the results presented for the bivariate case in Cénac et al.(2014) [8]. We present some explicit
formulas obtained for some particular models, and we discuss the asymptotic behavior of the
optimal allocation for these models. The impact of the dependence structure on the allocation
is studied in Section 3 through the analysis of comonotonic cases and some examples of copulas
(FGM, Marshall-Olkins...).

1. Optimal allocation

In this section, we recall one capital allocation principle that consists of minimizing some risk
indicators. This method was introduced in Cénac et al. (2012) [9]. It is based on the minimization
of some multivariate risk indicators.

In a multivariate risk framework, we consider an insurance group composed of d branches or
business lines. We denote by u the initial capital of the group. Let Xp be a vectorial risk process
Xp = (X1

p , . . . , X
d
p ), where Xk

p corresponds to the losses of the kth business line during the pth

period. We denote by Rk
p the reserve of the kth line at time p, so: Rk

p = uk−
p∑
`=1

Xk
` , where uk ∈ R+

is the initial capital of the kth business line, then u = u1 + · · ·+ ud.

Cénac et al. (2012) [9] defined the two following multivariate risk indicators, given penalty
functions gk:

1Own Risk and Solvency Assessment
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• The indicator I:

I (u1, . . . , ud) =
d∑

k=1
E

 n∑
p=1

gk(Rk
p)11{Rkp<0}11{∑d

j=1 R
j
p>0}

,
• The indicator J :

J (u1, . . . , ud) =
d∑

k=1
E

 n∑
p=1

gk(Rk
p)11{Rkp<0}11{∑d

j=1 R
j
p<0}

,
gk : R− → R+ are C1, convex functions with gk(0) = 0, gk(x) ≥ 0 for x < 0, k = 1, . . . , d. They
represent the cost that each branch has to pay when it becomes insolvent while the group is solvent
for the I indicator, or while the group is also insolvent in the case of the J indicator.
These multivariate risk indicators are a generalization of the mono-periodic indicator family intro-
duced in Dhaene et al.(2012)[11].

The indicator I represents the expected sum of penalty amounts of local ruins, knowing that
the group remains solvent. In the case of the indicator J , the local ruin severities are taken into
account only in the case of group insolvency.

The idea of the optimal allocation is to allocate some capital u by minimizing these indi-
cators. This is finding an allocation vector (u1, . . . , ud) that minimizes the indicator such as
u = u1 + · · · + ud, where u is the initial capital that need to be shared among all branches. In
our paper [17], we explained why this capital allocation method can be considered as economically
coherent.

By using optimization stochastic algorithms, one can estimate the minimum of these risk indi-
cators. Cénac et al. (2012) [9] propose a Kiefer-Wolfowitz version of the mirror algorithm as a
convergent algorithm under general assumptions to find optimal allocation minimizing the indictor
I. This algorithm is effective to solve the optimal allocation problem, especially for a large number
of business lines, and for allocation over several periods.

Since the solvency capital requirement (SCR) is calculated for one year time horizon only, it
seems more practical to focus on the case of mono-periodic allocation.
The risk Xk corresponds to the losses of the kth branch during one period. It is a positive ran-
dom variable in our context. We denote by u the initial capital of the firm, it represents the
allocation capital and it can be, as an example, the SCR or another investment capital. The
quantity uk represents the portion of capital allocated to the kth branch, then ∑d

i=1 ui = u. The
simplex Udu = {v = (v1, . . . , vd) ∈ [0, u]d,∑d

i=1 vi = u} is the set of all possible allocations. For
all i ∈ {1, . . . , d} we denote αi = ui

u
, then, ∑d

i=1 αi = 1. For (u1, . . . , ud) ∈ Udu , we define also
the reserve of the kth business line at the end of the period as Rk = uk − Xk. The aggregate
sum of risks is S = ∑d

i=1Xi, and let S−i = ∑d
j=1;j 6=iXj for all i ∈ {1, . . . , d}. Finally, FZ is the

distribution function of a random variable Z, F̄Z is its survival function and fZ its density function.

In order to ensure the existence and uniqueness of the indicators minimum in Udu , we suppose
that for at least one k ∈ {1, . . . , d}, gk is strictly convex. We also assume that the joint density
f(Xk,S) support contains [0, u]2 (see [9]). In this case, the indicators I and J are strictly convex
and admit a unique minimum.
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Now we focus on the optimality condition for the indicators I and J .
For an initial capital u, and an optimal allocation minimizing the multivariate risk indicator I, we
look for u∗ ∈ Rd

+ such that:
I (u∗) = inf

v1+···+vd=u
I (v), v ∈ Rd

+.

We assume that the functions gk are differentiable and such that for all k ∈ {1, . . . , d}, the
derivative g′k(uk −Xk) admits a moment of order one, and that the random vector (Xk, S) has a
joint density distribution denoted by f(Xk,S). Under these assumptions, the risk indicators I and
J are differentiable, and in this case, we can calculate the following gradients:

(∇I(v))i =
d∑

k=1

∫ +∞

vk

gk(vk − x)fXk,S(x, u)dx+ E[g′i(vi −Xi)11{Xi>vi}11{S≤u}]

and, (∇J(v))i =
d∑

k=1

∫ +∞

vk

gk(vk − x)fXk,S(x, u)dx+ E[g′i(vi −Xi)11{Xi>vi}11{S≥u}].

Using the Lagrange multipliers method, we obtain an optimality condition verified by the unique
solution to this optimization problem:
(1.1) E[g′i(ui −Xi)11{Xi>ui}11{S≤u}] = E[g′i(uj −Xj)11{Xj>uj}11{S≤u}], ∀j ∈ {1, . . . , d}2.

A natural choice for penalty functions is the ruin severity: gk(x) = |x|. In that case, and if the joint
density f(Xk,S) support contains [0, u]2, for at least one k ∈ {1, . . . , d}, our optimization problem
has a unique solution.

In Maume-Deschamps et al. (2015) [17], we showed that in the case of penalty functions
gk(x) = |x| ∀k ∈ {1, . . . , d}, and for continuous random vector (X1, . . . , Xd) such that the joint
density f(Xk,S) support contains [0, u]2, for at least one k ∈ {1, . . . , d}, the optimal allocation by
minimization of the indicators I and J is a symmetric riskless full allocation. It satisfies also the
properties of comonotonic additivity, positive homogeneity, translation invariance, monotonicity,
and continuity.

We may write the indicators as follows:

I (u1, . . . , ud) =
d∑

k=1
E
(
|Rk|11{Rk<0}11{∑d

i=1 R
i≥0}

)

=
d∑

k=1
E
(

(Xk − uk)11{Xk>uk}11{∑d

i=1 Xi≤u}

)
=

d∑
k=1

E
(
(Xk − uk)+11{S≤u}

)
,

and,

J (u1, . . . , ud) =
d∑

k=1
E
(
|Rk|11{Rk<0}11{∑d

i=1 R
i≤0}

)

=
d∑

k=1
E
(

(Xk − uk)11{Xk>uk}11{∑d

i=1 Xi≥u}

)
=

d∑
k=1

E
(
(Xk − uk)+11{S≥u}

)
.

