
HAL Id: hal-01171290
https://hal.science/hal-01171290

Submitted on 3 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

In-Rank mesh optimization for URL customized
promotion in SEO

Stefan Duprey, Fabien Jaunas

To cite this version:
Stefan Duprey, Fabien Jaunas. In-Rank mesh optimization for URL customized promotion in SEO.
International Symposium on Web AlGorithms, Jun 2015, Deauville, France. �hal-01171290�

https://hal.science/hal-01171290
https://hal.archives-ouvertes.fr


1st International Symposium on Web AlGorithms • June 2015

In-Rank mesh optimization for URL customized promotion in SEO

Stefan Duprey

Cdiscount
stefan.duprey@cdiscount.com

Fabien Jaunas
Cdiscount

fabien.jaunas@cdiscount.com

Abstract

Web site internal mesh optimization is at the very

heart of search engine optimization. One prominent way

to get the best web search engine visibility for your site

is to build the adequate internal linking to promote your

naturally popular pages. The definition of popular might

be the transformation rate for e-commerce, the traffic

from logs for a common site or even rather a specific

semantic where you want to be visible. We here propose

an algorithm to automatically compute the optimal

internal mesh for your web site. The idea behind being

simple : the higher you value your URL, the more in

rank you want to give it. We tackle the challenges met

both at a theory and software implementation level.

We’ll more specifically deal with big data issues for an

e-commerce web site.

Keywords:

search engine optimization, e-commerce, page rank, in

rank, mesh optimization, global optimization, Hadoop,

Spark GraphX, Neo4j

I. Introduction

We here propose an original methodology to op-
timize the internal mesh of an e-commerce site.
The idea behind is to promote the most successful
URLs by increasing their in-rank. For the sake
of simplicity, we define URLs successfulness in a
first step as the URL traffic gathered from log.
We’ll see in a latter part how the same algorithm
will extrapolate to any kind of metrics you cherish
and we’ll enter into e-commerce specifics. The fre-
quency data is obtained from logs parsing tracking
software and the in rank is computed using the
famous page rank iterative algorithm. We want
to find the optimal mesh, which maximizes for all
URLs the matching between their traffic and their
in-rank. The more successful a URL is, the more in-
rank we want to give him through our optimal mesh.

We here detail the technical implementation of
such an algorithm. The difficulty here is three-fold:
First the universe we deal with is discrete and

vast. For a mesh with N nodes (a site with N

URLs), the number of possible meshes is 2N
2

. We
will also see that our objective function is non-linear
and non-convex. Discrete non-linear optimization
problems are among the most difficult optimization
problems to solve. Not only optimum existence and
uniqueness results are inexistent, but those problems
usually reveal to be computationnaly intensive to
solve. For our case, exhaustive optimization would

be far too computationally intensive. We have to
find a proper heuristic based global optimization
algorithm to cleverly tweak through our universe.
We here choose genetic algorithms among others
following here [11]. But of course, as heuristic, this
algorithm must not be trusted : it might get stuck
into local minima, depend upon initial set-up and
randomness stream seed. Parameters also have to be
properly tweaked to proceed through our universe
avoiding getting stuck into local minima. Other
metaheuristics such as global search, multistart,
particle swarm or simulated annealing as in [8] are
also being tested. All seem promising. Robustness
toward a general minimum, convergence fastness
should here give the prevailing algorithm and its
appropriate parameters.
Second the structure of a web site is usually

well-defined and it is out of question to drastically
change the already existing mesh. It is even truer
for an e-commerce site : links are to be categorized
regarding their incoming/targeting page type.
Position within those pages is also relevant as most
e-commerce sites dedicate specific zones for links
to similar products, list of products and so on. So
links can only be created within certain categories
of pages and zones within our page. In other terms
our mesh will not be totally free and we’ll have
strong constraints for our mesh to comply with.
That is good news : the less linking possibilities we
got, the smaller is our optimization universe.
Third the actual size of an e-commerce site makes

the implementation of a real-world industrial use
case a technologically difficult problem. Either we
implement it from scratch over a cluster dealing
ourselves with concurrency and inter-processor
communications, or we try not to reinvent the
wheel and plug ourselves to existing big data
cluster platform. We’ll here detail our technological
choices.

II. Algorithm

Let N ∈ N be the number of nodes of our graph or
rather the number of URLs of our site.

Let’s
(Xi)i∈{1,...,N}

denote the nodes of our directed graph.

