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Abstract

In this monograph we review the theory and establish new and general results of
spreading properties for heterogeneous reaction-diffusion equations:

∂tu−
N∑

i,j=1

ai,j(t, x)∂iju−
N∑
i=1

qi(t, x)∂iu = f(t, x, u).

These are concerned with the dynamics of the solution starting from initial data with
compact support. The nonlinearity f is of Fisher-KPP type, and admits 0 as an
unstable steady state and 1 as a globally attractive one (or, more generally, admits
entire solutions p±(t, x), where p− is unstable and p+ is globally attractive). Here,
the coefficients ai,j , qi, f are only assumed to be uniformly elliptic, continuous and
bounded in (t, x). To describe the spreading dynamics, we construct two non-empty
star-shaped compact sets S ⊂ S ⊂ RN such that for all compact set K ⊂ int(S)
(resp. all closed set F ⊂ RN\S), one has limt→+∞ supx∈tK |u(t, x) − 1| = 0 (resp.
limt→+∞ supx∈tF |u(t, x)| = 0).

The characterizations of these sets involve two new notions of generalized principal
eigenvalues for linear parabolic operators in unbounded domains. In particular, it al-
lows us to show that S = S and to establish an exact asymptotic speed of propagation
in various frameworks. These include: almost periodic, asymptotically almost peri-
odic, uniquely ergodic, slowly varying, radially periodic and random stationary ergodic
equations. In dimension N , if the coefficients converge in radial segments, again we
show that S = S and this set is characterized using some geometric optics minimization
problem. Lastly, we construct an explicit example of non-convex expansion sets.

Key-words: Reaction-diffusion equations, Heterogeneous reaction-diffusion equations,
Propagation and spreading properties, Principal eigenvalues, Linear parabolic operator,
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Hamilton-Jacobi equations, Homogenization, Almost periodicity, Unique ergodicity, Slowly
oscillating media.
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1 Introduction

The classical reaction-diffusion equation

∂tu− d∆u = f(u) for x ∈ RN

arises as a basic model in several different contexts. In particular it plays a central role in
modelling in biology and ecology. Having in mind population dynamics, one can think of
u = u(t, x) as a density of a certain biological species and one is interested in the invasion
of a territory where this population is not present initially (u = 0) whereby the population
reaches a maximum level, say u = 1, as time goes to infinity. For instance, one chooses
normalized variables so that u = 1 corresponds to the maximum carrying capacity of the
environment. This equation describes the instantaneous time change ∂tu of u(t, x) at time
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t and location x as resulting from diffusion, encapsulated in the term ∆u (d is a diffusion
coefficient) and reaction, represented by the nonlinear term f(u).

The equation above was introduced independently by Fisher [39] and by Kolmogorov,
Petrovsky and Piskunov (KPP) [56] in 1937. The original motivation stemmed from pop-
ulation genetics and aimed at representing how a genetic trait spreads in space in a given
population. A typical example of nonlinearity in this context is of the form f(u) = u(1−u).
This equation is often refered to as the F-KPP or KPP equation. At about the same time,
and independenly, Zeldovich and Frank-Kamenetskii [107] introduced the same equation,
but with a different non-linearity, as the simplest model to describe flame propagation.

In 1951, Skellam [95] had the idea to use this equation to study biological invasions.
He was motivated by the invasion of a territory in central Europe by muskrats, for which
precise data are available. The model proved to yield a good description, in agreement
with the observations. The term f(u) is derived from the logistic law of population growth:
f(u) = ru(1− u/K), of KPP type. Here r is the intrinsic growth rate and K is the carrying
capacity. This type of equation also arises in other phase transition phenomena and involves
several types of non-linearities depending on the context. Since these pioneering works,
this type of equation and systems and their generalizations are ubiquitous in mathematical
biology and ecology.

There is a large literature devoted to this equation which along with its generalizations
is still the object of much study. There is a variety of approaches, ranging from PDE’s
to probability theory to statistical physics and to asymptotic methods. The fundamental
results concern the existence of traveling fronts and spreading properties. The former are
special solutions of the form u(t, x) = φ(x · e− ct) where e is a unit vector representing the
direction of propagation, c is the velocity of the front and φ : R → R is its profile. Basic
results are due to KPP [56] and Aronson-Weinberger [4].

Spreading properties on the other hand refer to identifying conditions under which inva-
sion (or spreading) occurs and to understand its dynamics. A fundamental resut for this as-
pect is the following which we state first in the framework of the nonlinearity f(u) = ru(1−u).
It concerns solutions stemming from an initial condition u(0, x) = u0(x) where u0 ≥ 0, u0 6≡ 0
and u0 has compact support. Then, the spreading is described by the following properties:

lim
t→+∞

sup
|x|≤wt

|u(t, x)− 1| = 0 if 0 ≤ w < 2
√
dr,

lim
t→+∞

sup
|x|≥wt

u(t, x) = 0 if w > 2
√
dr.

We summarize this result by saying that w∗ := 2
√
dr is the asymptotic speed of spreading

in every direction for solutions with compactly supported initial data. This result is due
to Aronson and Weinberger [4] and is essentially already contained in the original work of
KPP [56] in dimension one. For a general presentation of all these results regarding traveling
fronts and homogeneous spreading, we refer the reader to [8]

Several authors have refined this spreading property by studying the exact location of
the front. The first such study is due to Bramson [29] who showed, by large deviations
methods, that there is a logarithmic correction to the position w∗t. Recently, the paper [?]
proposed a PDE method for this. Following these articles some recent works were able to
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establish further terms in the expansion of the location of the front for large t (see the papers
[25, 26, 32, 46]).

We describe the equation above as being homogeneous. By this, we mean that the equa-
tion is isotropic, and with coefficients and nonlinear term that do not depend on the location
in space x nor on time t. Another element that enters its qualification as homogeneous is
that it is set in all of space RN . In particular there are no spatial obstacles to propagation.

The present study is devoted to understanding spreading properties for Fisher-KPP type
equations in non-homogeneous settings. More precisely we consider very general operators.
First, the diffusion, of the form Tr[(aij(t, x))D2u], is no longer assumed isotropic and involves
coefficients that depend on t, x. Then, the operator may include a transport term q(t, x)·∇u.
And lastly the reaction term f = f(t, x, u) varies in space and time.

Thus, this monograph is devoted to large time behavior of the solutions of the Cauchy
problem:{

∂tu−
∑N

i,j=1 ai,j(t, x)∂iju−
∑N

i=1 qi(t, x)∂iu = f(t, x, u) in (0,∞)× RN ,

u(0, x) = u0(x) for all x ∈ RN .
(1)

where the coefficients (ai,j)i,j, (qi)i and f are only assumed to be uniformly continuous,
bounded in (t, x) and the matrix field (ai,j)i,j is uniformly elliptic. In the sequel we will often
write operators with the usual summation convention over repeated indices.

The reaction term f is supposed to be monostable and of KPP type, meaning that it
admits two steady states 0 and 1, 0 being unstable and 1 being globally attractive, and
that it is below its tangent at the unstable steady state 0. We will write more precise
assumptions later in a general framework. A typical example of such nonlinearity that
generalizes the homogeneous siuation is provided by f(t, x, s) = b(t, x)s(1−s) with b bounded
and infR×RN b > 0. Lastly, we consider compactly supported initial data u0 with 0 ≤ u0 ≤ 1.
We will see that this framework, up to a change of variables, also includes the more general
situation when f admits entire solutions p±(t, x), with p− unstable and p+ globally attractive
(rather than 0 and 1 respectively).

The goal of this manuscript is to undersand spreading properties for this problem in this
general setting. To this end, we want to characterize as sharply as possible two non-empty
compact sets S ⊂ S ⊂ RN so that{

for all compact set K ⊂ intS, limt→+∞
{

supx∈tK |u(t, x)− 1|
}

= 0,
for all closed set F ⊂ RN\S, limt→+∞

{
supx∈tF |u(t, x)|

}
= 0.

(2)

There is of course a link between such sets and the notion of spreading speeds. Let
e ∈ SN−1 and take w,w > 0 such that we ∈ S and we ∈ S. Then the definitions of S and S
yield

lim
t→+∞

u(t, wte) = 1 and lim
t→+∞

u(t, wte) = 0.

In other words, if one consider a function t 7→ X(t) such that u
(
t,X(t)e

)
= 1/2, then

w ≤ lim inf
t→+∞

X(t)

t
≤ lim sup

t→+∞

X(t)

t
≤ w.

5



Thus the transition between the unstable steady state u ≡ 0 and the attractive on u ≡ 1
is located between wt and wt along direction e. In particular, if one is able to show that
w = w, the above inequalities turn into equalities and provide an exact approximation for
X(t). This is why we say in this case that there exists an exact asymptotic spreading speed.

1.1 A review of the state of the art

Before going any further on the precise statements, let us first recall some known results in the
homogeneous, periodic and random stationary ergodic cases. By synthesizing these earlier
results, we have naturally derived in our earlier one-dimensional paper [19] two spreading
speeds associated with the solutions of the general heterogeneous Fisher-KPP equation.
Our approach is similar in the present manuscript, but we have to carry a much deeper
investigation of these earlier works.

Homogeneous equation

Let first recall some well-known results more generally in the case where the coefficients do
not depend on (t, x). In this case, equation (1) indeed reduces to the classical homogeneous
equation

∂tu−∆u = f(u), (3)

where f(0) = f(1) = 0 and f(s) > 0 if s ∈ (0, 1). This case has been widely studied. When
lim infs→0+ f(s)/s1+2/N > 0, a classical result due to Aronson and Weinberger [4] yields that
there is invasion, namely that u(t, x) → 1 as t → ∞, everywhere in x. Furthermore, there
exists w∗ > 0 such that the solution u of the Cauchy problem associated with a given non-null
compactly supported initial datum satisfies

lim inf
t→+∞

inf
|x|≤wt

u(t, x) = 1 if 0 ≤ w < w∗,

lim
t→+∞

sup
|x|≥wt

u(t, x) = 0 if w > w∗.
(4)

In other words S = S = {x, |x| ≤ w∗}. The spreading speed w∗ is also characterized
as the minimal speed of traveling fronts solutions, defined in [4, 56, 8]. Moreover, this
speed is exactly w∗ = 2

√
f ′(0) for KPP nonlinearities, that is, for nonlinearities f satisfying

f(s) ≤ f ′(0)s for all s ≥ 0 (see [4]).
The main aim of the present manuscript is to extend spreading properties to general

heterogeneous equations in the full space (1). The classical example of a non-homogeneous
framework is that of periodic heterogeneous coefficients. This case that is completely under-
stood. Let us start by describing the results in this framework.

Periodic media

Let us consider the case where all the coefficients ai,j, qi and f are space-time periodic.
A function h = h(t, x) is called space-time periodic if there exist some positive constants
T, L1, ..., LN so that

h(t, x) = h(t, x+ Liεi) = h(t+ T, x)
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for all (t, x) ∈ R × RN , where (εi)i is a given orthonormal basis of RN . The periods
T, L1, ..., LN will be fixed in the sequel. Periodicity is understood to mean the same pe-
riod(s) for all the terms.

The spreading properties in space periodic media have first been proved using probabilis-
tic tools by Freidlin and Gärtner [42] in 1979 and Freidlin [41] in 1984, when the coefficients
only depend on x. These properties have been extended to space-time periodic media by
Weinberger in 2002 [101], using a rather elaborate discrete abstract formalism. The authors
of the present paper, together with Hamel have given two alternative proofs of spreading
properties in multidimensional space-time periodic media in [13] (see also [73, 78]). These
methods both use accurate properties of the periodic principal eigenvalues associated with
the linearized equation at 0. Lastly, Majda and Souganidis [68] proved homogenization re-
sults that are close to, but different from, spreading properties in the space-time periodic
setting. Here, we will make this connection precise in Section 5.1.

In periodic media, the asymptotic spreading speed depends on the direction of propa-
gation. Thus, the property proved in [13, 41, 42, 101] is the existence of an asymptotic
directional spreading speed w∗(e) > 0 in each direction e ∈ SN−1, so that for all initial
datum u0 6≡ 0, 0 ≤ u0 ≤ 1 with compact support, one has lim inf

t→+∞
u(t, x+ wte) = 1 if 0 ≤ w < w∗(e),

lim
t→+∞

u(t, x+ wte) = 0 if w > w∗(e),
(5)

locally in x ∈ RN . It is possible to characterize w∗(e) in terms of periodic principal eigen-
values in the KPP case, that is, when f(t, x, s) ≤ f ′u(t, x, 0)s for all (t, x, s) ∈ R×RN ×R+.
Namely, let L the parabolic operator associated with the linearized equation near 0:

Lφ := −∂tφ+ ai,j(t, x)∂ijφ+ qi(t, x)∂iφ+ f ′u(t, x, 0)φ,

and let Lpφ := e−p·xL(ep·xφ) for all p ∈ RN . We know from the Krein-Rutman theory that
the operator Lp admits a unique periodic principal eigenvalue kperp , that is, an eigenvalue
associated with a periodic and positive eigenfunction. Then the characterization proved by
Freidlin and Gärtner [41, 42] in the space periodic framework and extended to space-time
periodic frameworks in [13, 101] reads

w∗(e) = min
p·e>0

kper−p
p · e

. (6)

This quantity can also be written using the minimal speed of existence of pulsating traveling
fronts (defined and investigated in [9, 15, 17, 73, 78, 101]), which is indeed the appropriate
characterization when f is not of KPP type [101].

Lastly, Weinberger [101] proved that the convergence (5) is uniform in all directions,
meaning that{

for all compact set K ⊂ intS, limt→+∞
{

supx∈tK |u(t, x)− 1|
}

= 0,
for all closed set F ⊂ RN\S, limt→+∞

{
supx∈tF |u(t, x)|

}
= 0,

(7)
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with
S = {x, ∀p ∈ RN , kper−p ≥ p · x}. (8)

Of course, as for all e ∈ SN−1 and w > 0, we ∈ S if and only if w < w∗(e), we recover (5) as
a corollary of (7).

By analogy with crystallography the set S is sometimes called the Wulff shape of equation
(1). Indeed, in [102], Wulff proved that for a given crystal volume |B| and for a given surface
tension σ, the set B that minimizes the surface energy

∫
∂B
σ(n(x))dx, where n is the normal

vector to ∂B, isW = {x, x·e ≤ σ(e) for all e ∈ SN−1}, up to rescaling and translation. Here,
the analogy is that S has a similar definition, with p 7→ kper−p playing the role of a surface
tension.

The exact location of the front could be derived and involves a logarithmic correction as
in homogeneous media [47, 88].

Random stationary ergodic media

The first proof of the existence of an exact spreading speed in random stationary ergodic
media goes back to the pioneering papers of Freidlin and Gärtner [42] and Freidlin [41], who
considered time-independent reaction terms in dimension 1 using large deviation techniques.
In multi-dimensional media, the existence of an exact spreading speed has been proved by
Nolen and Xin for space-time heterogeneous advection terms and homogeneous reaction
terms [80, 81, 82]. As they claimed in [80], their approach should work when the diffusion
term is also random stationary ergodic, but it does not fit heterogeneous reaction terms.

In these cases, the exact asymptotic spreading speed is characterized through some Lya-
pounov exponents associated with the underlying Brownian process. Similar quantities ap-
pear in related problems such as homogenization of reaction-diffusion equations (see [66] and
the references therein). The connections between these various approaches will be discussed
in details in Section 5.1.

We underline that all these earlier papers made some stationarity hypothesis on the ran-
dom heterogeneity, which means that the statistical properties of the medium do not depend
on time and space. Many classes of deterministic coefficients could indeed be turned into a
random stationary ergodic setting so that the orginal deterministic media is a given event.
This a well-known fact for periodic, almost periodic (see [83]) and uniquely ergodic deter-
ministic coefficients. In such setting, one could thus derive spreading properties for almost
every event. However, it is not always clear whether these spreading properties hold for
the original deterministic equation or not. Consider the simple example of deterministic
coefficients having a compactly supported heterogeneity (see below for a precise definition),
then this approach gives a trivial result: the homogeneous equation associated with trans-
lations at infinity verifies a spreading property. But it does not give any result concerning
the original heterogeneous equation. Hence, even if one can transform deterministic hetero-
geneous equations into random stationary ergodic ones, it might be difficult to check that
this probabilistic setting is useful to prove spreading properties for the original deterministic
equation.
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1.2 The general heterogeneous case: setting of the problem

The main purpose of the present manuscript is to prove spreading properties in general
heterogeneous media. Heterogeneity can arise for different reasons, owing to the geometry
or to the coefficients in the equation. Regarding geometry, the first author together with
Hamel and Nadirashvili [16] have studied spreading properties for the homogeneous equation
in general unbounded domains (these include spirals, complementaries of infinite combs,
cusps, etc.) with Neumann boundary conditions. In these geometries, linear spreading
speeds do not always exist. Furthermore, several examples are constructed in [16] where the
spreading speed is either infinite or null.

The present manuscript deals with heterogeneous media for problems set in RN but in
which the terms in the equation are allowed to depend on space and time in a fairly general
fashion. As in [16], given any compactly supported initial datum u0 and the corresponding
solution u of (1), we introduce two speeds:

w∗(e) := sup{ w ≥ 0, for all w′ ∈ [0, w], limt→+∞ u(t, x+ w′te) = 1 loc. x ∈ RN},

w∗(e) := inf{ w ≥ 0, for all w′ ≥ w, limt→+∞ u(t, x+ w′te) = 0 loc. x ∈ RN}.
(9)

We could reformulate the goal of this manuscript in the following way: we want to get
accurate estimates on w∗(e) and w∗(e) and to try to identify classes of equations for which
w∗(e) = w∗(e) (and is independent of u0). This last equality does not always hold, which
justifies the introduction of two speeds rather than a single one. Indeed, Garnier, Giletti and
the second author [44] exhibited an example of space heterogeneous equation in dimension
1 for which there exists a range of speeds w such that the ω−limit set of t 7→ u(t, wt) is
[0, 1]. In this case the location of the transition between 0 and 1 oscillates within the interval
(w∗t, w

∗t) at large time t.
Together with Hamel, the authors have proved in a previous paper [13] that under a

natural positivity assumption, but otherwise in a general framework, there is at least a
positive linear spreading speed, which means with the above definition that w∗(e) > 0
for any e ∈ SN−1. More precisely, we proved1 in [13] that if q(t, x) = ∇ · A(t, x), where
A(t, x) =

(
ai,j(t, x)

)
i,j

(hence we assume a divergence form operator), and f ′u(t, x, 0) > 0

uniformly when |x| is large, the following inequality holds:

w∗(e) ≥ w0 := 2
√

lim inf
|x|→+∞

inf
t∈R+

γ(t, x)f ′u(t, x, 0), (10)

where γ(t, x) is the smallest eigenvalue of the matrix A(t, x). We also established upper
estimates on w∗(e), which ensure that supe∈SN−1 w∗(e) < +∞, under mild hypotheses on A,
q and f .

We point out a corollary of this result. Assume that q ≡ 0 and

f(t, x, s) = (b0 − b(x))s(1− s)
1Actually, the result we obtained in [13] is a little more accurate and the hypotheses are somewhat more

general, we refer the reader to [13] for the precise assumptions.

9



with b0 > 0, b ≥ 0 and b = b(x) as well as A(x) − IN are smooth compactly supported
perturbations of the homogeneous equation. Then the result of [13] gives w∗(e) ≥ w0 = 2

√
b0.

It is also easy to check that w∗(e) ≤ 2
√
b0 since f(t, x, s) ≤ b0s(1− s). Thus, in this case

w∗(e) = w∗(e) = 2
√
b0.

This result was also derived by Kong and Shen in [57], who considered other types of dis-
persion rules as well. This simple observation shows that, in a sense, only what happens at
infinity plays a role in the computation of w∗(e) and w∗(e).

On the other hand, when the coefficients are space-time periodic, the expansion set could
be characterized through periodic principal eigenvalues [13, 42, 101]. In this framework,
estimate (10) is not optimal in general: one needs to take into account the whole structure
of equation (1) through the periodic principal eigenvalues of the linearized equation in the
neighborhood of u = 0 to get an accurate result.

Summarizing the indications from periodic and compactly supported heterogeneities, to
estimate w∗(e) and w∗(e), we see that we need to take into account:

• the behavior of the operator when |t| → +∞ and |x| → +∞, and

• some notion of “principal eigenvalue” of the linearized parabolic operator near u = 0.

Therefore, we are led to extend the notion of principal eigenvalues to linear parabolic
operators in unbounded domains. We will define these generalized principal eigenvalues
through the existence of sub or supersolutions of the linear equation (see the definitions
in Section 2.2 below). This definition is similar, but different from, the definition of the
generalized principal eigenvalue of an elliptic operator introduced by Berestycki, Nirenberg
and Varadhan [21] for bounded domains and extended to unbounded ones by Berestycki,
Hamel and Rossi [18]. Some important properties of classical principal eigenvalues are not
satisfied by generalized principal eigenvalues and thus the classical techniques that have
been used to prove spreading properties in periodic media in [13, 41, 42, 101] are no longer
available here. This is why we use homogenization techniques. In Section 5.1, we describe
the link between homogenization problems and asymptotic spreading.

1.3 The link between traveling waves and spreading properties

Let us conclude this Introduction with a few words about traveling waves. We have recalled
above that in homogeneous and periodic media, there is an explicit link between the asymp-
totic spreading speed and the minimal speed of existence of traveling waves. For example,
these two quantities are equal in dimension 1. This is why most of the papers address
propagation problems using both notions indistinctly.

In general heterogeneous media, the first author and Hamel [10, 11] and Matano [69]
have introduced two generalizations of the notion of traveling wave. Several recent papers
[10, 11, 12, 71, 72, 79, 92, 105] investigated the existence, uniqueness and stability of such
waves in the case when the nonlinearity is bistable or of ignition type and in dimension 1. In
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higher dimensions, for the same types of nonlinearities, Zlatoš has proved that such waves
might not exist (see [106] and references therein).

When the nonlinearity is monostable and time-heterogenous, the existence of generalized
transition waves has been proved by the second author and Rossi [74] (see also [75, 86]). It
is not true in general that such waves exist for space-heterogeneous monostable equations.
In fact, Nolen, Roquejoffre, Ryzhik and Zlatoš [77] constructed a counter-example for a
compactly supported heterogeneity. Zlatoš further provided conditions in this framework
ensuring the existence of generalized transition waves in dimension 1 [104], for example
when only the diffusion term is heterogeneous.

Hence, for some classes of heterogeneities, there exists an exact asymptotic spreading
speed but generalized transition waves do not exist. This emphasizes that one needs to be
careful and to distinguish between the two approaches in general heterogeneous media.

2 A general formula for the expansion sets

2.1 Notations and hypotheses

We will use the following notations in the whole manuscript. We denote the Euclidian norm
in RN by | · |, that is, for all x ∈ RN , |x|2 :=

∑N
i=1 x

2
i . The set C(R × RN) is the set of the

continuous functions over R×RN equipped with the topology of locally uniform convergence.
For all δ ∈ (0, 1), the set Cδ/2,δloc (R × RN) is the set of functions g such that for all compact
set K ⊂ R× RN , there exists a constant C = C(g,K) > 0 such that

∀(t, x) ∈ K, (s, y) ∈ K, |g(s, y)− g(t, x)| ≤ C(|s− t|δ/2 + |y − x|δ).

We shall require some regularity assumptions on f, A, q throughout the manuscript.
First, we assume that A, q and f(·, ·, s) are uniformly continuous and uniformly bounded
with respect to (t, x) ∈ R × RN , uniformly with respect to s ∈ [0, 1]. The function

f : R × RN × [0, 1] → R is assumed to be of class C
δ
2
,δ

loc (R × RN) in (t, x), locally in s,
for a given 0 < δ < 1. We also assume that f is locally Lipschitz-continuous in s and of class
C1+γ in s for s ∈ [0, β] uniformly with respect to (t, x) ∈ R×RN with β > 0 and 0 < γ < 1.
We assume that for all (t, x) ∈ R× RN :

f(t, x, 0) = f(t, x, 1) = 0 and inf
(t,x)∈R×RN

f(t, x, s) > 0 if s ∈ (0, 1), (11)

and that f is of KPP type, that is,

f(t, x, s) ≤ f ′u(t, x, 0)s for all (t, x, s) ∈ R× RN × [0, 1]. (12)

The matrix field A = (ai,j)i,j : R × RN → SN(R) belongs to C
δ
2
,δ

loc (R × RN). We assume
furthermore that A is a uniformly elliptic and continuous matrix field: there exist some
positive constants γ and Γ such that for all ξ ∈ RN , (t, x) ∈ R× RN , one has:

γ|ξ|2 ≤
∑

1≤i,j≤N ai,j(t, x)ξiξj ≤ Γ|ξ|2. (13)
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The drift term q : R× RN → RN is in C
δ
2
,δ

loc (R× RN).
Lastly, we make the following instability hypothesis on the steady state 0:

for any u0 6≡ 0 such that 0 ≤ u0 ≤ 1, there exists w > 0 such that
the solution u of (1) satisfies limt→+∞ sup|x|≤wt |u(t, x)− 1| = 0.

(14)

In other words, w∗(e) ≥ w > 0 for all e ∈ SN−1.
In order to sum up the heuristical meaning of these hypotheses:

• we consider smooth coefficients and the diffusion term is elliptic (13),

• hypotheses (11) and (14) mean that 0 and 1 are two steady states and that 1 is globally
attractive (and thus 0 is unstable),

• the nonlinearity is of KPP-type (12): it is below its tangent at u = 0.

A typical equation satisfying our hypotheses is:

∂tu = ∇ ·
(
A(t, x)∇u

)
+ c(t, x)u(1− u) in (0,∞)× RN ,

where A is an elliptic matrix field and c, A and ∇A are uniformly positive, bounded and
uniformly continuous with respect to (t, x). Indeed, it has been proved in [18, 13] that if

sup
R>0

inf
t>R,|x|>R

(
4f ′u(t, x, 0) min

e∈SN−1
(eA(t, x)e)− |q(t, x) +∇ · A(t, x)|2

)
> 0, (15)

then (14) is satisfied.
Lastly, let us mention the case where one considers two time global heterogeneous so-

lutions of (1), p− = p−(t, x) and p+ = p+(t, x) instead of 0 and 1. Then as soon as
inf(t,x)∈R×RN

(
p+ − p−

)
(t, x) > 0 and p+ − p− is bounded, one could perform the change

of variables ũ(t, x) =
(
u(t, x) − p−(t, x)

)
/
(
p+(t, x) − p−(t, x)

)
in order to turn (1) into an

equation with steady states 0 and 1. Thus there is no loss of generality in assuming p− ≡ 0
and p+ ≡ 1 as soon as inf(t,x)∈R×RN

(
p+ − p−

)
(t, x) > 0 and p+ − p− is bounded, as already

noticed in [75].

2.2 The main tool: generalized principal eigenvalues

In this Section we define the notion of generalized principal eigenvalues that will be needed
in the statement of spreading properties. Consider the parabolic operator defined for all
φ ∈ C1,2(R× RN) by

Lφ = −∂tφ+ ai,j(t, x)∂ijφ+ qi(t, x)∂iφ+ f ′u(t, x, 0)φ,
= −∂tφ+ tr(A(t, x)∇2φ) + q(t, x) · ∇φ+ f ′u(t, x, 0)φ.

(16)

Definition 2.1 The generalized principal eigenvalues associated with operator L in a
smooth open set Q ⊂ R× RN are:

λ1(L, Q) := sup{λ | ∃φ ∈ C1,2(Q) ∩W 1,∞(Q), inf
Q
φ > 0 and Lφ ≥ λφ in Q}. (17)

λ1(L, Q) := inf{λ | ∃φ ∈ C1,2(Q) ∩W 1,∞(Q), inf
Q
φ > 0 and Lφ ≤ λφ in Q}. (18)
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Actually, this definition is the first instance where generalized principal eigenvalues are
defined for linear parabolic operators with general space-time heterogeneous coefficients.

For elliptic operators, similar quantities have been introduced by Berestycki, Nirenberg
and Varadhan [21] for bounded domains with a non-smooth boundary and by Berestycki,
Hamel and Rossi in [18] in unbounded domains (see also [24]). These quantities are involved
in the statement of many properties of parabolic and elliptic equations in unbounded do-
mains, such as maximum principles, existence and uniqueness results. The main difference
with [18, 21, 24] is that here we both impose infQ φ > 0 and φ ∈ W 1,∞(Q). As already
observed in [19, 24], the conditions we require on the test-functions in the definitions of gen-
eralized principal eigenvalues are very important and might give very different quantities.

In our previous work [19] dealing with dimension 1, we required different conditions on
the test-functions. Namely, we just imposed limx→+∞

1
x

lnφ(x) = 0 instead of the bounded-

ness and the uniform positivity of φ. This milder condition enabled us to prove that λ1 = λ1

almost surely when the coefficients are random stationary ergodic in x ∈ R. In the present
manuscript, we explain after the statement of Proposition 4.2 below what was the difficulty
we were not able to overcome in order to consider such mild conditions on the test-functions.
Indeed, we had to require the test-functions φ involved in the definitions of the generalized
principal eigenvalues to be bounded and uniformly positive, and we cannot hope to prove
that the two generalized principal eigenvalues are equal in multidimensional random station-
ary ergodic media under such conditions on the test-functions. The expected asymptotic
behavior for test-functions in such media is the subexponential, but unbounded, growth. We
will be able to handle such behaviors of the test-functions only when the coefficients do not
depend on t (see Theorem 45 below.