In the special case where gk(x) = |x|, 1.1 becomes:
(1.2) P (Xi > ui, S ≤ u) = P (Xj > uj, S ≤ u) ,∀(i, j) ∈ {1, 2, . . . , d}2.

For the J indicator, this condition can be written:
(1.3) P (Xi > ui, S ≥ u) = P (Xj > uj, S ≥ u) ,∀(i, j) ∈ {1, 2, . . . , d}2.
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Some explicit and semi-explicit formulas for the optimal allocation can be obtained with this
optimality condition. Our problem reduces to the study of this allocation depending on the nature
of the distributions of the risk Xk and on the form of dependence between them.

2. Some general results in the independence case

In this section we generalize the results presented in dimension 2 by Cénac et al. (2014) in the
first section of their paper [8] to higher dimension.
The results presented here give explicit forms to the optimal allocation for some specific distribu-
tions. This could be used as a benchmark to test optimization algorithms convergence.

We also get some asymptotic results, when the capital u goes to infinity. We study both the
exponential and the sub-exponential cases, and we determine the difference between their asymp-
totic behavior for exponential and Pareto distributions cases.

We consider from now on that the penalty functions are identical and equal to the severity of
local ruin gk(x) = g(x) = |x|,∀k ∈ {1, 2, . . . , d}. The optimality conditions for minimizing the
multivariate risk indicators I and J are given respectively by Equations (1.2) and (1.3). In this
section we focus on the independence case.

Recall that αi = ui
u
∈ [0, 1], so that when u → +∞, we may consider convergent subsequences

in the proofs below. By abuse of notation, we consider lim
u→+∞

αi. In fact, we consider a convergent
subsequence and get the existence of the limit by obtaining the uniqueness of the limit point.

2.1. Independent exponentials.
Assume X1, X2, . . . , Xd are independent exponential random variables with respective parameters
0 < β1 < β2 < · · · < βd. Remark that in the particular case where β1 = β2 = · · · = βd, the optimal
allocation is u1 = · · · = ud = u/d.

Proposition 2.1 (The optimal allocation for the indicator I). The allocation minimizing the risk
indicator I is the unique solution in Udu , of the following equations system:
(2.1)

h(βiαi)− h(βjαj)−
d∑
`=1

A`h(β`)[h(αi · (βi − β`))− h(αj · (βj − β`))] = 0,∀(i, j) ∈ {1, 2, . . . , d}2,

where h is the function defined by h(x) = exp(−u·x), and A` denotes the constants A` =
d∏

j=1,j 6=`

βj
βj − β`

,

for ` = 1, . . . , d.
5



Proof. If Xi ∼ E(βi) are independent exponential random variables, then S−i =
d∑

j=1;j 6=i
Xj have a

generalized Erlang distribution with parameters (β1, β2, . . . , βi−1, βi+1, . . . , βd), so we write:

P

Xi > ui,
d∑
j=1

Xj ≤ u

 = P (Xi > ui)− P

Xi > ui,
d∑
j=1

Xj > u


= F̄Xi(ui)− F̄Xi(u)−

∫ u

ui
F̄S−i(u− s)fXi(s)ds

= h(βiαi)− h(βi)−
d∑
`=1

A`h(β`)h(αi · (βi − β`)) +
d∑
`=1

A`h(βi)

= h(βiαi)−
d∑
l=1

A`h(β`)h(αi · (βi − β`)),

because, F̄Xi(x) = e−βix, F̄S−i(x) =
d∑

`=1,` 6=i
(

d∏
j=1,j 6=`,j 6=i

βj
βj − β`

)e−β`x and
d∑
l=1

A` = 1.

The survival function of the generalized Erlang distribution with parameters (β1, β2, . . . , βd) is
given by:

F̄X(x) =
d∑
`=1

(
d∏

j=1,j 6=`

βj
βj − β`

)e−β`x =
d∑
`=1

A`e
−β`x.

The optimal allocation is the unique solution in Udu , of the following equations system:

P
(
Xi > ui,

d∑
k=1

Xk ≤ u

)
= P

Xj > uj,
d∑
j=k

Xk ≤ u

 ,∀(i, j) ∈ {1, 2, . . . , d}2,

which leads to (2.1). �

The resulting system is a system of nonlinear equations, which can be solved numerically.

Proposition 2.2 (The asymptotic optimal allocation for the indicator I). When the capital u goes
to infinity, the asymptotic optimal allocation satisfies:

lim
u→∞

(
u1

u
,
u2

u
, . . . ,

ud
u

)
=


1
βi
d∑
j=1

1
βj


i=1,2,...,d

.

Proof. Equations system (2.1) is equivalent to:

(2.2) ∀(i, j) ∈ {1, 2, . . . , d}2, h(βiαi)[1−
d∑
`=1

A`h((1− αi)β`)] = h(βjαj)[1−
d∑
`=1

A`h((1− αj)β`)].

Firstly, remark that for all i ∈ {1, 2, . . . , d}, lim
u→∞

sup ui
u
< 1 because if this result was not satisfied

then there would exist i ∈ {1, . . . , d} such that lim
u→∞

ui
u

= lim
u→∞

αi = 1, taking if necessary a
convergent subsequence of αi. For all j 6= i, lim

u→∞
uj
u

= lim
u→∞

αj = 0, and Equations system (1.2)
cannot be satisfied in this case.
Equations system (2.2) is equivalent to:

∀(i, j) ∈ {1, 2, . . . , d}2, h(βiαi − βjαj) = 1−∑d
`=1A`h((1− αj)β`)

1−∑d
`=1A`h((1− αi)β`)

,
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the right side of the last equations system tends to 1 when u tends to ∞, therefore, we deduce
that lim

u→∞
h(βiαi − βjαj) = 1 and consequently:

∀(i, j) ∈ {1, 2, . . . , d}2, lim
u→∞

αi = βj
βi

lim
u→∞

αj,

then, for all i ∈ {1, 2, . . . , d}:

lim
u→∞

αi =

1
βi∑d
j=1

1
βj

.

�

Remark 2.3. Based on the above result, we can conclude that asymptotically:
• since βi < βj we have αi > αj, this means that we allocate more capital to the most risky
business line.
• αi is a decreasing function of βi. This observation is consistent with the previous conclusion.
• αj is an increasing function of βi for j 6= i.