Let’s f be a function over our mesh, which
gives for a URL our estimated potential value. This
value is the very data we want to optimize our web
site from. (f (Xi)) will also be named ’prominence



1st International Symposium on Web AlGorithms • June 2015

vector’ as it carries the specific metrics we want to
optimize our mesh against.

f : (Xi)i∈{1,...,N} → R

x 7→ f(x)
(1)

Let’s here say that our function is the traffic per
URL. We’ll see how we can improve this metrics in
the next part.

Let’s

(Gij) ∈ {0, 1}
N×N

denote the adjacency matrix of our directed graph.

(Gij) is either 1 or 0 if there is a link between
URL i and j.

Genetic algorithm

Genetic algorithm is a search heuristic that mimics
the process of natural selection as explained in [9].
A population of individuals to an optimization prob-
lem is evolved toward better solutions. In our case,
each individual or chromosome (Ci) ∈ {0, 1}

N×N

here represented as a bits array, which results from
the vectorization of the adjacency matrix (Gij). An
individual is a specific mesh.
At each generation, a candidate can either result

from a crossover between two parents or from a self
mutation.

For each new child to be produced, a pair of
parents is selected for breeding from an eugenic pool
from the previous generation. The newly created
solution typically shares many of the characteristics
of its parents. The child will keep the matching bits
of the two parents and inherit randomly every other
non-matching bits.

Child spawning from 2 parents
crossover

For each new mutant to be produced, a single
parent is selected from the same eugenic pool from
the previous generation. The newly created mutant
also shares many of the characteristics of its parent.
The mutation function is even simpler : we just
switch bits whose locations are randomly chosen
and proportions equal a fixed mutation rate :

Mutation of an individual

New parents are selected for each new child and
mutant, and the process continues until a new
population of solutions of appropriate size is gener-
ated. These process ultimately results in the next
generation population of chromosomes different
from the initial generation. Generally the average
fitness will have increased by this procedure for
the population, since only the best organisms from
the first generation are selected for breeding and
mutating, along with a small proportion of less fit
solutions. These less fit solutions ensure genetic
diversity within the genetic pool of the parents
and therefore ensure the genetic diversity of the
subsequent generation of children. The number of
newly bred fit individuals selected from the current
population is a parameter to be fixed, The new
generation of candidate solutions is then used in
the next iteration of the algorithm. Commonly,
the algorithm terminates when either a maximum
number of generations has been produced, or a
satisfactory fitness level has been reached for the
population. The evolution usually starts from a
population of randomly generated individuals and
is an iterative process, with the population in each
iteration called a generation.

Let’s add here that taking account our mesh
constraints is here trivial : we just fix the value of
blocs of links between forbidden categories from our
vector. We just end up with a vector with a smaller
number of freedom degrees : our adjacency matrix
is square but with large fixed null blocks resulting
only from locations where links can be added.

Links categorization

We here present results for a small prototyping use
case. We are provided with 39 URLs. We order and
flag them as home, 2 meta lists, 4 lists and 32 prod-
ucts and we affect them the following prominence
vector :

(Xi) = {′home′,′ metalist1′,′ metalist2′,

′list1′,′ list2′,′ list3′,′ list4′,

′product1′,′ product2′, ...,′ product32′};

f (Xi) = [100; 80; 55;

40; 35; 25; 20;

4; 5; ...; 3]

Notice that the prominence metrics vector we
attribute mirrors the labels we gave. We hope to
find back the natural arborescent structure from our
algorithm. Let’s now generate our initial population
through sheer randomness. Let’s visualize this
population with this picture where x axe represents



1st International Symposium on Web AlGorithms • June 2015

an individual chromosome, while y axe runs over all
the individuals of our population. We here don’t
categorize links, so you won’t see large null streaks
resulting from fixed null blocks in our adjacency
matrix :

Initial population

Link present

In
d

iv
id

u
a

l 
in

 P
o

p
u

la
ti
o

n

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

For each generation, the fitness of every individual
in the population is evaluated. Our fitness function
is defined as follows : First we compute the standard
page rank of the individual matching mesh following
[6] : The first stage is the page rank initialisation for
all our nodes:

∀u PR (u) =
1

N
(2)

We then iterate to find the fixed point probability
P solution of the well know equation where c is the
damping factor set around 0.85 :

PR (u) =
(1− c)

N
+ c×

∑

v→u

PR (v)

card ({v → u})
(3)

The fitness is usually the value of the objective
function in the optimization problem being solved.
The fitness function for a mesh (Xi) is defined as
the sum over all nodes of the product of the lo-
cal prominence metrics and the computed in rank
:

∑N

i=1 f (Xi) × PR(Xi), the idea being that by
weighing the local prominence metrics with the in
rank we’ll find the best mesh matching in-rank and
the local prominence metrics and this for all nodes
as the objective is the whole sum. So we end up with
this generic optimization problem.

