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Dimensional improvements of the logarithmic Sobolev, Talagrand and

Brascamp-Lieb inequalities

François Bolley∗, Ivan Gentil† and Arnaud Guillin‡

March 12, 2017

Abstract

In this work we consider dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-
Lieb inequalities. For this we use optimal transport methods and the Borell-Brascamp-Lieb inequality.
These refinements can be written as a deficit in the classical inequalities. They have the right scale with
respect to the dimension. They lead to sharpened concentration properties as well as refined contrac-
tion bounds, convergence to equilibrium and short time behavior for the laws of solutions to stochastic
differential equations.

Key words: Logarithmic Sobolev inequality, Talagrand inequality, Brascamp-Lieb inequality, Fokker-
Planck equations, optimal transport.

Introduction

We shall be concerned with diverse ways of measuring and bounding the distance between probability
measures, and the links between them. We will focus on three main inequalities that we now describe.

• A probability measure µ on R
n satisfies a logarithmic Sobolev inequality (in short LSI) with constant

R > 0 (see [4] for instance) if for all probability measures ν in R
n, absolutely continuous with respect

to µ,

H(ν|µ) ≤ 1

2R
I(ν|µ). (1)

Here H and I are the relative entropy and the Fisher information, defined for f = dν
dµ by

H(ν|µ) = Entµ(f) =

∫

f log f dµ and I(ν|µ) =
∫ |∇f |2

f
dµ. (2)

For I we assume that ∇f/f ∈ L2(ν).

• A probability measure µ in R
n satisfies a Talagrand transportation inequality [37] with constant

R > 0 if for all ν absolutely continuous with respect to µ

W 2
2 (ν, µ) ≤

2

R
H(ν|µ). (3)
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Here W2 is the Monge-Kantorovich-Wasserstein distance; it is defined for µ and ν in P2(R
n) by

W2(µ, ν) = inf
π

(
∫∫

|y − x|2 dπ(x, y)
)1/2

where π runs over the set of (coupling) measures on R
n × R

n with respective marginals µ and ν.
We let P2(R

n) be the space of probability measures µ on R
n with finite second moment, that is,

∫

|x|2dµ(x) < +∞ (see [1], [39]).

By the Otto-Villani Theorem [36], the logarithmic Sobolev inequality (1) implies the Talagrand
inequality (3) with the same constant (see also [7], [39, Chap. 22]).

• Let µ be a probability measure in R
n with density e−V where V is a C2 and strictly convex function.

Then the Brascamp-Lieb inequality asserts that for all smooth functions f ,

Varµ(f) ≤
∫

∇f ·Hess(V )−1∇f dµ. (4)

Here Varµ(f) =
∫

f2dµ − (
∫

fdµ)2 is the variance of f under the measure µ, see [4, Sect 4.9.1] for
instance.

The standard Gaussian measure γ in R
n with density e−V for V (x) = |x|2/2 + n log(2π)/2, satisfies

the three inequalities (1), (3) with R = 1 and (4). In fact, in the Gaussian case, the Brascamp-Lieb
inequality (4) can be obtained from (1) by linearization, namely by taking ν = fµ with f close to 1.
Let us note that in this case Hess(V ) = Idn, the Brascamp-Lieb inequality becomes exactly the Poincaré
inequality. Moreover these inequalities are optimal for the Gaussian measure: by direct computation,

equality holds in (1) and (3) for translations of γ, that is, for measures ν = exp(a ·x− |a|2

2 )γ with a ∈ R
n;

equality holds in (4) for f(x) = b · x, b ∈ R
n (see [4, Chap. 4 and 5]).

Inequalities (1), (3) and (4) share the significant property of tensorisation, leading to possible constants R
independent of the dimension of the space. In other words, if a probability measure µ satisfies one of these
three inequalities with constant R > 0, then for any N ∈ N

∗, the product measure µN = ⊗Nµ satisfies
the same inequality with the same constant R. This can be interesting in applications to problems set in
large or infinite dimensions.
However, for regularity or integrability arguments, one may need more precise forms capturing the pre-
cise dependence on the dimension. Such dimension dependent improvements have been observed in the
Gaussian case. Namely, the dimensional improvement

H(ν|γ) ≤ 1

2

∫

|x|2dν − n

2
+
n

2
log
(

1 +
1

n

(

I(ν|γ) + n−
∫

|x|2dν
))

(5)

of the logarithmic Sobolev inequality (1) has been obtained by D. Bakry and M. Ledoux [5] by self-
improvement from the Euclidean logarithmic Sobolev inequality, or by semigroup arguments on the Eu-
clidean heat semigroup (see also [4, Sect. 6.7.1] and the early work [15] by E. Carlen). The dimensional
improvement

W 2
2 (ν, γ) ≤

∫

|x|2dν + n− 2n exp

(
∫ |x|2

2n
dγ − 1

2
− 1

n
H(ν|γ)

)

(6)

of the Talagrand inequality (3) has been derived in [3]; the argument is based on local hypercontractivity
techniques on an associated Hamilton-Jacobi semigroup and fine properties of the heat semigroup. It has
further been observed in [5] that linearizing (5) leads to the dimensional improvement

Varγ(f) ≤
∫

|∇f |2 dγ − 1

2n

(

∫

(|x|2 − n)fdγ
)2

(7)

of the Brascamp-Lieb (or Poincaré) inequality (4) for the Gaussian measure (see also [4, Sect. 6.7.1]). On
the other hand, by a spectral analysis of the Ornstein-Uhlenbeck semigroup, the bound

Varγ(f) ≤
1

2

∫

|∇f |2 dγ +
1

2

∣

∣

∣

∫

∇fdγ
∣

∣

∣

2

(8)
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has been established in [30, Sect. 6.2]. By the Cauchy-Schwarz inequality, it improves upon (4). Naturally,
both inequalities (7) and (8) are optimal, and equality holds for f(x) = a · x; equality also holds for
f(x) = |x|2, in fact for the first two Hermite polynomials. The above proofs of (5), (6) and (8) are very
specific to the Gaussian case and can not be extended to other measures.

These dimensional improvements can also be written as a deficit in the classical non dimensional ver-
sions (1), (3), (4) of the inequalities: namely, for the logarithmic Sobolev (LSI in short) and Talagrand
(Tal in short) inequalities, lower bounds on the quantities

δLSI(ν|µ) :=
1

2
I(ν|µ)−RH(ν|µ) and δTal(ν|µ) := H(ν|µ)− R

2
W 2

2 (ν, µ).

The problem of dimensional refinements of standard functional inequalities has been recently considered
in an intensive manner. Via the development of refined optimal transportation tools, beautiful results for
the Gaussian isoperimetric inequality were obtained by Figalli-Maggi-Pratelli [25] (see also R. Eldan [20]
or [23] for convex cones). Further recent results have been established on deficit in the logarithmic Sobolev
inequality in the Gaussian case by Figalli-Maggi-Pratelli [26], Indrei-Marcon [32] and Bobkov & al [8]. In
particular [8] rediscovers (5) and extends earlier results obtained in dimension one by Barthe-Kolesnikov [6]
on the Talagrand deficit. Fathi-Indrei-Ledoux [22] also considers these deficits, particularly emphasizing
the case where ν has additional properties, such as a Poincaré inequality ensuring a better constant in
the logarithmic Sobolev inequality. Very recently D. Cordero-Erausquin [17] has studied refinements of
the Talagrand and Brascamp-Lieb inequalities via optimal transport tools.
Let us also quote C. Villani [39, p. 605]:

There is no well-identified analog of Talagrand inequalities that would take advantage of the
finiteness of the dimension to provide sharper concentration inequalities

as a motivation to investigate further the problem. As we will see there are other striking applications of
these dimensional refinements than sole concentration.
Finally recall that the so-called Bakry-Émery criterion (or Γ2-criterion) ensures that the measure µ with
density e−V satisfies the logarithmic Sobolev inequality (1) and Talagrand inequality (3) as soon as the
potential V satisfies Hess(V ) ≥ R Idn with R > 0, as symmetric matrices. One of the goals of this paper
is to extend the above dimensional inequalities under this condition with R > 0 or only Hess(V ) > 0.
For this we shall use multiple tools and we will compare our inequalities with other recent extensions.
Applications to concentration inequalities and short and long time behaviour for the laws of solutions to
stochastic differential equations are also given.

Plan of the paper and main results

Let µ be a probability measure on R
n with density e−V where V is C2.

In Section 1, we propose a method based on the Borell-Brascamp-Lieb inequality to get dimensional
logarithmic Sobolev inequalities in the spirit of the works [9, 11] by S. Bobkov and M. Ledoux. The
method is based on a general convexity inequality given in Theorem 1.1. For instance, in Corollary 1.4
we shall prove the following : If Hess(V ) ≥ R Idn with R > 0, then

Entµ(f
2) ≤ n(s− 1− log s) +

1

2R

∫

∣

∣

∣
(1− s)∇V + 2s

∇f
f

∣

∣

∣

2

f2 dµ (9)

for any s > 0 and any function f such that
∫

f2dµ = 1. This improves upon the classical logarithmic

Sobolev inequality (1) under the Bakry-Émery condition, which is recovered for s = 1.

In Section 2 (Theorem 2.1) we propose a dimensional Talagrand inequality through optimal transportation
in the spirit of Barthe-Kolesnikov [6] and D. Cordero-Erausquin [16] or the recent [17] : If Hess(V ) ≥ R Idn
with R > 0 then

R

2
W 2

2 (µ, ν) ≤ ν(V )− µ(V ) + n− n exp
[ 1

n

(

ν(V )− µ(V )−H(ν|µ)
)]

(10)

for all ν ∈ P2(R
n). This bound implies the classical Talagrand inequality (3). Let us observe that, using

the terminology of the Γ2-condition, the associated Markov generator L = ∆ − ∇V · ∇ does not satisfy
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a CD(R, n) curvature dimension condition, but only CD(R,∞). In particular the general dimensional
log Sobolev or Talagrand inequalities, obtained on manifolds (see [4]) or on abstract measure spaces (as
in [21]) do not hold. In Section 2.1 we show how the dimensional corrective term in our new Talagrand
inequality enables to get sharp concentration inequalities.

Inspired by recent results on the equivalence between contraction and CD(R, n) condition in abstract
measure spaces (see [1, 21, 14]), in Section 3 we consider applications to refined dimensional contraction
properties under CD(R,∞) (see Proposition 3.3 and Corollary 3.8); we shall see how the dimension
improves the asymptotic behaviour for the laws of solutions to stochastic differential equations (in the
spirit of [12, 13]). Again the generator L = ∆ − ∇V · ∇ does not satisfy a CD(R, n) condition, but
only CD(R,∞). The key point here is to take advantage of the contribution of the diffusion term, which
includes a dimensional term. We shall also see how the dimension influences the short time smoothing
effect, through very simple arguments (see Proposition 3.1).

In section 4 we prove two kinds of dimensional Brascamp-Lieb inequalities, a first one by a L2 argument,
a second one by a linearization argument in the Borell-Brascamp-Lieb inequality. For instance, under the
sole assumption Hess(V ) > 0, Theorem 4.3 states that

Varµ(f) ≤
∫

∇f · Hess(V )−1 ∇f dµ−
∫

(f −∇f · Hess(V )−1 ∇V )2

n+∇V ·Hess(V )−1 ∇V dµ (11)

for any smooth function f such that
∫

fdµ = 0.We shall discuss the optimality of our bounds and compare
them with other very recent dimensional refinements of the Brascamp-Lieb inequality.

In the Gaussian case where µ = γ, then the logarithmic Sobolev (9) (by optimising over s) and Tala-
grand (10) inequalities are exactly (5) and (6) respectively, while the Poincaré inequality (11) improves
upon (7).