Proposition 2.4 (The optimal allocation for the indicator J). The allocation minimizing the risk
indicator J is the unique solution in Udu , of the following equations system:

(2.3) ∀(i, j) ∈ {1, 2, . . . , d}2,
d∑
`=1

A`h(β`)[h(αi · (βi − β`))− h(αj · (βj − β`))] = 0.

Proof. The proof is similar to that of Proposition 2.1. �

Proposition 2.5 (The asymptotic optimal allocation for the indicator J). When the capital u
goes to infinity, the optimal allocation minimizing the risk indicator J is the following:

lim
u→∞

u1

u
= 1 and lim

u→∞

uj
u

= 0 ∀j ∈ {2, 3, . . . , d}.

Proof. Equations system (2.3) is equivalent to the following one:

∀(i, j) ∈ {1, 2, . . . , d}2,
d∑
`=1

A` · h((1− αi) · (β` − βi)) =
d∑
`=1

A` · h(αj · (βj − β`) + β` − βi).

If lim u1
u
< 1, as u goes to +∞ in the equations of the previous system for i = 1 we get, taking if

necessary a convergent subsequence,

(2.4) ∀j ∈ {2, 3, . . . , d}, lim
u→∞

d∑
`=1

A` · h(αj · (βj − β`) + β` − β1) = A1.

The first terms of these equations can be decomposed into three parts as follows:

lim
u→∞

d∑
`=1

A` · h(αj · (βj − β`) + β` − β1) = A1 · lim
u→∞

h(αj · (βj − β1))

+
j∑
`=2

A` · lim
u→∞

h(αj · (βj − β`) + β` − β1)

+
d∑

`=j+1
A` · lim

u→∞
h(αj · (βj − β`) + β` − β1).

7



For all, j > 1,
j∑
`=2

A` · lim
u→∞

h(αj · (βj − β`) + β` − β1) = 0, because β` − β1 > 0 and βj − β` ≥ 0

for ` ∈ {2, 3, . . . , j}. Moreover,
d∑

`=j+1
A` · lim

u→∞
h(αj · (βj − β`) + β` − β1) = 0, because for all

` ∈ {j + 1, j + 2, . . . , d}, αj · (βj−β`) +β`−β1 = (β`−βj)(1−αj) +βj−β1 > 0. So that 2.4 leads
to ∀j ∈ {1, . . . , d} lim

u→∞
h(αj · (βj − β1)) = 1. We deduce that ∀j ∈ {2, 3, . . . , d}; αj

u→∞= o( 1
u
).

This contradicts the necessary condition: lim
u→∞

∑d
`=1 αj = 1. �

2.2. Some distributions of the sub-exponential family.
In most cases of risk distributions, we cannot give explicit or semi-explicit optimal allocation
formulas, the difficulty comes from the lack of a simple form of the risks sum S and its joint
distribution with each risk Xi. In this section, we present asymptotic results (as u goes to infinity)
for the optimal allocation in the case of some distributions of the sub-exponential family. In this
way, we generalize results of [8] to higher dimension.
We recall the sub-exponential distributions family definition, consisting in distributions of positive
support, with a distribution function that satisfies:

F ∗2(x)
F (x)

x→+∞−→ 2,

where F ∗2 is the convolution of F .
In Asmussen (2000) [1], it is proven that the sub-exponential distributions satisfy also the following
relation, for all d ∈ N∗:

F ∗d(x)
F (x)

x→+∞−→ d,

where F ∗d is the dthconvolution of F .
We shall use the following theorem proved in Cénac and al.

Theorem 2.6 (Sub-exponential distributions [8]). Let X be a random variable with sub-exponential
distribution FX , Y a random variable with support R+, independent of X, and (u, v) ∈ (R+)2, such
that:

• there exists 0 < κ1 < κ2 < 1 such that for u large enough, κ1 ≤ v
u
≤ κ2,

• F̄X(y)
F̄X(x)

x→+∞= O(1), if y = Θ(x)2.
Then,

lim
u→∞

P(X ≥ v, X + Y ≥ u)
F̄X(u)

= 1.

2.2.1. The asymptotic behavior.
Here we examine the asymptotic behavior of the optimal allocation by minimizing the indicators
I and J in the cases of some sub-exponential distributions.
In what follows, (u1, . . . , ud) denotes the optimal allocation of u associated to the risk indicator I.

Theorem 2.7. Let (X1, X2, . . . , Xd) be continuous positive and independent random variables.
Assume that ∀(i, j) ∈ {1, 2, . . . , d}2:

(1) F̄Xi(x) x→+∞= Θ(F̄Xj(x)),
(2) F̄Xi(s)

s→+∞= o(F̄Xi(t)), if t = o(s),
2For (x, y) ∈ R2+, we shall denote y = Θ(x) if there exist 0 < C1 ≤ C2 < ∞, such that for x large enough,

C1 ≤ y
x ≤ C2

8



then, there exist κ1 > 0 and κ2 < 1 such that,

κ1 ≤
u`
u
≤ κ2 ∀` ∈ {1, 2, . . . , d}.(2.5)

Note that the first condition of Theorem 2.7 is not satisfied for exponential distributions. How-
ever, Pareto distributions satisfy the hypothesis of Theorem 2.7.

Proof. Taking if necessary a convergent subsequence, we assume that ∃i ∈ {1, . . . , d} such that:
ui
u

u→+∞−→ 1 or ui
u

u→+∞−→ 0, the first case implies that foll all j 6= i, uj
u

u→+∞−→ 0, then, it is sufficient
to prove that the existence of an i ∈ {1, . . . , d} such that ui

u

u→+∞−→ 0 is impossible.
Let us assume the existence of i ∈ {1, . . . , d}, such that: ui

u

u→+∞−→ 0.
Then, ∃j ∈ {1, . . . , d}\i such that lim

u→+∞
uj
u
∈]0, 1], therefore, uj u→+∞−→ +∞ and ui u→+∞= o(uj).

Using Assumptions (1) and (2), we deduce that:
F̄Xj(uj)
F̄Xi(ui)

u→+∞−→ 0.(2.6)

The optimality condition (1.2) can also be written for all j 6= i as follows:
F̄Xi(ui)− P (Xi > ui, S > u) = F̄Xj(uj)− P (Xi > uj, S > u) .(2.7)

That presents a trivial contradiction if ui remains bounded.

Now, assume that ui → +∞. Recall that S−i =
d∑

k=1,k 6=i
Xk, then:

P (Xi > ui, S > u) = P
(
Xi > ui, S

−i >
√
u, S > u

)
+ P

(
Xi > ui, S

−i <
√
u, S > u

)
.

We have:
P
(
Xi > ui, S

−i >
√
u, S > u

)
≤ P (Xi > ui)P

(
S−i >

√
u
)
u→+∞= o(F̄Xi(ui)).

Using assumption (2) and since ui = o(u),

P
(
Xi > ui, S

−i <
√
u, S > u

)
≤ F̄Xi(u−

√
u) u→+∞= o(F̄Xi(ui)).