We will prove in Section 4 several properties of these generalized principal eigenvalues.
If the operator L admits a classical eigenvalue associated with an eigenfunction lying in the
appropriate class of test-functions, that is, if there exist λ ∈ R and φ ∈ C1,2(Q) ∩W 1,∞(Q),
with infQ φ > 0, such that Lφ = λφ over Q, where Q is an open set containing balls of
arbitrary radii, then λ1(L, Q) = λ1(L, Q) = λ. In other words, if there exists a classical
eigenvalue, then the two generalized eigenvalues equal this classical eigenvalue in such do-
mains. This ensures that our generalization is meaningful. We will also prove that when the
coefficients are almost periodic or uniquely ergodic in (t, x), then λ1 = λ1, although almost
periodic operators do not always admit a classical eigenvalue. When the coefficients do not
depend on space, it is possible to compute explicitly these quantities. Lastly, we give, in a
general framework, some comparison and continuity results for λ1 and λ1.

2.3 Statement of the results in dimension 1

We first consider the case N = 1. The definitions of our speeds w and w is much simpler in
dimension 1 and is a useful first step in order to understand the multidimensional framework.
When the coefficients do not depend on t, this case has been considered and fully described
in our earlier paper [19].

When N = 1, equation (1) reads{
∂tu− a(t, x)∂xxu− q(t, x)∂xu = f(t, x, u) in R+ × R,
u(0, x) = u0(x) for all x ∈ R. (19)
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For all p ∈ R, let

H
+

(p) := inf
R>0

λ1(Lp, (R,∞)2) and H+(p) := sup
R>0

λ1(Lp, (R,∞)2), (20)

where we define for all φ ∈ C1,2(R× R) and p ∈ R:

Lpφ := −∂tφ+a(t, x)∂xxφ+(q(t, x)+2pa(t, x))∂xφ+(f ′s(t, x, 0)+pq(t, x)+p2a(t, x))φ. (21)

These quantities will play the role of Hamiltonians in our proof. We thus need to check
that it satisfy some basic properties in order to apply the classical theory of Hamilton-Jacobi
equations. This will be done later in the general multidimensional framework in Proposition
2.2.

We are now in position to define our speeds w and w:

w := min
p>0

H+(−p)
p

and w := min
p>0

H
+

(−p)
p

. (22)

In dimension N = 1, our main result reads:

Theorem 1 Assume that N = 1. Take u0 a measurable and compactly supported function
such that 0 ≤ u0 ≤ 1 and u0 6≡ 0 and let u the solution of the associated Cauchy problem
(19). Then if u(t, x)→ 1 as t→ +∞ locally in x ∈ R, one has

• for all w ∈ [0, w), limt→+∞ inf0≤x≤wt u(t, x) = 1,

• for all w > w, limt→+∞ supx≥wt u(t, x) = 0.

In other words, one has w ≤ w∗(1) ≤ w∗(1) ≤ w. We underline that the speeds w and w
are not necessarly equal as proved later in Proposition 13.1. It is already known that w = w
in homogeneous or space-time periodic media (see the Introduction). In order to check that
our constructions of w and w are nearly optimal, we prove in Section 3 that w = w in various
types of media.

Note that the present result is less accurate than the main result of [?] since we consider
bounded and uniformly positive test-functions in the definitions of the generalized principal
eigenvalues, whereas sub-exponential test-functions were considered in [19]. On the other
hand, here we consider coefficients depending on t and not only on x as in [19].

2.4 Statement of the results in dimension N

We are now in position to state a general spreading result in dimension N . Our aim is to
state a general abstract result in the most general framework we can handle, for fully general
heterogeneous coefficients only satisfying boundedness and uniform continuity assumptions
(see Section 2.1). We will then show in section 3 that this result applies and provides exact
asymptotic spreading speeds in various settings.

14



In general heterogeneous media, we know from earlier works [13] on compactly supported
heterogeneities that only what happens when t and x are large should play a role in the
construction of w(e) and w(e). In dimension 1, we thus only considered the generalized
eigenvalues in the half-spaces (R,∞) × (R,∞), with R large. In multi-dimensional media,
we need to take into account the direction of the propagation and the situation becomes much
more involved. We will indeed restrict ourselves to the cones of angle α in the direction of
propagation e and to t > R and |x| > R, where α will be small and R will be large:

CR,α(e) :=
{

(t, x) ∈ R× RN , t > R, |x| > R,
∣∣∣ x|x| − e∣∣∣ < α

}
. (23)

R α

x1

Figure 1: The projection of the set CR,α(e1) on the x-plane.

Let us introduce the operators Lp associated with exponential solutions of the linearized
equation near u ≡ 0, defined for all p ∈ RN and φ ∈ C1,2(R× RN) by Lpφ := e−p·xL

(
ep·xφ

)
.

More explicitly:

Lpφ := −∂tφ+tr(A(t, x)∇2φ)+(q(t, x)+2A(t, x)p) ·∇φ+(f ′u(t, x, 0)+p ·q(t, x)+pA(t, x)p)φ.
(24)

For all p ∈ RN and e ∈ SN−1, we let

H(e, p) := inf
R>0,α∈(0,1)

λ1(Lp, CR,α(e)) and H(e, p) := sup
R>0,α∈(0,1)

λ1(Lp, CR,α(e)). (25)

It is easy to see that λ1(Lp, CR,α(e)) is nonincreasing in R and nondecreasing in α and that
λ1(Lp, CR,α(e)) is nondecreasing in R and nonincreasing in α. Thus, the infimum and the
supremum in (25) can be replaced by limits as R→ +∞ and α→ 0.

The properties of these Hamiltonians are given in the following Proposition:

Proposition 2.2 1. The functions p → H(e, p) and p → H(e, p) are locally Lipschitz-
continuous, uniformly with respect to e ∈ SN−1, and p 7→ H(e, p) is convex for all
e ∈ SN−1.

2. For all p ∈ RN , e 7→ H(e, p) is lower semicontinuous and e 7→ H(e, p) is upper
semicontinuous.

3. There exist C ≥ c > 0 such that for all (e, p) ∈ SN−1 × RN :

c(1 + |p|2) ≤ H(e, p) ≤ H(e, p) ≤ C(1 + |p|2).
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We underline that the Hamiltonians H and H are not continuous with respect to e in
general (see the example of Proposition 3.11 below). This is the source of serious difficulties.

Using these Hamiltonians, we will now define two functions from which we derive the
expansion sets. Define the convex conjugates with respect to p:

H?(e, q) := sup
p∈RN

(
p · q −H(e, p)

)
and H

?
(e, q) := sup

p∈RN

(
p · q −H(e, p)

)
,

which are well-defined thanks to Proposition 2.2. Let

U(x) := inf maxt∈[0,1]

{∫ 1

t
H?
(
γ(s)
|γ(s)| ,−γ

′(s)
)
ds, γ ∈ H1([0, 1]), γ(0) = 0, γ(1) = x,

∀s ∈ (0, 1), γ(s) 6= 0
}
,

U(x) := inf maxt∈[0,1]

{∫ 1

t
H
?( γ(s)
|γ(s)|),−γ

′(s)
)
ds, γ ∈ H1([0, 1]), γ(0) = 0, γ(1) = x,

∀s ∈ (0, 1), γ(s) 6= 0
}
.

(26)
We will show in Lemma 5.7 below that, as e 7→ H(e, p) is upper semicontinuous, U is

indeed a minimum, in other words, for all x, there exists an admissible path γ from 0 to x
minimizing the maximum over t ∈ [0, 1] of the integral.

We define our expansion sets in general heterogeneous media as

S := cl{U = 0} and S := {U = 0}. (27)

The reader might recognize here representations formulas for the solutions of Hamilton-
Jacobi equations. Indeed, the sets S and S are related to the zero sets of the solutions of
such equations. Such representations formulas are well-known for Hamilton-Jacobi equations
with continuous coefficients (see for example [38, 68]). This link will be described in Section
5 below. Our Hamiltonians are not continuous here, but we will make use of these formulas
in order to derive properties of the expansion sets.

We are now in position to state our main result.

Theorem 2 Take u0 a measurable and compactly supported function such that 0 ≤ u0 ≤ 1
and u0 6≡ 0 and let u the solution of the associated Cauchy problem (1). One has{

for all compact set K ⊂ intS, limt→+∞
{

supx∈tK |u(t, x)− 1|
}

= 0,
for all closed set F ⊂ RN\S, limt→+∞

{
supx∈tF |u(t, x)|

}
= 0.

(28)

In order to state this result in terms of speeds, define for all e ∈ SN−1:

w(e) = sup{w > 0, we ∈ S} and w(e) = sup{w > 0, we ∈ S}. (29)

Then it follows from Theorem 2 that

w(e) ≤ w∗(e) ≤ w∗(e) ≤ w(e).
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In dimension 1, one could check that the path γ involved in the definition of U is nec-
essarily γ(s) = sx. We thus recover the results of Section 2.3: w(e1) = minp>0H(e1,−p)/p
and w(e1) = minp>0H(e1,−p)/p in dimension 1 This is quite similar to the so-called Wulff-
type characterization (32), where the expansion set could be written as the polar set of the
eigenvalues. We will indeed prove that such a Wulff-type characterization holds for recurrent
media (which include periodic and almost periodic media).

Such a characterization could not hold for general heterogeneous multi-dimensional equa-
tions. Indeed, in multidimensional media, the population might propagate faster by changing
its direction of propagation at some point, that is, the minimizing path γ in the definition
of U is not necessarily a line. Several examples will be provided in Section 3.8. Hence,
the integral characterizations (26) are much more accurate than Wulff-type ones since they
enable multidimensional propagation strategies for the solution of the Cauchy problem.

2.5 Geometry of the expansion sets

When the expansion set is of Wulff-type (32), it immediately follows from this characteriza-
tion that it is convex. In more general frameworks, the convexity of the expansion sets is a
difficult problem. Indeed, the expansion sets could be non-convex, as shown in Proposition
3.13. However, when the Hamiltonian H is assumed to be quasiconcave w.r.t x ∈ RN , then
the lower expansion set is convex.

Proposition 2.3 Assume that the function x ∈ RN\{0} 7→ H(x/|x|, p), extended to 0 by
H(0, p) := supe∈SN−1 H(e, p), is quasiconcave over RN for all p ∈ RN . Then the set S is
convex

Here, a function f : RN → R is said to be quasiconcave if {f ≥ α} is a convex set for all
α ∈ R.

This Proposition is certainly not optimal: one could construct Hamiltonians that are
not quasiconcave which give rise to convex expansion sets, as in Proposition 3.13 below.
However, we believe that it is optimal if one does not require any further conditions on the
coefficients, such as comparison between the Hamiltonians in their different level sets.

If H is concave with respect to x, then we are led to a Hamilton-Jacobi equation with a
Hamiltonian which is concave in x. It is well-known that for such equations, the solutions
associated with concave initial data are concave with respect to x [1, 49]. However, as the
function x 7→ H(x/|x|, p) is clearly 1−homogeneous with respect to x, if it were concave
then it would be constant. Moreover, we will exhibit several examples with discontinuous
Hamiltonians, for which the concavity is of course excluded. This is why the quasiconcavity
hypothesis is relevant for our problem.

The only works we know on Hamilton-Jacobi equations that are quasiconcave are [50, 51].
In these papers, Imbert and Monneau considered Hamiltonians that are quasiconcave with
respect to p, not x, and thus the issues they faced are different from ours.

Without any quasiconcavity assumption on the Hamiltonians, one can still prove that
the expansion sets are star-shaped and compact.
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Proposition 2.4 The sets S and S are compact, star-shaped with respect to 0, and contain
an open ball centered at 0.

3 Exact asymptotic spreading speed in different frame-

works

3.1 Homogeneous, periodic and homogeneous at infinity coeffi-
cients

The cases of homogeneous, periodic and compactly supported coefficients are already known
to admit an exact asymptotic spreading speed. These results have been recalled in Section
1.1. Our construction is optimal in these frameworks.

Proposition 3.1 1. Assume that A and f ′u(·, ·, 0) are constant with respect to (t, x), and
that q ≡ 0, then one has λ1(Lp,R×RN) = λ1(Lp,R×RN) = f ′u(0)+pAp for all p ∈ RN

and
w(e) = w(e) = 2

√
eAef ′u(0) for all e ∈ SN−1.

2. Assume that A, q and f ′u(·, ·, 0) are periodic in (t, x) (in the same meaning as in Section
1.1). Define kperp as in Section 1.1. Then one has λ1(Lp,R×RN) = λ1(Lp,R×RN) = kperp

for all p ∈ RN and

w(e) = w(e) = min
p·e>0

kper−p
p · e

for all e ∈ SN−1.

3. Assume that there exist a positive matrix A∗ ∈ SN(R), a vector q∗ ∈ RN and a constant
c∗ ∈ R such that

lim
R→+∞

sup
t≥R,|x|≥R

(|A(t, x)− A∗|+ |q(t, x)− q∗|+ |f ′u(t, x, 0)− c∗|) = 0. (30)

Then H(e, p) = H(e, p) = pA∗p+ q∗ · p+ c∗ for all p ∈ RN and

w(e) = w(e) = 2
√
eA∗ec∗ + q∗ · e for all e ∈ SN−1. (31)

Let now investigate classes of heterogeneities for which no spreading properties was know
before.

3.2 Recurrent media

When the coefficients are recurrent, our definitions of the expansion sets simplify to Wulff-
type constructions, as in periodic media. We will consider in the next section an important
class of recurrent coefficients: almost periodic ones. However, even if the characterizations of
the expansion sets simplify, these sets might not be equal in recurrent media, and we provide
an example for which S 6= S.
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Definition 3.2 A uniformly continuous and bounded function g : R × RN → R is recur-
rent with respect to (t, x) ∈ R × RN if for any sequence (tn, xn)n∈N in R × RN such that
g∗(t, x) = limn→+∞ g(tn + t, xn +x) exists locally uniformly in (t, x) ∈ R×RN , there exists a
sequence (sn, yn)n∈N in R×RN such that limn→+∞ g

∗(t−sn, x−yn) = g(t, x) locally uniformly
in (t, x) ∈ R× RN .

The heuristic meaning of this definition is that the patterns of the heterogeneities repeat
at infinity. It is easy to check that homogeneous, periodic and almost periodic functions
are recurrent. We thus expect similar phenomena as in periodic media to arise, even if
the recurrence property is much milder than periodicity. Indeed, some functions might be
recurrent without being almost periodic, such as the function (see [100])

g(x) =
sin t+ sin

√
2t

|1 + eit + ei
√

2t|
.

Proposition 3.3 Assume that A, q and f ′u(·, ·, 0) are recurrent with respect to (t, x) ∈ R×RN .
Then

S = {x, ∀p ∈ RN , λ1(L−p,R×RN) ≥ p·x} and S = {x, ∀p ∈ RN , λ1(L−p,R×RN) ≥ p·x}.
(32)

Note that such a Wulff-type characterization of the expansion sets immediately implies
for all e ∈ SN−1:

w(e) := min
p·e>0

λ1(L−p,R× RN)

p · e
and w(e) := min

p·e>0

λ1(L−p,R× RN)

p · e
, (33)

that is:

∀w ∈
[
0, w(e)

)
, lim

t→+∞
u(t, x+ wte) = 1 and ∀w > w(e), lim

t→+∞
u(t, x+ wte) = 0,

locally uniformly with respect to x ∈ RN . Hence, this result exactly means that the transition
between 0 and 1, that is, the level sets of u(t, ·) are contained in

[
w(e)t, w(e)t

]
along direction

e at sufficiently large time t. Such a characterization of the spreading speeds is very close to
the one holding in periodic media (see (6) below).

We have constructed the two expansion sets S and S as precisely as possible. However,
these two sets might be different, that is, there does not necessarily exist an exact spreading
speed in recurrent media. For instance, in Example 2 of Section 13 we exhibit a situation
where the advection term is recurrent with respect to time and for which there exists a range
of speeds (w∗, w

∗) such that for all w ∈ (w∗, w
∗), if u is defined as in Theorem 3.3, then for

all e ∈ SN−1, the ω-limit set of the function t 7→ u(t, wte) is the full interval [0, 1]. From this
one sees that one cannot expect to describe the invasion by a single expansion set, hence the
introduction here of two expansion sets S and S.
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3.3 Almost periodic media

An important class of recurrent coefficients is that of almost periodic functions, for which
we will show that S = S. We will use Bochner’s definition of almost periodic functions:

Definition 3.4 [28] A function g : R × RN → R is almost periodic with respect to
(t, x) ∈ R × RN if from any sequence (tn, xn)n∈N in R × RN one can extract a subsequence
(tnk , xnk)k∈N such that g(tnk + t, xnk + x) converges uniformly in (t, x) ∈ R× RN .

Theorem 3 Assume that A, q and f ′u(·, ·, 0) are almost periodic with respect to (t, x) ∈ R×RN .
Then S = S and

w(e) = w(e) = min
p·e>0

λ1(L−p,R× RN)

p · e
= min

p·e>0

λ1(L−p,R× RN)

p · e
. (34)

Let us also mention here the works of Shen, who proved these spreading properties in the
particular case q ≡ 0, A = A(x) is periodic in x and f is limit periodic in t and periodic in
x (Theorem 4.1 in [93]). Limit periodic functions, that is, uniform limits over R of periodic
functions, are a sub-class of almost periodic functions.

This Theorem is an immediate corollary of Proposition 3.3 and the following result, which
is new and of independent interest. We will thus leave the proof of Theorem 3 to the reader.

Theorem 4 Assume that A, q and c are almost periodic, where c ∈ Cδ/2,δloc (R × RN) is a
given uniformly continuous function. Let L = −∂t + tr(A∇2) + q · ∇ + c. Then one has
λ1(L,R× RN) = λ1(L,R× RN).

As almost periodic functions are uniquely ergodic ones, these results could be derived
from that of Section 8 below. However, we state these independently since we will indeed
provide direct proofs in the almost periodic framework.

It is well-known that elliptic operators with almost periodic coefficients do not always
admit almost periodic eigenvalues. Indeed, consider the operator defined for all φ ∈ C2(R)
by Lφ := φ′′ + c(x)φ. Bjerklov [27] showed that, if c(x) = K

(
cos(2πx) + cos(2παx)

)
with

α /∈ Q and K large enough, the Lyapounov exponent of L is strictly positive, which implies,
through Ruelle-Oseledec’s theorem, that any eigenfunction should either blow up or decay
to zero exponentially, contradicting a possible almost periodicity (see also [97]). Hence,
Theorem 4 is an example where classical eigenvalues do not exist while generalized principal
eigenvalues are equal.

On the other hand, if K is small enough and α satisfies the diophantine condition

∀(n,m) ∈ Z2, |n+mα| ≥ k(|n|+ |m|)−σ for some k, σ > 0,

then Kozlov [60] proved the existence of an almost periodic eigenfunction.

In the almost periodic framework, in dimension 1, the existence of generalized transition
waves has been proved by the second author and Rossi [76] under the assumption that the
linearized operator near u ≡ 0 admits an almost periodic eigenfunction. The existence of
generalized transition waves remains an open problem when there does not exist such an
eigenfunction.
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3.4 Asymptotically almost periodic media

An exact asymptotic spreading speed still exists when the coefficients converge to almost
periodic functions at infinity thanks to Theorem 2.

Proposition 3.5 Assume that there exist space-time almost periodic functions A∗, q∗ and
c∗ such that

lim
R→+∞

sup
t≥R,|x|≥R

(|A(t, x)− A∗(t, x)|+ |q(t, x)− q∗(t, x)|+ |f ′u(t, x, 0)− c∗(t, x)|) = 0. (35)

Then H(e, p) = H(e, p) = λ1(L∗p,R× RN) for all p ∈ RN and

w(e) = w(e) = min
p·e>0

λ1(L∗−p,R× RN)

p · e
= min

p·e>0

λ1(L∗−p,R× RN)

p · e
. (36)

where L∗ = −∂t + tr(A∗(t, x)∇2) + q∗(t, x) · ∇+ c∗(t, x) and L∗pφ = e−p·xL∗(ep·xφ).

The proof of this Proposition is similar to that of Proposition 2.6 of our previous work
[19]. We will thus omit its proof.

3.5 Uniquely ergodic media

We now consider uniquely ergodic coefficients.

Definition 3.6 A uniformly continuous and bounded function f : RN → Rm is called
uniquely ergodic if there exists a unique invariant probability measure P on its hull
Hf := cl{τaf, a ∈ RN}, where the closure is understood with respect to the locally uni-
form convergence, and where the invariance is understood with respect to the translations
τaf(x) := f(x+ a) for all x ∈ RN .

Periodic, almost periodic and compactly supported functions are particular sub classes
of the uniquely ergodic one. A classic example of uniquely ergodic function is constructed
from the Penrose tiling. We refer to [84] for a definition of it. If one defines on each tile a
compactly supported function, the function thus obtained on RN is uniquely ergodic [70, 84].
However, it is not almost periodic. The class of ergodic functions is therefore wider than
that of almost periodic functions.

The notion of unique ergodicity is commonly used in dynamical system theory since
it provides uniformity of the convergence in the Birkhoff ergodic theorem. This yields the
following equivalent characterization (which is proved for example in Proposition 2.7 of [70]).

Proposition 3.7 [70] Let f : RN → Rm a uniformly continuous and bounded function. The
following assertions are equivalent:

• f is uniquely ergodic
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Figure 2: A representation of the Penrose tiling

• for any continuous function Ψ : Hf → R, the following limit exists uniformly with
respect to a ∈ RN :

lim
R→+∞

1

|BR(a)|

∫
BR(a)

Ψ(τyf)dy.

Indeed, this limit is equal to P(Ψ).

The interest for reaction-diffusion equations with uniquely ergodic coefficients has raised
since the 2000’s, when the case of periodic ones was completely understood. Shen has
investigated the existence of generalized transition wave solutions of Fisher-KPP equations
with time uniquely ergodic coefficients [94] (see also [74]). Matano conjectured the existence
of generalized transition waves (see Section 1.3 below and [10, 69]) and of spreading properties
in Fisher-KPP equations with space uniquely ergodic coefficients in several conferences.

In the present manuscript, we show the existence of spreading properties for Fisher-KPP
equations with space uniquely ergodic coefficients.

Theorem 5 Assume that A, q and f ′u(·, 0) only depend on x and are uniquely ergodic with
respect to x ∈ RN . Then S = S and

w(e) = w(e) = min
p·e>0

λ1(L−p,R× RN)

p · e
= min

p·e>0

λ1(L−p,R× RN)

p · e
. (37)

Theorem 5 is an immediate corollary of Theorem 2 and the next result on the equality
generalized principal eigenvalues for elliptic operators with uniquely ergodic coefficients. We
will thus omit its proof and only prove Theorem 6, which is of independent interest.
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Theorem 6 Assume that A, q and c only depend on x and are uniquely ergodic, where
c ∈ Cδloc(RN) is a given uniformly continuous and bounded function. Define the elliptic
operator: L = tr(A∇2) + q · ∇+ c. Then one has:

λ1(L,RN) = λ1(L,RN).

Uniquely ergodic coefficients could be viewed as random stationary ergodic ones, for
which the existence of spreading properties for almost every events is known. However, as
far as we know, in multi-dimensional media, spreading properties have only been derived for
random stationary ergodic advection terms (and homogeneous reaction terms) by Nolen and
Xin in [80], and serious difficulties arise when the reaction term is heterogeneous. Moreover,
it is not clear how to recover spreading properties for the given set of coefficients (A, q, f)
through this observation, as already explained in [19]. For example, in the case of the Penrose
tiling, knowing that there exists an exact spreading speed for almost every tiling, it is not
clear at all how to derive the existence of an exact spreading speed for a given one. We prove
in the present manuscript that an exact spreading speed does exist not only for almost every
but for that tiling. Lastly, the characterization in terms of generalized principal eigenvalues
(37) we derive in the present manuscript is quite different from the characterizations of the
spreading speeds in random stationary ergodic media, which involves Lyapounov exponents
(see [80] for instance).

3.6 Radially periodic media

We now consider coefficients that are periodic with respect to the radial coordinate r = |x|.
As far as we know, this class of heterogeneity has never been investigated before.

Proposition 3.8 Assume that one can write

A(t, x) = aper(|x|)IN , q(t, x) = 0 and f ′u(t, x, 0) = cper(|x|)

where aper and cper are periodic with respect to r = |x|: there exists L > 0 such that for all
r ∈ (0,∞):

aper(r + L) = aper(r) and cper(r + L) = cper(r).

For all p ∈ R, let:

Lperp φ := aper(r)φ
′′ + 2paper(r)φ

′ +
(
p2aper(r) + cper(r)

)
φ

and λper1 (Lperp ) the periodic principal eigenvalue associated with this operator.
Then w(e) and w(e) do not depend on e and

w(e) = w(e) = min
p>0

λper1 (Lper−p )

p
.

The proof of this result is non-trivial since classical eigenvalues do not exist in this
framework. Hence, one more time the notions of generalized principal eigenvalues will be
useful. Moreover, the fact that only the heterogeneity of the coefficients in the truncated
cones CR,α(e) matters in the computation of these eigenvalues will also be needed.
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3.7 Spatially independent media

When the coefficients only depend on t, the formulas for w(e) and w(e) are simpler. For
example, if the coefficients are periodic in t, then the spreading speed is that associated
with the average coefficients over the period. Our aim is to extend this property to general
time-heterogeneous coefficients.

Proposition 3.9 Assume that A = IN , q ≡ 0 and f ′u(·, 0) do not depend on x. Then for all
e ∈ SN−1,

w(e) = lim inf
t→+∞

inf
s>0

2

√
1

t

∫ s+t

s

f ′u(s
′, 0)ds′ (38)

w(e) = lim sup
t→+∞

sup
s>0

2

√
1

t

∫ s+t

s

f ′u(s
′, 0)ds′. (39)

The reader might easily check that the proof is also available when only q or A depends
on t.

The existence of generalized transition waves in such media has been proved, under similar
hypotheses as in the present manuscript, by the second author and Rossi [74]. The speed of
these fronts are determined through some upper and lower means of the coefficients that are
very similar to the average involved in the definitions of w(e) and w(e).

When the coefficients are periodic in T , we recover that w(e) = w(e) is the spreading
speed associated with the average reaction term. For general time-heterogeneous coefficients,
it is not always true that w(e) = w(e). This is because one can consider several ways of
averaging. Indeed, our result is not optimal and it might be due to our choice of averaging
(see Section 13 below).

However, when the coefficients admits a uniform mean value over R, then a variant of
our result gives w(e) = w(e) for all e. We can thus handle uniquely ergodic coefficients for
example. No such result exists in the literature as far as we know.

Proposition 3.10 Assume that A, q and f do not depend on x and that there exists
〈A〉 ∈ SN(R), 〈q〉 ∈ RN and 〈c〉 ∈ R such that

lim
t→+∞

1

t

∫ a+t

a

A(s)ds = 〈A〉, lim
t→+∞

1

t

∫ a+t

a

q(s)ds = 〈q〉 and lim
t→+∞

1

t

∫ a+t

a

f ′u(s, 0)ds = 〈c〉

(40)
uniformly with respect to a > 0. Then for all e ∈ SN−1,

w∗(e) = w∗(e) = w(e) = w(e) = 2
√
e〈A〉e〈c〉 − 〈q〉.

3.8 Directionally homogeneous media

We investigate in this Section the case where the coefficients converge in radial segments
of R2. These types of heterogeneities give rise to very rich phenomena, such as non-convex
expansion sets.

We start with the case where the diffusion term converges in the half-spaces {x1 < 0}
and {x1 > 0}
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Proposition 3.11 Assume that N = 2, q ≡ 0, f does not depend on (t, x) and
A(x1, x2) = a(x1)I2 is a smooth function such that limx1→±∞ a(x1) = a±, with a+ > a− > 0.
Then S = S and this set is the convex envelope of

{x ∈ R2, |x| ≤ 2
√
f ′(0)a+, x1 ≥ 0} ∪ {x ∈ R2, |x| ≤ 2

√
f ′(0)a−, x1 ≤ 0}.
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2
√
f ′(0)a−

2
√
f ′(0)a+

Figure 3: The expansion set S = S given by Proposition 3.11 for N = 2.

It is easy to compute that

H(e, p) = H(e, p) =

{
a+p

2 + f ′(0) if e1 > 0,
a−p

2 + f ′(0) if e1 < 0.