Notation: whenever there is no ambiguity we shall respectively use H, I,W2, δLSI and δTal for H(ν|µ),
I(ν|µ),W2(ν, µ), δLSI(ν|µ) and δTal(ν|µ). We shall sometimes let Entdx(f) =

∫

f log fdx and µ(f) =
∫

fdµ and use the same notation for an absolutely continuous measure with respect to Lebesgue measure,
and its density.

1 Logarithmic Sobolev inequalities

The Prékopa-Leindler inequality is a reverse form of the Hölder inequality. Let F , G, H be non-negative
measurable functions on R

n satisfying
∫

Fdx =
∫

Gdx = 1, and let s, t ≥ 0 be fixed such that t+ s = 1.
Under the hypothesis

H(tx+ sy) ≥ F (x)tG(y)s (12)

for any x, y ∈ R
n, the Prékopa-Leindler inequality ensures that

∫

Hdx ≥ 1, see [39, Chap. 19] for instance.

The Borell-Brascamp-Lieb inequality is a stronger and dimensional form of the Prékopa-Leindler in-
equality. Assume again

∫

Fdx =
∫

Gdx = 1 and in addition that F , G and H are positive; then the
Borell-Brascamp-Lieb inequality asserts that

∫

Hdx ≥ 1 as soon as

H(tx+ sy) ≥
(

tF (x)−1/n + sG(y)−1/n
)−n

(13)

for any x, y ∈ R
n, instead of the stronger (12) (by convexity); see again [39].

The Prékopa-Leindler inequality in particular implies many geometrical and functional inequalities as
logarithmic Sobolev and Brascamp-Lieb inequalities, as observed by S. Bobkov and M. Ledoux in [9, 11]
(see also [28] for an application to the modified logarithmic Sobolev inequality). In the coming sections we
shall see how the Borell-Brascamp-Lieb inequality implies dimensional form of these inequalities. Following
S. Bobkov and M. Ledoux [9, 11] our proofs are based on Taylor expansions when s→ 0 or F → 0.
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1.1 A general convexity inequality via the Borell-Brascamp-Lieb inequality

Let us first state a general consequence of the Borell-Brascamp-Lieb inequality. It will lead to various
dimensional logarithmic Sobolev inequalities.
In the sequel we let ψ∗ be the Legendre transform of a function ψ on R

n, defined for y ∈ R
n by

ψ∗(y) = sup
x∈Rn

{y · x− ψ(x)} ∈ (−∞,+∞].

If ψ is C1 and strictly convex satisfying

lim
|x|→+∞

ψ(x)

|x| = +∞,

then (see [38, Sect. 2.1.3 and 2.4.3] for instance) for all x ∈ R
n, ψ∗(x) ∈ R and

ψ(x) = ∇ψ(x) · x− ψ∗(∇ψ(x)) and ∇ψ∗(∇ψ(x)) = x. (14)

Theorem 1.1 (Convexity inequality) Let g,W be C1 and positive functions on R
n satsifying the nor-

malization condition
∫

g−ndx =
∫

W−ndx = 1. Assume moreover that there exists a constant C > 0 such
that for all x ∈ R

n,

W (x) ≥ 1

C

|x|2
2
, (H1)

1

C
(|x|2 + 1) ≤ g(x) ≤ C(|x|2 + 1) and |∇g(x)| ≤ C(|x|+ 1). (H2)

Then
∫

W ∗(∇g)
gn+1

dx ≥ 0. (15)

If W is a C1 positive and strictly convex function which satisfies (H1) and
∫

W−ndx = 1, then (15) is an
equality for g =W .

The same statement can be proved for a larger class of functions g and W . We only state this result with
these restrictive hypotheses for simplicity reasons, as this setting will be sufficient for our main application.
The rigorous proof is postponed to the Appendix A. The idea is to perform a Taylor expansion of the
Borell-Brascamp-Lieb inequality (13) when s = 1 − t goes to 0. Indeed, let F = g−n and G = W−n

in (13), hence satisfying
∫

Fdx =
∫

Gdx = 1. Then the function Ht defined by

Ht(z)
−1/n = inf

h∈Rn

{

tg
(

z +
s

t
h
)

+ sW (z − h)
}

(16)

for z ∈ R
n satisfies

∫

Htdx ≥ 1. The first-order Taylor expansion of Ht, when s = 1− t goes to 0, gives

Ht(z) = g(z)−n − s n g(z)−n−1
(

z · ∇g(z)− g(z)
)

+ s n
W ∗(∇g(z))
gn+1(z)

+ o(s).

Since
∫

g−n−1(z · ∇g − g) dx = 0

by integration by parts, the Taylor expansion of
∫

Htdx ≥ 1 implies the inequality (15).

Applications of Theorem 1.1 are described in the coming two sections. They are based on the following
observation. Let V be a given function and let W = e

V
n . Then, from the convexity of the exponential

function, for any a ∈ R and y ∈ R
n,

W ∗(y) ≤ 1

n
eaV ∗(ne−ay) + (a− 1)ea.

Combined with Theorem 1.1, this gives the following corollary which is the main tool in our applications:

Corollary 1.2 Under the hypotheses of Theorem 1.1, let V = n logW . Then for any function a,
∫

1

gn+1

(

eaV ∗(ne−a∇g) + n(a− 1)ea
)

dx ≥ 0. (17)
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1.2 Euclidean logarithmic Sobolev inequalities

As a warm up, let us first see how to quickly recover the classical Euclidean logarithmic Sobolev inequality,
using (17). Let C : R

n → R
+ be a strictly convex function such that

∫

e−Cdx < +∞, and let us
apply (17) with V = C + β and W = eV/n; here β = log

∫

e−Cdx so that
∫

e−V dx = 1. Since V is
convex and

∫

e−V dx < +∞, it is classical that V grows at least linearly at infinity, so that W satisfies
hypothesis (H1) .
Then let p > 1. Let also f be a C1 positive function such that

∫

fpdx = 1 and g = f−p/n satisfies (H2),
and let a = − p

n log f + u where u is a real constant. Then V ∗ = C∗ − β and (17) can be written as

∀u ∈ R,

∫

fp log(fp) dx ≤ n(u− 1)− β +

∫

C∗

(

−pe−u∇f
f

)

fp dx. (18)

We can optimise over u in R in the following case. Suppose that there exists q > 1 such that C is
q-homogeneous, that is, C(λx) = λqC(x) for any λ ≥ 0 and x in R

n. Then C∗ is p-homogeneous with
1/p+1/q = 1, and in particular aboveC∗(−pe−u∇f/f) = ppe−puf−pC∗(−∇f). Thus inequality (18) gives

∫

fp log(fp) dx ≤ n(u− 1)− β + e−pupp
∫

C∗(−∇f)dx (19)

for any function f such that
∫

fpdx = 1 and f−n/p satisfies (H2). Now, let f be a C1 non negative
and compactly supported function and for ε > 0 let fε(x) = Cε(ε(|x|2 + 1)−n/p + f), where Cε is

such that
∫

(fε)
pdx = 1. The function f

−n/p
ε satisfies (H2) for any ε. Taking the limit when ε goes

to 0, inequality (19) then holds for any C1 non negative and compactly supported function f such that
∫

fpdx = 1.
For the optimal u = p−1 log ( pp+1

∫

C∗(−∇f)dx/n), the bound (19) leads to

∫

fp log(fp) dx ≤ n

p
log

(

pp+1

nep−1

∫

C∗(−∇f)dx
(
∫

e−Cdx)p/n

)

for any C1 non negative and compactly supported function f such that
∫

fpdx = 1. Of course, the
inequality can be extended to a larger class of functions f . Hence, we recover the optimal Lp-Euclidean
log Sobolev inequality proved in [19, 27] and in particular, setting C(x) = |x|2/2 and p = q = 2, the
classical inequality

∫

f2 log(f2) dx ≤ n

2
log

(

2

nπe

∫

|∇f |2dx
)

.

1.3 Dimensional logarithmic Sobolev inequalities

In this section we consider a probability measure µ with density e−V and the function W = eV/n, and a
positive function f such that

∫

f2 dµ = 1. We assume again that V is convex ; then W = eV/n satisfies
hypothesis (H1) since

∫

e−V dx = 1.
Corollary 1.2 applied with g = eV/n f−2/n (assuming that g satisfies hypothesis (H2)) and a = V

n −
2
n log f + u with u ∈ R gives

∫
(

V ∗
(

e−u∇V − 2e−u
∇f
f

)

+ V − log(f2) + n(u− 1)

)

f2e−V dx ≥ 0.

Corollary 1.3 Let dµ(x) = e−V (x)dx be a probability measure with V a convex function and let f be a
C1 positive function such that

∫

f2 dµ = 1 and such that g = eV/n f−2/n satisfies hypothesis (H2). Then
for any s > 0

Entµ(f
2) ≤

∫
[

V ∗
(

s∇V − 2s
∇f
f

)

+ V

]

f2dµ− n(1 + log s). (20)

For s = 1, inequality (20) simplifies as

Entµ(f
2) ≤

∫
[

V ∗
(

∇V − 2
∇f
f

)

+ V − n

]

f2dµ,

∫

f2dµ = 1.
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In particular, for V = |x|2

2 + n
2 log(2π), then µ is the standard Gaussian measure γ and we recover the

Gaussian logarithmic Sobolev inequality of L. Gross,

Entγ(f
2) ≤ 2

∫

|∇f |2dγ,
∫

f2 dγ = 1.

More generally, let V be a strictly convex function on R
n. Then inequality (20) with s = 1, by (14) and

integration by parts, leads to the modified logarithmic Sobolev inequality

Entµ(f
2) ≤

∫
[

V ∗
(

∇V − 2
∇f
f

)

+ 2x · ∇f
f

− V ∗(∇V )

]

f2dµ,

∫

f2 dµ = 1

proved by the second author in [28].

Assuming uniform convexity on V we now optimise over the parameter s > 0 in Corollary 1.3, to obtain
dimensional logarithmic Sobolev inequalities. Suppose that V is C2 with Hess(V ) ≥ R Idn for R > 0. Then,
for their inverse matrices, Hess(V ∗) ≤ R−1 Idn on R

n. Hence, for any z and by the Taylor expansion at
point ∇V (x),

V ∗(z) + V (x) ≤ V ∗(∇V (x)) +∇V ∗(∇V (x)) · (z −∇V (x)) +
1

2R
|z −∇V (x)|2 + V (x)

= x · z + 1

2R
|z −∇V (x)|2.

Here we use the relations (14). For z = s∇V − 2s∇ff at point x, and by (20), this leads to

Entµ(f
2) ≤ −n(1 + log s) + s

∫

x ·
(

∇V − 2
∇f
f

)

f2dµ+
1

2R

∫

∣

∣

∣

(

s∇V − 2s
∇f
f

)

−∇V
∣

∣

∣

2

f2dµ.

By integration by parts and extending to compactly supported functions, as for (19), we finally obtain:

Corollary 1.4 (Dimensional LSI under Γ2-condition) Let µ be a probability measure with density
e−V where V is C2 with Hess(V ) ≥ R Idn for R > 0. Then

Entµ(f
2) ≤ n(s− 1− log s) +

1

2R

∫

∣

∣

∣
(1− s)∇V + 2s

∇f
f

∣

∣

∣

2

f2 dµ (21)

for any s > 0 and any C1, non-negative and compactly supported function f such that
∫

f2dµ = 1.

The bound can of course be extended to other classes of functions f .
When s = 1, we recover the classical logarithmic Sobolev inequality (1) under the Bakry-Émery condition.
Let us observe that the right-hand side in (21) can be expanded as −n log s plus a second order polynomial
in s. Hence it admits a unique minimiser s > 0, which solves a second order polynomial. The obtained ex-
pression is not appealing and we prefer to omit it. In the Gaussian case where µ = γ, then the optimisation
over s gets even simpler and leads again to the dimensional Gaussian log Sobolev inequality (5).
Moreover, for a general V and as in (33) or (23) below for the Talagrand inequality, the bound (21) can
be written as a (not either appealing) deficit in the log Sobolev inequality.