We deduce that:
P (Xi > ui, S > u) u→+∞= o(F̄Xi(ui)).(2.8)

We remark also that:
P (Xj > uj, S > u) u→+∞= O(F̄Xj(uj))

u→+∞= o(F̄Xi(ui)).(2.9)
Equation (2.7) leads to:

1− P (Xi > ui, S > u)
F̄Xi(ui)︸ ︷︷ ︸

T1

=
F̄Xj(uj)
F̄Xi(ui)︸ ︷︷ ︸

T2

− P (Xj > uj, S > u)
F̄Xi(ui)︸ ︷︷ ︸

T3

.

Now, relations: (2.8), (2.6), and (2.9), imply that T1, T2, and T3, go to zero, and this is a contra-
diction. �

Proposition 2.8. Let X1, . . . , Xd be continuous, positive and independent random variables such
that the support of the density of (Xi, S) is (R+)2. Let (u1, . . . , ud) be the optimal allocation of u
associated to the risk indicator I. We assume:

9



(1) there exist 0 < κ1 < κ2 < 1 such that for all i = 1, . . . , d and for all u ∈ R+,

κ1 ≤
ui
u
≤ κ2,

(2) for all i = 1, . . . , d, if y = y(x) is such that

0 < lim inf
x→∞

y

x
≤ lim sup

x→∞

y

x
< 1

then
FXi(x)
FXi(y)

x→∞−→ 0.

Then, for all i, j = 1, . . . , d,
FXi(ui)
FXj(uj)

u→∞−→ 1.

Assumptions of Proposition 2.8 are satisfied for distributions of exponential type (see remark (2.9)
below). Its application gives another proof to Proposition 2.2. In contrast, Proposition 2.8 cannot
be used for Pareto distributions.

Proof. Following the lines of the proof of Theorem 2.7, take 0 < γ < 1− κ2,

P(Xi > ui, S > u) = P(Xi > ui, S
−i > γu, S > u) + P(Xi > ui, S

−i > γu, S > u).

As before,

P(Xi > ui, S
−i > γu, S > u) ≤ P(Xi > ui)P(S−i > γu) u→+∞= o(FXi(ui)).

On the other hand,

P(Xi > ui, S
−i > γu, S > u) ≤ P(Xi > u− γu)

= FXi((1− γ)u) u→+∞= o(FXi(ui))
because 0 < κ1

1− γ ≤
ui

(1− γ)u ≤
κ2

1− γ < 1.

So that, P(Xi > ui, S > u) u→+∞= o(FXi(ui)) and the same computation gives P(Xj > uj, S >

u) u→+∞= o(FXj(uj)). Now, ui and uj satisfy Equation (1) and thus,

1 + o(1) u→+∞=
FXj(uj)
FXi(ui)

+ o(1)
FXj(uj)
FXi(ui)

.

This implies that FXj (uj)
FXi (ui)

is bounded from above and thus

FXj(uj)
FXi(ui)

u→+∞= 1 + o(1).

�

Remark 2.9. We remark that the hypothesis of Proposition 2.8 are satisfied for distribution of
exponential type, that is distributions verifying:

F̄Xi(x) = Θ(e−µix).
10



Indeed, in this case, we have 0 < lim ui
u
≤ lim ui

u
< 1, ∀i ∈ {1, . . . , d}. In fact, if ui u→+∞= o(u),

then, ∃j ∈ {1, . . . , d}\{i} such that uj
u
→ κ ∈]0, 1], so ui u→+∞= o(uj).

Since µi, µj > 0, µiui u→+∞= o(µjuj). As in the proof of Theorem 2.7, we get:

P (Xi > ui, S > u) u→+∞= o(F̄Xi(ui))
and,

P (Xj > uj, S > u) u→+∞= o(F̄Xj(uj)).
From the optimality condition,

F̄Xi(ui)
e−µiui

− P (Xi > ui, S > u)
e−µiui︸ ︷︷ ︸
T1

=
F̄Xj(uj)
e−µiui︸ ︷︷ ︸
T2

− P (Xj > uj, S > u)
e−µiui︸ ︷︷ ︸
T3

,

which is absurd because as u→ +∞:
• F̄Xi(ui) = Θ(e−µiui),
• T1 = o(1),
• T2 = F̄Xj (uj)

e−µjuj e
−µjuj+µiui → 0, since µiui = o(µjuj),

• and T3 = o(1)e−µjuj+µiui → 0.

Proposition 2.10 (The asymptotic optimal allocation for the indicator I). Under the same con-
ditions of Theorem 2.7, and if, for all i ∈ {1, . . . , d}, FXi is a sub-exponential distribution, that
verifies:

F̄Xi(y)
F̄Xi(x)

x→+∞= O(1), for 0 < κ1 ≤
y

x
≤ κ2 < 1.

Then, by minimizing the I indicator, ui and uj satisfy:

(2.10) F̄Xi(ui)− F̄Xi(u) u→+∞= F̄Xj(uj)− F̄Xj(u) + o(F̄Xi(u)).

Proposition 2.10 is applicable in the case of Pareto distributions. So, we will use it for deter-
mining the optimal asymptotic allocation, for independent risks of Pareto distributions in the next
subsection.

Proof. The proof of this theorem is a direct application of Theorems 2.6 and 2.7. �

Now, we focus on the asymptotic optimal allocation by minimizing the risk indicator J , and we
study the case of sub-exponential distribution family.

Proposition 2.11 (The asymptotic optimal allocation for the indicator J). Let (X1, X2, . . . , Xd)
be continuous positive and independent random variables, such that there exists i ∈ {1, . . . , d}
with a sub-exponential distribution, the optimal capital allocation by minimizing the J indicator
(u1, . . . , ud) verifies, for all j 6= i:

lim
u→∞

P(Xj ≥ uj, S ≥ u)
F̄Xi(u)

= 1.

Proof. The solution to (1.3) satisfies :

∀j ∈ {1, 2, . . . , d}, P (Xi > ui, S ≥ u)
P (Xi > u) = P (Xj > uj, S ≥ u))

P (Xi > u) .

When u goes to +∞, and using Theorem 2.6, we obtain Proposition 2.11. �
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2.2.2. Application to Pareto independent distributions.
We consider d independent random variables (X1, X2, . . . , Xd) of Pareto distributions, with param-
eters (a, bi){i=1,2,...,d} respectively, such that b1 > b2 > · · · > bd > 0. Therefore, these distributions
will be characterized by densities and survival functions of the following forms:

fXi(x) = a

bi

(
1 + x

bi

)−a−1
,

and
F̄Xi(x) =

(
1 + x

bi

)−a
.