Thus, when e1 < 0 and e1 6= −1, the spreading speed w∗(e) = w∗(e) is not equal to

v(e) = min
p·e>0

H(e,−p)
p · e

= 2
√
f ′(0)a−

and the expansion set is not obtained through a Wulff-type construction like (32). In other
words, the spreading speed in direction e does not only depend on what happens in direction
e. Heuristically, in the present example, in order to go as far as possible during a given time
t, an individual has to first go in direction e2 at speed 2

√
f ′(0)a+ and then to get into the

left medium at speed 2
√
f ′(0)a−. The notion hidden beyond this heuristic remark is that of

geodesics with respect to the riemannian metric associated with the speeds 2
√
f ′(0)a+ and

2
√
f ′(0)a−.
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This shows that there is a strong link between geometric optics and reaction-diffusion
equations, as already noticed by Freidlin [40, 41] and Evans and Souganidis [38]. Indeed,
Freidlin investigated in [40] the asymptotic behavior as ε→ 0 of the equation{

∂tvε = εa(x)∆vε + 1
ε
f(vε) in (0,∞)× RN ,

vε(0, x) = v0(x) for all x ∈ RN ,
(41)

where (aij)i,j and f are smooth and v0 is a compactly supported function which does not
depend on ε. He proved that

lim
ε→0

vε(t, x) =

{
1 if V (t, x) > 0,
0 if V (t, x) < 0,

locally in (t, x) ∈ (0,∞)× RN , (42)

where V (t, x) = 4f ′(0)t − d2(x,G0)/t, G0 is the support of v0 and d is the riemannian
metric associated with dxidxj/a(x). As we will see later along the proof of our main result,
our problem is almost equivalent to (41), but with coefficients depending on ε: a(x/ε) and
v0(x/ε) instead of a(x) and v0(x). Indeed, the particular dependence of the diffusion term
in Proposition 3.11 yields that a(x/ε) is close to a+ if x1 > 0 and to a− if x1 < 0 when ε
is small. This shrinked diffusion term is discontinuous and, more important, the rescaled
initial datum v0(x/ε) becomes very singular when ε→ 0, unlike the smooth one in Freidlin’s
problem (41). Thus we could not directly apply Freidlin’s result. However, we will find
at an intermediate step a characterization of the expansion set which is close to Freidlin’s
(42), which is not surprising. We will then explicitly compute the geodesics, which makes
another difference with earlier papers on the link between geometric optics and Hamilton-
Jacobi equations. Computing these geodesics, we will recover some Snell-Descartes law (see
the Remark below the proof of Proposition 3.11).

Next, let consider the same framework but with f depending on x1 instead of a.

Proposition 3.12 Assume that N = 2, q ≡ 0, A = I2 and f(t, x, s) = c(x1)s(1− s), where
c is a smooth function such that limx1→±∞ c(x1) = µ±, with µ+ > µ− > 0.

Then S = S and this set is the convex envelope of

{x ∈ R2, |x| ≤ 2
√
µ+, x1 ≥ 0} ∪ {x ∈ R2, |x| ≤ 2

√
µ−, x1 ≤ 0}.

Surprisingly, the functions U and U are quite different from the ones arising along the
proof of Proposition 3.11. However, their level-sets S = {U = 0} and S = cl{U = 0} are
very similar to that of Proposition 3.11 and we find the same type of picture as Figure 3.8.

If A(t, x) = a(x1)IN and if there exist two periodic functions x1 7→ a+(x1) and
x1 7→ a−(x1) such that a(x1) − a±(x1) → 0 as x1 → ±∞, then it does not seem possi-
ble to write the expansion set as the convex hull of two half-circles as in Proposition 3.11
holds in general. Indeed, the proof of Proposition 3.11 relies on the particular structure of
the Hamiltons H(e, p) and H(e, p), which are quadratic polynoms with respect to p for all e.

We also mention here the recent work of Roquejoffre, Rossi and the first author [22] on a
coupled reaction-diffusion modeling the diffusion of a species along a line. Computing their
expansion set, the authors faced similar problems but found a picture quite different from
Figure 3.8.
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3.9 A non-convex expansion set

If a converges to a− in a smaller part of R2 than a half-space, then the expansion set is not
as in Proposition 3.11.

Proposition 3.13 Assume that N = 2, q ≡ 0, f does not depend on (t, x) and
A(x) = a(x)I2 is a smooth function such that

lim
x1→+∞

a(x1, αx1) =

{
a+ if |α| < r0

a− if |α| > r0

where a+ > a− > 0 and 0 < r0 < r :=
√

a−
a+−a− Then S = S and this set is:

{
|x| < 2

√
f ′(0)a+, |x2| ≥ r0x1

}
∪
{
x1 <

1− r0r

r0 + r
|x2|+

2
√
f ′(0)a+(1 + r2

0)

1 + r0/r
, |x2| ≤ r0x1

}
.

This expansion set is non-convex if r0r < 1, as displayed in the Figure illustrating Propo-
sition 3.13.

2
√
f ′(0)a+

2
√
f ′(0)a+(1 + r2

0)

1 + r0/rarctan r0

Figure 4: The non-convex expansion set S = S given by Proposition 3.13.

This is the first time, as far as we know, that a reaction-diffusion giving rise to a non-
convex expansion set is exhibited. Indeed, for all the classes of heterogeneities previously
investigated in the literature, the expansion sets were characterized through a Wulff-type
construction (8), which is clearly convex. Thus the investigation of more general types of
heterogeneities was needed in order to find non-convex expansion sets.
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As a conclusion, if N = 2, q ≡ 0, f does not depend on (t, x) and A(x) = a(x)IN , where a
converges to some limit function a∞(x) in a finite number of radial segments, then Proposition
11.1 below yields that S = S. Hence, if in addition a∞ is assumed to be quasiconcave, then
the reader can check that Proposition 2.3 yields that S is convex. However, this result is
not optimal since, for example, under the assumptions of Proposition 3.13, one would obtain
the function a∞(x) = a+ if |x2| > r0x1, a∞(x) = a+ if |x2| < r0x1, which is not quasiconcave
since r0 > 0, however the expansion set is convex if r0r ≥ 1.

We mention here, in the continuity of [22], R. Ducasse’s work on a so-called fast-line
model with a conical field, exhibiting similar non-convex level-sets [36].

3.10 An alternative definition of the expansion set and applica-
tions to random and slowly varying media

We conclude this section with an alternative definition of the expansion set, involving another
notion of generalized principal eigenvalues, which allows us to prove the existence of an exact
asymptotic spreading speed in random stationary ergodic and slowly varying media.

We need in this Section the following additional assumption:

A, q and f ′s(·, 0) do not depend on t. (43)

Our alternative definition involves another set of test-functions:

B :=
{
φ ∈ C2(RN), φ > 0, ∇φ/φ ∈ L∞(RN), lim

|x|→+∞

lnφ(x)

|x|
= 0
}

For any open set O ⊂ RN , we define two generalized principal eigenvalues associated
with such test-functions:

η1(L,O) := sup{ η | ∃φ ∈ B, Lφ ≥ ηφ in O},
η1(L,O) := inf{ η | ∃φ ∈ B, Lφ ≤ ηφ in O}. (44)

It is immediate that η1 ≥ λ1 and η1 ≤ λ1 since bounded functions with a positive infimum
belong to B.

When O = CR,α(e), one has η1 ≤ η1. But we do not know if such a comparison holds in
sets containing balls of arbitrary radii (see Proposition 4.2 below).

Lemma 3.14 One has η1(CR,α(e)) ≥ η1(CR,α(e)) for all R > 0, α > 0 and e ∈ SN−1.

Of course, if O contains a truncated cone CR,α(e) for some R > 0, α > 0 and e ∈ SN−1,
then as η1(O) ≥ η1(CR,α(e)) and η1(CR,α(e)) ≤ η1(O), one gets η1(O) ≥ η1(O) as well.

We are now in position to define similar quantities as in Section 2.4 with these new
notions of generalized principal eigenvalues. Let:

J(e, p) := inf
R>0,α∈(0,1)

η1(Lp, CR,α(e)) and J(e, p) := sup
R>0,α∈(0,1)

η1(Lp, CR,α(e)),

J?(e, q) := sup
p∈RN

(
p · q − J(e, p)

)
and J

?
(e, q) := sup

p∈RN

(
p · q − J(e, p)

)
,
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V (x) := inf maxt∈[0,1]

{∫ 1

t
J?
( γ(s)
|γ(s)| ,−γ

′(s)
)
ds, γ ∈ H1([0, 1]), γ(0) = 0, γ(1) = x,

∀s ∈ (0, 1), γ(s) 6= 0
}
,

V (x) := inf maxt∈[0,1]

{∫ 1

t
J
?( γ(s)
|γ(s)|),−γ

′(s)
)
ds, γ ∈ H1([0, 1]), γ(0) = 0, γ(1) = x,

∀s ∈ (0, 1), γ(s) 6= 0
}
.

T := cl{V = 0} and T := {V = 0}.

One could easily check that the Hamiltonians J and J satisfy similar properties as that
of H and H stated in Proposition 2.2.

One can show that a spreading property also holds with this alternative definition of the
expansion sets.

Theorem 7 Under the hypotheses of Section 2.1 and (43), if u0 6≡ 0 is a measurable and
compactly supported function such that 0 ≤ u0 ≤ 1 and u is the associated solution of the
Cauchy problem (1), one has{

for all compact set K ⊂ intT , limt→+∞
{

supx∈tK |u(t, x)− 1|
}

= 0,
for all closed set F ⊂ RN\T , limt→+∞

{
supx∈tF |u(t, x)|

}
= 0.

(45)

Application: Random stationary ergodic coefficients

Consider a probability space (Ω,P,F) and assume that the reaction rate f : (x, ω, s) ∈ RN×Ω×[0, 1]→ R,
the advection term q : (x, ω) ∈ RN×Ω→ RN and the diffusion termA : (x, ω) ∈ RN×Ω→MN(R)
are random variables. We suppose that the hypotheses stated in Section 2.1 are satisfied for
almost every ω ∈ Ω.

The functions f ′s(·, ·, 0), q and A are assumed to be random stationary ergodic. The
stationarity hypothesis means that there exists a group (πx)x∈RN of measure-preserving
transformations such that A(x + y, ω) = A(x, πyω), q(x + y, ω) = q(x, πyω) and
f ′u(x + y, ω, 0) = f ′u(x, πyω, 0) for all (x, y, ω) ∈ RN × RN × Ω. This hypothesis heuris-
tically means that the statistical properties of the medium does not depend on the place
where one observes it. The ergodicity hypothesis means that if πxA = A for all x ∈ RN and
for a given A ∈ F , then P(A) = 0 or 1.

We expect to compute the speeds w and w for almost every ω ∈ Ω. Such a result is
already known in dimension N = 1 when the full nonlinearity f (and not only its derivative
near u = 0) is a random stationary ergodic function since the pioneering work of Freidlin and
Gartner [42]. They proved that for almost every ω ∈ Ω, one has w∗ = w∗ and that this exact
spreading speed can be computed using a family of Lyapounov exponents associated with
the linearization of the equation near u = 0. This result has been generalized by Nolen and
Xin for various types of space-time random stationary ergodic advection terms [80, 81, 82]
in dimension N .

Our aim is to check that it is possible to derive w = w almost surely from Theorem 7 and
to find a characterization of the exact spreading speed that involves the generalized principal
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eigenvalues. The linearized operator now depends on the event ω and we write for all ω ∈ Ω,
p ∈ R and φ ∈ C2(R):

Lωpφ := tr(A(x, ω)∇2φ) + (q(x, ω) + 2A(x, ω)p) · ∇φ+ (f ′u(x, ω, 0) + p · q(x, ω) + pA(x, ω)p)φ.
(46)

The following Proposition is an immediate corollary of [31].

Proposition 3.15 Assume that Ω is a Polish space, F is the Borel σ−field on Ω and P is
a Borel probability measure. Then, if A, q and f do not depend on t, one has

η1(Lωp ) = η1(Lωp )

for all p ∈ RN for almost every ω ∈ Ω.
Hence, for all ω ∈ Ω0 and e ∈ SN−1:

wω(e) = min
p·e>0

η1(Lω−p,R)

p · e
= wω(e) = min

p·e>0

η1(Lω−p,R)

p · e
(47)

and this quantity does not depend on ω ∈ Ω0.

We have proved this result in dimension 1 without assuming Ω to be a Polish set [19].
We thus naturally conjecture that this assumption could be dropped.

Proposition 3.15 shows that the identity wω = wω, which was already known in particular
frameworks [41, 42], can be derived from Theorem 7. Moreover, we obtain a new character-
ization of this exact spreading speed involving generalized principal eigenvalues instead the
Lyapounov exponents used in [41, 42].

The definition of the set of admissible test-functions B is important here. If one consid-
ers another set of admissible test-functions, such as bounded test-functions with a positive
infimum as in our earlier definitions of generalized principal eigenvalues (17) and (18), then
the associated generalized principal eigenvalues are not equal in general. Hence, the class of
random stationary ergodic coefficients emphasizes that it might be relevant to use the milder
assumption lim|x|→+∞

1
x

lnφ(x) = 0 in the definition of the set of admissible test-functions.

Application: Slowly varying media

Consider now A = IN , q ≡ 0 and a reaction term f such that there exist c0 ∈ C0(R) and a
length function L ∈ C2(R) satisfying:

f ′s(x, 0) = c0

(
x/L(|x|)

)
for all x ∈ RN ,

0 < min[0,1] c0 < max[0,1] c0 and c0 is 1-periodic,

limz→+∞
L(z)

z
= 0, lim

z→+∞

L′(z)z

L(z)
= 0 and lim

z→+∞

L′′(z)z

L(z)
= 0.

(48)

Typical length functions L satisfying these hypotheses are

• L(z) = z/(ln z)α, with α > 1,
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• L(z) = zα, α ∈ (0, 1),

• L(z) = (ln z)α, α > 0.

Such a reaction term is said to be slowly varying and has been considered by the second
author, together with Garnier and Giletti, in dimension N = 1 [44]. Applying the results of
our earlier one-dimensional paper [19], it was proved by these authors that there exists an
exact asymptotic spreading speed, which could be characterized.

We generalize here this result to dimension N .

Proposition 3.16 Under hypotheses (48), one has for all p ∈ RN :

lim
R→+∞

η1(Lp,RN\BR) = lim
R→+∞

η1(Lp,RN\BR) = H(p),

where H(p) is defined in Proposition 3.17 below.
Hence, for all e ∈ SN−1:

w(e) = w(e) = min
p·e>0

H(−p)
p · e

. (49)

The Hamiltonians H(p) is defined in the next Proposition. The quantities H(p) could be
viewed as the limits of periodic principal eigenvalues when the given period of the coefficients
tends to +∞.

Proposition 3.17 [63] For all p ∈ R, there exists a unique real number H(p) such that
there exists a continuous periodic viscosity solution vp of

|∇vp(y) + p|2 + c0(y) = H(p) over R. (50)

Note that if the length function increases two slowly, for example if L(z) = z/(ln z)α

with α < 1, then there might not exist an exact asymptotic spreading speed and one might
get w∗ = 2

√
min[0,1] c0 and w∗ = 2

√
max[0,1] c0 [44]. This is why we need hypotheses on the

length function such as (48).

4 Properties of the generalized principal eigenvalues

The aim of this Section is to state some basic properties of the generalized principal eigen-
values and to prove Proposition 2.2. In all the Section, we consider an operator L defined
for all φ ∈ C1,2(R× RN) by

Lφ = −∂tφ+ ai,j(t, x)∂ijφ+ qi(t, x)∂iφ+ c(t, x)φ,

where A and q satisfy the hypotheses of Section 2.1 and c ∈ Cδ/2,δloc (R× RN) ∩ L∞(R× RN)
is a given uniformly continuous function. Recall that, for all p ∈ RN ,

Lpφ = e−p·xL(ep·xφ) = −∂tφ+ tr(A(t, x)∇2φ) + 2pA(t, x)∇φ+ q(t, x) · ∇φ
+(pA(t, x)p+ q(t, x) · p+ c(t, x))φ.

(51)

Therefore, by proving some properties for λ1(L, Q) and λ1(L, Q) with general A, q and c, we

immediately derive properties regarding λ1(Lp, Q) and λ1(Lp, Q).
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4.1 Earlier notions of generalized principal eigenvalues

Generalized eigenvalues for elliptic operators

Consider first an elliptic operator L defined for all φ ∈ C2(RN) by

Lφ = ai,j(x)∂ijφ+ qi(x)∂iφ+ c(x)φ,

where c ∈ Cδloc(RN) is a uniformly continuous and bounded function.
For such operators, a first notion of generalized principal eigenvalues was introduced by

the first author, together with Hamel and Rossi 2 [18]:

µ1(L,RN) := sup{λ | ∃φ ∈ C2(RN) ∩ L∞(RN) s.t. Lφ ≥ λφ in RN},
µ1(L,RN) := inf{λ | ∃ψ ∈ C2(RN), infR×RN φ > 0 and Lφ ≤ λφ in RN},
µ1(L,RN) := inf{λ | ∃ψ ∈ C2(RN), s.t. Lφ ≤ λφ in RN}.

(52)

These quantities are defined in [18, 24] for more general unbounded domains than RN , under
additional assumptions on the behavior of the test-functions on their boundaries, and under
more general hypotheses on the coefficients of the operator.

The reader should notice that the main difference with the definitions (17) and (18) of
generalized principal eigenvalues λ1 and λ1 we use in the present paper lays in the class of
test-functions. In order to define µ1, one only requires the test-functions ψ to be bounded,
while we require it to be bounded and have a positive infimum in the definition of λ1.
Similarly, µ1 is define through test-functions ψ with a positive infimum, while λ1 involve
test-functions which are both bounded with a positive infimum. This slight difference gives
rise to different quantities, as we will make it clearer later.

The main properties of these eigenvalues were derived in [24]:

• µ1(L,RN) ≤ µ1(L,RN) ≤ µ1(L,RN),

• µ1(L,RN) is the limit of the Dirichlet principal eigenvalues associated with L on any
increasing sequence of bounded smooth domains Ωn such that ∪n∈NΩn = RN ,

• if L is self-adjoint (that is, qi(x) =
∑N

j=1 ∂iai,j(x)), then µ1(L,RN) = µ1(L,RN) = µ1(L,RN),

• if µ1(L,RN) < 0, then the operator −L satisfies a maximum principle, while it does
not if µ1(L,RN) ≥ 0 (see [24] for a precise definition of this property).

It was also conjectured in these earlier papers that µ1(L,RN) = µ1(L,RN) even when the
operator L is not self-adjoint.

2Indeed, with the notations of [18], µ1(L,RN ) := −λ′1(−L,RN ), µ1(L,RN ) := −λ′′1(−L,RN ) and

µ1(L,RN ) := −λ1(−L,RN )
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Generalized eigenvalues for parabolic operators

We now come back to a parabolic operator L, as introduced in (16). If this operator is
defined over R × Ω, where Ω is a bounded and smooth domain, with Dirichlet boundary
conditions on ∂Ω, then Huska, Polacik and Safonov [48] introduced a notion of principal
Floquet bundle. Roughly speaking, there exists a unique (up to multiplication) time-global
positive solution φ of Lφ = 0 in R × Ω, φ = 0 over R × Ω, and this solution attracts, in a
sense, all the solutions of this equation at large time.

We investigated, together with Rossi [20], the links between this notion and that of
generalized principal eigenvalues. We do not enter into details here and refer to the article
in preparation [20].

If Ω = RN , principal Floquet bundles do not exist in general. We thus introduce:

µ1(L,R× RN) = sup{λ | ∃φ ∈ C1,2(R× RN), φ ∈ L∞(R× RN) and Lφ ≥ λφ in R× RN}
µ1(L,R× RN) = inf{λ | ∃φ ∈ C1,2(R× RN), infR×RN φ > 0 and Lφ ≤ λφ in R× RN}.

We use the same notations as in (52) because one can prove [20] that, when the coefficients
do not depend on t, the parabolic and elliptic definitions of generalized principal eigenvalues
coincide. Note that it is not clear how to define an analogous of quantity µ1 for parabolic
operators.

One has the following comparison between these various notions of principal eigenvalues,
that will be useful in the sequel.

Lemma 4.1 One has

λ1(L,R× RN) ≥ µ1(L,R× RN) ≥ µ1(L,R× RN) ≥ λ1(L,R× RN).

Proof. Assume that µ1(L,R× RN) < µ1(L,R× RN). Take µ′, µ′′ such that

µ1(L,R× RN) > µ′ > µ′′ > µ1(L,R× RN).

There exist φ, ψ ∈ C1,2(R×RN) such that φ ∈ W 1,∞(R×RN), infR×RN ψ > 0, Lφ ≥ µ′φ and
Lψ ≤ µ′′ψ in R× RN . Let γ := infR×RN

ψ
φ

and z := ψ − γφ. The function z is nonnegative
and infR×RN z = 0. Moreover, it satisfies

Lz ≤ µ′′ψ − γµ′φ = µ′z + (µ′′ − µ′)ψ in R× RN .

Let ε = (µ′ − µ′′) infR×RN ψ > 0, then

−(L − µ′)z ≥ ε in R× RN in the sense of viscosity solutions.

It now follows from the strong maximum principle for parabolic operators in unbounded
domains proved in Lemma 3.4 of [13] that infR×RN z > 0, which contradicts the definition of
z. Thus,

µ1(L,R× RN) ≥ µ1(L,R× RN).

Obviously, λ1(L,R× RN) ≤ µ1(L,R× RN) and µ1(L,R× RN) ≤ λ1(L,R× RN). �
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4.2 Comparison between the generalized principal eigenvalues

We are now in position to state an inequality between λ1 and λ1 in more general domains
than R× RN .

Proposition 4.2 Consider an open set Q ⊂ R × RN that contains balls of arbitrary radii.
Then

λ1(L, Q) ≥ λ1(L, Q).

Remark: By “Q contains balls of arbitrary radii”, we mean that for all R > 0, there exists
(tR, xR) ∈ R× RN such that {(t, x) ∈ R× RN , |t− tR| < R, |x− xR| < R} ⊂ Q. When this
property is not satisfied, for example when Q is bounded, then the inequality of Proposition
4.2 may fail (see Proposition 4.5 below).

This is where we need a stronger hypothesis on the behavior of the test-functions at in-
finity than in [19]. In this previous paper investigating space heterogeneous one-dimensional
Fisher-KPP equations, we defined the generalized principal eigenvalues by requiring the test-
functions to be positive and smooth enough over (R,∞) and sub-exponential at infinity (that
is, limx→+∞

1
x

lnφ(x) = 0). The tricky part in the proof of the comparison between the two
generalized principal eigenvalues was that we did not prescribe any given behavior at the
boundary x = R. However, we managed to overcome this difficulty through one-dimensional
arguments.

In the present paper, the boundary of CR,α(e) is quite larger and we do not know if such a
comparison holds. We thus impose a stronger hypothesis on the test-functions: boundedness
and uniform positivity. By proving some comparison between the eigenvalues over Q and
over R× RN , we will be able to assume that Q = R× RN , which has no boundary.

Proof of Proposition 4.2. Assume that λ1(L, Q) > λ1(L, Q) and take

λ1(L, Q) > λ′ > λ′′ > λ1(L, Q).

There exists φ ∈ C1,2(Q) × W 1,∞(Q) such that infQ φ > 0 and Lφ ≥ λ′φ in Q. Take
(tR, xR)R>0 as in the Remark below Proposition 4.2 and let φR(t, x) = φ(t+ tR, x+xR). The
family (φR)R is equicontinuous and uniformly bounded since φ ∈ W 1,∞(Q). By the Ascoli
theorem, there exist a sequence Rn → +∞ as n → +∞ and φ∞ ∈ W 1,∞(R × RN) such
that φRn → φ∞ as n → +∞ locally uniformly in R × RN . One has infR×RN φ∞ ≥ infQ φ
and supR×RN φ∞ ≤ supQ φ. Similarly, as the coefficients A, q and c are uniformly continuous
and bounded, one can assume, up to extraction, that there exist A∞, q∞ and c∞ such that
A(t+tRn , x+xRn)→ A∞(t, x), q(t+tRn , x+xRn)→ q∞(t, x) and c(t+tRn , x+xRn)→ c∞(t, x)
as n→ +∞ locally uniformly in R× RN . Define

L∗ = −∂t + tr(A∞(t, x)∇2) + q∞(t, x) · ∇+ c∞(t, x).

Then the stability theorem for Hamilton-Jacobi equations (see Remark 6.2 in [33]) gives
L∗φ∞ ≥ λ′φ∞ in R × RN in the sense of viscosity solutions. Even if it means decreasing λ′

slightly, we can assume, using a convolution argument, that φ∞ ∈ C1,2(R×RN) and that the
inequation holds in the classical sense.
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Similarly, as λ′′ > λ1(L, Q), one can construct a function ψ∞ ∈ C1,2(R×RN)∩W 1,∞(R×RN)
such that infR×RN ψ∞ > 0 and, up to one more extraction, L∗ψ∞ ≤ λ′′ψ∞ in R× RN .

The definitions of µ1(L∗,R× RN) and µ1(L∗,R× RN) in Lemma 4.1 above yield

µ1(L∗,R× RN) ≥ λ′ and µ1(L∗,R× RN) ≤ λ′′.

But Lemma 4.1 gives µ1(L∗,R× RN) ≤ µ1(L∗,R× RN), which contradicts λ′′ < λ′. �

4.3 Continuity with respect to the coefficients and properties of
the Hamiltonians

We will require in the sequel the continuity of the generalized principal eigenvalues associated
with Lp with respect to p. This smoothness will indeed be derived from the continuity of the
eigenvalues associated with L with respect to the first order term q and the zero order term
c. The uniform Lipschitz-continuity with respect to c is easy to derive from the maximum
principle. The continuity in q is indeed trickier and is stated in the next Proposition. It is
an open problem to prove the continuity with respect to the diffusion term A.

Proposition 4.3 Consider two operators L and L′ defined for all φ ∈ C1,2 by

Lφ = −∂tφ+ ai,j(t, x)∂ijφ+ qi(t, x)∂iφ+ c(t, x)φ,
L′φ = −∂tφ+ ai,j(t, x)∂ijφ+ ri(t, x)∂iφ+ d(t, x)φ,

where c, d ∈ Cδ/2,δloc (R× RN) ∩ L∞(R× RN) and A, q and r satisfy the hypotheses of Section
2.1. Then, for all open set Q ⊂ R× RN ,

|λ1(L′, Q)− λ1(L, Q)| ≤ C‖q − r‖∞ + ‖c− d‖∞ + 1
4γ
‖q − r‖2

∞
and |λ1(L′, Q)− λ1(L, Q)| ≤ C‖q − r‖∞ + ‖c− d‖∞ + 1

4γ
‖q − r‖2

∞,

where γ is given by (13) and C = 1√
γ

max
{√
‖c‖∞,

√
‖d‖∞

}
.

Proof. We use the same type of arguments as in our previous paper [19]. Let
δ = ‖q − r‖L∞(R×RN ) and ε = ‖c − d‖L∞(R×RN ). For all constant M , one has
λ1(L+ M,Q) = λ1(L, Q) + M . Thus, adding a sufficiently large M , one can assume that c
and d are positive functions and that λ1(L, Q) > 0 and λ1(L′, Q) > 0.

For all κ > 0, there exists a function φ ∈ C1,2(Q) ∩W 1,∞(Q) such that infQ φ > 0 and

Lφ = −∂tφ+ tr(A(t, x)∇2φ) + q(t, x) · ∇φ+ c(t, x)φ ≥ (λ1(L, Q)− κ)φ in Q.

Consider any α > 1 and define ψ = φα. On the set Q, this function satisfies

−L′ψ = ∂tψ − ai,j(t, x)∂ijψ − ri(t, x)∂iψ − d(t, x)ψ

= αφα−1
(
∂tφ− ai,j(t, x)∂ijφ− ri(t, x)∂iφ

)
− d(t, x)φα − α(α− 1)φα−2∇φA(t, x)∇φ

≤ αδφα−1|∇φ|+ (αc(t, x)− d(t, x))φα − (λ1(L, Q)− κ)αφα − α(α− 1)γφα−2|∇φ|2

≤ α
4(α−1)γ

δ2ψ + (α− 1)‖c‖∞ψ + εψ − (λ1(L, Q)− κ)αψ.
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Thus for all α > 1, κ > 0 so that λ1(L, Q)− κ > 0, one has:

λ1(L′, Q) ≥ λ1(L, Q)− κ− α

4(α− 1)γ
δ2 − (α− 1)‖c‖∞ − ε.

Take α = 1 + δ

2
√
‖c‖∞γ

. Letting κ→ 0, this gives

λ1(L′, Q) ≥ λ1(L, Q)− δ

√
‖c‖∞
γ
− ε− δ2

4γ
.

A symmetry argument gives

|λ1(L′, Q)− λ1(L, Q)| ≤ δmax
{√‖c‖∞

γ
,

√
‖d‖∞
γ

}
+ ε+

δ2

4γ
.

A similar argument, with 0 < α < 1, gives the Lipschitz-continuity of λ1. �

Proof of Proposition 2.2. The convexity and the upper and lower bounds on H and H
follow from the same arguments as that of Proposition 2.3 in [19], that we recall here for
sake of completeness.