We will see in Section 3.1 that (21) leads to new and sharp short time smoothing on the entropy of
solutions to an associated Fokker-Planck equation.

2 Talagrand inequalities

The main result of this section is

Theorem 2.1 (Dimensional Talagrand inequality) Let µ be a probability measure in P2(R
n) with

density e−V where V is a C2 function satisfying Hess(V ) ≥ R Idn with R > 0. Then for all ν ∈ P2(R
n)

R

2
W 2

2 (µ, ν) ≤ ν(V )− µ(V ) + n− n exp
[ 1

n

(

ν(V )− µ(V )−H(ν|µ)
)]

. (22)
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In other words, if Hess(V ) ≥ R Idn, then ν(V )− µ(V )− R
2W

2
2 (ν, µ) > −n and

δTal(ν|µ) ≥ max
{

δn

(

H(ν|µ) + µ(V )− ν(V ))
)

,Λn

(

ν(V )− µ(V )− R

2
W 2

2 (ν, µ)
)}

. (23)

Here δn and Λn are the positive functions respectively defined by δn(x) = n[e−x/n − 1 + x/n], x ∈ R and
Λn(x) = x− n log(1 + x/n), x > −n.
The function δ1(x) = e−x − 1 + x is positive and convex. It is moreover decreasing on R

− and increasing
on R

+. By a direct computation, δ1(x) is bounded from below by x2/2 if x ≤ 0, x2/e if 0 ≤ x ≤ 1 and

x/e if x > 1; hence always by 1
e min(|x|, x2). Then for any x ∈ R, δn(x) ≥ 1

e min(|x|, x2

n ).

Since eu ≥ 1 + u, the bound (22) implies the classical Talagrand inequality (3) under the condition
Hess(V ) ≥ R Idn. When µ is the standard Gaussian measure γ on R

n, then R = 1 and we recover the
dimensional Talagrand inequality (6).

Under a moment condition Theorem 2.1 simplifies as follows:

Corollary 2.2 Following the same assumptions as in Theorem 2.1, for all ν in P2(R
n) with ν(V ) ≤ µ(V ),

δTal(ν|µ) ≥ δn(H(ν|µ)) ≥ 1

e
min

(

H(ν|µ), H(ν|µ)2
n

)

. (24)

Theorem 2.1 will be deduced from the following dimensional HWI-type inequality, applied with f = 1
and ν = gµ. The HWI inequality bounds from above the entropy by the Wasserstein distance and the
Fisher information (defined in (2)), in the form

H(ν|µ) ≤W2(ν, µ)
√

I(ν|µ)− R

2
W 2

2 (µ, ν) (25)

for all ν. It has been introduced in [36] and proved in [36] and [16] under the Bakry-Émery condition
Hess(V ) ≥ R Idn, R ∈ R.

Theorem 2.3 (Dimensional HWI inequality) Let µ be a probability measure on R
n with density e−V

where V is a C2 function satisfying Hess(V ) ≥ R Idn with R ∈ R. Let also f, g be smooth functions such
that fµ and gµ belong to P2(R

n). Then

n exp
[ 1

n

(

H(fµ|µ)−H(gµ|µ) + µ(gV )− µ(fV )
)]

− n

≤ µ(gV )− µ(fV ) +W2(fµ, gµ)
√

I(fµ|µ)− R

2
W 2

2 (fµ, gµ).

For g = 1 and ν = fµ, this bound can be written as the dimensional HWI inequality

n exp
[ 1

n

(

H(ν|µ) + µ(V )− ν(V )
)]

− n ≤ µ(V )− ν(V ) +W2(µ, ν)
√

I(ν|µ) − R

2
W 2

2 (µ, ν). (26)

As in (23) for the Talagrand inequality, this can equivalently be written as a deficit in the HWI inequality.
It is classical that the HWI inequality (25) implies the logarithmic Sobolev inequality (1) (see [36] for
instance). Likewise, from (26), one can obtain a dimension dependent logarithmic Sobolev inequality. We
refer to Section 2.5 for further details.
The proof of Theorem 2.3 will be given in Section 2.4.

2.1 An application to concentration

Let us quickly revisit K. Marton’s argument for concentration via Talagrand’s inequality (as in [39,
Chap. 22] for instance) and see how the refined inequality (22) in Theorem 2.1 gives sharpened information
for large deviations.

Let dµ = e−V dx satisfy inequality (22). Let also A ⊂ R
n, r > 0 and Ar = {x; ∀y ∈ A, |y − x| > r}. Let

finally µA = 1A
µ(A)µ and µAr =

1Ar
µ(Ar)

µ be the restrictions of µ to A and Ar. Then, as W2 is a distance,

r ≤W2(µA, µAr ) ≤W2(µA, µ) +W2(µAr , µ).
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First of all
W2(µA, µ) ≤

√

2R−1H(µA|µ) =
√

2R−1 log(1/µ(A)) := cA

by (22), or its weaker form (3). Let now cV =
∫

V dµ, xr = H(µAr |µ) = log(1/µ(Ar)) and Vr =
∫

V dµAr .
By (22) again we get, for r > cA,

(r − cA)
2 ≤W 2

2 (µAr , µ) ≤
2

R

(

Vr − cV + n− n exp
[

− 1

n
(xr + cV − Vr)

])

.

Since xr = log(1/µ(Ar)) we obtain :

Corollary 2.4 (Concentration inequality) Following the same assumptions as in Theorem 2.1, let
A ⊂ R

n, r > 0 and Ar = {x; ∀y ∈ A, |y − x| > r}, cA =
√

2R−1 log(1/µ(A)), cV =
∫

V dµ, Vr =
∫

V dµAr .
Then for r > cA

µ(Ar) ≤ ecV−Vr
[

1 +
1

n

(

Vr − cV − R

2
(r − cA)

2
)

]n

.

Since (1 + u/n)n ≤ eu, the bound in Corollary 2.4 implies the classical Gaussian concentration

µ(Ar) ≤ e−
R
2 (r−cA)2 , r > cA

of the Talagrand inequality (3), see again [39, Chap. 22] for instance.
The bound in Corollary 2.4 captures the behaviour of concentration of the measure µ in a more accurate
way: let for instance V (x) = |x|2/2 + |x|p + Zp with p > 2 and a normalizing factor Zp, and A be the
Euclidean unit ball in R

n. Then Hess(V ) ≥ Idn, so by Corollary 2.4 with R = 1 there exists a constant
C = C(p, n) such that for all r > C

µ(|x| > r + 1) = µ(Ar) ≤ exp
[

cV − Vr + n log(1 + Vr/n)
]

.

But Vr ≥ rp+Zp, so for all ε < 1 there exists another constant C depending also on ε such that for all r > C

µ(|x| > r) ≤ e−(1−ε)rp .

This concentration inequality in this precise example can also be obtained by using a Lp-Talagrand in-
equality or a Lp-log Sobolev inequality; however we have found it interesting to get it by means of the
dimension dependence of the classical Talagrand inequality, moreover in a shorter and more straightfor-
ward manner.

2.2 Tensorisation and comparison with earlier results

In R
n, let W1 be the Wasserstein distance between probability measures, for the cost |y − x|, x, y ∈ R

n.

Deficit in the Gaussian Talagrand inequality (for µ = γ) and for centered measures ν has been investigated
in one dimension in [6] and [8], in the form

δTal(ν|γ) ≥ c inf
π

∫

R×R

Λ(|y − x|)dπ(x, y) ≥ cmin
{

W1(ν, γ)
2,W1(ν, γ)

}

.

Here the c’s are diverse numerical constants and the infimum runs over couplings π of γ and ν.
This second lower bound has been extended in [22, Th. 5] to any dimension n, as

δTal(ν|γ) ≥ cmin

(

W1,1(ν, γ)
2

n
,
W1,1(ν, γ)√

n

)

(27)

as soon as ν has mean 0; here c is a numerical constant independent of the dimension n, and on R
n ×R

n

W1,1(µ, ν) = inf
π

∫

Rn×Rn

n
∑

i=1

|yi − xi| dπ(x, y).

Still under a centering condition, the bound (27) has been improved in [17, Prop. 3] by replacing the
quantity W1,1/

√
n by the larger W1 Wasserstein distance on R

n, and extended to reference measures µ
with density e−V where Hess(V ) ≥ R Idn.
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In comparison, our bound (23) has the following two advantages : it holds without any centering condition
on ν, and gives a lower bound on the deficit in terms of the relative entropy H : this is a strong way of
measuring the gap between measures, by the Pinsker inequality for instance (see [39, Chap. 22]), and the
relative entropy can be much larger than the weak distance W2.

As considered in [17] and [22], a natural example is the product measure case when µN = ⊗Nµ and
νN = ⊗Nν on R

nN for N ∈ N
∗. Then δTal(ν

N |µN ) = N δTal(ν|µ) by tensorisation properties of both H
and W 2

2 . However, the above bound (27) in [17] (so with W1 instead of W1,1/
√
n) gives a lower bound on

δTal(ν
N |µN ) equal to a constant c times

min
(

W1(ν
N, µN )2,W1(ν

N, µN )
)

≤ min
(

W2(ν
N, µN )2,W2(ν

N, µN )
)

= min
(

NW2(ν, µ)
2,
√
NW2(ν, µ)

)

since W1 ≤ W2. Hence this lower bound has the good order in N at most only for small perturbations ν
of the reference measure µ.

In contrast, our bound always has the correct order in N . Indeed, if V (N) = ⊕NV so that dµN = e−V
(N)

dx
on R

nN , then
H(νN |µN ) + µN (V (N))− νN (V (N)) = N (H(ν|µ) + µ(V )− ν(V )) ;

hence Theorem 2.1 leads to

δTal(ν
N |µN ) ≥ N δn (H(ν|µ) + µ(V )− ν(V )) ,

which has the correct order in N .

2.3 Useful facts on optimal transport

In the proof of Theorem 2.3 and in proofs below we shall need the following notation and facts.

If µ is a probability measure on R
n and T : Rn → R

n a Borel function, we let T#µ be the image measure
of µ by T , defined by T#µ(h) = µ(h ◦ T ) for all bounded continuous functions h : Rn → R.
Let now µ0 and µ1 in P2(R

n) be absolutely continuous with respect to Lebesgue measure. Then there
exists a convex function ϕ on R

n such that µ1 = ∇ϕ#µ0 (see [38, Th. 2.12] or [39, Th. 10.41] for instance).
The map ∇ϕ is called the Brenier map. Moreover

∫

|∇ϕ(x) − x|2dµ0(x) =W 2
2 (µ0, µ1).

Now, by the Alexandrov Theorem (see [34] or [39, Th. 14.1] for instance), a convex function ψ is almost
everywhere twice differentiable: for almost every x ∈ R

n there exists a non negative symmetric matrix A
such that

ψ(x+ h) = ψ(x) +∇ψ(x) · h+
1

2
Ah · h+ o(|h|2)

as h tends to 0 in R
n. The matrix A is denoted Hess(ψ)(x) and called the Hessian of ψ in the sense

of Alexandrov. The trace of A will be denoted ∆ψ(x) : it coincides with the density of the absolutely
continuous part of the distributional Laplacian of ψ, the singular part being a non negative measure.
In fact, in the above notation and by [34, Th. 4.4] or [1, Th. 6.2.12], Hess(ϕ)(x) is a positive matrix for
µ0-almost every x. Moreover, by [34] (see also [1, Lem. 5.5.3]), the Brenier map solves the Monge-Ampère
equation

µ0(x) = µ1(∇ϕ(x)) det(Hess(ϕ)(x)) (28)

at µ0-almost every x in R
n. Here µ0 and µ1 are the densities of the measures.