Proposition 2.12 (The asymptotic optimal allocation minimizing I). Asymptotically, the unique
solution to (1.2) satisfies:

∀(i, j) ∈ {1, 2, . . . , d}2,

 lim
u→∞

αi

bi

−a −
 lim
u→∞

αj

bj

−a =
( 1
bi

)−a
−
(

1
bj

)−a
.

Proof. Follows from Proposition 2.10. �

Proposition 2.13 (The asymptotic optimal allocation minimizing J). The unique solution to (1.3)
satisfies:

lim
u→∞

α1 = 1 and lim
u→∞

αi = 0,∀i ∈ {2, 3, . . . , d}.

Proof. We suppose that ∃ ∈ {1, . . . , d} such that 0 < lim
u→∞

αj < 1.
From Theorem 2.6 :

lim
u→∞

P(Xj ≥ uj, S ≥ u)
F̄Xj(u)

= 1.

On the other hand, and applying Proposition 2.11 in the Pareto distributions case, we get for
i ∈ {1, . . . , d} \ {j}:

P(Xj ≥ uj, S ≥ u)
F̄Xj(u)

= P(Xj ≥ uj, S ≥ u)
F̄Xi(u)

· F̄Xi(u)
F̄Xj(u)

u→+∞∼ F̄Xi(u)
F̄Xj(u)

=
1 + u

bi

1 + u
bj

−a ,
then, for i ∈ {1, . . . , d} \ {j}:

lim
u→∞

P(Xj ≥ uj, S ≥ u)
F̄Xj(u)

=
(
bj
bi

)−a
6= 1.

That is absurd. We deduce that ∀i ∈ {1, 2, . . . , d}:
lim
u→∞

αi ∈ {0, 1},

and since ∑d
i=1 αi = 1, then, there is a unique i such that lim

u→∞
αi = 1 and for all j 6= i lim

u→∞
αj = 0.

Let us recall the definition of the order stochastic dominance, as it is presented in Shaked and
Shanthikumar (2007)[20]. For random variables X and Y , Y first-order stochastically dominates
X if and only if:

F̄X(x) ≤ F̄Y (x), ∀x ∈ R+,

and in this case we denote: X 4st Y .
Now, clearly Xd 4st · · · 4st X2 4st X1 because b1 > b2 > · · · > bd > 0.
In [17] (Proposition 3.10) we have proved that the optimal capital allocation satisfies the mono-
tonicity property. We deduce that α1 ≥ · · · ≥ αd, and thus lim

u→∞
α1 = 1. �
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2.3. Comparison between the asymptotic behaviors in exponential and sub-exponential
cases. Let us consider the following risk indicator:

Iloc(u1, . . . , ud) =
d∑

k=1
E
(
(Xk − uk)11{Xk>uk}

)
=

d∑
k=1

E
(
(Xk − uk)+

)
.

With this indicator, the impact of each branch on the group is not taken into account. This
indicator thus takes only local effects into account. If, for any k = 1, . . . , d, the random vector
(Xk, S) admits a density whose support contains [0, u]2, then the optimality condition associated
to Iloc gives:

P(Xi > ui) = P(Xj > uj).

We remark that this corresponds to the asymptotic result for indicator I of Proposition 2.8, where
FXj (uj)
FXi (ui)

u→+∞= 1 + o(1). In other words, in the case of exponential type and independent risks, the
group effect is asymptotically negligible. This behavior is also clear in Proposition 2.2, where we
found the asymptotic capital allocation for I for independent exponential distributions as:

ui =

1
βi∑d
j=1

1
βj

u, for all i = 1, . . . , d,

as for Iloc.

Proposition 2.10 shows that for independent sub-exponential distributions the asymptotic be-
havior is different. Indeed, in Equation (2.10), the terms F̄Xi(u) and F̄Xj(u) lead to take into
account the group effect. In the Pareto distributions case as example, recall that Proposition 2.12
gives that the asymptotic behavior of the optimal allocation for I is described by : lim

u→∞
αi

bi

−a −
 lim
u→∞

αj

bj

−a =
( 1
bi

)−a
−
(

1
bj

)−a
,

whereas the optimal allocation for Iloc for independent Pareto distributions is given by αi = bi∑d

`=1 b`
,

for all i ∈ {1, . . . , d}.

For optimal allocation by minimizing the J indicator, the asymptotic behavior is identical for
the two families of distributions, the riskiest branch is considered as first responsible of the overall
ruin, and thus, the optimal solution is to allocate the entire capital u to this business line.

3. The impact of the dependence structure

In this section, we focus on the impact of the dependence structure on the optimal allocation.
We study at first the impact of mixture exponential-gamma to construct a correlated Pareto
distributions, compared to the independence case presented in the previous section. Then we
analyze the optimal allocation in the case of comonotonic risks. The last sub-section is devoted to
the study of the impact of the dependence nature on the optimal allocation, using some bivariate
models with copulas.
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3.1. Correlated Pareto.
Let (X1, . . . , Xd) be a mixture of exponential distributions such that for all i ∈ {1, 2, . . . , d},
Xi ∼ E(βiθ), with (β1 < β2 · · · < βd), and θ ∼ Γ(a, b). Therefore, Xi have survival functions of the
form:

F̄Xi(x) =
∫ ∞

0
F̄Xi|Θ=θfΘ(θ)dθ =

∫ ∞
0

e−βiθxfΘ(θ)dθ =
(

1 + βix

b

)−a
,

consequently, Xi have Pareto distribution of parameters
(
a, b

βi

)
. They are conditionally indepen-

dents. So, the idea is conditioning on the random variable θ and then integrate the formulas found
for the case of independent exponential distributions. This model has been studied in e.g.[19, 22].

Recall A` =
d∏

j=1,j 6=`

βj
βj − β`

, ` = 1, . . . , d.

Proposition 3.1 (The optimal allocation for the indicator I). The optimal allocation minimizing
the multivariate risk indicator I is the unique solution in Udu , of the following equations system:

∀(i, j) ∈ {1, 2, . . . , d}2,

(3.1) s(βiαi)− s(βjαj)−
d∑
`=1

A`[s(αiβi + (1− αi)β`))− s(αjβj + (1− αj)β`))] = 0,

where s is the function defined by s(x) = (1 + xu
b
)−a and αi = ui

u
for all i ∈ {1, . . . , d}.

Proof. It suffices to integrate Equations System (2.1), multiplied by the density function of θ. �

Proposition 3.2 (The asymptotic optimal allocation for the indicator I). When the capital u goes
to infinity, the optimal allocation by minimization of the risk indicator I is the unique solution in
Udu of the following equations system:

∀(i, j) ∈ {1, 2, . . . , d}2,

(3.2) (βiαi)−a − (βjαj)−a −
d∑
`=1

A`[(αiβi + (1− αi)β`)−a − (αjβj + (1− αj)β`)−a] = 0.