Indeed, using the same proof as that of Proposition 3.6 in [13], the reader easily gets that
the function p 7→ λ1(Lp, Q) is convex for all open set Q ⊂ R × RN . Thus p 7→ H(e, p) is
convex for all e ∈ SN−1. Proposition 4.3 and (51) give the local Lipschitz-continuity of H
and H with respect to p. Proposition 4.2 gives H(e, p) ≥ H(e, p) for all (e, p) ∈ SN−1 ×RN .

For all p ∈ RN , α ∈ (0, 1), e ∈ SN−1 and R > 0, the infimum of the zero-order term of Lp
over CR,α(e) is bounded from below by inft>R,|x|>R

(
pA(t, x)p+ q(t, x) · p+ f ′s(t, x, 0)

)
. Thus,

taking a constant test-function in the definition of λ1, one gets

λ1(Lp, CR,α(e)) ≥ inf
t>R,|x|>R

(
pA(t, x)p+ q(t, x) · p+ f ′s(t, x, 0)

)
. (53)

Taking the minimum over p ∈ RN of this inequality, one gets

infp∈RN λ1(Lp, CR,α(e)) ≥ inft>R,|x|>R infp∈RN
(
pA(t, x)p+ q(t, x) · p+ f ′s(t, x, 0)

)
≥ inft>R,|x|>R

(
f ′s(t, x, 0)− 1

4
q(t, x)A−1(t, x)q(t, x)

)
.

(54)

Finally, using (15), one gets

inf
p∈RN

H(e, p) ≥ sup
R>0

inf
t>R,|x|>R

(
c(t, x)− 1

4
q(t, x)A−1(t, x)q(t, x)

)
> 0.

Similarly, combining (53) and (13), we obtain

H(e, p) ≥ γ|p|2 − ‖q‖∞|p|+ inf
(t,x)∈R×RN

f ′s(t, x, 0).

Hence, there exists a constant c > 0 such that for all p ∈ RN and e ∈ SN−1,

H(e, p) ≥ c(1 + |p|2).
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The other inequality is obtained in a similar way.
Let now check the upper semicontinuity of H (the proof for H being similar, we will omit

it). Let e ∈ SN−1, p ∈ RN , α > 0 and R > 0. Consider some e′ ∈ SN−1 close to e. The
geometry of CR,α(e) yields that for |e′ − e| < α, CR,α′(e

′) ⊂ CR,α(e), with α′ = α − |e − e|.
Hence, a test-function φ associated with λ1(Lp, CR,α(e)) through (17) is admissible as a
test-function for λ1(Lp, CR,α′(e

′)), and it easily follows from the definition of λ that

λ1(Lp, CR,α(e)) ≤ λ1(Lp, CR,α′(e
′)) ≤ H(e′, p) if |e− e′| < α.

The definition of H yields that for all ε > 0, there exist α0 > 0 and R0 > 0 such
that H(e, p) ≤ λ1(Lp, CR,α(e)) + ε for all α ∈ (0, α0] and R ≥ R0. We conclude that
H(e, p) ≤ H(e′, p) + ε if |e− e′| < α0, which concludes the proof. �

4.4 Comparisons with earlier notions of eigenvalues

We conclude this Section with some comparisons with classical notions of principal eigenval-
ues. These results help to understand the notion of generalized principal eigenvalue and to
compare our results with earlier works.

The case where there exists a classical eigenvalue

First, when the coefficients are periodic, then λ1 = λ1 equals the classical notion of periodic
principal eigenvalue. More generally, when there exists an exact eigenfunction which is
W 1,∞(R×RN) and uniformly positive, then the associated eigenvalue equals the generalized
principal eigenvalues.

Proposition 4.4 Consider an open set Q ⊂ R × RN that contains balls of arbitrary radii.
Assume that there exist λ ∈ R and φ ∈ C1,2(Q) such that infQ φ > 0, φ ∈ W 1,∞(Q) and
Lφ = λφ in Q. Then

λ = λ1(L, Q) = λ1(L, Q).

In particular, if the coefficients are space-time periodic, using the same notations as in Sec-
tion 1.1, one has

kper0 = λ1(L,R× RN) = λ1(L,R× RN).

Remark. The converse assertion is not necessarily true: it may happen that λ1 = λ1 while
there exists no classical eigenvalue. For example, the two generalized principal eigenvalues
are equal if the coefficients are almost periodic in (t, x) (see Theorem 4 below) but it is
well-known that almost periodic operators do not admit classical eigenvalues in general [85].

Proof. Using φ as a test-function in the definitions (17) of λ1(L, Q) and (18) of λ1(L, Q),

one gets λ1(L, Q) ≥ λ and λ1(L, Q) ≤ λ. As λ1(L, Q) ≤ λ1(L, Q) from Proposition 4.2, this
gives the conclusion.

If the coefficients are periodic, then there exists a space-time periodic principal eigenfunc-
tion φ such that Lφ = kper0 (L)φ and φ > 0. As φ is periodic, it is bounded and infR×RN φ > 0.
Thus kper0 (L) = λ1(L,R× RN) = λ1(L,R× RN). �
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The case of bounded domains

When the coefficients do not depend on t and Q = R × ω, with ω bounded and smooth,
then λ1(L,R × ω) is infinite and λ1(L,R × ω) is the classical Dirichlet principal eigenvalue
λD(L, ω), defined by the existence of some φD ∈ C2(ω) ∩ C0(ω) such that

LφD = λD(L, ω)φD in ω,
φD > 0 in ω,
φD = 0 over ∂ω.

(55)

Hence, λ1(L,R× ω) ≤ λ1(L,R× ω) is not true anymore if ω is bounded and smooth.

Proposition 4.5 Assume that A, q and c do not depend on t and that Q = R× ω, with ω
bounded and smooth. Then

λ1(L,R× ω) = λD(L, ω) and λ1(L,R× ω) = +∞.

Proof. For all ε > 0, we define ωε = {x ∈ RN , d(x, ω) < ε} and χε the principal eigen-
function associated with λε = λD(L, ωε). It is well-known (see [21] for example) that
λε ↘ λD(L, ω).

On one hand, as infω χε > 0 for all ε > 0, one can take χε as a test-function in
the definition of λ1(L,R × ω), which gives λ1(L,R × ω) ≤ λε for all ε > 0. Thus,
λ1(L,R× ω) ≤ λD(L, ω).

On the other hand, assume that this inequality is strict and take λ′ such that

λ1(L,R× ω) < λ′ < λD(L, ω).

There exists ψ ∈ C1,2(R × ω) ∩W 1,∞(R × ω) such that infR×ω ψ > 0 and Lψ ≤ λ′ψ. Let

κ = inf(t,x)∈R×ω
ψ(t,x)
φD(x)

<∞ and z = ψ − κφD. Then infR×ω z = 0 and

Lz ≤ (λ′ − λD)ψ + λD(L, ω)z.

Thus, there exists ε > 0 such that −(L − λD(L, ω))z ≥ ε. Lemma 3.4 of [13] then gives
infR×ω z > 0, which is the required contradiction. Hence λ1(L,R× ω) ≥ λD(L, ω).

Lastly, for all κ ∈ R, let ψκ(t, x) := eκx1 . As ω is bounded, infR×ω ψκ > 0. A straight-
forward computation gives infR×ω

Lψκ
ψκ
→ +∞ as κ → +∞. Thus λ1(L,R × ω) = +∞.

�

A relation with the earlier notions of generalized principal eigenvalues

We conclude this discussion with a result providing a link with the earlier notions of general-
ized principal eigenvalues used in [18, 24] µ1 and µ1 in the full space R×RN . This Theorem
will not be used in the sequel but is of independent interest. We do not know if it holds for
more general domains than R× RN , such as the truncated cones CR,α(e) for example.

We start with the definition of limit operators.
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Definition 4.6 We say that L∗ := −∂t+a∗i,j∂ij +q∗i ∂i+ c∗ is a limit operator of L if there

exists a sequence
(
(tn, xn)

)
n

in R × RN such that
(
ai,j(· + tn, · + xn)

)
n
,
(
qi(· + tn, · + xn)

)
n

and
(
c(·+ tn, ·+ xn)

)
n

converge respectively to a∗i,j, q
∗
i and c∗ in C0

loc as n→ +∞.
We denote by Hull(L) the set of all the limit operators of L.

Theorem 8 One has

λ1(L,R×RN) = max
L∗∈Hull(L)

µ1(L∗,R×RN) and λ1(L,R×RN) = min
L∗∈Hull(L)

µ1(L∗,R×RN).

Moreover, if L∗ is the limit operator maximizing µ1(L∗,R × RN) over Hull(L) (or the one
minimizing µ1(L∗,R× RN), then

µ1(L∗,R× RN) = µ1(L∗,R× RN).

Before going into the proof of this result, note that it makes it easy to construct various
examples for which λ1(L,R × RN) > µ1(L,R × RN) or λ1(L,R × RN) < µ1(L,R × RN),
without contradicting the conjecture µ1(L) = µ1(L) stated in [18, 24] for elliptic operators.
This conjecture thus remains open.

Proof of Theorem 8. As all eigenvalues are defined on R × RN , we will just use the
notations λ1(L), µ1(L∗), λ1(L) and µ1(L∗) along the proof with no ambiguity.

1. First, for all ε > 0, there exists a solution φε ∈ C1,2(R× RN) of

− Lφε = (−ε lnφε)φε, in R× RN , (56)

with φε ∈ L∞(R×RN) and infR×RN φε > 0. This construction is known and we just remind
to the reader the main arguments. Take m > 0 such that exp

(
− ‖c‖∞/ε

)
≥ m. Then

−Lm = −c(x)m ≤ ‖c‖∞m ≤ (−ε lnm)m in R× RN .

Similarly, M ≥ exp
(
‖c‖∞/ε

)
is a supersolution of this equation. Hence, there exists a

solution φε of (56), with m ≤ φε ≤M .

2. Consider next an arbitrary sequence (εn)n such that limn→+∞ εn = 0 and the limit

` = lim
n→+∞

(
εn sup

R×RN
lnφεn

)
exists. Consider a sequence (tn, xn)n such that (1− 1/n) supR×RN φεn ≤ φεn(tn, xn) for all n.
Call

ϕn(x) :=
φεn(t+ tn, x+ xn)

φεn(tn, xn)
.

This function satisfies

∂tϕn − ai,j(t+ tn, x+ xn)∂ijϕn − qi(t+ tn, x+ xn)∂iϕn − c(t+ tn, x+ xn)ϕn

=
(
− εn ln

(
φεn(tn, xn)ϕn

))
ϕn in R× RN .
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Moreover, the construction of φε ensures that ‖ε lnφε‖∞ ≤ ‖c‖∞ for all ε > 0. Hence,
the Harnack inequality applies: for all R > 0 and T > τ > 0, ϕn is bounded by a positive
constant on the set [−T,−τ ]×BR, uniformly with respect to n. Similarly, parabolic regularity
estimates apply with constants independent of n and thus the sequence (ϕn)n is uniformly
bounded in W 1,p/2;2,p([−T, T ] × BR) for all p ∈ (1,∞). The Ascoli theorem yields that the

sequence (ϕn)n converges (up to extraction) to a function ϕ∞ in W
1,p/2;2,p
loc

(
R×RN

)
. Hence,

εn ln
(
φεn(tn, xn)ϕn(t, x)

)
= εn lnφεn(tn, xn)+εn lnϕn(t, x)→ ` as n→ +∞, locally in (t, x).

Moreover, as ai,j, bi and c are uniformly continuous in R×RN , one can assume that the
sequences

(
ai,j(· + tn, · + xn)

)
n
,
(
qi(· + tn, · + xn)

)
n

and
(
c(· + tn, · + xn)

)
n

converge in C0
loc

as n→ +∞. Let a∗i,j, q
∗
i and c∗ be their respective limits and L∗ := −∂t + a∗i,j∂ij + q∗i ∂i + c∗.

One has
L∗ϕ∞ = `ϕ∞ in R× RN .

On the other hand, one has ϕn(0, 0) = 1, ϕn ≥ 0 and

ϕn(t, x) ≤
supR×RN φεn
φεn(tn, xn)

≤
supR×RN φεn

(1− 1/n) supR×RN φεn
=

1

1− 1/n
→ 1 as n→ +∞.

Hence, the strong maximum principle gives

ϕ∞ > 0 and ϕ∞ ≤ 1.

It follows from the definition of µ1(L∗) that

` ≤ µ1(L∗). (57)

3. Next, one has

Lφεn = (εn lnφεn)φεn ≤ (εn sup
R×RN

lnφεn)φεn .

As φε is bounded and uniformly positive, one can use φεn as a test-function in the definition
of λ1(L), implying εn supR×RN lnφεn ≥ λ1(L). Letting n→ +∞, we get

` ≥ λ1(L). (58)

4. Next, we will prove later in Proposition 4.2 that for all limit operator L∗ of L, one has

λ1(L∗,R× RN) ≥ λ1(L,R× RN) and λ1(L∗,R× RN) ≤ λ1(L,R× RN). (59)

Gathering inequalities (57), (58), (59) and Lemma 4.1, one gets

λ1(L) ≥ λ1(L∗) ≥ µ1(L∗) ≥ µ1(L∗) ≥ ` ≥ λ1(L).

Hence, all these inequalities are equalities. In particular, µ1(L∗) = µ1(L∗). Furthermore,

if L∗∗ is an arbitrary limit operator of L, then (59) and the obvious inequality µ1 ≤ λ1 give

λ1(L) ≥ λ1(L∗∗) ≥ µ1(L∗∗)

from which the conclusion follows.

The proof for λ1(L) follows the same steps.
�
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5 Proof of the spreading property

5.1 The connection between asymptotic spreading and homoge-
nization

It has long been known that there is a strong link between homogenization problems and
spreading properties, that is, the investigation of sets S and S satisfying (2). However, to
our knowledge, this link has never been fully established in a general framework. Xin in [103]
provides mostly heuristic computations describing this link in the periodic setting. Actually,
one of our aims in the present manuscript is to establish this link rigorously and in a general
framework. Indeed, along the way in our proofs, we realized that heuristic arguments and
homogenization methods need to be supplemented in order to derive the actual spreading
properties for reaction-diffusion equations.

Before starting the proof of our main result, let us first describe this more precisely.
Consider a solution u of the nonlinear reaction-diffusion equation (1). In order to locate its
level sets, following the homogenization approach, one lets Zε(t, x) := ε lnu(t/ε, x/ε). The
aim is then to compute its limit when it exists. This function satisfies

∂tZε − ε
∑N

i,j=1 ai,j(t/ε, x/ε)∂ijZε −H(t/ε, x/ε,∇Zε)
= 1

vε
f(t/ε, x/ε, vε)− f ′u(t/ε, x/ε, 0) in (0,∞)× RN ,

Zε(0, x) =

{
ε lnu0(x/ε) if u0(x/ε) 6= 0,
−∞ otherwise,

with
H(s, y, p) := pA(s, y)p+ q(s, y) · p+ f ′u(s, y, 0).

If one replaces the initial datum by a function which does not depend on ε and if the
right-hand side cancels, that is, if f = f(t, x, u) is linear with respect to u, then this equation
reduces to the following typical equation considered in the homogenization literature:{

∂tZε − κεai,j(t/ε, x/ε)∂i,jZε −H(t/ε, x/ε,∇Zε) = 0 in (0,∞)× RN ,
Zε(0, x) = Z0(x) otherwise,

(60)

with κ = 1 here. Such problems are usually investigated in the framework where
Z0 ∈ Cb(RN), κ ≥ 0 and H is continuous in (t, x, p), convex in p and H(t, x, p)/|p| → +∞ as
|p| → +∞ uniformly in (t, x) ∈ R× RN (see for instance [66]).

Consider first the case when H is periodic in x and does not depend on t. The heuristics
that give the characterization of the effective Hamiltonian Hhom are the following (we refer
to [66] for a complete review on this topic). First, one looks for an approximation of the
form

Zε(t, x) ' Z(t, x) + εY (t, x, x/ε),

where Y is periodic in x/ε. Then, in order to separate the two scales x and x/ε, a straight-
forward computation shows that Y has to satisfy an equation of the form

−κ∆yY +H(y,∇xZ +∇yY ) = Hhom(∇xZ)
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for some function Hhom. In other words, choosing (t, x) and letting p = ∇xZ(t, x) and
vp(y) = Y (t, x, y), one needs to find for all p ∈ RN a solution

(
vp, H

hom(p)
)
, with vp periodic,

of
− κ∆yvp +H(y, p+∇yvp) = Hhom(p) in RN . (61)

This equation is called the cell problem associated with (60) and vp is called an exact corrector
associated with this cell problem. If H(y, p) = |p|2+c(y) and κ = 1, which is the Hamiltonian
that comes from a linear elliptic equation equation, using the WKB change of variable
φp = e−vp , we see that the existence of an exact corrector is equivalent to the existence of a
periodic solution (φp, H

hom(p)) of

∆yφp + 2p · ∇φp + (|p|2 + c(y))φp = Hhom(p)φp in RN . (62)

In other words, as φp > 0, in this case Hhom(p) is the periodic principal eigenvalue associated
with the operator Lp = ∆ + 2p · ∇ + (|p|2 + c(y)). Indeed, it is always possible to find a
solution (vp, H

hom(p)) of the more general cell problem (61) when the Hamiltonian H(y, p)
is periodic in y. Then, a classical machinery yields that limε→0 Zε(t, x) = Z(t, x) locally in
(t, x), where Z is the unique solution of the homogenized equation{

∂tZ −Hhom(∇Z) = 0 in (0,∞)× RN ,
Z(0, x) = Z0(x) otherwise.

(63)

When H is almost periodic, it is not always true that there exists a principal eigenvalue,
and thus an exact corrector, associated with Lp. This problem was solved by Ishii [55] when
κ = 0 and by Lions and Souganidis [65] for fully nonlinear almost periodic equations. They
introduced the notion of approximate correctors. Namely, they proved the existence of a
constant Hhom(p) such that for all δ > 0, there exist two bounded functions vδp and vp,δ that
satisfy in RN :

−κ∆yvp,δ+H(y, p+∇yvp,δ) ≤ Hhom(p)+δ and −κ∆yv
δ
p+H(y, p+∇yv

δ
p) ≥ Hhom(p)−δ.

(64)
The existence of approximate correctors is sufficient in order to homogenize equation (60),
as proved in [55, 65]. Now, if H(y, p) = |p|2 + c(y) and κ = 1, letting φp,δ = exp(−vp,δ) and
φδp = exp(−vδp), the existence of approximate correctors is equivalent to the existence of φp,δ
and φδp such that

Lpφp,δ ≥ (Hhom(p)− δ)φp,δ and Lpφ
δ
p ≤ (Hhom(p) + δ)φδp in RN ,

where φp,δ and φδp are bounded and have a positive infimum. In other words, in terms of the
generalized principal eigenvalues we have defined here, there exist approximate correctors if
and only if

λ1(Lp,R× RN) = λ1(Lp,R× RN).

Ishii [55] and Lions and Souganidis [65] obtained such approximate correctors in the
space almost periodic framework using Evan’s perturbed test function method, that was
first introduced in a periodic framework [37]. We also made use of this method to prove the
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equality of the two generalized principal eigenvalues in space-time almost periodic media in
[19].

When H is random stationary ergodic with respect to x, it has been proved independently
by Lions and Souganidis [66] and by Kosygina, Rezakhanlou and Varadhan [58] that it is
possible to homogenize (60), that is, Zε(t, x) → Z(t, x) as ε → 0 locally uniformly in (t, x)
almost surely and the limit Z satisfies a deterministic equation of the form (63). This
result has been extended to space-time random stationary ergodic equations by Kosygina
and Varadhan [59] (see also [87] when κ = 0).

It is not always true that there exist approximate correctors in random stationary er-
godic media. Lions and Souganidis [66] proved that there exists a global subsolution v of
−κ∆v + H(x, p + ∇v) ≤ Hhom(p) in RN almost surely, where ∇v is a random stationary
ergodic function with mean 0. It is well-known that such a function needs not necessarily
be bounded nor stationary anymore but that it is sub-linear at infinity: v(x)/|x| → 0 as
|x| → +∞ almost surely. Hence, one needs to extend the notion of approximate correctors
to sublinear functions at infinity. Moreover, even with this extended notion, it is not always
true that there exists an upper approximate corrector. Indeed, Lions and Souganidis pro-
vided a counter-example in [64]. This is why they proposed a new notion of correctors (see
Proposition 7.3 in [66]), which is tailored for homogenization problems of random stationary
ergodic equations.

However, in dimension 1, for second order linear elliptic equations, we have proved in our
earlier paper [19] that there exists an approximate corrector almost surely (see also [35] for
a similar result concerning 1D first order nonlinear Hamilton-Jacobi equations). We thus
derived the equality of the two generalized principal eigenvalues, from which the existence of
an exact spreading speed followed for Fisher-KPP equations with random stationary ergodic
diffusion and reaction terms. This result was obtained using different definitions for the
generalized principal eigenvalues than in the present paper. Namely, in [19] we only asked
the test-functions defining the generalized principal eigenvalues in Definition 2.1 to satisfy a
sub-exponential growth at infinity lim|x|→+∞

1
|x| lnφ(x) = 0, which is of course less restrictive

than asking φ ∈ L∞ and inf φ > 0. Unfortunately, in the present paper we were not able
to construct exact eigenfunctions with sub-exponential growth at infinity in dimension N ,
since the method we used in [19] relied on one-dimensional arguments.

The introduction of a “metric problem” formulation by Armstrong and co-authors [2, 3]
allowed for a new approach in homogenization theory. This “metric problem” provides an
exact corrector in RN\B1. Our point of view bear some similarities with this approach in
that our approximate correctors are only required to satisfy the equation in truncated cones
CR,α(e). The methods developed in [2, 3] might provide a path towards the construction of
exact correctors. We leave these possible extensions as open problems.

As far as we know, homogenization results for (60) have never been investigated when
the dependence of H with respect to x is general. Indeed, it is not possible to prove that
the family (Zε)ε>0 converges in general (see Proposition 13.1 above for example). The recent
papers [58, 59, 66, 87] addressing this question focused on random stationary ergodic Hamil-
tonians H, but not all deterministic equations could be transformed into a relevant random
stationary ergodic one, as already described in Section 1.1.

Thus, it is only possible to obtain bounds on the spreading speeds w∗(e) and w∗(e) for
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a general heterogeneous equation. Of course, we aim at constructing bounds as precisely
as possible. In particular we identify some classes of equations where our bounds give
w∗(e) = w∗(e). Indeed, we show that this identity holds when the coefficients are periodic,
almost periodic, asymptotically almost periodic and radially periodic. In these cases, the
notions of generalized principal eigenvalues and approximate correctors are exactly the same
since then we show that λ1(L,R×RN) = λ1(L,R×RN). But for other types of media, the
two notions may differ.

Second, trying to find optimal bounds on the spreading speeds, we prove in the present
paper that only what happens in the truncated cones CR,α(e) enters into account in the
computations of the propagation sets S and S which give our bounds on the spreading speeds.
These types of properties cannot be obtained using former homogenization techniques since
the approximate correctors are global over R×RN and do not take into account the direction
of propagation. This enables us to handle the case of directionally homogeneous coefficients.
Indeed, this very simple example lead us to a striking phenomenon: the expansion set we
construct is not obtained through a Wulff-type construction like (8). Indeed, it is even
possible to construct non-convex expansion sets as we have observed above (see the discussion
following Proposition 3.13).

5.2 The WKB change of variables

We will now reformulate our problem by using the link between asymptotic spreading and
homogenization described above. Define vε(t, x) := u(t/ε, x/ε). In order to investigate the
behavior of this function as ε→ 0, let introduce the WKB change of variables

Zε = ε ln vε. (65)

The first step of our proof relies on the classical half-limits method, developed in [6, 7, 54, 68].
Define

Z∗(t, x) := lim inf
(s,y)→(t,x),ε→0

Zε(y, s) and Z∗(t, x) := lim sup
(s,y)→(t,x),ε→0

Zε(y, s) (66)

and let show that these functions are respectively super and subsolutions of some Hamilton-
Jacobi equations.

Of course the general heterogeneity of the coefficients generates many new difficulties.
As Zε satisfies an equation with oscillating coefficients depending on (t/ε, x/ε), we need to
identify approximate correctors, which will indeed be constructed through general principal
eigenvalues. We refer to our previous one-dimensional work [19] (Section B) for a review on
these difficulties and on the ways to overcome them. Here, in addition to these difficulties,
we have to deal with dimension N in the present paper, unlike in [19]. The main change it
induces is that we cannot always explicitly solve the upcoming Hamilton-Jacobi equations
satisfied by Z∗ and Z∗. This is why integral minimization problems will come up in the
definitions of the expansion sets. This is not only a technical difficulty: this reflects, some-
how, new multi-dimensional strategies of propagation for the population u, as observed in
Propositions 3.11, 3.12 and 3.13.
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Lemma 5.1 The family (Zε)ε>0 satisfies the following properties:

1. For all compact set Q ⊂ (0,∞)×RN , there exist a constant C = C(Q) and ε0 = ε0(Q)
such that |Zε(t, x)| ≤ C for all 0 < ε < ε0 and (t, x) ∈ Q.

2. For all t > 0, one has Z∗(t, 0) = Z∗(t, 0) = 0.

3. Z∗ is lower semicontinous and Z∗ is upper semicontinuous.

Note that assertion 1. yields that Z∗ and Z∗ are well-defined on (0,∞)× RN .

Proof. This Lemma is proved exactly as Lemma 4.1 of [19].
1. Take s ≥ 0 such that for all (t, x) ∈ Q, one has s ≤ t. We can assume that (s, 0) ∈ Q.

As Zε(t, x) = ε lnu(t/ε, x/ε), the Krylov-Safonov-Harnack inequality gives the existence of
a constant C > 0 such that for all (t, x, s, y) ∈ Q×Q with s < t and ε > 0, one has

|Zε(t, x)− Zε(s, y)| ≤ C
( |x− y|2

t− s
+ t− s+ ε

)
. (67)

Then for all (t, x) ∈ Q, (67) gives

|Zε(t, x)| ≤ |Zε(s, 0)|+ C
( |x|2
t− s

+ t− s+ ε
)
. (68)

As Z∗(t, 0) = Z∗(t, 0) = 0 by step 2. below, and Q is compact, the right hand-side of this
inequality is bounded when ε is small enough.

2. We know from [13] that, by (14), there exists w > 0 such that

lim
t→+∞

inf
|x|≤wt

u(t, x) = 1.

Take t0 such that inf |x|≤wt u(t, x) ≥ 1/2 for all t ≥ t0. Consider now t > 0 and a sequence
(sn, yn) ∈ R+ × RN such that sn → t and yn → 0 as n → +∞. Thus |yn|/sn ≤ w and
sn/ε ≥ t0 when n is large and ε is small. This yields

0 ≥ Zε(sn, yn) = ε lnu(
sn
ε
,
yn
ε

) ≥ ε ln inf
|x|≤wsn/ε

u(
sn
ε
, x) ≥ −ε ln 2→ 0 as ε→ 0.

Thus Z∗(t, 0) = Z∗(t, 0) = 0.

3. This immediately follows from the definition of Z∗ and Z∗. �

Similarly, the extension to dimension N of the following lemma, which gives the link
between the sign of Z∗, Z

∗ and the convergence of vε as ε→ 0, is straightforward.

Lemma 5.2 The following convergence holds as ε→ 0:

vε(t, x)→
{

1
0

locally uniformly in

{
int{Z∗ = 0},
{Z∗ < 0}. (69)
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Proof. We use the same arguments as in the proof of Lemma 4.2 in [19].
1. First, as vε(t, x) = eZε(t,x)/ε, one has vε(t, x) → 0 as ε → 0 locally uniformly with

respect to (t, x) such that Z∗(t, x) < 0.

2. Take (t0, x0) ∈ int{Z∗ = 0}. As u(t, x) → 1 as t → +∞ locally in x, one has
vε(t, 0) → 1 as ε → 0 for all t > 0. We thus exclude the case x0 = 0. One has Zε(t, x) → 0
as ε→ 0 uniformly in the neighborhood of (t0, x0). Define

φ(t, x) = −|x− x0|2 − |t− t0|2.

As Z∗ = 0 in the neighborhood of (t0, x0) and φ is nonpositive, the function Zε − φ reaches
a minimum at a point (tε, xε), with (tε, xε) → (t0, x0) as ε → 0. Thus, the equation on Zε
gives

∂tφ− εtr(A∇2φ)−∇φA∇φ− q · ∇φ− (vε)
−1f(tε/ε, xε/ε, vε) ≥ 0,

where the derivatives of φ and vε are evaluated at (tε, xε) and A and q are evaluated at
(tε/ε, xε/ε). An explicit computation of the left hand-side gives

(vε)
−1f(tε/ε, xε/ε, vε(tε, xε)) ≤ o(1) at (tε, xε) as ε→ 0.

As f is of class C1+γ with respect to s uniformly in (t, x), there exists C > 0 such that for
all (t, x, u) ∈ R× RN × [0, 1],

f(t, x, u) ≥ f ′s(t, x, 0)u− Cu1+γ.