Let now ϕ∗ be the Legendre transform of ϕ. Then µ0 = ∇ϕ∗#µ1 by [38, Th. 2.12] for instance. Moreover
∇ϕ∗(∇ϕ(x)) = x and ∇ϕ(∇ϕ∗(y)) = y for µ0-almost every x and µ1-almost every y.
Furthermore, by [34, Th. A.1], if Hess(ϕ)(x) is invertible at x then ϕ∗ is twice differentiable at ∇ϕ(x),
with Hess(ϕ∗)(∇ϕ(x)) =

[

Hess(ϕ)(x)
]−1

. By the remark above, this is the case for µ0-almost every x.

Finally, the curve (µs)s∈[0,1] defined by µs = ((1− s)Id+ s∇ϕ)#µ0 is a geodesic path in P2(R
n) between

µ0 and µ1, in the sense that
W2(µs, µt) = |t− s|W2(µ0, µ1)

for all 0 ≤ s, t ≤ 1. It holds that µs is also absolutely continuous with respect to Lebesgue measure,
see [34, Prop. 1.3] or [38, Th. 5.9] for instance.

10



2.4 Proof of Theorem 2.3

Theorem 2.3 is a consequence of the relation

H(hµ|µ)− µ(hV ) = Entdx(he
−V ) (29)

written with h = f, g and of the following lemma.

Lemma 2.5 Following the same assumptions as in Theorem 2.3, let f, g be two smooth functions such
that fµ and gµ belong to P2(R

n). Let ϕ be a convex function on R
n such that ∇ϕ#(fµ) = gµ. Then

∫

V g dµ−
∫

V f dµ−
∫

(∇ϕ− x) · ∇f dµ ≥ n exp
[ 1

n

(

Entdx(fe
−V )− Entdx(ge

−V )
)]

− n

+

∫ ∫ 1

0

(∇ϕ(x) − x) ·Hess(V )(x + t(∇ϕ(x) − x))(∇ϕ(x) − x)(1 − t)dt f(x) dµ(x).

Indeed, if Hess(V ) ≥ R Idn, then the last term above is greater than R
2

∫

|∇ϕ− x|2f dµ = R
2W

2
2 (fµ, gµ).

Moreover, on the left-hand side,

−
∫

(∇ϕ− x) · ∇f dµ ≤
[

∫

|∇ϕ− x|2 f dµ
]1/2[

∫ |∇f |2
f

dµ
]1/2

=W2(fµ, gµ)
√

I(fµ|µ)

by the Cauchy-Schwarz inequality. This implies Theorem 2.3.

Proof of Lemma 2.5.
By the Taylor formula,

V (∇ϕ(x))−V (x) = ∇V (x) ·(∇ϕ(x)−x)+
∫ 1

0

(∇ϕ(x)−x) ·Hess(V )(x+ t(∇ϕ(x)−x))(∇ϕ(x)−x)(1− t)dt

for almost every x in R
n. We now integrate with respect to f µ and use the comparison between Alexandrov

and distributional Laplacians to deduce that
∫

∇V (x)·(∇ϕ(x)−x) f(x) dµ(x) ≥
∫

[

(∆ϕ−n)f+(∇ϕ−x)·∇f
]

dµ =

∫

∆ϕf dµ−n+
∫

(∇ϕ−x)·∇f dµ,

as in [16] or [38, Th. 9.17] for instance. This leads to

∫

V g dµ−
∫

V f dµ−
∫

(∇ϕ− x) · ∇f dµ ≥
∫

∆ϕf dµ− n

+

∫ ∫ 1

0

(∇ϕ(x) − x) · Hess(V )(x+ t(∇ϕ(x) − x))(∇ϕ(x) − x)(1 − t)dt f(x) dµ(x). (30)

Then Lemma 2.5 is a consequence of the following Lemma.

Lemma 2.6 Let µ0, µ1 ∈ P2(R
n) absolutely continuous with respect to Lebesgue measure, with respective

densities also denoted µ0 and µ1. Let ϕ be a convex function on R
n such that ∇ϕ#µ0 = µ1. Then

∫

∆ϕdµ0 ≥ n exp

[

Entdx(µ0)− Entdx(µ1)

n

]

. (31)

Proof

⊳ Taking logarithms in the Monge-Ampère equation (28) and integrating with respect to µ0 lead to

Entdx(µ0) = Entdx(µ1) +

∫

log det(Hess(ϕ)) dµ0. (32)

Now, if for each x the symmetric matrix Hess(ϕ) has eigenvalues ϕi, then by the Jensen inequality
∫

log det(Hess(ϕ)) dµ0=n
1

n

∑

i

∫

log(ϕi) dµ0 ≤ n log
(

∫

1

n

∑

i

ϕi dµ0

)

=n log
( 1

n

∫

∆ϕdµ0

)

.

This concludes the proof. ⊲
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Remark 2.7 In the Gaussian case, we have already observed that translations of the Gaussian measure
are extremals of the Talagrand inequality. As observed in [16], or as can be observed from the proof above,
there are no other extremals. Indeed the Hessian of the map ϕ has to be constant and equal to the identity
matrix for all inequalities to be equalities.
In fact, if Hess(V ) ≥ R Idn, then equality in the Talagrand inequality implies that the potential is neces-
sarily Gaussian and that extremals are translations of the Gaussian measure.

2.5 Logarithmic Sobolev inequalities by transport

As observed in [36], the HWI inequality (25) classically implies the logarithmic Sobolev inequality (1)
by bounding from above the second order polynomial in W2 in HWI by its maximum. Likewise, the
dimensional HWI inequality (26) is another path towards dimensional logarithmic Sobolev inequalities.
Here we obtain :
Let µ have density e−V where V is C2 and satisfies Hess(V ) ≥ R Idn with R > 0. Then

H(ν|µ) ≤ ν(V )− µ(V ) + n log
(

1 +
1

n

(I(ν|µ)
2R

+ µ(V )− ν(V )
))

for all ν. Equivalently, in terms of deficit,

δLSI(ν|µ) ≥ Rmax
{

δn

(

ν(V )− µ(V )−H(ν|µ)
)

,Λn

(I(ν|µ)
2R

− ν(V ) + µ(V ))
)}

. (33)

In the Gaussian case, then R = 1 and we obtain a bound which is slightly worse than (5), where a
log(1 + 2u) term is replaced by the larger 2 log(1 + u).
At this point, let us observe that still in the Gaussian case a dimensional HWI has been derived in [8,
Th. 1.1]. It is also observed by the authors that the HWI inequality in [8] does not seem to imply (5). We
could not compare the HWI in [8] to our bound (26) in full generality. However, if ν(|x|2) = n = γ(|x|2)
then they can respectively be written as

2h ≤ x− y + log(1 + x) and h ≤ log(1 + x− y/2)

for x = W2

√
I/n, y = W 2

2 /n and h = H/n; hence our bound is at least significantly more precise in the
common range I ≫ W2 ∼ 1: indeed then x≫ y ∼ 1 in this range, so that comparing the two right-hand
sides amounts to x≫ log(1 + x).

As remarked in [8, 22] it is also possible to get refined logarithmic Sobolev inequalities by combining the
HWI and Talagrand inequalities. Here, if Hess(V ) ≥ R Idn with R > 0, then (26) can be written as

H + δn(−h) ≤W2

√
I − R

2
W 2

2 (34)

where h = H + µ(V )− ν(V ). Moreover H = R
2W

2
2 + δTal, so

δTal + δn(−h)
W2

≤
√
I −RW2.

Then, by (34) again and Theorem 2.1,

δLSI =
1

2
I −RH ≥ R δn(−h) +

1

2

(√
I −RW2

)2

≥ Rδn(−h) +
1

2

(δTal + δn(−h))2
W 2

2

≥ Rδn(−h) +
1

2

(δn(h) + δn(−h))2
W 2

2

.

In particular this improves upon the first lower bound in (33). Let us recall that the function δn is defined
above, after Theorem 2.1.

Refined Gaussian logarithmic Sobolev inequalities have been considered for certain classes of test mea-
sures ν : measures ν satisfying lower and upper curvature bounds as in [8] and [32], measures ν satisfying
a (weaker) Poincaré inequality as in [22]. Under these additional assumptions on ν, the goal is then to
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obtain better constants in the logarithmic Sobolev inequality, mimicking in a sense the phenomenon ob-
served in the Poincaré inequality when considering test functions orthogonal to the first eigenfunctions. In
Indrei-Marcon [32], the deficit is controlled by the Wasserstein distance for the class of centered functions
with upper and lower bounded curvature. The authors in [8] also give new bounds in terms of condition-
ally centered vectors. Further improvements are given in [22] in terms of the W1,1 distance defined in
Section 2.2. Here again our bounds share the advantages of holding without any smoothness, centering,
etc. hypothesis on ν, and of having the good dimensional behaviour when considering product measures.

3 Applications to Fokker-Planck equations

Let us now see how our results (or methods) lead to short-time smoothing of the entropy and improved
contraction rates for the laws of solutions to stochastic differential equations.

For this, let again V be a C2 function on R
n such that

∫

e−V = 1 and Hess(V ) ≥ R Idn, with R possibly
negative, and satisfying the doubling condition V (x+ y) ≤ C(1 + V (x) + V (y)) for a C and all x, y. Let
also µ be the probability measure with density e−V . We let u0 in P2(R

n) and consider gradient flow
solutions u = (ut)t≥0 ∈ C([0,+∞), P2(R

n)) of the Fokker-Planck equation

∂ut
∂t

= ∆ut +∇ · (ut∇V ), t > 0, x ∈ R
n (35)

as in [1, Chap. 11.2.1] and [18, Th. 4.20 and 4.21] (see also [33]). Equation (35) holds in the sense of
distributions. Moreover, by [1, Th. 11.2.8] or again [18], for any t > 0 the solution ut has a density;
for almost every t > 0 this density is in W 1,1

loc (R
n), with ∇ut/ut + ∇V ∈ L2(ut); finally t 7→ I(ut|µ) ∈

L1
loc(]0,+∞[) and

d

dt
H(ut|µ) = −I(ut|µ)

for almost every t > 0. The solution ut can be seen as the law at time t of the solution (Xt)t≥0 to the
stochastic differential equation

dXt =
√
2 dBt −∇V (Xt) dt.

Here (Bt)t≥0 is a standard Brownian motion on R
n and the initial datum X0 has law u0.

Moreover, the interpretation of (35) as the gradient flow of H(·|µ) on the space P2(R
n) has enabled to

obtain the following short-time and contraction properties (see [1, Th. 11.2.1] and [39, Chap. 24]). Let u
and v be solutions to (35). Then

H(ut|µ) ≤
W 2

2 (u0, µ)

2t
e2max{−R,0} t, t > 0 (36)

and
W2(ut, vt) ≤ e−RtW2(u0, v0), t ≥ 0. (37)

In particular, if R > 0, then ut converges to the steady state µ as

W2(ut, µ) ≤ e−RtW2(u0, µ), t ≥ 0. (38)

The purpose of this section is to improve these three properties by means of the tools and inequalities in
the above sections.

3.1 Short-time smoothing of the entropy

In the Gaussian case where µ is the standard Gaussian measure γ, the solution to (35) is given by the
Mehler formula (see [4, Sect. 2.7.1]). In particular the fundamental solution, with initial datum u0 the
Dirac mass at 0, is at time t > 0 the Gaussian measure with variance σ2

t = 1− e−2t:

ut(x) = (2πσ2
t )

−n/2e−x
2/(2σ2

t ), z ∈ R
n.