Proof. We divide Equations System (3.1) by s(1), and let u go to +∞ to get Equations System (3.2).
�

Proposition 3.2 shows the impact of the dependence related to the mixture. Indeed, in the case
of independent Pareto distributions, of parameters

(
a, b

βi

)
i=1,...,d

, the asymptotic optimal allocation
for the indicator I is given by Proposition 2.12 as the solution of the equations system:

∀(i, j) ∈ {1, 2, . . . , d}2, (βiαi)−a − (βjαj)−a = (βi)−a − (βj)−a .

Each equation in this system depends only on two risks, unlike the mixture case, where the
equations of Equations System (3.2), depend on all the risks.

Proposition 3.3 (The optimal allocation for the indicator J). The optimal allocation minimizing
the multivariate risk indicator J is the unique solution in Udu , of the following equations system:

(3.3) ∀(i, j) ∈ {1, 2, . . . , d}2,
d∑
`=1

A`[s(αiβi + (1− αi)β`))− s(αjβj + (1− αj)β`))] = 0.

Proof. It suffices to integrate Equations System (2.3), multiplied by the density function of θ. �
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Proposition 3.4 (The asymptotic optimal allocation for the indicator J). When the capital u goes
to infinity, the optimal allocation by minimization of the risk indicator J , is the unique solution in
Udu of the following equations system:

(3.4) ∀(i, j) ∈ {1, 2, . . . , d}2,
d∑
`=1

A`[(αiβi + (1− αi)β`)−a − (αjβj + (1− αj)β`)−a] = 0.

Proof. We divide Equations system (3.3) by s(1), and we let u fo to +∞ to get Equations sys-
tem (3.4). �

Proposition 3.4 shows that for the indicator J , the asymptotic behaviour of the optimal capital
allocation takes into account the mixture effect. In fact, for independent Pareto distributions, we
have proved in Proposition 2.13, that we allocate the entire capital u to the riskiest branch X1,
while the asymptotic optimal allocation in the correlated Pareto distributions case is the solution
of Equations system (3.4).

3.2. Comonotonic risks.
The concept of comonotonic random variables is related to the studies of Hoeffding (1940) [13]
and Fréchet (1951) [12]. Here we use the definition of comonotonic risks as it was first mentioned
in the actuarial literature in Borch (1962) [3].
A vector of random variables (X1, X2, . . . , Xn) is comonotonic if and only if there exists a random
variable Y and non-decreasing functions ϕ1, . . . , ϕn such that:

(X1, . . . , Xn) d= (ϕ1(Y ), . . . , ϕn(Y )).
In the case where the risks X1,. . . ,Xd are comonotonic, we may give explicit formulas for the
optimal allocation minimizing the multivariate risk indicators I and J , and for some risk models.
For that, we use the existence of a uniform random variable U such that Xi = F−1

Xi
(U) for all

i ∈ {1, . . . , d}, and S = ∑d
i=1 F

−1
Xi

(U) = ϕ(U), where ϕ(t) = ∑d
i=1 F

−1
Xi

(t), ϕ is a non-decreasing
function.
The main result of this section is given below.

Proposition 3.5. Let X1,. . . ,Xd be comonotonic risks, with increasing distribution functions and
support containing [0, u]. The optimal allocations for indicators I, J and Iloc coincide, they are
given by (u1, . . . , ud) ∈ Udu and

FXi(ui) = FXj(uj) ∀ i, j = 1, . . . , d.

Proof. Let us denote: wi = FXi(ui), v = ϕ−1(u), Mi = max(wi, v). The indicators I and J may
be rewritten for (u1, . . . , ud) ∈ Udu :

I(u1, . . . , ud) =
d∑
i=1

E
(
(F−1

Xi
(U)− ui)1{U≥wi, U≤v}

)

J(u1, . . . , ud) =
d∑
i=1

E
(
(F−1

Xi
(U)− ui)1{U≥Mi}

)
.

We remark that since (u1, . . . , ud) ∈ Udu , and FXi is strictly increasing for all i ∈ {1, . . . , d}, we
cannot have that wi < v for all i, so that, I is not trivially equal to 0. We use Lagrange multiplier
to get that the minimum of I and J are reached in Udu respectively for:

• P(U ≥ wi, U ≤ v) = P(U ≥ wj, U ≤ v), for i, j = 1, . . . , d,
• P(U ≥Mi) = P(U ≥Mj), for i, j = 1, . . . , d.

These equality are acheaved if and only if wi = wj = v or in other words if FXi(ui) = FXj(uj). We
remark that the minimum of I is then 0. �
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The following three corollaries are direct applications of Proposition 3.5 to some particular cases.

Example 3.6 (Comonotonic exponential model). For comonotonic risks of exponential distribu-
tions Xi ∼ exp(βi), the optimal allocation by minimization of the two risk indicators is:

∀i ∈ {1, . . . , d}, ui = 1/βi∑d
j=1 1/βj

u.

It is noticeable that in this particular case, the optimal allocation for comonotonic risks coincide
with the asymptotic allocation in the independence case (see Proposition 2.2).

Example 3.7 (Comonotonic log-normal model). For comonotonic risks of log-normal distributions
Xi ∼ LN(µi, σ), the optimal allocation by minimization of the two risk indicators is:

∀i ∈ {1, . . . , d}, ui = exp(µi)∑d
`=1 exp(µ`)

u.

Example 3.8 (Comonotonic Pareto model). For comonotonic risks of Pareto distributions of the
same shape parameter α: Xi ∼ Pa(α, λi), the optimal allocation by minimization of the two risk
indicators is:

∀i ∈ {1, . . . , d}, ui = λi∑d
`=1 λ`

u.

Contrary to the exponential case, this result does not coincide with the asymptotic behavior
obtained for independent Pareto distributions (see Proposition 2.12).

3.3. The dependence impact with some copulas models.
In this section, we study the impact of the dependence on the optimal capital allocation using
some copulas (see Nelsen [18] for review on copulas). The idea is to find the optimal allocation as
a function of the copula parameters in each case. We focus on the indicator I, the same kind of
calculations can be done for the indicator J .

3.3.1. FGM Bivariate Model.
Let X1 and X2 be two risks of marginal exponential distributions Xi ∼ exp(βi) and FGM bivariate
dependence structure with −1 ≤ θ ≤ 1 as parameter (see Nelsen [18],Example 3.12., section 3.2.5).
We assume that β1 < β2/2.
In this case, the copula Pearson correlation coefficient is given by ρP = θ

4 , and the bivariate
distribution function is:

FX1,X2(x1, x2) = (1− e−β1x1)(1− e−β2x2) + θ(1− e−β1x1)(1− e−β2x2)e−β1x1e−β2x2 .