This gives
f ′s(tε/ε, xε/ε, 0) ≤ Cvε(tε, xε)

γ + o(1) as ε→ 0.

Lastly, hypothesis (15) together with t0 6= 0 and x0 6= 0 give

lim inf
ε→0

f ′s(tε/ε, xε/ε, 0) > 0.

Thus lim infε→0 vε(tε, xε) > 0. Since all the above are clearly uniform for any compact subset
of int{Z∗ = 0}, we have actually established

inf
(t,x)∈K

lim inf
ε→0

vε(t, x) ≥ α > 0,

uniformly on any compact subset K ⊂ int{Z∗ = 0}, for some α = α(K).

3. Recall now that vε(t, x) = u( t
ε
, x
ε
), where u solves{

∂tu− tr(A(t, x)∇2u)− q(t, x) · ∇u = f(t, x, u) in (0,∞)× RN ,
u(0, x) = u0(x) in RN .

(70)

Take some sequences (εn)n and (sn, yn) ∈ K such that εn → 0 and

|u(
sn
εn
,
yn
εn

)− 1| → lim sup
ε→0

sup
(t,x)∈K

|u(
t

ε
,
x

ε
)− 1|.
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Set tn = sn
εn

, xn = yn
εn

and un(t, x) = u(t+ tn, x+ xn). This function satisfies:

∂tun − tr(A(t+ tn, x+ xn)∇2un)− q(t+ tn, x+ xn) · ∇un
= f(t+ tn, x+ xn, un) in (−tn,+∞)× RN .

(71)

As K is a compact set, one may assume that yn → y∞ and sn → s∞, with (s∞, y∞) ∈ K.
As (0, x) /∈ {Z∗ = 0} for all x 6= 0, we know that (0, x) /∈ int{Z∗ = 0} for all x and thus
s∞ 6= 0. Finally, tn → +∞.

Up to some extraction, one may assume, as the coefficients are uniformly continuous over
R× RN , that there exists some function (B, r, g) such that A(t+ tn, x+ xn)→ B(t, x) and
q(t+tn, x+xn)→ r(t, x) locally uniformly in (t, x) ∈ R×RN and f(t+tn, x+xn, s)→ g(t, x, s)
locally uniformly in (t, x) ∈ R× RN and uniformly in s ∈ [0, 1].

Next, the parabolic regularity estimates yield that the sequence (un)n converges, up to
some extraction, to some function u∞ in C(R × RN) locally uniformly in R × RN . This
function is a viscosity solution of

∂tu∞ − tr(B(t, x)∇2u∞)− r(t, x) · ∇u∞ = g(t, x, u∞) in R× RN . (72)

Consider a compact subset K ⊂ int{Z∗ = 0}. Consider some δ > 0 such that
Kδ := K + Bδ(0) ⊂ int{Z∗ = 0}, where Bδ(0) is the closed ball of radius δ and center
0 in R× RN . Consider some α > 0 such that

inf
(t,x)∈Kδ

lim inf
ε→0

vε(t, x) ≥ α.

Take any (t, x) ∈ (0,∞) × RN and n large enough so that (εnt, εnx) ∈ Bδ(0). Then
(εnt+ sn, εnx+ yn) ∈ Kδ and thus

un(t, x) = u(t+ tn, x+ xn) = vεn(εnt+ sn, εnx+ yn) ≥ α,

when n is large. Thus u∞(t, x) ≥ α for all (t, x) ∈ R × RN . Moreover, one has u∞ ≤ 1.
Assume that m = infR×RN u∞ < 1. If this infimum is reached, consider (t0, x0) such that
u∞(t0, x0) = m. Then as u∞ is a viscosity solution of (72), one has g(t0, x0,m) ≤ 0. But
(11) gives inf(t,x)∈R×RN f(t, x,m) > 0 since m ∈ (0, 1). Hence, g(t0, x0,m) > 0, which is a
contradiction.

Otherwise, consider a sequence (tk, xk)k such that u∞(tk, xk) → m. As A, q and f are
uniformly continuous in (t, x), B, r and g are also uniformly continuous and thus one can
assume that (B(· + tk, · + xk))k, (r(· + tk, · + xk))k and (g(· + tk, · + xk, s))k converge as
k → +∞ locally uniformly in (t, x, s) ∈ R×RN × [0, 1]. Thus (u∞(·+ tk, ·+ xk)k converges
to some solution of a parabolic equation that reaches its minimum m in (0, 0). The same
arguments as above lead to the contradiction.

This proves that

lim sup
ε→0

sup
(t,x)∈K

|vε(t, x)− 1| = lim
n→+∞

|u(tn, xn)− 1| = 0.

�
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5.3 The equations on Z∗ and Z∗

We will now pass to the limit ε→ 0 in the equation satisfied by Zε:
∂tZε − εtr(A(t/ε, x/ε)∇2Zε)−∇ZεA(t/ε, x/ε)∇Zε − q(t/ε, x/ε) · ∇Zε
= 1

vε
f(t/ε, x/ε, vε) in (0,∞)× RN ,

Zε(0, x) = ε lnu0(x/ε) if x ∈ ε int(Suppu0),
limt→0+ Zε(t, x) = −∞ if x /∈ ε int(Suppu0).

(73)

Proposition 5.3 The functions Z∗ and Z∗ are discontinuous viscosity solutions of
max{∂tZ∗ −H( x

|x| ,∇Z∗), Z∗} ≥ 0 in (0,∞)× RN\{0},
max{∂tZ∗ −H( x

|x| ,∇Z
∗), Z∗} ≤ 0 in (0,∞)× RN\{0},

Z∗(t, 0) = Z∗(t, 0) = 0 for all t > 0,
limt→0+ Z∗(t, x) = limt→0+ Z

∗(t, x) = 0 if x = 0, −∞ if x 6= 0, unif. with respect to |x|.
(74)

The initial condition at t = 0 means that for all r > 0, one has

lim
t→0+

sup
|x|=r

Z∗(t, x) = lim
t→0+

sup
|x|=r

Z∗(t, x) = −∞.

The proof will follow the same lines as that of Proposition 4.3 in [19] (which was itself
inspired by [38, 68]). We underline that in [19], we were only dealing with Z∗, since w was
constructed through direct arguments (see Section IV.A in [19]). Here we expect a more
involved characterization of S (27) and thus a direct proof as in [19] is unlikely. We thus
have to work on Z∗. Indeed, the derivation of the equations on Z∗ and Z∗ are not similar,
due in particular to the singular initial datum, and we thus need to provide some extra-
arguments with respect to [19]. Moreover, we need to check that only what happens in the
truncated cones CR,α(e) needs to be taken into account, which is a new difficulty compared
with our previous one-dimensional paper [19].

Proof.
1. We already know that Z∗(t, x) ≤ 0 for all (t, x). Take T > 0 and a smooth test function

χ and assume that Z∗−χ admits a strict maximum at some point (t0, x0) ∈ (0, T ]×(RN\{0})
over the ball Br := {(t, x) ∈ (0, T ] × (RN\{0}), |t − t0| + |x − x0| ≤ r}. Define e = x0/|x0|
and p = ∇χ(t0, x0).

Take R > 0 and α ∈ (0, 1). Consider a function ψ ∈ C1,2
(
CR,α(e)

)
∩W 1,∞(CR,α(e)

)
such

that infCR,α(e) ψ > 0 and
(
Lp−λ1

(
Lp, CR,α(e)

))
ψ ≤ µψ. Let w = lnψ, this function satisfies

over CR,α(e):

∂tw−ai,j
(
∂ijw+(∂iw+pi)(∂jw+pj)

)
−qi(∂iw+pi) ≥ f ′u(t, x, 0)−λ1(Lp, CR,α(e))−µ. (75)

Moreover, one has

εw(t/ε, x/ε)→ 0 as ε→ 0 locally in (t, x) ∈ CR,α(e) sincew is bounded. (76)
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Take a sequence (εn)n such that limn→+∞ εn = 0. Using the same arguments as in [19],
one can prove that the definition of Z∗ yields the existence of two sequences (tn)n and (xn)n
such that

Zεn(tn, xn)→ Z∗(t0, x0),
(tn, xn)→ (t0, x0) as n→ +∞,
Zεn − χ− εnw(·/εn, ·/εn) reaches a local maximum at (tn, xn).

(77)

As t0 6= 0 and x0 6= 0, one has tn/εn → +∞ and |xn|/εn → +∞. Moreover, xn
|xn| − e→ 0 as

n→ +∞.

2. Take n large enough so that (tn/εn, xn/εn) ∈ CR,α(e). As Zεn −
(
χ + εnw( ·

εn
, ·
εn

)
)

reaches a local maximum in (tn, xn), we get:

∂tχ+ ∂tw − ∂tZεn − εntr(A(∇2χ+ ε−1
n ∇2w −∇2Zεn))

−(∇χ+∇w −∇Zεn)A(∇χ+∇w +∇Zεn)− q · (∇χ+∇w −∇Zεn) ≤ 0,
(78)

where the derivatives of χ and Zεn are evaluated at (tn, xn), A, q and the derivatives of w are
evaluated at (tn/εn, xn/εn). Using our KPP hypothesis (12) and the equation (73) satisfied
by Zε, we get

∂tχ+ ∂tw − tr(A(εn∇2χ+∇2w))− (∇χ+∇w)A(∇χ+∇w)− q · (∇χ+∇w)
≤ f ′u(tn/εn, xn/εn, 0),

where the derivatives of χ are evaluated at (tn, xn) and A, q and the derivatives of w are
evaluated at (tn/εn, xn/εn). Using (75) and the ellipticity property (13), this gives

∂tχ− λ1(Lp, CR,α(e))
≤ µ+ εntr(A∇2χ) + q · (∇χ− p) + Γ|∇χ− p|2 + 2Γ|∇χ− p||∇w + p|,

where we remind to the reader that p = ∇χ(t0, x0). Letting n→ +∞ and µ→ 0, this leads
to ∂tχ(t0, x0)− λ1(Lp, CR,α(e)) ≤ 0.

Finally, letting R→ +∞ and α→ 0, the stability theorem for Hamilton-Jacobi equations
(see for example Remark 6.2 in [33]) yields that:

max{∂tZ∗ −H(e,∇Z∗), Z∗} ≤ 0 in (0,∞)× (RN\{0}) (79)

in the sense of viscosity solutions.

3. We next verify that the initial condition is satisfied. We first claim that if ρ ∈ C∞(RN)
is such that ρ(x) = 0 if x = 0 and ρ(x) > 0 if x 6= 0, then

min
{
∂tZ

∗ −H
( x
|x|
,∇Z∗

)
, Z∗ + ρ

}
≤ 0 in {0} × (RN\{0}). (80)

In order to prove this variational inequality, consider some smooth test function χ
such that Z∗ − χ admits a strict local maximum at some point (0, x0). If x0 = 0, then
limt→0+ Z

∗(t, x0) + ρ(x0) = 0 is clearly true by Lemma 5.1.
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Assume that x0 6= 0 and that limt→0+ Z
∗(t, x0) > −ρ(x0). We need to prove that

∂tχ(0, x0)−H
( x0

|x0|
,∇χ(0, x0)

)
≤ 0.

This can be done as previously by noting that since Zεn(0, x) = −∞ for all x near x0 when
εn is small enough, the points (tn, xn) above lie in (0,∞)×RN . Then the maximum principle
argument leading to (78) is valid and (80) follows.

4. Clearly Zε(0, 0) = ε lnu0(0) converges to 0 as ε goes to 0 and thus limt→0+ Z
∗(t, 0) = 0.

Assume now that there exists r > 0 such that lim supt→0+ sup|x|=r Z
∗(t, x) > −∞. Take δ > 0

and define
χδ(t, x) = δ−1(|x| − r)2 + λt,

where λ will be fixed later. As Z∗ is upper semicontinuous and bounded from above, we
know that Z∗ − χδ admits a maximum at a point (tδ, xδ) ∈ [0,∞) × RN and that xδ 6= 0
when δ is sufficiently small.

Assume that tδ > 0. Then we know from (79) that

∂tχ
δ(tδ, xδ)−H

( xδ
|xδ|

,∇χδ(tδ, xδ)
)

= λ−H
( xδ
|xδ|

, 2δ−1(|xδ| − r)
xδ
|xδ|

)
≤ 0.

On the other hand, one has for all x so that |x| = r,

lim sup
t→0+

Z∗(t, x) = lim sup
t→0+

(
Z∗(t, x)− χδ(t, x)

)
≤ (Z∗ − χδ)(tδ, xδ) ≤ −δ−1(|xδ| − r)2. (81)

Thus we get from Proposition 2.2 that

λ ≤ H
( xδ
|xδ|

, 2δ−1(|xδ|−r)
xδ
|xδ|

)
≤ C(1+4δ−2(|xδ|−r)2) ≤ C(1−4δ−1 lim sup

t→0+
Z∗(t, x)). (82)

This contradicts lim supt→0+ sup|x|=r Z
∗(t, x) > −∞ by taking λ > 0 large enough. Thus

tδ = 0.
Consider a smooth radial function ρ = ρ(|x|) so that ρ(0) = 0 and ρ(r) > 0 if r > 0. If

limt→0+ sup|x|=r Z
∗(t, x) > −ρ(r), then we know from (81) that one can find δ small enough

so that Z∗(0, xδ) > −ρ(xδ). But then (80) would lead to (82) and give a contradiction.
Thus limt→0+ sup|x|=r Z

∗(t, x) ≤ −ρ(r). But as ρ is arbitrary in r > 0, this gives a
contradiction.

5. The equation on Z∗ could be derived from the same arguments as in the proof of
Proposition 4.3 in [19], the arguments above ensuring that only what happens in CR,α(e) is
involved and thus that the corrector H(e, p) naturally emerges in the inequation on Z∗. �

5.4 Estimates on Z∗ and Z∗ through some integral minimization
problem

We first obtain comparisons with the solutions of Hamilton-Jacobi equations with continuous
Hamiltonians H.
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Proposition 5.4 Assume that H = H(x, p) is a Lipschitz-continuous function over
RN×RN , convex in p, such that H

(
x
|x| , p

)
≤ H(x, p) ≤ C(1+|p|2) for all (x, p) ∈ (RN\{0})×RN

and for some given C > 0. Then

− Z∗(t, x) ≥ inf max
a∈[0,t]

{∫ a

0

H?
(
γ(s), γ′(s)

)
ds, γ(0) = x, γ(t) = 0

}
. (83)

The two difficulties here are the unboundedness of the domain RN and the singular initial
datum. For all t > 0, the functions Z(t, ·) and Z(t, ·) stay unbounded and thus one cannot
directly apply classical doubling of variables method. We will thus compare the solutions with
solutions of problems in bounded domains with smooth initial data, for which comparison
results have been proved by Evans and Souganidis in [38].

Proof. We use the same approach as in Lemma 3.1 of [38] to prove this result. Hence we
will just sketch the proof and focus on the differences with [38].

Consider a smooth function η such that η(0) = 0 and 0 > η(x) ≥ −1 for all x 6= 0. Let
Zk the solution of {

max{∂tZk −H(x,∇Zk), Zk} = 0 in (0,∞)× RN ,
Zk(0, x) = kη(x) for all x ∈ RN ,

(84)

which is a bounded and uniformly continuous function. Clearly, Z∗ is a subsolution of
equation (84).

Let uεk the solution of the Cauchy problem (1) with initial datum uεk(0, x) = u0(x)+ekη(εx)/ε.
The parabolic maximum principle yields u(t, x) ≤ uεk(t, x) for all (t, x) ∈ (0,∞) × RN and
thus Zε(t, x) ≤ ε lnuεk(t/ε, x/ε). We could thus pass to the upper half-limit in this inequality:
Z∗(t, x) ≤ Y ∗k (t, x), where

Y ∗k (t, x) := lim sup
(s,y)→(t,x),ε→0

ε lnuεk(t/ε, x/ε). (85)

The same arguments as in the proof of Proposition 5.3 yield that Y ∗k satisfies max{∂tY ∗k −H(x/|x|,∇Y ∗k ), Y ∗k } ≤ 0 in (0,∞)× (RN\{0},
Y ∗k (t, 0) = 0 for all t > 0,
Y ∗k (0, x) = kη(x) for all x ∈ RN .

(86)

As H ≤ H, Y ∗k is a subsolution of (84). Moreover, as η ≥ −1, one has uεk(0, x) ≥ e−k/ε and
thus uεk(t, x) ≥ e−k/ε for all (t, x) ∈ [0,∞)×RN for ε > 0 small enough since the positivity of
f (11) implies that constants are subsolutions of (1). This eventually implies Y ∗k (t, x) ≥ −k
for all (t, x) ∈ [0,∞)×RN . Hence, as Y ∗k and Zk are bounded, we can adapt the doubling of
variables argument of Theorem B.1 of [38] in order to obtain the comparison Y ∗k ≤ Zk. We
have thus proved Z∗(t, x) ≤ Zk(t, x) for all (t, x) ∈ [0,∞)×RN . The representation formula
proved in Theorem D.1 of [38] yields

−Zk(t, x) = sup
θ∈Θ

inf
{∫ t∧θ[γ(·)]

0

H?
(
γ(s), γ′(s)

)
ds− 1θ[γ(·)]≥tkη

(
γ(t)

)
, γ(0) = x

}
,
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where Θ is the set of all stopping times (see [38]) and γ ∈ H1(0, t). In fact, the arguments
of Lemma 2.4 in [43] yield that one can replace this expression by

− Zk(t, x) = inf max
a∈[0,t]

{∫ a

0

H?
(
γ(s), γ′(s)

)
ds− 1a=tkη

(
γ(t)

)
, γ(0) = x

}
. (87)

Let now pass to the limit k → +∞. The right hand-side in (87) is clearly nondecreasing
since η ≤ 0. As Z∗ ≤ Zk, one can take a sequence (γk)k in H1(0, t) such that γk(0) = x for
all k and

−Z∗(t, x) ≥ max
a∈[0,t]

{∫ a

0

H?
(
γk(s), γ

′
k(s)

)
ds− 1a=tkη

(
γk(t)

)}
− 1/k.

As H(x, p) ≤ C(1 + |p|2) for all x, p ∈ RN , one has H?(x, q) ≥ |q|2
4C
− C, and we get

∀a < t,
∫ a

0
|γ′k(s)|2ds ≤ 4C

(
Ct − Z∗(t, x) + 1/k

)
. Hence, as γk(0) = x for all k, (γk)k is

bounded in H1(0, t) and we can assume that this sequence converges weakly to a function
γ such that γ(0) = x. It follows from the estimates above that kη

(
γk(t)

)
is bounded from

below by a constant independent of k, which implies that γ(t) = 0. We could thus pass to
the limit in (87) and obtain (83). �

Proposition 5.5 Assume that H = H(x, p) is a Lipschitz-continuous function over RN×RN

such that H
(
x
|x| , p

)
≥ H(x, p) ≥ c(1 + |p|2) for all (x, p) ∈ (RN\{0}) × RN and for some

given c > 0. Then

− Z∗(t, x) ≤ inf max
a∈[0,t]

{∫ t

a

H?
(
γ(s), γ′(s)

)
ds, γ(0) = x, γ(t) = 0

}
. (88)

Proof. Take T > 0 and j large enough so that 1/j < T . The same arguments as in the
second part of the proof of Lemma 2.1 in [38] yield that Z∗ is Lipschitz-continuous over
(1/j, T )×Bj, where Bj is the open ball of center 0, since the estimates in [38] only depend
on L∞ and ellipticity bounds on the coefficients. Let mj := min(t,x)∈(1/j,T )×Bj and Mj the
Lipschitz constant of Z∗ on (1/j, T )×Bj.

Consider the equation:
max{∂tZ −H(x,∇Z), Z} = 0 in (1/j, T )×Bj,
Z(t, x) = min{mj,−Mjj} for all t ∈ (1/j, T ), x ∈ ∂Bj,
Z(1/j, x) = −Mj|x| for all x ∈ Bj.

(89)

We know (see [34]) that this equation admits a unique bounded Lipschitz-continuous solution
Zj. Moreover, as H is above its convex envelope, Zj is a supersolution of the equation
associated with the convex envelope of H instead of H. Hence, Theorem D.2 of [38] applies:

Zj(t, x) ≥ − supθ∈Θ inf
{∫ (t−1/j)∧θ[γ(·)]∧tγ

0
H?
(
γ(s), γ′(s)

)
ds

−1(t−1/j)∧θ[γ(·)]≥tγZ∗(t− tγ, γ(tγ))

−1tγ∧θ[γ(·)]≥t−1/jZ∗(1/j, γ(t− 1/j)), γ(0) = x
}
,
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where tγ := inf{s ≥ 0, γ(s) ∈ ∂Bj} is the exit time from Bj. Moreover, as H
(
x
|x| , p

)
≥ H(x, p)

for all (x, p) and due to our choice of mj and Mj, Z∗ is a supersolution of (89) and thus
Z∗ ≥ Zj.

Considering only paths γ such that γ(t− 1/j) = 0 and |γ(s)| < j for all s ∈ (0, t− 1/j),
with j large enough so that |x| < j, as Z∗(t, 0) = 0 for all t > 0, we get

Zj(t, x) ≥ − sup
θ∈Θ

inf
{∫ (t−1/j)∧θ[γ(·)]

0

H?
(
γ(s), γ′(s)

)
ds, γ(0) = x, γ(t− 1/j) = 0, |γ| < j

}
.

The alternative formulation derived from [43] reads

Z∗(t, x) ≥ Zj(t, x) ≥ − inf max
a∈[0,t−1/j]

{∫ a

0

H?
(
γ(s), γ′(s)

)
ds, γ(0) = x, γ(t−1/j) = 0, |γ| < j

}
.

For a given path γ ∈ H1(0, t) such that γ(0) = x and γ(t) = 0, taking j large enough so that
‖γ‖∞ < j and defining γj(s) := γ

(
st

t−1/j

)
, we get

Z∗(t, x) ≥ Zj(t, x) ≥ − max
a∈[0,t−1/j]

∫ a

0

H?
(
γj(s), γ

′
j(s)

)
ds = −t− 1/j

t
max
a∈[0,t]

∫ a

0

H?
(
γ(s),

t

t− 1/j
γ′(s)

)
ds.

We conclude by letting j → +∞ and taking the sup over all possible paths γ. �

Proposition 5.6 For all x 6= 0, one has

Z∗(1, x) ≤ − inf
{

maxt∈[0,1]

∫ 1

t
H
?(
γ(s),−γ′(s)

)
, γ ∈ H1([0, 1]), γ(0) = 0, γ(1) = x

}
= −U(x),

Z∗(1, x) ≥ − inf
{

maxt∈[0,1]

∫ 1

t
H?
(
γ(s),−γ′(s)

)
, γ ∈ H1([0, 1]), γ(0) = 0, γ(1) = x

}
= −U(x),

(90)
where we recall to the reader that U and U were introduced in (26).

Proof. We will extend in the sequel the Hamiltonians H and H by 1−homogeneity: for
all x 6= 0 and p ∈ RN , H(x, p) := H(x/|x|, p) and H(x, p) := H(x/|x|, p). We also define
H(0, p) := 2C(1 + |p|2) and H(0, p) := c/2(1 + |p|2), where c and C are given by Proposition
2.2, so that H (resp. H) is upper (resp. lower) semicontinuous over RN .

1. For all n, consider the sup-convolution of H:

Hn(x, p) := sup
x′∈RN

{
H(x′, p)− n|x′ − x|2

}
.

The semicontinuity of H in x, its continuity and convexity in p, and its coercivity yields that
Hn is well-defined, convex in p and locally Lipschitz-continuous in (x, p). Hence, Proposition
5.4 applies and gives (up to the change of variables s̃ = 1− s and γ̃(s) = γ(1− s)):

Z∗(1, x) ≤ −Un(x) := sup min
t∈[0,1]

{∫ 1

t

−H?

n

(
γ(s),−γ′(s)

)
ds, γ(0) = 0, γ(1) = x

}
(91)

where H
?

n is the convex conjugate of Hn and γ ∈ H1(0, 1).
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2. We now take x ∈ RN and let n → +∞. For all n, let γn an admissible test-function
such that

− Un(x) ≤ min
t∈[0,1]

∫ 1

t

−H?

n

(
γn(s),−γ′n(s))

)
ds+

1

n
. (92)

We know from Proposition 2.2 that

∀(x, p) ∈ RN × RN , c(1 + |p|2) ≤ H(x, p) ≤ C(1 + |p|2),

from which we easily derive the same estimate for Hn, and thus

|q|2

4C
− C ≤ H

?

n(x, q) ≤ |q|
2

4c
− c

for all (x, q) ∈ RN × RN . Together with (92), this leads to

min
t∈[0,1]

∫ 1

t

(
C − |γ

′
n(s)|2

4C

)
ds ≥ −Un(x)− 1

n
≥ c− |x|

2

4c
− 1

n
.

In particular, taking t = 0, (γ′n) is bounded in L2([0, 1]). As γn(0) = 0 and γn(1) = x for
all n, we get that (γn)n is bounded in H1(0, 1) and thus one can assume that it converges
weakly in H1([0, 1]) and locally uniformly to a function γ. It is a well-known property of
sup-convolutions that, as limn→+∞ γn(s) = γ(s), one has for all p ∈ RN and s ∈ [0, 1]:

lim sup
n→+∞

Hn

(
γn(s), p

)
≤ H

(
γ(s), p

)
.

On the other hand, for all s ∈ [0, 1], take p(s) ∈ RN such that

−H?(
γ(s),−γ′(s)

)
= inf

p∈RN

(
H
(
γ(s), p

)
+ p · γ′(s)

)
= H

(
γ(s), p(s)

)
+ p(s) · γ′(s).

It follows from Proposition 2.2 that

−H?(
γ(s),−γ′(s)

)
≥ p(s) · γ′(s) + c

(
1 + |p(s)|2

)
≥ − c

2
|p(s)|2 − |γ

′(s)|2

2c
+ c
(
1 + |p(s)|2

)
and thus as γ′ ∈ L2(0, 1) this implies that p ∈ L2(0, 1). We thus get

lim
n→+∞

∫ 1

t

γ′n(s) · p(s)ds =

∫ 1

t

γ(s) · p(s)ds

for all t ∈ [0, 1]. Hence, one has∫ 1

t

(
H
(
γ(s), p(s)

)
+ p(s) · γ′(s)

)
ds

≥
∫ 1

t
lim supn→+∞Hn

(
γn(s), p(s)

)
ds+ limn→+∞

∫ 1

t
p(s) · γ′n(s)ds

≥ lim supn→+∞
∫ 1

t

(
Hn

(
γn(s), p(s)

)
+ p(s) · γ′n(s)

)
ds by Fatou’s lemma

≥ lim supn→+∞
∫ 1

t
−H?

n

(
γn(s),−γ′n(s)

)
ds by definition of H

?

n

≥ lim supn→+∞mint∈[0,1]

∫ 1

t
−H?

n

(
γn(s),−γ′n(s)

)
ds

≥ lim supn→+∞−Un(x) ≥ Z∗(1, x) by (91) and (92).
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As t ∈ [0, 1] is arbitrary and γ is admissible, one gets

Z∗(1, x) ≤ − lim infn→+∞ Un(x)

≤ − inf maxt∈[0,1]

{∫ 1

t
H
?(
γ(s),−γ′(s)

)
ds, γ(0) = 0, γ(1) = x, γ ∈ H1(0, 1)

}
= −U(x).

3. It is left to prove that one can assume that the test-functions satisfy γ(s) 6= 0 for all
s ∈ (0, 1]. Consider a test-function γ ∈ H1(0, 1) such that γ(0) = 0 and γ(1) = x. Assume
that there exists s0 ∈ (0, 1) such that γ(s0) = 0. We can assume that γ(s) 6= 0 in (s0, 1]. Let

γ̃(s) := γ
(
s0 + (1− s0)s

)
.

This function is an admissible path from 0 to x, such that γ̃(s) 6= 0 for all s ∈ (0, 1). For all
t ∈ [0, 1], one has∫ 1

t

−H?(
γ̃(s),−γ̃′(s)

)
ds =

∫ 1

s0+(1−s0)t

−H?(
γ(τ),−(1− s0)γ′(τ)

) dτ

1− s0

On the other hand, as H
?

is convex, one has for all τ ∈ (0, 1) and s0 ∈ (0, 1):

−H?(
γ(τ),−(1− s0)γ′(τ)

)
+H

?
(γ(τ), 0

)
1− s0

≥ −H?(
γ(τ),−γ′(τ)

)
+H

?(
γ(τ), 0

)
.

It follows that:∫ 1

t

−H?(
γ̃(s),−γ̃′(s)

)
ds ≥

∫ 1

s0+(1−s0)t

−H?(
γ(τ),−γ′(τ)

)
dτ+

s0

1− s0

∫ 1

s0+(1−s0)t

−H?(
γ(τ), 0

)
dτ.