Its relative entropy can be computed as

H(ut|γ) =
∫

Rn

ut(x) log
ut(x)

γ(x)
dx = −n

2

[

e−2t + log(1− e−2t)
]

.
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Of course this is coherent with (36), with R = 1, since

−n
2

[

e−2t + log(1− e−2t)
]

≤ n

2t
=
W 2

2 (u0, µ)

2t

by direct computation. In fact, for t ∼ 0 one can observe that

H(ut|γ) ∼
n

2
log

1

t
·

On the other hand, let u be a solution to (35), still in the Gaussian case, and with initial datum u0 such
that u0(|x|2) = n = γ(|x|2). Then ut(|x|2) = n for all t since

d

dt

∫

|x|2 dut = 2n− 2

∫

|x|2 dut. (39)

In particular, in the notation H(t) = H(ut|γ)/n and I(t) = I(ut|γ)/n, the dimensional Gaussian loga-
rithmic Sobolev inequality (5) simplifies as 2H ≤ log(1 + I). Hence

H ′(t) = −I(t) ≤ 1− e2H(t), for a.e. t > 0.

By the change of variable x(t) = e−2h(t) this integrates into

x(t)e2t ≥ x(0) + e2t − 1 ≥ e2t − 1.

In other words
H(ut|γ) ≤ −n

2
log(1− e−2t), t > 0

which gives the same short-time behaviour.

More generally :

Proposition 3.1 Let u be a solution to (35) with Hess(V ) ≥ R Idn, R > 0, and with initial condition u0
in P2(R

n). Let T > 0 and assume that ut(|∇V |2) ≤M for t in [0, T ]. Then there exists a constant c > 0
depending only on n,R and M such that

H(ut|µ) ≤ max
{

1,
n

2
log

c

t

}

, t ≤ T.

Remark 3.2 The moment assumption ut(|∇V |2) ≤ M for t in [0, T ], is not a restrictive condition. It
can indeed be checked by time differentiating ut(|∇V |2) and controlling its non explosion via a Lyapunov
type condition on u0e

V or on derivatives of V for instance.
It can also be checked by observing that the Markov semigroup (Pt)t≥0 with generator L = ∆−∇V · ∇ is
such that

∫

φdut =
∫

Ptφdu0 for any test function φ. In particular, if Φ is a convex function and if the
initial datum has a density also denoted u0, then

ut(|∇V |2) =
∫

|∇V |2dut =
∫

Pt(|∇V |2)du0 =

∫

Pt(|∇V |2)u0eV dµ

≤
∫

Φ(Pt(|∇V |2))dµ+

∫

Φ∗(u0e
V )dµ ≤

∫

Φ(|∇V |2)dµ+

∫

Φ∗(u0e
V )dµ.

Here we use the fact that t 7→
∫

Φ(Pt(|∇V |2))dµ is non increasing since Φ is convex. The moment
assumption is then satisfied for all T > 0 as soon as the right hand side is finite for a convex function Φ.

Proof

⊳ We shall let c denote diverse positive constants depending only on n, M and R. By Corollary 1.4
applied to the measure f2µ = ut, and integration by parts, there holds

H(ut|µ) ≤ n(s− 1− log s) +
1− s2

2R
ut(|∇V |2) + s(s− 1)

R
ut(∆V ) +

s2

2R
I(ut|µ)
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for t > 0 and s > 0. Recall that I has been introduced in (2). Since V is convex, then ∆V ≥ 0 and then

H(ut|µ) ≤ −n log s+ c+
s2

2R
I(ut|µ)

for all s ∈]0, 1] and t ∈]0, T ].
Now, as far as H(t) := H(ut|µ) ≥ 1, then I(t) := I(ut|µ) ≥ 2R so that s =

√

2R/I is smaller than 1. For
this s we obtain

H ≤ c+
n

2
log I.

Hence
H ′(t) = −I(t) ≤ −e2H(t)/n−c

for almost every t > 0. As above x(t) = e−2H/n satisfies x(t) ≥ x(0)+ct ≥ ct by time integration. Written
in terms of H , this concludes the proof. ⊲

3.2 Refined contraction properties

Let us now see how to make (37) finer. Still by [1, Th. 8. 3. 1] and [18, Th. 4.20 and 4.21], one can write
(35) as the continuity equation

∂ut
∂t

+∇ · (ξ[ut]ut) = 0, t > 0, x ∈ R
n

with ξ[ut] = −∇V −∇ log ut. Then for almost every t > 0

−1

2

d

dt
W 2

2 (ut, vt) =

∫

(

ξ[vt](∇ϕt(x)) − ξ[ut](x)
)

· (∇ϕt(x)− x)ut(x) dx (40)

≥
∫

[

∆ϕt(x)+∆ϕ∗
t (∇ϕt(x))−2n+

(

∇V (∇ϕt(x))−∇V (x)
)

·(∇ϕt(x)−x)
]

ut(x) dx (41)

for two solutions u and v. Here ϕt is the convex map such that vt = ∇ϕt#ut and ut = ∇ϕ∗
t#vt for

the Legendre transform ϕ∗
t of ϕt (see Section 2.3). Equality (40) follows from [39, Th. 23.9] (see also [1,

Th. 8.4.7]); its assumptions are satisfied since (and likewise for v)

∫ t2

t1

∫

Rn

|ξ[us]|2dus ds =
∫ t2

t1

I(us|µ)ds = H(ut1 |µ)−H(ut2 |µ) ≤ H(ut1 |µ)

which is finite for any t2 > t1 > 0, as observed above. Inequality (41) follows from a weak integration by
parts, as in [33, Th. 1.5]; there again ∆ϕt is the trace of the Alexandrov Hessian of ϕt.
Now, for given t > 0 and ut-almost every x, the symmetric matrix Hess(ϕt)(x) is positive, as recalled in Sec-
tion 2.3 : letting e2λi(x) for i = 1, . . . , n its n positive eigenvalues , then its inverse matrix Hess(ϕ∗

t )(∇ϕt(x))
(see again Section 2.3) has eigenvalues e−2λi(x); hence at point x

∆ϕt+∆ϕ∗
t (∇ϕt)−2n = tr

[

Hess(ϕt)
]

+tr
[

Hess(ϕ∗
t )(∇ϕt)

]

−2n =
∑

i

(

e2λi +e−2λi−2) = 4
∑

i

sinh2(λi).

(42)
Hence, by convexity of sinh2 and the Jensen inequality, and (32),

∫

[

∆ϕt(x) + ∆ϕ∗
t (∇ϕt(x)) − 2n

]

ut(x) dx = 4n
1

n

∑

i

∫

sinh2(λi(x))ut(x) dx

≥ 4n sinh2

(

1

n

∑

i

∫

λi(x)ut(x) dx

)

= 4n sinh2
(

1

2n

∫

log detHess(ϕt)(x)ut(x) dx

)

= 4n sinh2
(

Entdx(vt)− Entdx(ut)

2n

)

.
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Since Hess(V ) ≥ R Idn, we obtain

− 1

2

d

dt
W 2

2 (ut, vt) ≥ 4n sinh2
(

Entdx(vt)− Entdx(ut)

2n

)

+RW 2
2 (ut, vt). (43)

By time integration this ensures the following dimensional contraction property :

Proposition 3.3 In the above notation, if Hess(V ) ≥ R Idn for R ∈ R, then for any solutions to (35)

W 2
2 (ut, vt) ≤ e−2RtW 2

2 (u0, v0)− 8n

∫ t

0

e−2R(t−s) sinh2
(

Entdx(vs)− Entdx(us)

2n

)

ds, t ≥ 0. (44)

For the heat equation, namely for V = 0, then the associated Markov generator L = ∆ satisfies the
CD(0, n) curvature-dimension condition: in particular in this case the bound (44) has been derived in [13]
and [14], and is also a consequence of [21]. For V 6= 0, then the associated generator L = ∆ − ∇V · ∇
satisfies a CD(R,∞) but no CD(R, n) condition: in particular the bound (44) can not be obtained from
the works mentioned above.

Remark 3.4 The above computation can be extended to drifts A(x) which are not gradients. In this case
the assumption Hess(V ) ≥ R Idn should be replaced by the monotonicity condition (A(y)−A(x)) ·(y−x) ≥
R |y − x|2 for all x, y (see [12] for this non-gradient case).

3.3 A formal gradient flow argument to Proposition 3.3

In this subsection, we provide an alternative formal argument to Proposition 3.3 based on gradient flow.

We begin with the following elementary lemma which gives additional information to [21, Lem. 2.2].

Lemma 3.5 Let ψ be a C2 function on [0, 1]. Then the following properties are equivalent:

• ψ′′ ≥ ψ′2/n;

• for all r, s in [0, 1],

n− ψ′(r)(s − r) ≥ n e
ψ(r)−ψ(s)

n ; (45)

• for all r, s in [0, 1],
(

ψ′(s)− ψ′(r)
)

(s− r) ≥ 4n sinh2
(ψ(s)− ψ(r)

2n

)

. (46)

Proof

⊳ Let indeed U = e−ψ/n, so that

U ′′ = −
(

ψ′′ − ψ′2

n

)U

n
.

Then ψ′′ ≥ ψ′2/n if and only if U is concave, hence if and only

e−
ψ(s)
n = U(s) ≤ U(r) + U ′(r)(s − r) = e−

ψ(r)
n − ψ′(r)

n
e−

ψ(r)
n (s− r)

for all r, s ∈ [0, 1], which is (45) when multiplying both sides by eψ(r)/n.
Adding (45) with the corresponding bound obtained with r, s instead of s, r leads to (46). Conversely,
dividing (46) by (s− r)2 and letting s go to r gives ψ′′ ≥ ψ′2/n at point r. ⊲

Let now µ0 and µ1 be absolutely continuous measures in P2(R
n), ∇ϕ their Brenier map and (µs)s∈[0,1]

the geodesic between them, as in Section 2.3. Here again we identify the measures with their densities.
Let us now recall why the function ψ : s 7→ Entdx(µ

s) formally satisfies ψ′′ ≥ ψ′2/n on [0,1]. For this,
recall from Section 2.3 that for µ0-almost every x the Alexandrov Hessian Hess(ϕ)(x) is positive, so that
the eigenvalues θi(x) of Hess(ϕ)(x) − I are > −1. Writing (32) with the measures µ0 = µ0 and µ1 = µs,
we obtain

ψ(0) = ψ(s) +

∫

log det(I + s(Hess(ϕ)(x) − I)) dµ0(x) = ψ(s) +
∑

i

∫

log(1 + sθi(x)) dµ
0(x).
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Hence

ψ′(s) = −
∑

i

∫

θi
1 + sθi

dµ0 (47)

and then by the Cauchy-Schwarz inequality

ψ′′(s) = n
1

n

∑

i

∫

θ2i
(1 + sθi)2

dµ0 ≥ n

(

1

n

∑

i

∫

θi
1 + sθi

dµ0

)2

=
1

n
ψ′(s)2.

Remark 3.6 Identity (47) can also be formally checked using the continuity equation solved by (µs)s∈[0,1]:

∂µs

∂s
+∇ · (µsvs) = 0.

Here the vector field vs satisfies vs(x + s(∇ϕ(x) − x)) = ∇ϕ(x) − x, see e. g. [38, Th. 5.51]. For, and
recalling that ψ(s) =

∫

µs logµs dx

ψ′(s) =−
∫

∇ · (vsµs) logµs dx =−
∫

∇ · vs µs dx =−
∫

(

∇ · vs
)

(x+ s(∇ϕ(x) − x)) dµ0(x)

by integration by parts and since (x+ s(∇ϕ(x) − x))#µ0 = µs. Identity (47) follows since by chain rule

(

∇ · vs
)

(x + s(∇ϕ(x) − x)) = tr
[

(Hess(ϕ)(x) − I)
(

I + s(Hess(ϕ)(x) − I)
)−1
]

=
∑

i

θi
1 + sθi

·

Remark 3.7 In the above notation, observe that (45) in Lemma 3.5 for ψ(s) = Entdx(µ
s), r = 0 and

s = 1 formally leads to (31) in Lemma 2.6. For, in the notation of Remark 3.6 and by integration by parts,

ψ′(0) =

∫

∇µ0 · v0 dx =

∫

∇µ0 · (∇ϕ− x)dx = n−
∫

∆ϕdµ0.