Proposition 3.9 (The optimal capital allocation for the indicator I in the FGM Model). For the
indicator I, the optimal allocation of a capital u is given by (βu, (1 − β)u) such that β = u1/u is
the unique solution in [0, 1] of the following equation:

(1 + 2θ)(h(β)− h(α− αβ)) + 2θ(h(2β)− h(2α− 2αβ))(3.5)
+(1 + θ)h(α + β − αβ) + θh(2α + 2β − 2αβ)−θh(α + 2β − αβ)− θh(2α + β − 2αβ)

= 1 + θ

α− 1(h(α) + αh(1)) + θ

α− 1(h(2α) + αh(2))− θ

α− 2(2h(α) + αh(2))− θ

2α− 1(h(2α) + 2αh(1)),

where, h is the function h(x) = exp(−β1ux),and α = β2/β1.

Proof. The proof is postponed to Appendix A.1. �

Remark 3.10. In the case of θ = 0, we find exactly Equation (2.1) given by Proposition 2.1 for the
independent exponential distributions model.
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Equation (3.5) gives the behavior of the optimal allocation with respect to θ. It may be solved
numerically.
Figure 1 presents an illustration of the optimal allocation variation with respect to the dependence
parameter of the FGM copula.

Figure 1. β as a function of θ. Case : β1 = 0.05, β2 = 0.25 , and u = 50

For the illustration parameters, we remark that β is an increasing function of θ, this can be
verified analytically using the implicit function theorem. It is important to remark that the optimal
allocation is also a function of the capital u. The variations of β with respect to the dependence
parameter depends on u. Figure 2 give what we obtain as result for an allocation with the same
distributions parameters but with u = 100 as allocation capital.

Figure 2. β as a function of θ. Case : β1 = 0.05, β2 = 0.25 , and u = 100

The optimal allocation depends on the initial capital. As an example, with the same parameters,
β is a decreasing function of θ if u < 53, and it is an increasing function of θ for u ≥ 53.
The variation range size of β is very small, and its size is function of the distributions parameters
and the allocation capital. That is due to the dependence structure, the FGM copula present only
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a light dependence. For Clayton copula as example, which is stronger dependence structure, the
variation range size of β is more important.

3.3.2. Marshall-Olkin Model.
Let Yi ∼ exp(λi), with i = 0, 1, 2 be three independent random variables.
We construct two random variables with common shock: Xi = min(Yi, Y0) for i = 1, 2. Xi’s have
exponential marginal distributions of parameters βi = λi + λ0 (see e.g. Nelsen [18] section 3.1.1.).
This dependence construction model has as Pearson correlation coefficient ρP = λ0

λ0+λ1+λ2
.

The joint distribution function is given by:

F̄X1,X2(x1, x2) = P(X1 > x1, X2 > x2) = P(Y1 > x1, Y2 > x2, Y0 > max(x1, x2))
= e−λ1x1e−λ2x2e−λ0 max(x1,x2)

= e−(λ0+λ1)x1e−(λ0+λ2)x2eλ0 min(x1,x2)

= F̄X1(x1)F̄X2(x2)eλ0 min(x1,x2),

and the joint density function is the following:

fX1,X2(x1, x2) =


f 1
X1,X2(x1, x2) = β1e

−β1x1(β2 − λ0)e−(β2−λ0)x2 si x1 > x2
f 2
X1,X2(x1, x2) = (β1 − λ0)e−(β1−λ0)x1β2e

−β2x2 si x1 < x2
f 0
X1,X2(x1, x2) = λ0e

−β1xe−β2xeλ0x si x1 = x2 = x
.

Proposition 3.11 (The optimal capital allocation for the indicator I in the Marshall-Olkin
Model). We suppose that λ1 < λ2. The optimal allocation of a capital u minimizing the indicator
I is given by (βu, (1 − β)u), such that β = u1/u is the unique solution in [0, 1] of the following
equation:

g(β2(1− β))− g(β1β) + β1

β1 − λ2
g((β1 − λ2)β + λ2) + λ2

β1 − λ2
g((λ2 − β1)(1− β) + β1)

− λ1

λ1 − β2
g(β2) = λ2

β1 − λ2
g(β1) + g(λs/2)[ β1

β1 − λ2
− λ1

λ1 − β2
],

where, λs = λ0 + λ1 + λ2, and g is the function g(x) = exp(−ux).

Proof. The proof is postponed to Appendix A.2. �

Remark 3.12. In the case λ0 = 0 which is the independence case, we find again Equation (2.1)
given by Proposition 2.1.

We can consider λ0 as a dependence parameter in this model. Figure 3 presents an illustration
of the variation of β as a function of λ0.
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Figure 3. β as a function of λ0 : β1 = 0.05, β2 = 0.25 and u = 50.

One can notice that β is a decreasing function of λ0. This is coherent with the increase of β as
a function of α = β2

β1
= λ2+λ0

λ1+λ0
demonstrated in [8] in the independence case, since the two risks are

independent, conditionally to Y0.

Conclusion

In this article, we have studied the allocation asymptotic behavior based on the level of the
group capital. It has enabled us to build an idea of the capital level impact on the sensitivity of its
allocation between branches. The comparison between the asymptotic optimal allocation, in the
case of sub-exponential and exponential distributions, underscores the impact of the risks nature
on the behavior of the allocation for a very large capital.

Compared to the classical risk allocation methods, the allocation by minimizing multivariate
risk indicator take into account the capital level. This seems to be a more acceptable behavior in
a capital allocation operation.

The risk aggregation transforms the global risk portfolio in a univariate risk. At the opposite,
the allocation is based on a multivariate analysis. The goal of this paper is to highlight the
importance of the dependence modeling in the success of an allocation capital operation. The
capital allocation is also sensitive to the risks nature, we tried in this paper to make more evident
the impact of distributions’ nature on the allocation behavior. Since the capital allocation is an
important financial decision, especially for groups, insurers must be very careful in their risk and
dependence modeling choices to get an efficient allocation.
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Appendix A. Proofs

A.1. Proof of Proposition 3.9.

Proof. The bivariate density function is the following:
fX1,X2(x1, x2) = (1 + θ)f(x1, x2, β1, β2) + θf(x1, x2, 2β1, 2β2)

− θf(x1, x2, 2β1, β2)− θf(x1, x2, β1, 2β2)fX1,X2(x1, x2),

where f is the function f(x, t, a, b) = abe−axe−bt.
We use the equality: fX1,S=Xi+X2(x1, s) = fX1,X2(x1, s − x1)11{s≥x1} for all s ≥ x1, to find the
expression of FX1,S(x1, s), using a double integration:

FX1,S(x1, s) =
∫ s

0

∫ x1

0
fX1,X2(x, t− x)11{t≥x}dxdt =

∫ x1

0

∫ s

x
fX1,X2(x, t− x)dtdx

= (1 + θ)F (x1, s, β1, β2) + θF (x1, s, 2β1, 2β2)− θF (x1, s, 2β1, β2)− θF (x1, s, β1, 2β2),
where F is the following function:

F (x1, s, a, b) =
∫ x1

0

∫ s

x
abe−(a−b)xe−btdtdx = 1− e−ax1 + a

b− a
e−bs − a

b− a
e−bs+(b−a)x1 .