But Proposition 2.2 yields

−H?(
γ(τ), 0

)
= inf

p∈RN
H
(
γ(τ), p

)
≥ c > 0,

which leads to ∫ 1

t

−H?(
γ̃(s),−γ̃′(s)

)
ds >

∫ 1

s0+(1−s0)t

−H?(
γ(τ),−γ′(τ)

)
dτ

for all t ∈ [0, 1]. Hence,

min
t∈[0,1]

∫ 1

t

−H?(
γ̃(s),−γ̃′(s)

)
ds > min

t′∈[0,1]

∫ 1

t′
−H?(

γ(τ),−γ′(τ)
)
dτ.

Thus in order to maximize this quantity, replacing γ by γ̃, one can always assume that
γ(s) 6= 0 for all s ∈ (0, s0). The proof for the test-functions associated with H is similar.

4. Next, consider the inf-convolution of H:

Hn(x, p) := inf
x′∈RN

(
H(x′, p) + n|x′ − x|2

)}
.
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This function is well-defined since H(x, p) ≥ c(1+ |p|2) for all (x, p) ∈ RN ×RN and thus the
set over which we take the supremum is non-empty. Moreover, for all x ∈ RN , if pn → p as
n→ +∞, one has lim infn→+∞Hn(x, pn) ≥ (H?)?(x, p) since the double convex-conjugate of
H is the largest convex function below H.

As Hn is Lipschitz-continuous and Hn ≤ H, Proposition 5.5 yields

Z∗(1, x) ≥ −Un(x) := sup min
t∈[0,1]

{∫ 1

t

−H?
n

(
γ(s),−γ′(s)

)
ds, γ ∈ H1([0, 1]), γ(0) = 0, γ(1) = x

}
.

(93)
Let γ an arbitrary admissible test-function and tn ∈ [0, 1] such that

min
t∈[0,1]

∫ 1

t

−H?
n

(
γ(s),−γ′(s)

)
ds =

∫ 1

tn

−H?
n

(
γ(s),−γ′(s)

)
ds.

We can assume, up to extraction, that (tn)n converges to t∞ ∈ [0, 1].
For all n and for all s ∈ [0, 1], let pn(s) ∈ RN such that

−H?
n

(
γ(s),−γ′(s)

)
= inf

p∈RN

(
p · γ′(s) +Hn

(
γ(s), p

))
= pn(s) · γ′(s) +Hn

(
γ(s), pn(s)

)
.

With the same arguments as above, we could prove that (pn)n is bounded uniformly in
L2([0, 1]), we can thus assume that it converges to a limit p∞ ∈ L2([0, 1]) for the weak
topology. Mazur’s theorem yields that there exists a family (p̃n)n of convex combination of
the (pn)n, that we write

p̃n =
Nn∑
i=1

λni pkni , ∀i ∈ [1, Nn], kni ≥ n, λni ≥ 0,
Nn∑
i=1

λni = 1,

and which converges to p∞ almost everywhere and strongly in L2([0, 1]). One has∫ 1

t∞
(H?)?

(
γ(s), p∞(s)

)
ds ≤

∫ 1

t∞
lim infn→+∞Hn

(
γ(s), p̃n(s)

)
ds

≤ lim infn→+∞
∫ 1

tn
Hn

(
γ(s), p̃n(s)

)
ds by Fatou’s lemma

≤ lim infn→+∞
∫ 1

tn

∑Nn
i=1 λ

n
iHn

(
γ(s), pkni (s)

)
ds by convexity of Hn

≤ lim infn→+∞
∑Nn

i=1 λ
n
i

∫ 1

t
kin

Hkni

(
γ(s), pkni (s)

)
ds as kin ≥ n and Hn ↗ .
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Gathering all the previous inequalities, we eventually get

Z∗(1, x) ≥ lim supn→+∞−
∑Nn

i=1 λ
n
i Ukni

(x) ≥ lim infn→+∞−
∑Nn

i=1 λ
n
i Ukni

(x)

≥ lim infn→+∞
∑Nn

i=1 λ
n
i mint∈[0,1]

∫ 1

t
−H?

kni

(
γ(s),−γ′(s)

)
ds for any path γ

≥ lim infn→+∞
∑Nn

i=1 λ
n
i

∫ 1

tkn
i

(
pkni (s) · γ′(s) +Hkni

(γ(s), pkni (s))
)
ds

≥
∫ 1

t∞

(
p∞ · γ′ + (H?)?(γ, p∞)

)
≥

∫ 1

t∞
−H?

(
γ,−γ′

)
≥ mint∈[0,1]

∫ 1

t
−H?

(
γ,−γ′

)
We have thus proved that

Z∗(1, x) ≥ lim supn→+∞−
∑Nn

i=1 λ
n
i Ukni

(x) ≥ lim infn→+∞−
∑Nn

i=1 λ
n
i Ukni

(x)

≥ − inf maxt∈[0,1]

{∫ 1

t
H?
(
γ(s),−γ′(s)

)
, γ ∈ H1([0, 1]), γ(0) = 0, γ(1) = x

}
= −U(x),

and we show that one can assume γ(s) 6= 0 for all s ∈ (0, 1) as above. �

It is easy to check that similar arguments as in the previous proof yield that U is indeed
a minimum. That is, considering a minimizing sequence of admissible paths (γn)n, one can
extract a converging subsequence which minimizes the associated maximum of integrals over
t ∈ [0, 1]. We thus leave the complete proof of this result to the reader.

Lemma 5.7 For all x 6= 0, the infimum defining U is indeed a minimum:

U(x) = min
{

max
t∈[0,1]

∫ 1

t

H
?(
γ(s),−γ′(s)

)
, γ ∈ H1([0, 1]), γ(0) = 0, γ(1) = x

}
.

As H is not upper semicontinuous in general, we do not expect such a result to hold for
U .

5.5 Conclusion of the proof of Theorem 2

Proof of Theorem 2. Gathering Lemma 5.2, Proposition 5.6 and the definition of vε, we
immediately get that

u(1/ε, x/ε)→
{

0 if x ∈ {U > 0}
1 if x ∈ int{U = 0} as ε→ 0 loc. unif. x ∈ RN .

Consider u, K and F as in the statement of the Theorem. As K ⊂ intS = int{U = 0}, the
previous convergence immediately implies:

sup
x∈tK
|u(t, x)− 1| = sup

x∈K
|v1/t(1, x)− 1| = 1− inf

x∈K
u(1/t, x)→ 0 as t→ +∞.
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Similarly, if F is a compact set, then the local convergence above and the fact that
F ⊂ RN\{U = 0} = {U > 0} yields

sup
x∈tF
|u(t, x)| = sup

x∈F
|u(1/t, x)| → 0 as t→ +∞.

Consider a closed set F ⊂ RN\S. We have proved in [13], together with Hamel, that
there exists a speed w∗ > 0 such that

max
|x|≥w∗t

u(t, x)→ 0 as t→ +∞.

Define F1 = F ∩ {|x| ≤ w∗} and F2 = F ∩ {|x| ≥ w∗}. We know that
limt→+∞maxx∈F2 u(t, x) = 0. On the other hand, as F is closed, F1 is compact and thus
limt→+∞maxx∈tF1 u(t, x) = 0. Thus

lim
t→+∞

max
x∈tF

u(t, x) = 0.

�

5.6 The recurrent case

Let now check that the two definitions (32) and (27) of the expansion sets S and S are
equivalent when the coefficients are recurrent.

Proof of Proposition 3.3. Let α > 0, R > 0, p ∈ RN and e ∈ SN−1. Take
φ ∈ W 1,∞(CR,α(e)) and λ′ such that infCR,α(e) φ > 0 and Lpφ ≥ λφ in CR,α(e). Define
φn(t, x) = φ(t+ n, x+ ne) for all n. The sequence (φn)n>R is equicontinuous and uniformly
bounded since φ ∈ W 1,∞(CR,α(e)). We can assume that this sequence converges locally
uniformly as n → +∞ to a function φ∞ ∈ W 1,∞(R × RN) such that infR×RN φ∞ > 0.
Similarly, one can assume, up to extraction, that there exist A∞, q∞ and c∞ such that
A(t+ n, x+ ne)→ A∞(t, x), q(t+ n, x+ ne)→ q∞(t, x) and f ′u(t+ n, x+ ne, 0)→ c∞(t, x)
as n→ +∞ locally uniformly in R× RN . Define

L∗p = −∂t + tr(A∞∇2) + (2pA∞ + q∞) · ∇+ (pA∞p+ q∞ · p+ c∞).

Then L∗pφ∞ ≥ λφ∞ in R × RN , which give λ ≤ λ1(L∗p,R × RN), and thus letting
λ→ λ1(Lp, CR,α(e)), one gets

λ1(Lp, CR,α(e)) ≤ λ1(L∗p,R× RN).

Next, as A, q and f ′u(·, ·, 0) are recurrent with respect to (t, x), there exists a se-
quence (sn, yn) such that A∞(t − sn, x − yn) → A(t, x), q∞(t − sn, x − yn) → q(t, x) and
c∞(t − sn, x − yn) → f ′u(t, x, 0) as n → +∞ locally uniformly in R × RN . Hence, the same
arguments as above give

λ1(L∗p,R× RN) ≤ λ1(Lp,R× RN).
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As λ1(Lp, CR,α(e)) ≥ λ1(Lp,R×RN) by (17), one eventually gets λ1(Lp, CR,α(e)) = λ1(Lp,R×RN)
for all R > 0, α > 0 and e ∈ SN−1. This leads to

H(e, p) = λ1(Lp,R× RN).

Similarly, one can prove that H(e, p) = λ1(Lp,R × RN). In other words, H = H(p) and
H = H(p) do not depend on e.

It follows from the Jensen inequality that for all γ ∈ H1([0, 1]), with γ(0) = 0 and
γ(1) = x:∫ 1

0

H?
(
γ(s),−γ′(s)

)
ds =

∫ 1

0

H?
(
− γ′(s)

)
ds ≥ H?

(
−
∫ 1

0

γ′(s)ds
)

= H?(−x).

Hence, on one hand, taking t = 0 and t = 1 leads to:

inf maxt∈[0,1]

{∫ 1

t
H?
(
− γ′(s)

)
, γ ∈ H1([0, 1]), γ(0) = 0, γ(1) = x

}
≥ max

{
0, inf

{∫ 1

0
H?
(
− γ′(s)

)
, γ ∈ H1([0, 1]), γ(0) = 0, γ(1) = x

}}
≥ max{0, H?(−x)}.

On the other hand, taking γ(s) = sx, one gets:

inf max
t∈[0,1]

{∫ 1

t

H?
(
−γ′(s)

)
, γ ∈ H1([0, 1]), γ(0) = 0, γ(1) = x

}
≤ max

t∈[0,1]

∫ 1

t

H?(−x) = max{0, H?(−x)}.

We thus conclude that

S = {x ∈ RN , H?(−x) ≥ 0} = {x ∈ RN , ∃p ∈ RN | − p · x+ λ1(L−p,R× RN) ≤ 0}

from which the conclusion immediately follows. The identification of S is similar. �

5.7 Geometry of the expansion sets

Proposition 5.8 Under the assumptions and notations as in the proof of Proposition 5.5,
assuming in addition that x 7→ H(x, p) is quasiconcave for all p ∈ RN , then the function Zj
is concave with respect to (t, x) ∈ (1/j,∞)×Bk.

Proof. Take an arbitrary T > 1/j. We use the same approach as in [1], but we need to
check that the quasiconcavity of the Hamiltonian is sufficient in order to get the concavity of
the function. Let Z̃j the concave envelope of Zj, that is, the smallest concave function w.r.t

(t, x) above Zj in (1/j, T ) × Bj. We need to prove that Z̃j ≤ Zj in order to conclude. We

will prove that Z̃j is a subsolution of (89), which is enough in order to derive the conclusion

since (89) admits a comparison principle (see [34]). First note that Z̃j ≤ 0 is obvious since
Zj ≤ 0.

Let (t, x) ∈ (1/j, T ) × Bj and consider a smooth function χ such that Z̃j − χ admits a
strict local maximum (t, x). As in [1], we know that there exist l ≤ N+2, t1, ..., tl in (1/j, T ),
x1, ..., xl in Bj and λ1, ..., λl in [0, 1] such that

t =
l∑

i=1

λiti, x =
l∑

i=1

λixi,
l∑

i=1

λi = 1 and Z̃j(t, x) =
∑

1≤i≤l

λiZj(ti, xi).
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It is then standard that for all i = 1, ..., l,

(si, yi) 7→ λiZj(si, yi)− χ
(∑
j 6=i

λjtj + λisi,
∑
j 6=i

λjxj + λiyi
)

reaches a local maximum at (ti, xi). It follows from (89) that for all i = 1, ..., l:

∂tχ(t, x)−H
(
xi,∇χ(t, x)

)
≤ 0.

We now check that the quasiconcavity is sufficient in order to conclude:

∂tχ(t, x)−H
(
x,∇χ(t, x)

)
= ∂tχ(t, x)−H

(∑
1≤i≤l λixi,∇χ(t, x)

)
≤ ∂tχ(t, x)− inf1≤i≤lH

(
xi,∇χ(t, x)

)
(by quasiconcavity)

≤ 0.

Next, if t = 1/j, then necessarily t1 = ... = tl = 1/j. As Zj(1/j, x) = −Mj|x| is concave
over Bj, one gets:

Zj(1/j, x) ≤ Z̃j(1/j, x) =
∑

1≤i≤l

λiZj(1/j, xi) ≤ Zj(1/j, x).

Similarly, if |x| = j, then x1 = ... = xl by strict convexity of the ball Bj and thus

Z̃j(t, x) = min{mj,−Mj|j|}, which is concave, from which we get Z̃j = Zj in (1/j, T )×∂Bj.

We have thus proved that Z̃j is a subsolution of (89) and thus Z̃j ≤ Zj, leading to

Z̃j ≡ Zj. Hence Zj is concave with respect to (t, x). �

Proof of Proposition 2.3. The inf-convolution of H:

Hn(x, p) := inf
x′∈RN

(
H(x′, p) + n|x− x′|2

)
= inf

X∈RN

(
H(x+X, p) + n|X|2

)
.

is clearly quasiconcave in x as the infimum of a family of quasiconcave functions is quasicon-
cave.

For all n and j, we let Zj,n the function constructed in Proposition 5.5 with Hamiltonian
H = Hn, which is concave over (1/j,∞)×Bj by Proposition 5.8. We also define

Un(x) := inf max
t∈[0,1]

{∫ 1

t

−H?
n

(
γ(s),−γ′(s)

)
ds, γ ∈ H1([0, 1]), γ(0) = 0, γ(1) = x

}
,

so that, we know from the proofs of Propositions 5.5 and 5.6 that for all x ∈ RN :

Zk,n(1, x) ≤ Z∗(1, x) ≤ Z∗(1, x) ≤ −U(x),

Zj,n(1, x) ≥ −Un(x) for all x when j = j(x, n) is large enough, (94)

Z∗(1, x) ≥ lim sup
n→+∞

−
Nn∑
i=1

λni Ukni
(x) ≥ lim inf

n→+∞
−

Nn∑
i=1

λni Ukni
(x) ≥ −U(x) (95)
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for some families (kin) and (λni ) depending on x and satisfying kni ≥ n, λni ≥ 0,
∑Nn

i=1 λ
n
i = 1.

Take now x0, x1 such that U(x0) = U(x1) = 0 and τ ∈ [0, 1]. We could consider common
families (kin) and (λni ) such that (95) is satisfied.

One has:

−U((1− τ)x0 + τx1) ≥ Z∗(1, (1− τ)x0 + τx1)

≥
∑Nn

i=1 λ
n
i lim supj→+∞ Zj,kin(1, (1− τ)x0 + τx1)

≥
∑Nn

i=1 λ
n
i lim supj→+∞

(
(1− τ)Zj,kin(1, x0) + τZj,kin(1, x1)

)
by concavity

≥ −
∑Nn

i=1 λ
n
i

(
(1− τ)Ukin

(x0) + τUkin
(x1)

)
by (94).

Taking the lim inf of the right-hand side, one gets

−U((1− τ)x0 + τx1) ≥ −(1− τ)U(x0) + τU(x1) = 0.

As U ≥ 0, this implies

(1− τ)x0 + τx1 ∈ S = S = cl{U = 0}.

Hence, this set is convex. �

Proof of Proposition 2.4. Let σ ∈ [0, 1], x ∈ S, that is, U(x) = 0, and take
γ ∈ H1(0, 1) such that γ(0) = 0, γ(1) = x and γ(s) 6= 0 for all s ∈ (0, 1). We recall
that H

?
(e, 0) = − infp∈RN H(e, p) ≤ −c for all e ∈ SN−1. Consider the path

γσ(s) :=

{
σγ(s/σ) if s ∈ [0, σ],
σx if s ∈ [σ, 1].

As it connects 0 to σx, we could use it as a test-function in the definition of U :

maxt∈[0,1]

∫ 1

t
H
?( γσ(s)
|γσ(s)| ,−γ

′
σ(s)

)
ds

=
(

maxt∈[0,σ]

∫ 1

t
H
?( γσ(s)
|γσ(s)| ,−γ

′
σ(s)

)
ds
)

+
since H

?
(x/|x|, 0) < 0

=
(

maxt∈[0,σ]

∫ σ
t
H
?( γ(s/σ)
|γ(s/σ)| ,−γ

′(s/σ)
)
ds+ (1− σ)H

?
(x/|x|, 0)

)
+

by definition of γσ

=
(
σmaxt∈[0,1]

∫ 1

t
H
?( γ(τ)
|γ(τ)| ,−γ

′(τ)
)
dτ + (1− σ)H

?
(x/|x|, 0)

)
+

letting τ := s/σ

=
(

(1− σ)H
?
(x/|x|, 0)

)
+

= 0 by definition of γ.

Hence, U(σx) = 0, that is, S is star-shaped. The star-shapedness of S is proved similarly.
Next, as c(1 + |p|2) ≤ H(e, p) ≤ H(e, p) ≤ C(1 + |p|2) for all (e, p) ∈ SN−1 × RN by

Proposition 2.2, one has −H?
(e, q) ≤ C − |q|2/4C for all (e, q) and thus, as in the proof

of Proposition 3.3, Jensen inequality yields U(x) ≤ C − |x|2/4C. Hence, S ⊂ {|x| ≤ 2C}.
Similarly, U(x) ≥ c− |x|2/4c and {|x| ≤ 2c} ⊂ S. �
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6 The homogeneous, periodic and compactly sup-

ported cases

We have already described in details how to handle these cases in dimension 1 (see Sections
II.D.1 and 3 in [19]). We provide here the proofs for sake of completeness.

Proof of Proposition 3.1.
1. Assume first that the coefficients are homogeneous, that is, A and f ′u(·, cdot, 0) do not

depend on (t, x) and q ≡ 0. In this case L = −∂t + ai,j∂i,j + f ′u(0), and

Lp = −∂t + ai,j∂i,j + 2pA∇+ (pAp+ f ′u(0)).

It follows from Proposition 4.4 that

λ1(Lp, CR,α(e)) = λ1(Lp, CR,α(e)) = pAp+ f ′u(0)

for all α,R > 0. Hence,
H(e, p) = H(e, p) = pAp+ f ′u(0)

for all (e, p) ∈ SN−1 × RN and S = S. It is easy to compute that

w(e) = w(e) = 2
√
eAef ′(0).

This is consistent with the results of Kolmogorov, Petrovsky and Piskunov [56] when N = 1
and Aronson and Weinberger [4] for general N .

2. Assume now that the coefficients are periodic. We know that the operator Lp admits
a unique periodic principal eigenvalue kperp (L), defined by the existence of a solution φp of

Lpφp = kperp (L)φp,
φp > 0,
φp is periodic.

(96)

Proposition 4.4 yields λ1(Lp,R×RN) = λ1(Lp,R×RN) = kperp (L) and thusH(e, p) = H(e, p) = kperp (L)
for all (e, p) ∈ SN−1 × RN . Then, Proposition 3.3 gives

S = S = {x ∈ RN , ∃p ∈ RN , kperp (L) + x · p < 0},

and w(e) = w(e) = minp·e>0

kper−p (L)

p · e
, which is consistent with [13, 41, 42, 68, 80, 101].

3. Assume now that the coefficients satisfy (30). Taking constant test-functions in the
definitions of the generalized principal eigenvalues, we immediately derive from this property
that

lim
R→+∞

λ1(Lp, CR,α(e)) = lim
R→+∞

λ1(Lp, CR,α(e)) = pA∗p+ q∗ · p+ c∗

and thus H(e, p) = H(e, p) = pA∗p+q∗ ·p+c∗ for all (e, p) ∈ SN−1×RN . Easy computations
then provide the conclusion, which is consistent with [13]

�
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7 The almost periodic case

This case could be derived from Theorem 6 since almost periodic functions belong to the
wider class of uniquely ergodic functions. However, we provide here a direct proof, inspired
by the arguments of Lions and Souganidis [65], who proved the existence of approximate
correctors in the framework of homogenization of Hamilton-Jacobi equations with almost
periodic coefficients. Indeed, we only need to check that this proof still holds when there
is an almost periodic time-dependence of the coefficients. We give the full proof here by
sake of completeness and to illustrate the link between generalized principal eigenvalues and
approximate correctors described in Section 5.1.

Proof of Theorem 4. 1. This proof is based on Evan’s perturbed test-functions method
[37]. Thus, we investigate the sequence of equations

− ∂tuε + tr(A(t, x)∇2uε) +∇uεA(t, x)∇uε + q(t, x) · ∇uε + c(t, x) = εuε in R× RN , (97)

and we will prove that the family (εuε)ε>0 converges as ε→ 0 uniformly in (t, x) ∈ R×RN .
First, as c is uniformly bounded, there exists some large M such that −M is a subsolution

and M is a supersolution of (97). As (97) admits a comparison principle, the Perron’s method
[53] gives the existence of a unique solution uε ∈ C1,2(R × RN) of equation (97) such that
−M ≤ uε ≤ M (of course the bound M depends on ε). Moreover, there exists a constant
C > 1 such that

‖∇2uε‖∞ + ‖∂tuε‖∞ + ‖∇uε‖∞ + ‖εuε‖∞ ≤ C for all ε > 0.

2. Consider a sequence εj → 0 such that (εjuεj(0, 0))j converges and define −λ its limit.
Let vj := uεj−uεj(0, 0). We need to prove that (εjvj)j converges to 0 uniformly over R×RN .
Assume that this is not true. Then there exist κ > 0 and a sequence (tj, xj)j such that

|εjvj(tj, xj)| ≥ κ for all n.

As A, q and c are almost periodic in (t, x), one can assume, up to extraction, that

‖A(·+ tj, ·+ xj)− A(·+ tk, ·+ xk)‖∞ + ‖q(·+ tj, ·+ xj)− q(·+ tk, ·+ xk)‖∞
+‖c(·+ tj, ·+ xj)− c(·+ tk, ·+ xk)‖∞ ≤ κ

8C2 for all j, k large enough.

Take k and let wj(t, x) := vj(t+ tj − tk, x+ xj − xk). A straightforward computation shows
that wj satisfies

−∂twj+tr(A(t, x)∇2wj)+∇wjA(t, x)∇wj+q(t, x)·∇wj+c(t, x) ≥ εjwj−
κ

2
in R×RN . (98)

As vj + κ
2εj

is a super solution of (98), the comparison principle gives

εjvj(t+ tj − tk, x+ xj − xk) ≤ εjvj(t, x) +
κ

2
for all (t, x) ∈ R× RN .

Hence, considering this inequality in (tk, xk), we get

εjvj(tk, xk) ≥ εjvj(tj, xj)−
κ

2
≥ κ

2
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for all j, k. The uniform Lipschitz bound on (vj)j and the fact that vj(0, 0) = 0 finally give
εjC(|tk|+ |xk|) ≥ κ

2
which is a contradiction when j → +∞ since εj → 0.

Hence, (εjvj)j converges to 0 uniformly over R× RN and thus (εuε)ε>0 converges to −λ
uniformly in (t, x) ∈ R× RN as ε→ 0.

3. We will conclude by proving that λ1(L,R × RN) = λ1(L,R × RN) = λ. Take δ > 0
and ε > 0 small enough so that εuε(t, x) ≥ λ − δ for all (t, x) ∈ R × RN . Define φ := euε .
One has φ ∈ W 1,∞(R× RN) ∩ C2(R× RN) and infR×RN φ > 0. Moreover, φ satisfies

Lφ = εuεφ ≥ (λ− δ)φ in R× RN .

Hence, one has λ1(L,R × RN) ≥ λ − δ for all δ and thus λ1(L,R × RN) ≥ λ. Similarly,

one can prove that λ1(L,R × RN) ≤ λ. As λ1(L,R × RN) ≥ λ1(L,R × RN), this gives the
conclusion. �

Proof of Theorem 3. Theorem 4 and (51) give λ1(Lp,R× RN) = λ1(Lp,R× RN). Thus,
using similar arguments as for homogeneous coefficients, one has

H(e, p) = H(e, p) = λ1(Lp,R× RN).

This concludes the proof. �

8 The uniquely ergodic case

Proof of Theorem 6. As in the proof of Theorem 4, we let uε the unique bounded solution
of

ai,j(x)∂i,juε + ai,j(x)∂iuε∂juε + qi(x)∂iuε + c(x) = εuε in RN (99)

and the conclusion follows as in the almost periodic framework if we manage to prove that
(εuε)ε>0 converges uniformly over RN to a constant λ ∈ R.

First, let Ω := H(A,q,c) and, for all ω = (B, r, d) ∈ Ω = H(A,q,c), Ã(x, ω) := B(x),
q̃(x, ω) := r(x), and c̃(x, ω) := d(x). This turns our problem into a random stationary
ergodic one. Indeed, the stationarity immediately follows from the invariance of the measure
P with respect to translations. If M is a measurable subset of Ω such that τxM = M for all
x ∈ RN , then P̃(A) := P(A∩M)/P(M) would provide another invariant probability measure
on Ω, unless P(M) = 0 or P(M) = 1. Hence, P is ergodic with respect to the translations
(τx)x∈RN .

Under these hypotheses, Lions and Souganidis proved in [67] that there exists a constant
λ ∈ R such that

lim
ε→0

P
(
{ω ∈ Ω, |εuε(0, ω)− λ| > δ}

)
= 0 for all δ > 0.

Let Aδ := {ω ∈ Ω, |εuε(0, ω)−λ| ≤ δ} and εδ > 0 such that P(Aδ) ≥ 1− δ for all ε ∈ (0, εδ).
Let δ ∈ (0, 1/3) and ε ∈ (0, εδ). As Ω = H(A,q,c) is compact, there exists a continuous

function Ψ : Ω = H(A,q,c) → R such that ‖Ψ − 1Aδ‖L∞(Ω) < δ. Proposition 3.7 yields that
the following limit exists for all ω ∈ Ω:

lim
R→+∞

1

|BR(a)|

∫
BR(a)

Ψ(τyω)dy = P(Ψ) uniformly with respect to a ∈ RN .
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Hence:

lim
R→+∞

1

|BR(a)|

∫
BR(a)

1Aδ(τyω)dy > P(Ψ)−δ ≥ P(Aδ)−2δ ≥ 1−3δ > 0 uniformly w.r.t a ∈ RN .

This implies in particular that, for all ω ∈ Ω, there exists R > 0 such that, for all a ∈ RN ,
there exists y ∈ BR(a) such that τyω ∈ Aδ. Applying this property to ω = (A, q, c), we
obtain in particular that for all x ∈ RN , there exists y ∈ BR(x) such that |εuε(y)− λ| ≤ δ.
But we also know that there exists a constant C, independent of ε, such that |∇uε(z)| ≤ C
for all z ∈ RN . Hence:

|εuε(x)− λ| ≤ |εuε(y)− λ|+ εC|x− y| ≤ δ + εCR.

This implies that for all ε > 0 small enough, one has |εuε(x)− λ| ≤ 2δ for all x ∈ RN , from
which the conclusion follows.

�

9 The radially periodic case

The proof of Proposition 3.8 of course relies on the radial change of variables. This gives
rise to some extra-terms which are indeed neglectible asymptotically, precisely because our
construction only takes into account the values of the coefficients in the truncated cones
CR,α(e). We can thus construct approximated eigenvalues. This gives one more example
where considering the generalized principal eigenvalues over the full space RN would have
given sub-optimal expansion sets.

Proof of Proposition 3.8. We will use the larger family of periodic operators for all
p̃ ∈ RN and e ∈ SN−1:

L̃pere,p̃ϕ := aper(r)ϕ
′′ + 2p̃ · e aper(r)ϕ′ +

(
|p̃|2aper(r) + cper(r)

)
ϕ.