We can now deduce an alternative formal argument to the bound in Proposition 3.3.

We begin with the following classical observation in Euclidean space : Let X and Y be two solutions of
the Euclidean gradient flow X ′

t = −∇U(Xt) in R
d, where U : Rd → R is a smooth potential. For t > 0

let Ut(s) = U(Xt + s(Yt −Xt)) for s ∈ [0, 1]. Then

− 1

2

d

dt
|Yt −Xt|2 = (Yt −Xt) · (∇U(Yt)−∇U(Xt)) = U ′

t(1)− U ′
t(0). (48)

Let now u and v two solutions to the Fokker-Planck equation (35), which by [1, Chap. 11.2] and [39,
Chap. 23] is the gradient flow of H(·|µ) on the space P2(R

n). For any t > 0, let ∇ϕt be the optimal
transport map between ut and vt, and (µst )s∈[0,1] be the geodesic path in P2(R

n) between ut and vt, as in
Section 2.3. Then, formally and by analogy with (48),

− 1

2

d

dt
W 2

2 (ut, vt) = E′
t(1)− E′

t(0) (49)

where for given t > 0 we let

Et(s) = H(µst |µ) = Entdx(µ
s
t ) +

∫

V dµst .

Indeed, let ψ : s 7→ Entdx(µ
s
t ) for given t and, for each x let the matrix Hess(ϕt)(x) have eigenvalues e

2λi .
Then, in the above notation θi = e2λi − 1, (47) for µ = ut gives

ψ′(1)− ψ′(0) =

∫

∑

i

[

θi −
θi

1 + θi

]

dut

=

∫

∑

i

θ2i
1 + θi

dut

=

∫

∑

i

[

e2λi + e−2λi − 2
]

dut =

∫

[

∆ϕt +∆ϕ∗
t (∇ϕt)− 2n

]

dut
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as in (42). Using moreover the formal derivative

d

ds

∫

V dµst =
d

ds

∫

V
(

x+ s(∇ϕt(x) − x)
)

dut(x) =

∫

∇V
(

x+ s(∇ϕt(x)− x)
)

· (∇ϕt(x) − x) dut(x)

for s = 0, 1 we formally recover (41) in (49).
We now use the fact that for given t the function ψ satisfies ψ′′ ≥ ψ′2/n on [0, 1]. Then, by (46) in Lemma
3.5 for r = 0 and s = 1 we obtain

E′
t(1)− E′

t(0) ≥ 4n sinh2
(Entdx(vt)− Entdx(ut)

2n

)

+

∫

(

∇V (∇ϕt(x)) −∇V (x)
)

·
(

∇ϕt(x) − x
)

dut(x).

Since
∫

|∇ϕt(x)− x|2dut(x) =W 2
2 (ut, vt) this leads to (43) and then to (44) as soon as Hess(V ) ≥ R Idn.

3.4 Improved convergence rates

In this section we consider a solution u to (35) in the Gaussian case where µ = γ, and for which we can
take R = 1 above. Let us see how the contraction property (44) can make the convergence estimate (37)
more precise.

For simplicity we assume that u0(|x|2) ≤ n = γ(|x|2). Then ut(|x|2) ≤ n for all t, by (39). Hence (29) and
the Talagrand inequality (22) ensure that 0 ≤W 2

2 (ut, γ) < 2n and

Entdx(ut)− Entdx(γ)

n
≥ − log

(

1− W 2
2 (ut, γ)

2n

)

.

In particular the right-hand side is non negative. Moreover, for the stationary solution vt = v0 = γ, the
contraction property (44) with R = 1, in the form (43), implies

−x′ ≥ x2

1− x
+ 2 x

where x(t) = W 2
2 (ut, γ)/(2n) ∈ [0, 1). Here we use that sinh(log x) = (x − 1/x)/2. In other words

z(t) = 1− (1− x(t))2 satisfies z′ ≤ −2z. This integrates into z(t) ≤ e−2tz(0), that is,

x(t) ≤ 1−
(

1− (2x(0)− x(0)2)e−2t
)

1
2

. (50)

By the lower bound
1− (2x(0)− x(0)2)e−2t ≥ (1− x(0)e−2t)2 (51)

it implies the classical bound (37). It also improves it: for instance (50) can be written as

W 2
2 (ut, γ) ≤W 2

2 (u0, γ)e
−2t 2− x(0)

1 +
(

1− (2x(0)− x(0)2)e−2t
)

1
2

.

Then by (51) we obtain

Corollary 3.8 In the above notation, let u be a solution to (35) in the Gaussian case, with initial datum
u0 such that u0(|x|2) ≤ n. Then for all t ≥ 0

W 2
2 (ut, γ) ≤W 2

2 (u0, γ)e
−2t 1−W 2

2 (u0, γ)/(4n)

1−W 2
2 (u0, γ)e

−2t/(4n)
.

Observe that the quotient is smaller than 1.

Remark 3.9 The Gaussian assumption is used here only to ensure uniform convexity of the potential
(hence the Talagrand inequality), and that

∫

V dut ≤
∫

V e−V dx as soon as this holds at t = 0.

18



4 Brascamp-Lieb inequalities

It is classical that linearizing a logarithmic Sobolev inequality leads to a Poincaré inequality, which in the
Gaussian case is the Brascamp-Lieb inequality. In this section we shall see how to obtain two different
dimensional Brascamp-Lieb inequalities: a first one by an improvement of the classical L2 method, and a
second one by linearization in the Borell-Brascamp-Lieb inequality (13).

4.1 Brascamp-Lieb inequality by L
2 method

Proposition 4.1 (Dimensional Brascamp-Lieb inequality I) Let µ be a probability measure on R
n

with density e−V where V is a C2 function satisfying Hess(V ) > 0. Then

Varµ(f) ≤
∫

∇f ·Hess(V )−1∇f dµ−

(

∫

V f dµ−
∫

V dµ
∫

f dµ
)2

n−Varµ(V )
(52)

for all C1 compactly supported functions f .

Remark 4.2 V. H. Nguyen [35] has proven that Varµ(V ) ≤ n for V convex. We will observe in the proof
that even V arµ(V ) < n as soon as Hess(V ) > 0. In fact, it follows from the bound (52) for f = V that
V arµ(V ) ≤ nI

n+I < n where I =
∫

∇V ·Hess(V )−1∇V dµ. In particular, if R Idn ≤ Hess(V ) ≤ S Idn, then

I ≤ R−1
∫

|∇V |2dµ = R−1
∫

∆V dµ ≤ nS/R and Varµ(V ) ≤ nS
R+S . The latter inequality is an equality (to

n/2) for the Gaussian measure with any variance, for which R = S.

If µ = γ is the standard Gaussian measure then (52) is exactly the dimensional (Poincaré) inequality (7)
(and in particular equality holds for f = |x|2/2).
In the non Gaussian case, G. Hargé has derived the following improvement of the Brascamp-Lieb inequality,
see [31, Th. 1] : if V is a C2 function satisfying R Idn ≤ Hess(V ) ≤ S Idn for constants 0 ≤ R ≤ S, then

Varµ(f) ≤
∫

∇f · Hess(V )−1∇f dµ− 1 +R/S

n

(

∫

V f dµ−
∫

V dµ

∫

f dµ
)2

(53)

for all f .
We do not know in full generality which of the coefficients (n − V arµ(V ))−1 and n−1(1 + R/S) in the
corrective terms of (52) and (53) is the larger.
Besides being equal (to 2n−1) in the Gaussian case, both coefficients are always larger than n−1. More
precisely the coefficient in (52) is always strictly larger than n−1 whereas the coefficient in (53) is n−1

when R = 0 (no uniform convexity) or S = +∞ (no upper bound on Hess(V )): hence at least in these
cases our bound is stronger.
The bound (53) has been obtained in [31] by a L2 argument. We shall see in the appendix that it can be
formally recovered by linearization in the Monge-Ampère equation.

Proof of Proposition 4.1. Let ω be in the space C∞
c of C∞ and compactly supported functions. Then

∫

||Hess(ω)||2HS dµ− 1

n

(
∫

∆ω dµ

)2

≥ 0

by the Cauchy-Schwarz inequality; here ||Hess(ω)||2HS =
∑n

i,j=1(∂ijω)
2 is the squared Hilbert-Schmidt

norm of the matrix Hess(ω) = (∂ijω)i,j . In other words

∫

∇ω ·Hess(V )∇ω dµ ≤
∫

(

||Hess(ω)||2HS +∇ω ·Hess(V )∇ω
)

dµ− 1

n

(
∫

∆ω dµ

)2

. (54)

Moreover, by integration by parts,
∫

(

||Hess(ω)||2HS +∇ω ·Hess(V )∇ω
)

dµ =

∫

(Lω)2dµ,

∫

∆ω dµ = −
∫

V Lω dµ (55)

with L = ∆−∇V · ∇, see [4, Section 3.2].
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Let now f be a C1 compactly supported function. Then pointwise

2∇f · ∇ω ≤ ∇ω · Hess(V )∇ω +∇f ·Hess(V )−1∇f.

From these remarks, inequality (54) implies

2

∫

∇f · ∇ω dµ ≤
∫

∇f ·Hess(V )−1∇f dµ+

∫

(Lω)2dµ− 1

n

(
∫

V Lω dµ

)2

.

Let now h = −Lω. Then
∫

∇f∇ω dµ = −
∫

fLω dµ =
∫

fh dµ by integration by parts.
To sum up, we have obtained

2

∫

fh dµ ≤
∫

∇f · Hess(V )−1∇f dµ+

∫

h2dµ− 1

n

(
∫

V h dµ

)2

(56)

for any h in L(C∞
c ) and any C1 compactly supported function f .

But, by [31, Lem. 9] for instance, L(C∞
c ) is dense (for the L2(µ) norm) in the space of functions h ∈ L2(µ)

such that
∫

hdµ = 0. Hence, formula (56) extends to any h ∈ L2(µ) such that
∫

h dµ = 0.
In particular, given a C1 compactly supported function f such that

∫

f dµ = 0, we can apply (56) to
h = f + a

(

V −
∫

V dµ
)

with a ∈ R. Observe indeed that V ∈ L2(µ) for µ = e−V with V convex. We get

∫

f2 dµ ≤
∫

∇f · Hess(V )−1∇f dµ+ I a2 − 2a
Varµ(V )

n

∫

V f dµ− 1

n

(

∫

V f dµ
)2

for all a, where I = Varµ(V )(n −Varµ(V ))/n. Necessarily I is positive, that is, Varµ(V ) < n. Indeed, if
I was non positive, then the left-hand side would be −∞ by letting a tend to ±∞, which is impossible.

We finally optimise over a, choosing a =

∫

V f dµ/(n− V arµ(V )). This concludes the proof of Proposi-

tion 4.1 for any f such that
∫

f dµ = 0, and then for any f . ⊲

4.2 Brascamp-Lieb inequality via the Borell-Brascamp-Lieb inequality

The following result gives an improved version of the Brascamp-Lieb inequality (4) from the Borell-
Brascamp-Lieb inequality.

Theorem 4.3 (Dimensional Brascamp-Lieb inequality II) Let µ be a probability measure on R
n

with density e−V where V is a C2 function satisfying Hess(V ) > 0. Then for any C1 and compactly
supported function f such that

∫

fdµ = 0,

Varµ(f) ≤
∫

∇f ·Hess(V )−1 ∇f dµ−
∫

(f −∇f ·Hess(V )−1 ∇V )2

n+∇V · Hess(V )−1 ∇V dµ. (57)

Theorem 4.3 is proved in Appendix B.