The same way and by the symmetry of the FGM model:
FX2,S(x2, s) = (1 + θ)F (x2, s, β2, β1) + θF (x2, s, 2β2, 2β1)− θF (x2, s, 2β2, β1)− θF (x2, s, β2, 2β1).
Using P(Xi > ui, S ≤ u) = P(S ≤ u) − P(Xi ≤ ui, S ≤ u), the optimal allocation is the
unique solution in U2

u of the equation: FX1,S(u1, u) = FX2,S(u2, u). Then, the optimal allocation is
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determined by β the solution of the equation: FX1,S(βu, u) = FX2,S((1− β)u, u).
Since,

FX1,S(βu, u) = 1 + 4θ − (1 + 2θ)h(β)− 2θh(2β)

+ (1 + θ) 1
α− 1[h(α)− h(α + β − αβ)] + θ

1
α− 1[h(2α)− h(2α + 2β − 2αβ)]

− θ 2
α− 2[h(α)− h(α + 2β − αβ)]− θ 1

2α− 1[h(2α)− h(2α + β − 2αβ)],

and,

FX2,S((1− β)u, u) = 1 + 4θ − (1 + 2θ)h(α(1− β))− 2θh(2α(1− β))

+ (1 + θ) α

1− α [h(1)− h(α + β − αβ)] + θ
α

1− α [h(2)− h(2α + 2β − 2αβ)]

− θ 2α
1− 2α [h(1)− h(2α + β − 2αβ)]− θ α

2− α [h(2)− h(α + 2β − αβ)],

we deduce from that the equation presented in the proposition 3.9. �

A.2. Proof of Proposition 3.11.

Proof. The joint distribution function is given by:

FX1,S(x1, s) =
∫ s

0

∫ x1

0
fX1,S(x, t− x)11{t>x}dxdt

=
∫ s

0

∫ x1

0
f 1
X1,S(x, t− x)11{2x>t>x}dxdt+

∫ s

0

∫ x1

0
f 2
X1,S(x, t− x)11{t>2x}dxdt

+
∫ s

0

∫ x1

0
f 0
X1,S(x, t− x)11{t=2x}dxdt.

we distinguish between two cases:
Case s > 2x1: in this case,∫ s

0

∫ x1

0
f 1
X1,S(x, t− x)11{2x>t>x}dxdt =

∫ s

2x1

∫ x1

0
f 1
X1,S(x, t− x)11{2x>t>x}dxdt

+
∫ 2x1

0

∫ x1

0
f 1
X1,S(x, t− x)11{2x>t>x}dxdt

=
∫ 2x1

0

∫ x1

0
f 1
X1,S(x, t− x)11{2x>t>x}dxdt

=
∫ 2x1

0

∫ min(x1,t)

t/2
f 1
X1,S(x, t− x)dxdt

=
∫ x1

0

∫ t

t/2
f 1
X1,S(x, t− x)dxdt+

∫ 2x1

x1

∫ x1

t/2
f 1
X1,S(x, t− x)dxdt,

and,∫ s

0

∫ x1

0
f 2
X1,S(x, t− x)11{t>2x}dxdt =

∫ x1

0

∫ s

0
f 2
X1,S(x, t− x)11{t>2x}dtdx =

∫ x1

0

∫ s

2x
f 2
X1,S(x, t− x)dtdx,

and, ∫ s

0

∫ x1

0
f 0
X1,S(x, t− x)11{t=2x}dxdt = λ0

λ0 + λ1 + λ2
(1− e−(λ0+λ1+λ2)x1),
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then, we deduce the explicit expression of FX1,S(x1, s):

FX1,S(x1, s) = 2β1λ2

(β1 − λ2)(β1 + λ2)(1− e−(β1+λ2)x1)− λ2

β1 − λ2
(1− e−β1x1)− β1

β1 − λ2
(e−β1x1 − e−(β1+λ2)x1)

+ λ1

λ1 + β2
(1− e−(λ1+β2)x1)− λ1

λ1 − β2
e−β2s + λ1

λ1 − β2
e−(λ1−β2)x1−β2s

+ λ0

λ0 + λ1 + λ2
(1− e−(λ0+λ1+λ2)x1).

Case 2x1 > s > x1 :∫ s

0

∫ x1

0
f 1
X1,S(x, t− x)11{2x>t>x}dxdt =

∫ s

0

∫ min(x1,t)

t/2
f 1
X1,S(x, t− x)dxdt

=
∫ x1

0

∫ t

t/2
f 1
X1,S(x, t− x)dxdt+

∫ s

x1

∫ x1

t/2
f 1
X1,S(x, t− x)dxdt,

and, ∫ s

0

∫ x1

0
f 2
X1,S(x, t− x)11{t>2x}dxdt =

∫ s

0

∫ t/2

0
f 2
X1,S(x, t− x)dxdt,

and, ∫ s

0

∫ x1

0
f 0
X1,S(x, t− x)11{t=2x}dxdt = λ0

λ0 + λ1 + λ2
(1− e−(λ0+λ1+λ2)s/2),

then, we deduce also in this case, the explicit expression of FX1,S(x1, s):

FX1,S(x1, s) = 2β1λ2

(β1 − λ2)(β1 + λ2)(1− e−(β1+λ2)s/2)− λ2

β1 − λ2
(1− e−β1x1)

− β1

β1 − λ2
(e−β1x1 − e−(β1−λ2)x1−λ2s) + λ1

λ1 − β2
(1− e−β2s)

− 2λ1β2

(λ1 − β2)(λ1 + β2)(1− e−(λ1+β2)s/2) + λ0

λ0 + λ1 + λ2
(1− e−(λ0+λ1+λ2)s/2).

We remark that λ0 + λ1 + λ2 = λ1 + β2 = λ2 + β1, and we suppose that λ1 > λ2. Using the
monotony property, we deduce that 1 > β > 1/2, then 2βu > u > βu. So, for u1 = βu, and
g(x) = exp(−xu):

FX1,S(βu, u) = 1−g(β1β)− λ1

λ1 − β2
g(β2)+ β1

β1 − λ2
g((β1−λ2)β+λ2)+g(λs/2)[ λ1

λ1 − β2
− β1

β1 − λ2
],

and,

FX2,S((1− β)u, u) = 1− g(β2(1− β) + λ2

λ2 − β1
[g((λ2 − β1)(1− β) + β1)− g(β1)].

That is sufficient to get 3.11. �
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