Let ϕ the periodic principal eigenfunction associated with L̃pere,−p̃ and λper1 (L̃e,−p̃) the associated

eigenvalue: ϕ = ϕ(r) is positive, L−periodic and one has L̃pere,−p̃ϕ = λper1 (L̃e,−p̃)ϕ. Take

e ∈ SN−1, α > 0, R > 0 and define φ(x) = ϕ(|x|). Then φ ∈ C2
(
CR,α(e)

)
and for all p̃ ∈ RN ,

coming back to our original operator L−p̃ defined by (24), one has over CR,α(e):

L−p̃φ = aper(|x|)∆φ− 2aper(|x|)p̃ · ∇φ+
(
|p̃|2aper(|x|) + cper(|x|)

)
φ

= aper(r)ϕ
′′ + aper(r)

N−1
r
ϕ′ − 2aper(r)p̃ · erϕ′ +

(
|p̃|2aper(r) + cper(r)

)
ϕ

= L̃pere,−p̃ϕ+ aper(r)
N−1
r
ϕ′ + 2aper(r)p̃ · (e− er)ϕ′

= λper1 (L̃pere,−p̃)ϕ+ aper(r)
ϕ′

ϕ

(
(N−1)
r

+ 2p̃ · (e− er)
)
ϕ

=
(
λper1 (L̃pere,−p̃) + o(1/R) + o(α)

)
ϕ
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since r = |x| > R, |e − er| = |e − x
|x| | < α and ϕ′/ϕ is bounded independently of R and

α. Hence, taking ϕ as a test-function in the definition of λ1 and λ1 and letting R → +∞,

α→ 0, one gets H(e, p̃) = H(e, p̃) = λper1 (L̃pere,−p̃) for all p̃ ∈ RN and e ∈ SN−1.

Next, noticing that L̃pere,p̃ φ ≤ L̃pere,(p̃·e)eφ+ maxR aper
(
|p̃|2 − (p̃ · e)2

)
φ for all φ, one gets

H(e, p̃) = H(e, p̃) = λper1 (L̃pere,−p̃) ≤ λper1 (L̃pere,−(p̃·e)e) + max
R

aper
(
|p̃|2 − (p̃ · e)2

)
.

An easy computation yields

H
?
(e, q̃) = H?(e, q̃) ≥ k?(q̃ · e) +

|q̃ − (q̃ · e)e|2

4 maxR aper
≥ k?(q̃ · e)

where p ∈ R 7→ k(p) is the convex function k(p) := λper1 (L̃perp ) (as defined in the statement
of the Proposition). Moreover, one can easily check that

H
?(
e, (q̃ · e)e

)
= H?

(
e, (q̃ · e)e

)
= k?(q̃ · e).

It follows that for any admissible path γ connecting 0 to a given x ∈ RN , one has

maxt∈[0,1]

∫ 1

t
H?
(
γ(s),−γ′(s)

)
ds ≥ maxt∈[0,1]

∫ 1

t
k?
(
− γ(s) · γ′(s)

|γ(s)|
)
ds

≥ maxt∈[0,1](1− t)k?
(
−
∫ 1

t

γ(s) · γ′(s)
|γ(s)|

)
(by Holder inequality)

≥ max
{

0, k?(−|x|)
}

(taking t = 0 or 1 ).

Hence,

inf
γ

max
t∈[0,1]

∫ 1

t

H?
(
γ(s),−γ′(s)

)
≥
(
k?(−|x|)

)
+
.

The reverse inequality is obtained with γ(s) = sx. The conclusion follows from classical
arguments. �

10 The space-independent case

10.1 Computation of the generalized principal eigenvalues in the
space-independent case

We first compute the two generalized principal eigenvalues when the coefficients do not
depend on x.

Proposition 10.1 Consider an operator Lφ = −∂tφ + tr(A(t)∇2φ) + q(t) · ∇φ + c(t)φ,

where A and q are functions of t that satisfy the hypotheses of Section 2.1 and c ∈ Cδ/2loc (R)
is uniformly continuous and bounded. Consider ω ⊂ RN an open set that contains balls of
arbitrary radii and R ∈ R. Then

λ1

(
L, (R,∞)× ω

)
= lim inf

t→+∞
inf
s>R

1

t

∫ s+t

s

c and λ1

(
L, (R,∞)× ω

)
= lim sup

t→+∞
sup
s>R

1

t

∫ s+t

s

c.
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In order to prove this Proposition, we first prove that we can restrict ourselves to test-
functions that only depend on t in the definition of λ1 and λ1:

Lemma 10.2 Under the same hypotheses as in Proposition 10.1, one has

λ1

(
L, (R,∞)× ω

)
= sup{λ ∈ R,∃φ ∈ W 1,∞(R,∞) ∩ C1(R,∞), inf(R,∞) φ > 0,−φ′ + c(t)φ ≥ λφ in (R,∞)},

λ1

(
L, (R,∞)× ω

)
= inf{λ ∈ R,∃φ ∈ W 1,∞(R,∞) ∩ C1(R,∞), inf(R,∞) φ > 0,−φ′ + c(t)φ ≤ λφ in (R,∞)}.

(100)

Proof. Define

µ1 = sup{λ ∈ R,∃φ ∈ W 1,∞(R,∞) ∩ C1(R,∞), inf
(R,∞)

φ > 0,−φ′ + c(t)φ ≥ λφ for all t > R}.

(101)
Clearly, µ1 ≤ λ1. Consider λ ∈ R such that there exists φ ∈ C1,2

(
(R,∞)×ω

)
with inf φ > 0,

φ ∈ W 1,∞((R,∞) × ω
)

and Lφ ≥ λφ. For all n ∈ N, we know that there exists a ball of
radius n in ω. Let xn its center. We define

φn(t) =
1

|B(xn, n)|

∫
B(xn,n)

φ(t, x)dx.

Clearly, inf(R,∞) φn ≥ inf(R,∞)×ω φ > 0 for all n and ‖φn‖W 1,∞(R,∞) ≤ ‖φ‖
W 1,∞

(
(R,∞)×ω

).
The Ascoli theorem yields that we can assume, up to extraction, the existence of a contin-
uous function φ∞ such that φn → φ∞ locally uniformly in (R,∞) as n → +∞. One has
inf(R,∞) φ∞ ≥ inf(R,∞)×ω φ > 0 and ‖φ∞‖W 1,∞(R,∞) ≤ ‖φ‖

W 1,∞
(

(R,∞)×ω
).

On the other hand, integrating Lφ ≥ λφ over B(xn, n) ⊂ ω, one gets

−φ′n(t) +
1

|B(xn, n)|

∫
∂B(xn,n)

ν · (A(t)∇φ)dσ+
1

|B(xn, n)|

∫
∂B(xn,n)

q(t) · νφdσ+ c(t)φn ≥ λφn,

for all t > R, where ν is the outward unit normal to B(xn, n). Letting n→ +∞, we obtain

−φ′∞(t) + c(t)φ∞ ≥ λφ∞ almost everywhere in (R,∞)

since φ ∈ W 1,∞((R,∞)× ω
)
.

We just need to check that we can assume the test-function to be smooth in order to
conclude. Consider a convolution kernel K, that is, a smooth nonnegative function such that∫
RK = 1. Set Kσ(t) = 1

σ
K(t/σ). Take ε > 0 and let σ small enough so that ‖Kσ?c−c‖∞ ≤ ε.

Define lnψ := Kσ ? lnφ∞. Then ψ ∈ W 1,∞(R,∞) ∩ C1(R,∞), inf(R,∞) ψ > 0 and for all
t > R:

−ψ
′(t)

ψ(t)
= Kσ ?

−φ′∞
φ∞

≥ λ−Kσ ? c(t) ≥ λ− ε− c(t).

Thus, µ1 ≥ λ− ε. As this is true for all ε > 0 and λ < λ1, one finally gets µ1 ≥ λ1 and thus
µ1 = λ1. The other equality is obtained similarly. �
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Proof of Proposition 10.1.
1. Consider first some λ such that there exists φ ∈ W 1,∞(R,∞) ∩ C1(R,∞) with

inf(R,∞) φ > 0 and −φ′ + c(t)φ ≥ λφ for all t > R. Dividing by φ and integrating between s
and s+ t for s > R and t > 0, one gets

lnφ(s+ t)− lnφ(s) ≤
∫ s+t

s

c− λt.

Hence

λ+
1

t

(
ln inf

(R,∞)
φ− ln sup

(R,∞)

φ
)
≤ inf

s>R

1

t

∫ s+t

s

c.

Taking the liminf when t→ +∞, one gets

λ ≤ lim inf
t→+∞

inf
s>R

1

t

∫ s+t

s

c.

Thus λ1

(
L, (R,∞)× ω

)
≤ lim inft→+∞ infs>R

1
t

∫ s+t
s

c using Lemma 10.2.

2. Next, consider any small ε > 0 and let λ := lim inft→+∞ infs>R
1
t

∫ s+t
s

c−2ε < sup(R,∞) c.
In order to prove that λ1 ≥ λ, we need to construct an appropriate test-function φ. Up to
some decreasing of ε, we can define φ the solution of the Cauchy problem{

φ′ = (c(t)− λ)φ− φ2 in (R,∞),
φ(R) = φ0,

(102)

with φ0 an arbitrary initial datum in
(
ε, sup(R,∞) c − λ

)
. Clearly, −φ′ + c(t)φ ≥ λφ for all

t > R and as
φ′ ≤ ( sup

(R,∞)

c− λ)φ− φ2,

one has 0 ≤ φ ≤ sup(R,∞) c − λ. Hence, φ ∈ W 1,∞((R,∞)
)
. It is left to prove that

inf(R,∞) φ > 0 in order to conclude that λ1 ≥ λ.

3. The definition of λ yields that

there exists T > 0 such that for all t > T and s > R, one has
1

t

∫ s+t

s

c ≥ λ+ ε. (103)

Moreover, it clearly follows from (102) that φ′/φ is bounded over (R,∞) by some constant
M > 0 (which depends on c and λ), which means that lnφ is Lipschitz-continuous.

We will now prove that φ(s) ≥ φ(R)e−MT for all s > R and some M > 0. Assume that
there exists s > R such that φ(s) < ε and let

sε := sup{t < s, φ(t) ≥ ε} and Tε := sup{t > sε, φ(t) ≤ ε} ∈ (s,∞].

As φ(R) = φ0 > ε, one has sε > R. Then φ(t) ≤ ε for all t ∈ (sε, Tε) and thus
φ′(t) ≥ (c(t) − λ − ε)φ(t) for all t ∈ (sε, Tε). Moreover, φ(sε) = ε, which gives for all
t ∈ (0, Tε − sε):

φ(sε + t) ≥ ε exp
(∫ sε+t

sε

c(s′)ds′ − (λ+ ε)t
)
. (104)
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If t > T , then (103) gives φ(sε + t) ≥ ε. Thus, Tε ≤ T + sε. On the other hand, as lnφ is
Lipschitz-continuous for some constant M , one gets

φ(sε + t) ≥ φ(sε)e
−Mt ≥ εe−MT for all t ∈ (0, Tε − sε).

Finally, this gives φ(s) ≥ εe−MT for all s > R.

4. Taking φ as a test-function in the definition of λ1, we obtain

λ1 ≥ λ = lim inf
t→+∞

inf
s>R

1

t

∫ s+t

s

c− 2ε.

As this is true for all ε > 0, we conclude that λ1 ≥ lim inft→+∞ infs>R
1
t

∫ s+t
s

c. Step 1. gives

the reverse inequality. The proof for λ1 is similar. �

Let us mention that, as soon as Lemma 10.2 is known, one could prove Proposition 10.1
in a different way by using Lemma 3.2 in [74].

10.2 Computation of the speeds in the space-independent case

Proof of Proposition 3.9. Using the same notations as in the Proposition, we notice that
Proposition 10.1 implies

H(e, p) = lim
R→+∞,α→0

λ1(Lp, CR,α(e)) = lim
R→+∞

lim inf
t→+∞

inf
s>R

1

t

∫ s+t

s

(|p|2 + f ′u(s
′, 0))ds′.

Let bfc = limR→+∞ lim inft→+∞ infs>R
1
t

∫ s+t
s

f ′u(s
′, 0)ds′. Then,

w(e) = min
p·e>0

H(e,−p)
p · e

= min
p·e>0

p2 + bfc
p · e

= 2
√
bfc.

The computation of w(e) is similar. �

Proof of Proposition 3.10. We immediately get from Proposition 10.1 that

H(e, p) = H(e, p) = p〈A〉p− 〈q〉p+ 〈c〉.

The conclusion follows. �

11 The directionally homogeneous case

We will start this section by addressing the issue of existence of exact asymptotic spreading
speeds for directionally homogeneous coefficients in R2. That is, when the coefficients are
close to constants in radial sectors of R2 for sufficiently large |x|, we want to derive conditions
ensuring that S = S. Indeed, when there only exists a finite number of such segments, such
an equality holds.
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It is well-known that discontinuous coefficients in Hamilton-Jacobi equations could cause
a lack of uniqueness for the solutions. Indeed, comparison principles may fail (see [96] for
such a counter-example). It is thus natural to try to identify conditions on the Hamiltonians
ensuring uniqueness, but there are not many works on this topic (see [7, 96, 99] and the
references therein). Another type of problems is to introduce additional properties on the
solutions ensuring uniqueness (see for example [5, 45]), which is not relevant in the present
framework since Z∗ and Z∗ are obtained as limits for which we do not have such properties.
None of these references was directly well fitted to our present framework since we treat
here a highly nonlinear equation involving convex conjugates. We thus needed to adapt the
method developed in [96].

Proposition 11.1 Assume that N = 2 and let identify S1 and R/Z. Assume that there exist
0 = e0 < e1 < ... < er < 1, and a family of functions H1, ..., Hr, such that for all p ∈ RN ,
for all i ∈ [0, r − 1]:

∀e ∈ (ei, ei+1), H(e, p) = H(e, p) = Hi(p).

Assume furthermore that for all i ∈ [0, r], one has either Hi(p) ≥ Hi+1(p) for all p ∈ RN or
Hi(p) ≤ Hi+1(p) for all p ∈ RN , where Hr+1 := H0 by convention. Then S = S.

Proof. Consider an admissible path γ, that is, a function of H1([0, 1],R2) such that γ(0) = 0,
γ(1) = x and γ(s) 6= 0 for all s ∈ (0, 1). We can construct a finite sequence of closed,
nonempty, consecutive intervals (Ik)k∈[1,K] of [0, 1], which possibly intersect only at their
extrema, whose union is [0, 1] and such that for all k:

• either there exists j ∈ [1, n] such that ej < γ(s)/|γ(s)| < ej+1 for all s in the interior
of Ik,

• or there exists j ∈ [1, n] such that γ(s)/|γ(s)| = ej for all s ∈ Ik.

We do not modify the path γ in the intervals belonging to the first class. Consider an interval
Ik = [tk, tk+1] such that φ(s)/|φ(s)| = ej for some j in Ik.

By hypothesis, one has

H(e, p) = H(e, p) =

{
Hj−1(p) if e ∈ (ej−1, ej),
Hj(p) if e ∈ (ej, ej+1),

where we let e−1 := er if needed, remembering that we have identified S1 and R/Z.
Our hypotheses yield that one can assume Hj−1(p) ≤ Hj(p) for all p, which implies
−H?

j−1(q) ≤ −H?
j (q) for all q.

As H(e, p) is upper semicontinuous with respect to e, one gets H(ej, p) = Hj(p) for all
p ∈ RN and thus, as γ/|γ| = ej over Ik,∫ tk+1

t

H
?
( γ(s)

|γ(s)|
,−γ′(s)

)
ds =

∫ tk+1

t

H?
j

(
− γ′(s)

)
ds (105)

for all t ∈ Ik.
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Let ξ the orthonormal vector to ej pointing in the radial segment where H = Hj (see
Figure 11). Take δ > 0 small and define the modified path in Ik = [tk, tk+1]:

γδ(s) :=


γ(tk) + (s− tk)ξ if tk ≤ s ≤ tk + δ,
δξ + γ(s− δ) if tk + δ ≤ s ≤ tk+1 − δ,

1
δ

(
(tk+1 − s)

(
δξ + γ(tk+1 − 2δ)

)
+ (s− tk+1 + δ)γ(tk+1)

)
if tk+1 − δ ≤ s ≤ tk+1.

The construction of γδ is illustrated in Figure 11.

H = Hj−1(p)

H = Hj(p)

γδ(tk)

ej+1

ej−1

ej

ξ

γδ(tk+1)

γδ(tk+1 − δ)

δ

γδ(tk + δ)

Figure 5: Construction of the modified path γδ.

Taking δ small enough, it is clear that ej <
γδ(s)
|γδ(s)|

< ej+1 for all s ∈ (tk, tk+1) (where we

have identified S1 and R/Z) and thus H?
( γδ(s)
|γδ(s)|

,−γ′δ(s)
)

= H?
j

(
− γ′δ(s)

)
. Moreover, as Hj

is Locally Lipschitz-continuous by Proposition 2.2, one can easily show that there exists a
constant C > 0 such that:∣∣∣ ∫ tk+1

t

H?
j

(
− γ′δ(s)

)
ds−

∫ tk+1

t

H?
j

(
− γ′(s)

)
ds
∣∣∣ ≤ Cδ (106)

for all t ∈ Ik. Combining (105) and (106), we get∫ tk+1

t

H
?
( γ(s)

|γ(s)|
,−γ′(s)

)
ds ≥

∫ tk+1

t

H?
( γδ(s)
|γδ(s)|

,−γ′δ(s)
)
ds− Cδ.

Repeating this construction on each such set Ik, we eventually obtain an admissible path γδ
for each δ > 0 small enough and a constant C > 0 such that for all t ∈ [0, 1]:

max
t∈[0,1]

∫ 1

t

H
?
( γ(s)

|γ(s)|
,−γ′(s)

)
ds ≥ max

t∈[0,1]

∫ 1

t

H?
( γδ(s)
|γδ(s)|

,−γ′δ(s)
)
ds− Cδ.

The definition of U and U thus implies:

U(x) ≥ U(x)− Cδ
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and thus U ≤ U . On the other hand, H ≥ H gives U ≤ U . Hence U ≡ U and thus S = S.
�

We are now in position to prove the results of Section 3.8.

Proof of Proposition 3.11. It is easy to see that

H(e, p) = H(e, p) =

{
a+|p|2 + f ′(0) if e1 > 0
a−|p|2 + f ′(0) if e1 < 0

since the coefficients converge uniformly in the truncated cones CR,α(e) when e1 6= 0
and α is small enough. The semicontinuity yields H(±e2, p) = a−|p|2 + f ′(0) and
H(±e2, p) = a+|p|2 + f ′(0).

Proposition 11.1 yields that we only need to compute

U(x) = inf
{

maxt∈[0,1]

∫ 1

t
H
?( γ(s)
|γ(s)| ,−γ

′(s)
)
ds, γ(0) = 0, γ(1) = x, γ(s) 6= 0 for all s ∈ (0, 1)

}
= inf

{
maxt∈[0,1]

∫ 1

t
|γ′(s)|2

4a
(
γ(s)
)ds− f ′(0)(1− t), γ(0) = 0, γ(1) = x, γ(s) 6= 0 for all s ∈ (0, 1)

}
.

(107)
Such minimization problems are very close to other problems arising in geometric optics.
The function

N(x) :=

{
1/4a+ if x1 ≥ 0,
1/4a− if x1 < 0,

can be viewed as a refraction index and the geodesics are the ray paths.
First notice that if x ∈ R2 satisfies x1 ≥ 0, then as a+ > a−, the function γ(s) = sx

minimizes (107) and thus

U(x) =
(
|x|2/4a+ − f ′(0)

)
+

if x1 ≥ 0.

More generally, as a− < a+, one always has U(x) ≥ |x|2/4a+ − f ′(0) and thus
|x| > 2

√
a+f ′(0) implies U(x) > 0. Consider now x ∈ R2 such that x1 < 0 and

|x| ≤ 2
√
a+f ′(0).

3. Next, Lemma 5.7 yields that U(x) is indeed a minimum. Take γ an admissible path.
As γ is a minimizer, we can extract some properties of γ from the Euler-Lagrange equation
associated with the minimization problem. Let

τ = max{s ∈ [0, 1), γ1(s) ≥ 0},

where γ1(s) is the first coordinate of γ(s). As γ is continuous, γ(0) = 0 and γ1(1) = x1 < 0,
this maximum is well-defined. One has γ1(τ) = 0 and γ1(s) < 0 for all s ∈ (τ, 1].

Next, assume that τ > 0 and define

γ̃(s) =

{
s
τ
γ(τ) if s ∈ [0, τ ],

s−τ
1−τ x+ s−τ

1−τ γ(τ) if s ∈ (τ, 1].
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One can take γ̃ as a test-function in (107), which gives

U(x) ≤ maxt∈[0,1]

( ∫ 1

t
N(γ̃(s))|γ̃′(s)|2ds− f ′(0)(1− t)

)
= max

{
0,

|x− γ(τ)|2

4a−(1− τ)
− f ′(0)(1− τ),

|γ(τ)|2

4a+τ
+
|x− γ(τ)|2

4a−(1− τ)
− f ′(0)

}
.

(108)

On the other hand, the Cauchy-Schwarz inequality yields

|γ(τ)|2 =
∣∣∣ ∫ τ

0

γ′(s)ds
∣∣∣2 ≤ τ

∫ τ

0

|γ′(s)|2ds and

|x− γ(τ)|2

4a−(1− τ)
=

1

4a−(1− τ)

∣∣∣ ∫ 1

τ

γ′
∣∣∣2 ≤ 1

4a−

∫ 1

τ

|γ′|2

and these inequalities are equalities if and only if γ′ is constant in (0, τ) and (τ, 1). Hence,
the definition of U(x) yields that (108) is smaller than U(x) and thus γ′ is constant in (0, τ)
and in (τ, 1).

If τ = 0 then γ(s) = sx and thus U(x) = |x|2
4a−
− f ′(0) in this case.

4. Assume that τ > 0 and let y = γ(τ). We know that y1 = γ1(τ) = 0. We assume
that x2 ≥ 0, the case x2 < 0 can be treated similarly. It is then easy to check that y2 ≥ 0,
otherwise ϕ(s) = sx is a better minimizer of (107), which is impossible. Similarly, one can
prove that τ > 0 implies x2 6= 0 and y2 6= 0.

For all σ ∈ (0, 1) and z ∈ R, we define

ϕσ,z(s) =


sze2

σ
if s ∈ [0, σ],

(s− σ)x

(1− σ)
+

(1− s)ze2

(1− σ)
if s ∈ [σ, 1],

(109)

where e2 is the unit vector associated with the second coordinate axis. We have proved in
the previous step that γ = ϕτ,y2 . But as any function of the form (109) is an appropriate
test-function for the minimization problem (107), we get

U(x) = min
{

max
{

0,
|x− ze2|2

4a−(1− σ)
−f ′(0)(1−σ),

z2

4a+σ
+
|x− ze2|2

4a−(1− σ)
−f ′(0)

}
, σ ∈ (0, 1), z ∈ R

}
(110)

and this minimum is reached when σ = τ and z = y2.
Take x ∈ R2 such that U(x) > 0. Assume first that |y| < 2

√
f ′(0)a+τ . Then

U(x) =
|x− y|2

4a−(1− τ)
− f ′(0)(1− τ)

and z = y2, σ = τ is a local minimizer of

(z, τ) 7→ |x− ze2|2

4a−(1− σ)
− f ′(0)(1− σ),
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which is a contradiction since this function is increasing with respect to σ and τ > 0. Hence
|y| ≥ 2

√
f ′(0)a+τ .

Next, assume that |y| = 2
√
f ′(0)a+τ . Then τ is a minimizer of

σ ∈ (0, 1) 7→
|x− 2

√
a+f ′(0)σe2|2

4a−(1− σ)
− f ′(0)(1− σ).

Derivating this function and computing, one obtains:

|x− 2
√
a+f ′(0)e2|2 = 4f ′(0)(1− τ)2(a+ − a−),

which gives, after some more computations:

U(x) =

√
a+f ′(0)

(
x2 − 2

√
a+f ′(0)

)
4a−

.

This yields a contradiction since x2 < |x| ≤ 2
√
a+f ′(0) and thus U(x) = 0.

Lastly, if |y| > 2
√
f ′(0)a+τ , then as (τ, y2) is a critical point for the right-hand side, one

has 
y2

2

a+τ 2
=

|x− y|2

a−(1− τ)2
,

y2

a+τ
=

x2 − y2

a−(1− τ)
.

(111)

Taking the square of the second line of (111) and multiplying by a+, one gets

a+(x2 − y2)2 = a−|x− y|2. (112)

In other words, x2 − y2 = r|x1|, where

r :=

√
a−

a+ − a−

and, as y2 > 0, one gets x2 > r|x1|. Using the second line of (111) to compute τ , one gets

τ =
(

1 +
a+

a−
× |x1|r
x2 − r|x1|

)−1

. (113)

Eventually, a straightforward computation gives

U(x) =
y2

2

4a+τ 2
− f ′(0) =

1

4a+

(
x2 +

|x1|
r

)2

− f ′(0).

Similarly, one can prove that if x2 < 0, then −x2 > r|x1| and

U(x) =
y2

2

4a+τ
− f ′(0) =

1

4a+

(
− x2 +

|x1|
r

)2

− f ′(0).
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y

0

x2 = rx1

Figure 6: This figure represents the geodesics of the minimization problem (107). The darker
area corresponds to the case x1 > 0 and the lighter one to the case x1 < 0 and |x1| ≥ r|x2|.
The large arrows represent the ray paths in each of these areas.

5. There only remains to identify the condition τ > 0 in order to conclude. We have
already checked that τ > 0 implies |x2| > r|x1|. On the other hand, if |x2| > r|x1|, then
letting

σ =
(

1 +
a+

a−
× |x1|r
|x2| − r|x1|

)−1

and z =

{
x2 − r|x1| if x2 > 0
x2 + r|x1| if x2 < 0

,

the same computations as above gives∫ 1

0

N(ϕσ,z(s))|ϕ′σ,y2(s)|
2ds =

1

4a+

(
|x2|+

|x1|
r

)2
.

On the other hand, we know that if τ = 0, then γ(s) = sx and U(x) = |x|2
4a−
− f ′(0). But the

condition x2 > rx1 then yields

U(x)+f ′(0) =
|x1|2 + |x2|2

4a−
=

1

4a+

( 1

r2
+1
)
|x|2 =

1

4a+

(x2

r
−x1

)2

+
1

a+

(
x2+

x1

r

)2

>
1

4a+

(
x2+

x1

r

)2
.

Hence, γ is not a minimizer of (107), which is a contradiction. We derive a similar contra-
diction if −x2 > r|x1|. We conclude that τ > 0 if and only if |x2| > r|x1|.

Gathering all these facts, we have proved that

U(x) + f ′(0) =


|x|2/4a− if x1 < 0 and |x1| ≤ r|x2|,
|x|2/4a+ if x1 ≥ 0,

1
4a+

(
|x2|+ |x1|

r

)2
if x1 < 0 and |x1| > r|x2|.

Eventually, U(x) = 0 is the equation of two circles of radii 2
√
a+f ′(0) for x1 ≥ 0 and

2
√
a−f ′(0) for x1 < 0 and |x1| ≤ r|x2|. For x1 < 0 and x2 > r|x1| or x2 < −r|x1|, it is the
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equation of a line, which is the frontier of the convex hull of the two half-circles. This ends
the proof. �

Remark: Note that the population leaves the set {x1 ≥ 0} with an angle π/2 and enters

{x1 < 0} with an angle θ given by tan θ =
x2 − y2

|x1|
= r =

√
a−

a+ − a−
, which also reads

sin θ = cos θ × tan θ =
tan θ√

1 + tan2 θ
=

√
a−
a+

.

Hence, θ is characterized by 1√
a−

sin θ = 1√
a+

sin π/2, which is the classical Snell-Descartes law

for geometric optics, with refraction indexes 1√
a±

, which is consistent with the local speeds

2
√
f ′(0)a± in each half-space. It is the first time, as as we know, that such a characterization

is identified in a reaction-diffusion setting.

Proof of Proposition 3.12. As H(e, p) = H(e, p) for all e 6= e2 and p ∈ RN , by
Proposition 11.1 we only need to characterize the set {U > 0}, where

U(x) := min maxt∈[0,1]

{∫ 1

t

(
1
4
|γ′(s)|2 − µ

(
γ(s)

))
ds, γ ∈ H1([0, 1]), γ(0) = 0, γ(1) = x,

γ(s) 6= 0 for all s ∈ (0, 1)
}
,

(114)
where µ(x) = µ+ if x1 ≥ 0, µ(x) = µ− if x1 < 0. If x1 ≥ 0, then γ(s) = sx minimizes (114)

and U(x) =
( |x|2

4
− µ+

)
+

. Otherwise, the same arguments as above yield that there exists a

minimizer γ = ϕτ,y2 of (114) defined by (109), with τ ∈ [0, 1)and y = γ(τ), y1 = 0, and the
maximum with respect to t ∈ [0, 1] is reached when t = 0, τ or 1.

If τ = 0, then U(x) =
( |x|2

4
− µ−

)
+

. We will now compute U(x) when τ > 0 and
characterize this situation. Assume that x2 ≥ 0, the case x2 < 0 being treated similarly. If
x2 = 0, then it is easy to check that γ(s) = sx minimizes (114), which contradicts τ > 0.
Putting γ = γσ,z and t = 0, σ or 1 in (114) gives

U(x) = min
σ∈(0,1),z∈R

max
{

0,
|x− ze2|2

4(1− σ)
− µ−(1− σ),

|z|2

4σ
− µ+σ +

|x− ze2|2

4(1− σ)
− µ−(1− σ)

}
where σ = τ and z = y2 minimizes this quantity.