For the standard Gaussian measure, we obtain

Corollary 4.4 The Gaussian measure γ satisfies the dimensional Poincaré inequality

Varγ(f) ≤
∫

|∇f |2 dγ −
∫

(f −∇f · x)2
n+ |x|2 dγ (58)

for any C1 and compactly supported function f such that
∫

fdγ = 0.

By the Cauchy-Schwarz inequality and integration by part,

∫

(f −∇f · x)2
n+ |x|2 dγ ≥

(∫

∇f · xdγ
)2

2n
=

(∫

∆fdγ
)2

2n
=

(∫

f |x|2/2dγ
)2

n− V arγ(|x|2/2)
·

Therefore, for the Gaussian measure, inequality (58) is stronger than (7) mentionned in the introduction
(and naturally equality still holds for f = |x|2/2).
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4.3 Comparison of Brascamp-Lieb inequalities

Many dimensional Brascamp-Lieb inequalities have recently been proved, and should be compared. We
have already compared our inequality (52) with G. Hargé’s bound, as the same covariance term appears.
Let us now compare (57) with other inequalities. It seems difficult to obtain a global comparison and we
are only able to give partial answers or hints.

• The present paper proposes the two inequalities (52) and (57). In the Gaussian case we have already
observed that (57)-(58) is stronger than (52). A variant of this argument shows that it is also the
case for instance when V (x) = x2a + β, x ∈ R with a ∈ N

∗ and a normalisation constant β. We
believe that it is the case for any V since the additional term in (52) vanishes for functions f for
which the one in (57) does not.

In fact, for a C1 function f such
∫

fe−V = 0, the additional term in (57) vanishes if and only if there
exists a ∈ R

n such that f = a · ∇V (and then a =
∫

f(x)xe−V (x)). For, if f = ∇f Hess(V )−1∇V
on R

n, then g(y) = f(∇V ∗(y)) solves g(y) = ∇g(y) · y on R
n. Hence for fixed y ∈ R

n the map
t 7→ g(ty)/t is constant; for t = 1 and t → 0 this implies g(y) = ∇g(0) · y. This finally gives f , and
conversely. But it is classical that these functions f are exactly those for which equality holds in the
Brascamp-Lieb inequality (4). Hence the additional term in (57) can be seen as a (weighted) way
of measuring the distance of a function to the optimisers in the Brascamp-Lieb inequality (4).

Very recently, and under the same hypothesis as in Theorem 4.3, D. Cordero-Erausquin in [17,
Prop. 6] proved that

V arµ(f) ≤
∫

∇f ·Hess(V )−1 ∇f dµ− cλ(µ)
∫

Hess(V )−1(Hess(V )+ cλ(µ)Idn)
−1∇f0 ·∇f0dµ (59)

for all f satisfying
∫

fdµ = 0; here f0 = f −
∫

yf(y)dµ(y) · ∇V , c is a numerical constant and
λ(µ) is the Poincaré constant of the measure µ. The additional term in (59) vanishes if and only
if f0 is a constant, so also appears here as a distance to the optimisers. A quantitative comparison
between (57) and (59) can not easily be performed as in particular a numerical constant appears
in (59). After the present work was completed, M. Arnaudon, M. Bonnefont and A. Joulin [2] have
derived Brascamp-Lieb inequalities in which the energy has been modified, instead of keeping the
original energy and allowing for a remainder term, as here. We could not compare their results with
ours.

• We now turn to the Gaussian case when µ = γ. We have already observed that (57) is stronger
that (52), which is exactly (7). On the other hand, (8) is a purely spectral inequality. We have
numerically checked that (57) implies (8) for the Hermite polynomial functions Hk, k ∈ {1, · · · , 7}.
We believe that it is the case for all functions, but we do not have a proof of it.

Let us conclude by mentioning the inequality

V arγ(f) ≤ 6

∫

|∇f |2dγ − 6

∫

(∇f · x)2
n+ |x|2 dγ.

has been proved in [11, Sect. 2]. Their extremal functions have been lost since there is no equality
when f(x) = a · x and the constant in front of the energy is larger than in our bounds.

A Proof of Theorem 1.1

Optimality of inequality (15). When W is strictly convex and satisfies (H1), then (14) holds, so that

∫

W ∗(∇W )

Wn+1
dx =

∫ ∇W · x−W

Wn+1
dx = − 1

n

∫

∇(W−n) · x dx− 1 = 0.

In the last equality, we used an integration by parts, valid from hypothesis (H1) satisfied by W . This
gives the equality case in (15) when g =W.

Proof of inequality (15). Globally, the proof follows [10], but for completeness we give its main points.
It is based on a Taylor expansion of the inequality

∫

Htdx ≥ 1, when t = 1 − s goes to 1, and where Ht
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is defined in (16). Equivalently, this inequality can be written as

∫

t−n
(

inf
h∈Rn

{

g
(z

t
− s

t
h
)

+
s

t
W (h)

}

)−n

dz ≥ 1.

Changing variables in the integral by letting x = z/t, and letting u = s/t, the inequality becomes
∫

ϕ−n
u dx ≥ 1 for any u > 0, where for positive u

ϕu(x) = inf
h∈Rn

{

g
(

x− uh
)

+ uW (h)
}

.

Since
∫

g−ndx = 1, this is
∫

ϕ−n
u − g−n

u
dx ≥ 0

for any u > 0. The main goal is now to consider the limit as u→ 0, by computing the limit

lim
u→0

∫

ϕ−n
u − g−n

u
dx. (60)

Lemma A.1 For any x ∈ R
n,

lim
u→0+

ϕu(x)− g(x)

u
= −W ∗(∇g(x)).

Proof

⊳ For any x ∈ R
n, from the definition of ϕu, we have for any h ∈ R

n,

ϕu(x) − g(x)

u
≤ g(x− uh)− g(x)

u
+W (h) = −∇g(x) · h+W (h) + o(u).

It follows that lim supu→0+
ϕu(x)−g(x)

u ≤ −∇g(x) · h +W (h) for any h, and then by taking the infimum
over h ∈ R

n,

lim sup
u→0+

ϕu(x) − g(x)

u
≤ −W ∗(∇g(x)).

Now, one can observe that

ϕu(x) = inf
h, uW (h)≤g(x)

{

g
(

x− uh
)

+ uW (h)
}

,

so that

g(x)− ϕu(x)

u
= sup
h, uW (h)≤g(x)

{

g(x)− g(x− uh)

u
−W (h)

}

≤ sup
h, uW (h)≤g(x)

{∇g(x) · h+ |h|ε(u|h|)−W (h)},

(61)
where ε is an appropriate function satisfying limu→0 ε(u) = 0.
Let now r = sup{u|h|, uW (h) ≤ g(x)}. From the hypothesis (H1),

r ≤ sup

{

u|h|; u|h|
2

2C
≤ g(x)

}

≤ D
√

ug(x), (62)

where D is a constant. Generally, D denotes a constant and can change from line to line. The bound (62)
gives

g(x)− ϕu(x)

u
≤ sup
h, uW (h)≤g(x)

{

∇g(x) · h+ |h|ε(D
√

ug(x))−W (h)
}

.

Let now η > 0. Then there exists u0 > 0 such that ∀u ∈ (0, u0], ε
(

D
√

ug(x)
)

≤ η, so that

g(x)− ϕu(x)

u
≤ sup
h, uW (h)≤g(x)

{∇g(x) · h+ |h|η −W (h)} ≤ sup
h∈Rn

{∇g(x) · h+ |h|η −W (h)}.
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By (H1) the supremum is reached, say on a ball of center 0 and radius R > 0 independent of η < 1. Hence

g(x)− ϕu(x)

u
≤ sup
h∈Rn

{∇g(x) · h−W (h)}+Rη =W ∗(∇g(x)) +Rη.

The result follows by taking the superior limit and then letting η go to 0. ⊲

To compute the limit (60), we use the dominated convergence theorem. Since everywhere
ϕ−n
u −g−n

u goes

to nW
∗(∇g)
gn+1 when u→ 0, we only need to give a uniform bound (in u) of the quantity of

ϕ−n
u −g−n

u .

For any 0 < a ≤ b, the following holds |a−n− b−n| ≤ n|a− b|a−1−n. Since 0 ≤ ϕu(x) ≤ g(x) by definition
of ϕu, we can apply this inequality to a = ϕu(x) and b = g(x), obtaining

∣

∣

∣

∣

ϕu(x)
−n − g(x)−n

u

∣

∣

∣

∣

≤ n

∣

∣

∣

∣

ϕu(x)− g(x)

u

∣

∣

∣

∣

ϕu(x)
−1−n.

Bound on |ϕu(x)− g(x)|/u:
First, from the equality in (61) and a Taylor expansion,

g(x)− ϕu(x)

u
≤ sup
h, uW (h)≤g(x)

{Dg(x, u|h|)|h| −W (h)},

where Dg(x, s) = sup|x−y|≤s |∇g(y)|. We assume now that u ∈]0, 1]. Then, from (62), r ≤ D
√

g(x).
Hence, by (H1),

g(x)− ϕu(x)

u
≤ sup
h, uW (h)≤g(x)

{

Dg
(

x,D
√

g(x)
)

|h| −W (h)
}

≤ sup
h∈Rn

{

Dg
(

x,D
√

g(x)
)

|h| − |h|2
2C

}

.

The explicit computation of the infimum gives

g(x)− ϕu(x)

u
≤ D Dg

(

x,D
√

g(x)
)2

.

Then, from the hypothesis (H2), the estimation of Dg gives the bound

0 ≤ g(x)− ϕu(x)

u
≤ D(|x|2 + 1), u ∈]0, 1], x ∈ R

n.

Bound on ϕu(x):

From the hypotheses (H1) and (H2) we have

ϕu(x) ≥ inf
h

{

1

C
|x− uh|2 + u

|h|2
2C

}

+
1

C
.

When u ∈]0, 1], the explicit computation of the infimum gives again

ϕu(x) ≥ D(|x|2 + 1).

Finally, we have obtained the upper bound

∣

∣

∣

∣

ϕu(x)
−n − g(x)−n

u

∣

∣

∣

∣

≤ D(|x|2 + 1)−n, u ∈]0, 1], x ∈ R
n.

The dominated convergence theorem can then be applied. The proof of Theorem 1.1 is then complete.
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B Proof of Theorem 4.3

We adapt the argument of [9].
We will assume throughout the proof that V is C3 with bounded derivatives ∇2V and ∇3V , and that
there exists ρ > 0 such that uniformly in R

n, Hess(V ) ≥ ρ Idn. Then the result extends to V as in the
Theorem by approximation.

Let f be a C1 compactly supported function satisfying
∫

fdµ = 0. We apply the Borell-Brascamp-Lieb
inequality (13) for t = s = 1/2, F = exp(−V ), G = exp(2δf − V )/Zδ (δ > 0) where Zδ =

∫

exp(2δf)dµ,
and finally H = exp(φδ − V ) where

φδ(z) = −n log inf
h∈Rn

{

Z
1/n
δ exp

(

−2δ

n
f(z + h) +

V (z + h)

n

)

+ exp

(

V (z − h)

n

)}

+n log(2)+V (z). (63)

Then (13) ensures that
∫

eφδdµ ≥ 1. The rest of the proof is devoted to a Taylor expansion of
∫

exp(φδ)dµ
as δ goes to 0.

By convexity of V , for any δ > 0 the function in (63) to be minimised is coercive, so indeed admits a
(possibly non unique) minimiser, which we first estimate by giving a Taylor expansion as δ → 0.
For this, let δ > 0 be given and let hδ be any minimiser. Then

Z
1/n
δ

(

− 2δ∇f(z + hδ) +∇V (z + hδ)
)

exp

(

−2δ

n
f(z + hδ) +

1

n
V (z + hδ)

)

= ∇V (z − hδ) exp

(

1

n
V (z − hδ)

)

. (64)

1. In a first step we prove that hδ = O(δ) uniformly in z: in other words, there exists a constant C > 0
such that for any δ small enough and any z ∈ R

n,

|hδ| ≤ C δ.

For this, first, since
∫

fdµ = 0 and f is compactly supported,

Z
1/n
δ =

(
∫

e2δfdµ

)1/n

= 1 +
2δ2

n

∫

f2dµ+ o(δ2). (65)

Let us now assume that the support of f is included in the ball {|x| < R} with R > 0. There are two
cases, depending on whether |z + hδ| ≥ R or |z + hδ| ≤ R.

• First, assume that |z + hδ| ≥ R. Then equation (64) becomes

Z
1/n
δ ∇V (z + hδ) exp

(

1

n
V (z + hδ)

)

= ∇V (z − hδ) exp

(

1

n
V (z − hδ)

)

.

In other words, by (65) and taking the scalar product by hδ,

(2δ2

n

∫

f2dµ+ o(δ2)
)

∇Φ(z + hδ) · hδ = ∇Φ(z − hδ) · hδ −∇Φ(z + hδ) · hδ

where Φ = exp( 1nV ), that is,

−
(2δ2

n

∫

f2dµ+ o(δ2)
)

∇V (z + hδ) · hδ = e−V (z+hδ)

∫ 1

−1

hδ · Hess(Φ)(z + thδ)hδdt.

Now Hess(V ) ≥ ρ Idn so

Hess(Φ) =
eV

n
(Hess(V ) +

1

n
∇V ⊗∇V ) ≥ eV

n

(

ρ Idn +
1

n
∇V ⊗∇V

)

. (66)
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Hence

−
(

2δ2
∫

f2dµ+ o(δ2)
)

∇V (z+hδ) ·hδ ≥ e−V (z+hδ)

∫ 1

−1

(

ρ|hδ|2+
1

n
|∇V (z+ thδ) ·hδ|2

)

eV (z+thδ)dt.

(67)

In particular, ∇V (z+ hδ) · hδ ≤ 0 on the left-hand side for δ small enough, independently of z since
the o(δ2) comes from Zδ, see (65), and is uniform in z; hence for any t ∈ [−1, 1]

V (z + thδ)− V (z + hδ) ≥ (t− 1)∇V (z + hδ) · hδ ≥ 0

by convexity of V . Moreover ∇V (z + thδ) · hδ ≤ ∇V (z + hδ) · hδ again by convexity, whence

|∇V (z + thδ) · hδ| ≥ |∇V (z + hδ) · hδ|.

Collecting all terms, (67) leads to

(

2δ2
∫

f2dµ+ o(δ2)
)

|∇V (z+hδ) ·hδ| ≥ 2ρ|hδ|2+
2

n
|∇V (z+hδ) ·hδ|2 ≥ 4

√

ρ

n
|hδ| |∇V (z+hδ) ·hδ|.

for δ small enough, and where the o(δ2) is uniform in z. Hence there exists a constant A > 0 such that

|hδ| ≤ Aδ2,

for any δ small enough and any z, whenever |z + hδ| ≥ R.

• Assume now that |z + hδ| ≤ R. Let us write equation (64) as

∇Φ(z + hδ)−∇Φ(z − hδ) =
[

1− Z
1/n
δ exp

(

−2δ

n
f(z + hδ)

)

]

∇Φ(z + hδ)

+ 2δZ
1/n
δ exp

(

−2δ

n
f(z + hδ) +

1

n
V (z + hδ)

)

∇f(z + hδ).

Then f , V and their gradients are continuous and then uniformly bounded on the ball {|x| ≤ R},
so by (65) there exists a constant A such that for all δ small enough and all z with |z + hδ| ≤ R

∣

∣

∣
∇Φ(z + hδ)−∇Φ(z − hδ)

∣

∣

∣
≤ Aδ.

Hence, by the Cauchy-Schwarz inequality and the bound Hess(Φ) ≥ ρ
ne

V Idn, a consequence of (66),

Aδ|hδ| ≥
(

∇Φ(z + hδ)−∇Φ(z − hδ)
)

· hδ =
∫ 1

−1

hδ · Hess(Φ)(z + thδ)hδ dt ≥
2ρ

n
eminV |hδ|2.

By uniform convexity the function V is indeed bounded from below on R
n, so there exists a constant

B such that for all δ small enough and all z with |z + hδ| ≤ R

|hδ| ≤ B δ.

All cases being covered, our first step is completed.

2. In a second step we perform a first-order Taylor expansion of the equality (64). For z fixed, it gives

− δ∇f(z) + Hess(V )(z)hδ −
δ

n
f(z)∇V (z) +

hδ · ∇V (z)

n
∇V (z) + oz(δ) = 0, (68)

where oz(δ) depends on z, δ and hδ. Since |hδ| ≤ C δ by the first step, uniformly in z, one deduces
from (68) that

|oz(δ)| ≤ A δ2 (|Hess(V )(z)|+ |∇V (z)|2 + 1)

for a constant A and for any z.
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In the sequel we let H(z) denote positive polynomial functions in V (z), ∇V (z), etc., independent of δ
small and which can change from line to line. The latter inequality can then be written as

|oz(δ)| ≤ δ2H(z). (69)

Let now X = ∇f · Hess(V )−1∇V and Y = ∇V · Hess(V )−1∇V. Taking the scalar product of (68) with
Hess(V )−1∇V one gets

hδ · ∇V = δ
X + fY

n

1 + Y
n

+ oz(δ)

at the point z, where oz(δ) satisfies (69) since in particular Hess(V )−1 ≤ ρ−1 Idn. Then, again by (68),

hδ = δ

[

Hess(V )−1∇f +
Hess(V )−1∇V

n

f −X

1 + Y
n

]

+ oz(δ)

where again oz(δ) satisfies (69).

We now compute the second-order Taylor expansion of the function φδ. First, from the expansion ex =
1 + x+ x2/2 + x3eθx/6 with θ ∈ (0, 1), we have at the point z,

φδ = −n log(1 + ψδ)

with

ψδ = − δ

n
f − δhδ · ∇f

n
+
hδ ·Hess(V )hδ

2n
+
δ2

n2
f2 +

(hδ · ∇V )2

2n2
− δf

n2
hδ · ∇V +

δ2

n

∫

f2dµ+ ōz(δ
2).

Here ōz(δ
2) now satisfies

|ōz(δ2)| ≤ δ3H(z) exp
(

δ3K3(z)
)

(70)

with |K3(z)| ≤ A(|∇V |+ |∇2V |+ |∇3V |) for an universal constant A.

We now observe that for small δ one has φδ(z) ≤ n log 2 for all z, that is, ψδ(z) ≥ −1/2. Indeed, for small
δ one has

Z
1/n
δ exp

(

−2δ

n
f(x)

)

≥ 1

2

uniformly in x ∈ R
n, by (65) and since f is bounded from above. Hence for any h ∈ R

n

Z
1/n
δ exp

(

−2δ

n
f(z + h) +

V (z + h)

n

)

+ exp

(

V (z − h)

n

)

≥ 1

2
exp

(

V (z + h)

n

)

+ exp

(

V (z − h)

n

)

≥ 1

2

[

exp

(

V (z + h)

n

)

+ exp

(

V (z − h)

n

)

]

≥ eV (z)/n

by convexity of eV/n. The bound on φδ follows by its definition (63).
Now from the expansion (1 + x)−n = 1 − nx + n(n + 1)x2/2 − n(n + 1)(n + 2)x3(1 + θx)−n−3/6 with
θ ∈ (0, 1) and (68), we get

(1 + ψδ)
−n = 1 + δf +

hδ ·Hess(V )hδ
2

+ δ2
n− 1

2n
f2 +

(hδ · ∇V )2

2n
− δ2

∫

f2dµ+ ōz(δ
2)

for a ōz(δ
2) satisfying (70): here we use that ψδ(z) ≥ −1/2 so that 1+θψδ ≥ 1/2 in the Taylor expansion,

uniformly in z and δ. The above expressions of hδ and hδ · ∇V finally give

(1 + ψδ)
−n = 1+ δf +

δ2

2
∇f · Hess(V )−1∇f − δ2

2

(f −X)2

n+ Y
+
δ2

2
f2 − δ2

∫

f2dµ+ ōz(δ
2).

In conclusion, by integration the second-order Taylor expansion of the Borell-Brascamp-Lieb inequality
∫

(1 + ψδ)
−ndµ =

∫

eφδdµ ≥ 1 implies
∫

f2dµ ≤
∫

∇f ·Hess(V )−1∇fdµ−
∫

(f −X)2

n+ Y
dµ

for all C1 compactly supported f such that
∫

fdµ = 0. Here we use that δ−2
∫

ōz(δ
2)e−V (z)dz → 0 as

δ → 0 by (70), since the right-hand side in (70) is in L1(e−V ) by our hypotheses on V . By definition of
X and Y this concludes the argument.
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C Link with G. Hargé’s bound (53)

In this Appendix, we observe that G. Hargé’s bound (53) can be formally recovered by linearization in the

Monge-Ampère equation (28). Let indeed f be a smooth function such that

∫

f dµ = 0, and µ2 = (1+ε f)µ

for ε > 0, and expand the transport map ∇ϕ(x) sending µ1 = µ onto µ2 as x+ε∇θ1(x)+ε2∇θ2(x)+o(ε2).
Taking logarithms in (28) with such µ1 and µ2 and observing that

log det(Hess(ϕ)) = log det
(

I+εHess(θ1)+ε
2Hess(θ2)+o(ε

2)
)

= ε∆θ1+ε
2∆θ2−

ε2

2
tr
[

(Hess(θ1))
2
]

+o(ε2),

a second-order Taylor expansion ensures that f = −Lθ1 in the first-order terms; moreover

f2 = −∇θ1 ·Hess(V )∇θ1 + 2Lθ2 + 2∇f · ∇θ1 − tr
[

(Hess(θ1))
2
]

in the second-order terms. Assume now that Hess(V ) > 0, and let M = Hess(V )1/2 > 0. Then

−∇θ1 ·Hess(V )∇θ1 + 2∇f · ∇θ1 = |M−1∇f |2 − |M∇θ1 −M−1∇f |2

so that
∫

f2 dµ =

∫

∇f · Hess(V )−1∇f dµ−
∫

(

|M∇θ1 −M−1∇f |2 + tr
[

(Hess(θ1))
2
]

)

dµ (71)

by integration. At this point one recognizes terms in the proof of [31, Th. 1] : one observes that f = −Lθ1
so ∇f =M2θ1 −X by differentiation, where X ∈ R

n is the vector with coordinates L(∂iθ1); hence

|M∇θ1 −M−1∇f |2 = |M−1X |2 ≥ 1

S
|X |2

if moreover Hess(V ) ≤ S. In particular

∫

|M∇θ1 −M−1∇f |2 dµ ≥ 1

S

∑

i

∫

(

L(∂iθ1)
)2

dµ ≥ R

S

∑

i,j

∫

(

∂2jiθ1
)2
dµ

by (55), if Hess(V ) ≥ R Idn. Hence

∫

(

|M∇θ1−M−1∇h|2+tr
[

(Hess(θ1))
2
]

)

dµ ≥
(

1 +
R

S

)

∑

i,j

∫

(

∂2jiθ1
)2
dµ ≥ 1

n

(

1 +
R

S

)(
∫

∆θ1 dµ

)2

(72)

since moreover by the Cauchy-Schwarz inequality

(
∫

∆θ1 dµ

)2

=

(

∑

i

∫

∂iiθ1 dµ

)2

≤ n
∑

i

(
∫

∂iiθ1 dµ

)2

≤ n
∑

i,j

(
∫

∂ijθ1 dµ

)2

.

By (71) and (72) we finally recover (53) since by integration by parts and (55)

∫

∆θ1 dµ =

∫

∇θ1 · ∇V e−V dx = −
∫

Lθ1 V e
−V dx =

∫

f V dµ.
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