Let x ∈ R2 such that U(x) > 0 and |x| ≤ 2
√
µ+. Assume first that |y| > 2

√
µ+τ . Then

U(x) = min
σ∈(0,1),z∈R

( |z|2
4σ
− µ+σ +

|x− ze2|2

4(1− σ)
− µ−(1− σ)

)
and this minimum is reached when σ = τ and z = y2. As y is a critical point of this function
to minimize, one has:

y2

τ
=
x2 − y2

1− τ
, leading to y2 = τx2.

But as |y| > 2
√
µ+τ , this implies |x| ≥ |x2| > 2

√
µ+, a contradiction.
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Hence, |y| ≤ 2
√
µ+τ and

U(x) = min
σ∈(0,1),z∈R

( |x− ze2|2

4(1− σ)
− µ−(1− σ)

)
.

As the right hand-side is increasing with respect to σ, we necessarily have τ = |y|
2
√
µ+

. Thus,

in this case:

U(x) = min
σ∈(0,1)

( |x− 2
√
µ+σe2|2

4(1− σ)
− µ−(1− σ)

)
.

Then τ is a critical point for the right-hand side and

|x− 2
√
µ+τe2|2

4(1− τ)2
+ µ− −

x2 − y2

2(1− τ)
2
√
µ+ = 0.

Developing this expression, we find

|x2 − 2
√
µ+|2 + x2

1

4(1− τ)2
− µ+ + µ− = 0.

Putting back this expression in the computation of U(x), we find that

U(x) = (1− τ)
{
x2−y2
2(1−τ)

2
√
µ+ − 2µ−

}
= (x2 − y2)

√
µ+ − 2µ−(1− τ)

= x2
√
µ+ − 2µ− − 2(µ+ − µ−)τ

= x2
√
µ+ − 2µ+ +

√
µ+ − µ−|x− 2

√
µ+e2|.

Hence, U(x) > 0 and |x| ≤ 2
√
µ+ implies

µ+(x2 − 2
√
µ+)2 < (µ+ − µ−)

(
(x2 − 2

√
µ+)2 + x2

1

)
,

which eventually yields

2
√
µ+ − x2 <

√
µ+

µ−
− 1|x1|.

It is easy to check that U(x) > 0 when |x| > 2
√
µ+.

Reciprocally, one can check that if 2
√
µ+ − x2 ≥

√
µ+
µ−
− 1|x1|, then U(x) = 0. The case

x2 < 0 is treated similarly.
These computations also yield that τ > 0 implies |x − 2

√
µ+e2| < 2

√
µ+ − µ−, which

reads on the frontier of the set {U = 0}:

|x1| = −x1 < 2
√
µ+ − µ−

√
µ−
µ+

.
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The same comparison argument as in the proof of Proposition 3.11 yields that the recip-
rocal is true. We have thus proved that

U(x) =


|x|2/4− µ− if x1 < 0 and |x1| ≥ 2

√
µ+ − µ−

√
µ−
µ+
,

|x|2/4− µ+ if x1 ≥ 0,

x2
√
µ+ − 2µ+ +

√
µ+ − µ−|x− 2

√
µ+e2| if x1 < 0 and |x1| < 2

√
µ+ − µ−

√
µ−
µ+
.

The fact that {U = 0} is the convex envelope of the half-disk of radius 2
√
µ− in the

half-plane {x1 < 0} and 2
√
µ+ in the half-plane {x1 > 0} easily follows, by noting that

x1 = −2
√
µ+ − µ−

√
µ−
µ+

is the abscissa of the point of the circle of radius 2
√
µ− from which

the tangent hits the point (0, 2
√
µ+).

�

Proof of Proposition 3.13. We will only sketch this proof since it is very similar to
that of Proposition 3.11. First, one has

H(e, p) = H(e, p) =

{
a+p

2 + f ′(0) if |e2| > r0e1,
a−p

2 + f ′(0) if |e2| < r0e1.

Hence, S = S = {x ∈ R2, U(x) = 0}, where U(x) is defined by the same minimization
problem as (107) except that now N(x) = 1/4a+ if |x2| ≥ r0x1 and 1/4a− if |x2| < r0x1.
Clearly, U(x) = |x|2/4a+ − f ′(0) if |x2| ≥ r0x1. If 0 < x2 < r0x1 (the case 0 > x2 > −r0x1

being treated similarly), the minimizer γ associated with U can be written

γ(s) =

{
s
τ
y if s ∈ [0, τ ],
y + s−τ

1−τ (x− y) if s ∈ [τ, 1],

where τ ∈ [0, 1) is the time when the geodesic leaves the set x2 ≥ r0|x1| and y = γ(τ), which
imposes y2 = r0y1.

Let X2 is the projection of x on the axis x2 = r0x1 and X1 is the projection of x on the
orthogonal axis. Let θ0 := arctan r0 and θ := arctan r, where we remind to the reader that
r is defined by

r =

√
a−

a+ − a−
.

The inequality rr0 < 1 reads θ < π/2 − θ0. It is easy to check from this inequality that
if (x1, x2) belongs to the line X2 = rX1, with x1 > 0, then one has x2 < 0. Thus, as we
are currently considering the case 0 < x2 < r0x1, we have proved that rr0 < 1 ensures that
X2 > rX1. This implies in particular that τ > 0 is always satisfied in this area, as observed
in the proof of Proposition 3.11, from which it follows that

U(x) + f ′(0) =
1

4a+

(X2 +X1/r)
2.

Hence, U(x) = 0 is the equation of a line when 0 < x2 < r0x1. Similarly, one can prove
that U(x) = 0 is the equation of another line when 0 > x2 > −r0x1, and we have already
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shown that it is the equation of a circle when |x2| ≥ r0x1. It only remains to compute this
intersection point of the two lines.

If x2 = 0, one has X1 = x1 sin θ0 and X2 = x1 cos θ0. Hence,

U(x) + f ′(0) =
1

4a+

(
x1 cos θ0 +

x1 sin θ0

r

)2

=
x2

1 cos2 θ0

4a+

(
1 +

r0

r

)2

=
x2

1

4a+(1 + r2
0)

(
1 +

r0

r

)2

.

Finally, the intersection point is
(

2
√
f ′(0)a+(1 + r2

0)/
(
1 +

r0

r

)
, 0
)

. The equation of the two

lines in (x1, x2) can then easily be computed, leading to the conclusion. �

12 Proof of the spreading property with the alterna-

tive definition of the expansion sets and applica-

tions

The proof of Lemma 3.14 will rely on the following non-existence result. A similar result was
proved in the one-dimensional setting [19]. Here, the new difficulty is to take into account
what happens on the boundary of the truncated cylinder CR,α(e).

Lemma 12.1 Assume that z ∈ C2(CR,α(e)) is positive and satisfies

−∆z +M |∇z| ≥ δz in CR,α(e) (115)

for some M > 0 and δ > 0. Then one cannot have lim|x|→+∞
ln z(x)
|x| = 0.

Proof of Lemma 12.1. We could assume that e = e1. Even if it means decreasing δ,
we could assume that δ < M2. Define

P (k) := −k2 +Mk − δ

and denote κ± := 1
2

(
M±
√
M2 − δ

)
> 0 its two roots. Assume first that lim|x|→+∞

ln z(x)

|x|
= κ > 0,

with κ/ cosα < κ−.
Take κ′ > 0 such that κ′ < κ < κ′

cosα
< κ−. By monotonicity of the generalized principal

eigenvalues with respect to R, we can assume that R is large enough so that

z(x) ≥ eκ
′|x| if |x| ≥ R.

Similarly, we can take α small enough so that κ+ cos2 α > κ−.
Define

zB(x) := Ae
κ′

cosα
x1 −Beκ+x1 for all x ≤ 1

κ+ − κ′

cosα

ln
( Aκ′

Bκ+ cosα

)
=: XB

with A = e−
κ′

cosα
R+κ′R < 1
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and zB(x+XB) := zB(XB − x) for all x ≥ 0.

As zB(XB) = maxR z
B, one has (zB)′(XB) = 0 and the function zB is C1 over R. Also, note

that zB(x1) ≤ Ae
κ′

cosα
x1 for all x1 ∈ R.

Let us check that z ≥ zB on ∂
(
CR,α(e1) ∩ BR+h(0)

)
for h large enough. When |x| = R,

one has
zB(x) ≤ Ae

κ′
cosα

x1 ≤ Ae
κ′

cosα
R = eκ

′R ≤ z(x).

When x1 = |x| cosα, we compute

zB(x) ≤ Ae
κ′

cosα
x1 ≤ eκ

′|x| ≤ z(x).

As zB is nondecreasing on (−∞, XB), one has for all x ≤ XB:

−∆zB +M |∇zB| − δzB = −∂x1x1zB +M∂x1z
B − δzB = AP

(
κ′/ cosα

)
e

κ′
cosα

x1 ≤ 0.

since κ′/ cosα < κ−. When x1 > XB, as zB(x+XB) := zB(XB − x), one gets

−∆zB +M |∇zB| − δzB = −∂x1x1zB −M∂x1z
B − δzB = AP

(
κ′/ cosα

)
e

κ′
cosα

x1 ≤ 0.

It remains to prove that zB ≤ z when |x| = R + h. Define:

hB := −R +
1

cosα
XB > 0 when B is small enough.

For all x such that |x| = R + h, with h > hB, one has R + h ≥ x1 ≥ (R + h) cosα > XB.
We thus write x1 = XB + y1, with y1 > 0, and we get:

zB(y1 +XB) = zB(XB − y1) ≤ Ae
κ′

cosα
(XB−y1)

≤ Ae
2κ′
cosα

XB−κ′(R+h) = e
κ′

cosα
(2XB−R)−κ′h

≤ eκ
′(R+h) as h ≥ hB

≤ eκ
′|x| = z(x).

We have used here the obvious inequality 2hB ≥ 2XB−R
cosα

− R. Hence, zB is a subsolution of
(115) on CR,α(e1).

The sub and super solution method provides a solution Z of (115), with Z = z on
∂
(
CR,α(e1) ∩ BR+h(0)

)
, such that 0 ≤ Z ≤ z, and Z is above all the nonnegative sub

solutions. In particular, z ≥ zB on CR,α(e1) ∩ BR+h(0) for all h ≥ hB. Letting B → 0, as
limh→+∞B = 0, as hB → +∞, one gets

z(x) ≥ Ae
κ′

cosα
x1 in CR,α(e1).

Hence,

lim
x1→+∞

1

x1

ln z(x1, 0) = κ ≥ κ′

cosα
,
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a contradiction with our choice of κ′.
Now, if lim|x|→+∞

ln z(x)
|x| = 0, then z̃(x) := z(x)eκ|x| satisfies the hypotheses of the previous

step if κ is sufficiently small, and thus a contradiction follows. �

Proof of Lemma 3.14. Assume that η(CR,α(e)) < η(CR,α(e)) and let η′, η′′ such that

η(CR,α(e)) > η′ > η′′ > η(CR,α(e)).

There exist φ, ψ ∈ B such that Lφ ≥ η′φ and Lψ ≤ η′′ψ in CR,α(e). Let z := ψ/φ. The

function z is nonnegative and lim|x|→+∞
ln z(x)
|x| = 0 and satisfies

−ai,j∂i,jz −
(
qi + 2ai,j

∂jφ

φ

)
∂iz ≥ (η′ − η′′)z in CR,α(e).

The contradiction then follows from Lemma 12.1. �

Proof of Theorem 7. The proof is the same as that of Theorem 2. Indeed, one
only needs to check that Proposition 5.3 holds with H(p) = limR→+∞ η1(L−p, CR,α(e)) and
H(p) = limR→+∞ η1(L−p, CR,α(e)). The reader could check that the only place where the fact
that the test-functions in the definition of the generalized principal eigenvalue are bounded
and has positive infimum is equation (76). Indeed, with our alternative definitions based
on η1 and η1, if φ is a test-function in the definition of η1 or η1, then w(x) := lnφ(x) still
satisfies

εw(x/ε)→ 0 as ε→ 0 locally in x ∈ CR,α(e) since lim
|x|→+∞

w(x)/|x| = 0. (116)

Then one could continue the proof as in that of Proposition 5.3 and, with the comparison
η1(CR,α(e)) ≥ η1(CR,α(e)) in hand, conclude as in the proof of Theorem 2. Moreover, as the

new Hamiltonians H(p) = limR→+∞ η1(L−p, CR,α(e)) and H(p) = limR→+∞ η1(L−p, CR,α(e))

do not depend on e = x/|x|, the expansion sets T and T could be written in a Wulff-type
form with the same arguments as in Proposition 3.3. �

Proof of Proposition 3.16. We know from [63] that vp is semiconcave: there exists a
constant C such that ∆vp(x) ≤ C for a.e. x. Hence, we compute
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∇ϕp(x) =

((
1− L′(|x|)|x|

L(|x|)

)
∇vp

(
x/L(|x|)

)
+
L′(|x|)x
|x|

vp
(
x/L(|x|)

))
ϕp(x),

∆ϕp(x)

ϕp(x)
=

1

L(|x|)

(
1− L′(|x|)|x|

L(|x|)

)2

∆vp
(
x/L(|x|)

)
−
(
L′′(|x|)
L(|x|)

− L′(|x|)2

L(|x|)2
+
L′(|x|)
L(|x|)

)
x · ∇vp

(
x/L(|x|)

)
+

∣∣∣∣(1− L′(|x|)|x|
L(|x|)

)
∇vp

(
x/L(|x|)

)
+
L′(|x|)x
|x|

vp
(
x/L(|x|)

)∣∣∣∣2

+

((
1− L′(|x|)|x|

L(|x|)

)
L′(|x|)x
L(|x|)|x|

∇vp
(
x/L(|x|)

))
+ L′′(|x|)vp

(
x/L(|x|)

)
≤

∣∣∇vp(x/L(|x|)
)∣∣2 + o|x|→+∞(1).

This gives

lim sup
|x|→+∞

Lpϕp(x)−H(p)ϕp(x)

ϕp(x)
≤ 0.

Moreover, one has

lnϕp(x)

|x|
=
L(|x|)vp

(
x/L(|x|)

)
|x|

→ 0 as |x| → +∞

since vp is periodic and L(|x|)/|x| → 0.
Hence, taking ϕp as a test-function in the definitions of η1(Lp,RN\BR), one gets

η1(Lp,RN\BR) ≤ H(p) + 2δ.

We conclude that
lim

R→+∞
η1(Lp,RN\BR) ≤ H(p).

One proves similarly that limR→+∞ η1(Lp,RN\BR) ≥ H(p), by using −vp instead of vp,
which is the unique viscosity solution of

− |∇ṽp(y) + p|2 − c0(y) = −H(p) over R, (117)

and is semiconvexe.
Hence,

lim
R→+∞

η1(Lp,RN\BR) = lim
R→+∞

η1(Lp,RN\BR) = H(p).

The conclusion then immediately follows from Theorem 7.
�

82



13 Further examples and other open problems

In order to conclude the statement of the results, we discuss their optimality analyzing in
detail various examples.

13.1 An example of recurrent media which does not admit an
exact spreading speed

We have described in Section 3.2 how the results simplify when the coefficients are recurrent.
Then we applied these results to various classes of recurrent media, such as homogeneous,
periodic and almost periodic ones, for which we have proved that w(e) = w(e), showing
that there exists an exact asymptotic spreading speed in every directions. It could thus
be tempting to conjecture that any equation with recurrent coefficients admits an exact
asymptotic spreading speed in every directions. We will indeed construct a counter-example
to this conjecture.

The next Proposition gives a generic way to construct examples for which w∗(e) < w∗(e).
We recall here that another such example was provided by the second author, together with
Garnier and Giletti [44], for an equation with a non-recurrent reaction term depending on x
(but not on t).

Proposition 13.1 Consider a uniformly continuous and bounded function ω ∈ Cδloc(R) and
let

ω = lim sup
T→+∞

1

T

∫ T

0

ω(t)dt and ω = lim inf
T→+∞

1

T

∫ T

0

ω(t)dt.

Let e ∈ SN−1, consider a bounded, nonnegative, mesurable and compactly supported function
u0 6≡ 0 and let u the solution of the Cauchy problem{

∂tu−∆u− ω(t)e · ∇u = u(1− u) in (0,∞)× RN ,
u(0, x) = u0(x) in RN .

(118)

Then if ω − ω < 4, one has

w∗(e) = 2 + ω and w∗(e) = 2 + ω.

Moreover, if w ∈ (w∗(e), w
∗(e)), then for all s ∈ [0, 1], there exists a sequence tn → +∞

such that u(tn, wtne)→ s as n→ +∞.

Let us postpone the proof of this result for a moment and display some of its applications.

Example 1. Let first construct an explicit example of non-recurrent coefficients for
which w∗(e) < w∗(e). Consider the same equation as in Proposition 13.1 with

ω(t) =

{
ω2 if t ∈ [sn + 1, tn],
ω1 if t ∈ [tn + 1, sn+1],

where (sn)n≥1 and (tn)n≥1 are two sequences of R+ such that tn− sn = n and sn+1− tn = n,
0 < ω1 < ω2 < 4 + ω1, ω is smooth and ω(t) ∈ [ω1, ω2] for all t ∈ R. Then it follows from
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Proposition 13.1 that w∗(e) = 2 + ω1 and w∗(e) = 2 + ω2. Moreover, one easily computes
using the Remark below Proposition 3.9 that w(e) = 2 + ω1 and w(e) = 2 + ω2. Thus, in
this case, w∗(e) < w∗(e) but our result is optimal since w(e) = w∗(e) and w(e) = w∗(e).

Example 2. Let now construct a similar example but with recurrent coefficients. It
has long been known that recurrent functions do not necessarily admit a mean value, but
there does not exist many explicit examples in the literature. One was exhibited by Lewin
and Lewitan in 1939 [62]. Let ω such a function: ω is uniformly continuous, bounded and
depends recurrently on t, and one has

lim inf
T→+∞

1

T

∫ T

0

ω(t)dt < lim sup
T→+∞

1

T

∫ T

0

ω(t)dt.

Under the same hypotheses as in Proposition 13.1, one then immediatley gets w∗(e) < w∗(e),
that is, equation (118) does not admit an exact spreading speed in direction e, despite it has
recurrent coefficients.

In these Examples, as in [44], the spreading is not linear: the level lines of u(t, ·) do not
move with a given speed but oscillate between two speeds. Hence, instead of considering
the limit of t 7→ u(t, wte) with w ∈ R+, one should try to localize the level sets of u(t, ·)
by computing the limit of t 7→ u

(
t, e
∫ t

0
w(s)ds

)
, with w ∈ C0(R+,R+). We introduced with

Hamel some notions that are useful when one tries to identify such “nonlinear” spreading
properties in [13]. The method we present in this manuscript only fits to the investigation
of “linear” spreading properties.

We leave as an open problem the existence of spreading surfaces, in the sense of [13],
involving generalized principal eigenvalues.

Proof of Proposition 13.1. The proof relies on the change of variable

v(t, x) = u(t, x+ e

∫ t

0

ω(s)ds).

This function satisfies {
∂tv −∆v = v(1− v) in R× RN ,
v(0, x) = u0(x) in RN .

(119)

Thus min|x|≤wt v(t, x)→ 1 if 0 < w < 2 and max|x|≥wt v(t, x)→ 0 if w > 2, leading to

w∗(e) ≥ ω + 2 and w∗(e) ≤ ω + 2.

Now if ω + 2 > ω and w ∈
(
2 + ω, 2 + ω

)
, there exist two sequences (tn)n and (t′n)n such

that

ω = lim
n→+∞

1

tn

∫ tn

0

ω(t)dt and ω = lim
n→+∞

1

t′n

∫ t′n

0

ω(t)dt.

One also has u(tn, wtne) = v
(
tn, tne(w− 1

tn

∫ tn
0
ω(s)ds)

)
. But as −2 < w−ω (since 4 ≥ ω−ω)

and 2 > w − ω, there exists some small positive ε such that

−2 + ε < w − 1

tn

∫ tn

0

ω(s)ds < 2− ε
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for n sufficiently large. Hence, one gets

u(tn, wtne) ≥ min
|x|≤(2−ε)tn

u(tn, x)→ 1 as n→ +∞.

Similarly, one can prove that u(t′n, wt
′
ne)→ 0 as n→ +∞.

Define the ω-limit set as t→ +∞ of the function t 7→ u(t, wte):

Ω = {s ∈ [0, 1],∃(tn)n, tn → +∞, u(tn, wtne)→ s}.

As the function t 7→ u(t, cte) is continuous, this set is connected. Moreover, 0 and 1 both
belong to Ω. Hence Ω = [0, 1], which concludes the proof. �

13.2 A time-heterogeneous example where our construction is not
optimal

In the next example, Proposition 13.1 shows that w∗(e) = w∗(e), that is, there exists an exact
spreading speed, but the speeds we construct through Theorem 2 are not equal: w(e) < w(e).
Thus, Theorem 2 do not give optimal bounds on the level sets of u(t, ·) in this case.

Example 3. Consider the same ω as in Example 1 but with sn+1 − tn = n2. Then on
one hand, Proposition 13.1 gives

w∗(e) = w∗(e) = 2 + ω1 since
1

t

∫ t

0

ω(s)ds→ ω1 as t→ +∞.

On the other hand, one can easily prove that

lim sup
t→+∞

sup
s>0

1

t

∫ s+t

s

ω = ω2 and lim inf
t→+∞

inf
s>0

1

t

∫ s+t

s

ω = ω1.

The Remark below Proposition 3.9 gives

w(e) = 2 + ω1 = w∗(e) and w(e) = 2 + ω2 > w∗(e).

13.3 A multi-dimensional example where our construction is not
optimal

We conclude with an example showing that our construction of w(e) might not be optimal
in dimension N . In this example a direct approach, through sub and supersolutions, gives
more accurate results.

Proposition 13.2 Assume that u satisfies

∂tu− a(x)∆u = u(1− u), in (0,∞)× R2,

where u0 6≡ 0 is compactly supported, nonnegative and continuous, a is smooth and

a(x) =

{
a1 if x1 ≥ x2

2 + 1,
a2 if x1 ≤ x2

2,
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with a1 > a2 > 0.
Then, S = {x ∈ RN , |x| ≤ 2

√
a1} and S is the closed convex envelope of

B(0, 2
√
a1) ∪ {(2√a2, 0)}.

However, for all compact subset K ⊂ intS, one has

lim
t→+∞

sup
x∈tK
|u(t, x)− 1| = 0.

2
√
a1

2
√
a2

Figure 7: The set S of Proposition 13.2.

This example indicates that considering what happens in the full truncated cones CR,α(e)
in the computations of the Hamiltonians might not be optimal. As already observed in our
previous paper with Hamel [13], only the value of the coefficients at finite distance from
the propagation paths should matter. The present Hamilton-Jacobi approach requires us to
consider what happens in the truncated cones CR,α(e), which is sub-optimal.

We leave as an open question a refinement of the method described in this paper providing
a unified approach giving optimal results in this framework.

Proof of Proposition 13.2. One easily computesH(e, p) = H(e, p) = a2|p|2+1 if e 6= e1,
since a is close to a2 in the cones CR,α(e) if e 6= e1, R is large and α is small. Similarly, using
appropriate balls with increasing radii, one gets H(e1, p) = a1|p|2+1 and H(e1, p) = a2|p|2+1.
Hence, S = {w ∈ R2, |x| ≤ 2

√
a2} and the same arguments as in the proof of Proposition

3.11 yield that S is the closed convex envelope of B(0, 2
√
a2) and (2

√
a1, 0).

Next, let 0 ≤ w1 < 2
√
a1 and 0 ≤ w2 < 2

√
a2. For i = 1, 2, let (λi, φi) the principal

eigenelements associated with the operator −ai∆− 1 +w2
i /4ai in the ball of radius Ri, with

Dirichlet boundary conditions. As 0 ≤ wi < 2
√
ai, there exist δ > 0 and R1 > R2 large

enough such that λi < −δ for i = 1, 2. Up to multiplication by a positive constant, we can
assume that ‖φi‖∞ < δewiR/(2ai) and that

φ1(x)e−w1x·ξ1/2a1 ≥ φ2(x)e−w2x·ξ2/2a2 in B(0, R2). (120)

Define
ui(t, x) := φi(x− witξi)e

wi
2ai

(wit−x·ξi),

where ξ1 = e1 and ξ2 6= e1 is a unit vector. These functions satisfy:

∂tui − ai∆ui = ui + λiui < ui(1− ui) in B(witξi, Ri)
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since ui < δ, and vanish on the boundary of these balls. Moreover, this inequation stays true
if we multiply ui by any positive constant κ ∈ (0, 1).

Let T1 > 0 large enough such that a(x) = a1 in B(w1te1, R1) for all t ≥ T1. Let κ1 > 0
such that

u(T1, x+ w1T1e1) ≥ κ1φ1(x)ew1R1/2a1 ≥ κ1u1(T1, x+ w1T1e1) in B(0, R1).

It follows from the parabolic maximum principle that for all t ≥ 0 and x ∈ R2,

u
(
t+ T1, x+ w1(t+ T1)e1

)
≥ κ1u1

(
t+ T1, x+ w1(t+ T1)e1

)
= κ1φ1(x)e−w1x·e1/2a1 . (121)

Let T2 large enough such that a(x+w1T1e1 +w2T2ξ2) = a2 for all x ∈ B(0, R2). It follows
from the definition of a that a

(
x+w1(t+T1)e1 +w2(t+T2)ξ2

)
= a2 in B(0, R2) for all t ≥ 0.

Moreover, the parabolic Harnack inequality yields that there exists κ2 > 0, independent of
t, such that:

u
(
t+ T1 + T2, x+ w1(t+ T1)e1 + w2T2ξ2

)
≥ κ2u(t+ T1, x+ w1(t+ T1)e1

)
in B(0, R1).

This implies

u
(
t+ T1 + T2, x+ w1(t+ T1)e1 + w2T2ξ2

)
≥ κ1κ2φ1(x)e−w1x·e1/2a1 ≥ κ1κ2u2(T2, x+ w2T2ξ2

)
,

by (120). The parabolic maximum principle gives, for all s ≥ 0, t ≥ 0:

u
(
s+ t+ T1 + T2, x+ w1(t+ T1)e1 + w2(s+ T2)ξ2

)
≥ κ1κ2u2(s+ T2, x+ w2(s+ T2)ξ2

)
= κ1κ2φ2(x)e

− wi
2ai

x·ξi .
(122)

Consider now a given w in the interior of the closed convex envelope of B(0, 2
√
a2) and

{(2√a1, 0)}. We could write w = (1− τ)w1e1 + τw2ξ2, where τ ∈ (0, 1), w1 ∈ [0, 2
√
a1) and

w2ξ2 ∈ B(0, 2
√
a2), that is, 0 ≤ w2 < 2

√
a2 and |ξ2| = 1.

We now apply the above results. First, if ξ2 = e1, then inequality (121) immediately
implies

lim inf
t→+∞

u
(
t, (1− τ)w1e1t+ τw2e1t

)
= lim inf

t→+∞
u(t, tw) ≥ κ1φ1(0) > 0.

Next, if ξ2 6= e1, replacing t+ T1 by (1− τ)t and s+ T2 by τt in (122), which is possible if t
is large enough since τ ∈ (0, 1), one gets

u
(
t, (1− τ)w1e1t+ τw2ξ2t

)
= u(t, tw) ≥ κ1κ2φ2(0).

Moreover, the reader could check that these estimates hold locally uniformly with respect to
τ, ξ2, w1, w2, that is, locally uniformly with respect to w. It follows that

lim inf
t→+∞

u(t, tw) > 0,

and thus our hypotheses on f (11) and classical arguments (see for example Theorem 1.6
and Proposition 1.8 of [13]) yield

lim inf
t→+∞

u
(
t, tw

)
= 1.

Moreover, as this convergence is locally uniform around any w in the interior of the closed
convex envelope of B(0, 2

√
a2) and {(2√a1, 0)}, it is also uniform in any of its compact

subset, which concludes the proof. �
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[80] J. Nolen, and J. Xin. Asymptotic Spreading of KPP Reactive Fronts in Incompressible
Space-Time Random Flows. Ann. de l’Inst. Henri Poincare – Analyse Non Lineaire,
26(3):815–839, 2008.

[81] J. Nolen, and J. Xin. KPP Fronts in 1D Random Drift. Discrete and Continuous
Dynamical Systems B, 11(2), 2009

[82] J. Nolen, and J. Xin. Variational Principle of KPP Front Speeds in Temporally Random
Shear Flows with Applications. Communications in Mathematical Physics, 269:493–532,
2007.

[83] G. C. Papanicolaou, and S.R.S. Varadhan. Boundary value problems with rapidly
oscillating random coefficients. Proceedings of Conference on Random Fields, Eszter-
gom, Hungary, 1979, published in Seria Colloquia Mathematica Societatis Janos Bolyai,
27:835–873, North Holland, 1981.

[84] E. A. Robinson. The dynamical properties of Penrose tilings. Trans AMS, 348:4447–
4464, 1996.

[85] L. Rossi. Liouville type results for periodic and almost periodic linear operators. Ann.
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