max
(Gij)∈{0,1}N×N

{

N
∑

i=1

f (Xi)× PR(Xi)

}

(4)

This is this very same global optimization problem,
which can be formulated using different algorithms :
simulated annealing, global search, multistart. Let’s
here detail the results for our small case toy example
of 39 URLs. For a population of 500 individuals, a
mutation rate of 0.2% and a proportion of less fit

solutions of 2%. We define our convergence thresh-
old as the fitness function evolution tolerance : the
algorithm runs until the average relative change in
the fitness function value over stall generations is
less than the specified threshold 10−6. Our algo-
rithm converges after roughly 250 iterations for our
toy site example. Note here that the reached min-
ima seems global, as multiple starts would lead to
the same structure. Let’s now visualize our popula-
tion at convergence and the evolution of the fitness
function for our best element at each generation.

Population at convergence

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Link present
In

d
iv

id
u

a
l 
in

 P
o

p
u

la
ti
o

n

Best chromosome fitness function
evolution

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
−3

Generation

Change in Best Fitness Value

The structure found is as we expected arborescent :
home linking to metalists, metalists linking to lists
and lists to products.

Optimal site structure



1st International Symposium on Web AlGorithms • June 2015

III. An e-commerce approach

For an e-commerce web site, traffic might not always
coincide with the URLs you deem as more profitable
to you. On the very contrary, you may even actually
rather want to rebalance some traffic discrepancies.
Of course, the methodology presented above is still
valid. You here just have to change the prominence
vector you want to optimize. In that case, you
would for instance rather optimize 1

traffic(i) .

But to get a real sense of potential return on
investment, we must here switch to a new paradigm.
Each page will be matched with a specific keywords
expression to rank upon. And the potential return
on investment for the keywords expression will be
assessed with both search engine data (click through
rate, search volume) and e-commerce tracking data
(transformation rate). To push potentially high
return on investment pages, we use the following
objective function :

∑

i∈Keywords

SV (i)×CTR (position (i))×CR (i)×P (i)

(5)
where position (i) is the estimated position in search
engine results coming from the modification of our
new mesh,

SV (i) is the search volume for the keywords i

estimated by the search engine.

and CTR (i) is the click through rate for an
URL at the position place in the search engine
results.

The difficult part here is how to estimate the
new position in search engine results for our new
mesh. This is here hardly conceivable to imagine a
feed-back loop with a real search engine indexation.
This would drastically slow our algorithm. The best
approach here is to build and etalonnate a machine
learning algorithm to model the relationship be-
tween local in-rank PR (i) and position(i) as in [7].

One last remark here about a possible enhancement
to our algorithm. As most e-commerce web sites
tend to overlink web pages between themselves, we
could add a supplementary weigh to our optimiza-
tion formula to rebalance link according to their
semantic reliability.

max
(Gij)∈{0,1}N×N

{

N
∑

i=1

CS (i)× f (Xi)× PR(Xi)

}

(6)
where CS(i) is a semantic distance between the two
linked pages by i, for instance the cosinus of Salton.

IV. Big data implementation

We’ll detail in this section the technological imple-
mentation of a real world use case. To be scalable is
a must go for any e-commerce site which intends to
grow ! We use open source tools Apache Hadoop [1]
and Apache Spark [4] to solve these big data prob-
lems in a scalable way.

Solutions and performances

First, let’s remark here that an easy and very
efficient way to improve our algorithm performance
would be to improve the in rank computing function.
Its performance is key for an efficient algorithm,
as it is computed recurrently for each generation
over all the population. The idea here would be
to compute an approximated but faster in rank
function as in [16].

Second, the double iterative nature of our al-
gorithm (page rank computations and global
optimization are both naturally iterative) makes
Hadoop Map/Reduce paradigm in [12] too slow for
our purpose. In contrast to Hadoop’s two-stage disk
based Map/Reduce paradigm, Spark’s in-memory
primitives provide the needed performance. By
allowing user programs to load data into a cluster’s
memory and query it repeatedly, Spark is well
suited for our purpose ([14] and [13]).

The problem here is that the very same re-
strictions that enable graph-parallel systems as
GraphX to achieve substantial performance gains
also limit their ability to express many of the im-
portant stages in the feeding process of new graph
to be computed. As Spark GraphX is optimized for
iterative diffusion algorithms like PageRank it is
not well suited to more basic tasks like constructing
the graph, modifying its structure, or expressing
computation that spans multiple graphs.

Technical implementation

Our internal mesh is stored in Neo4j [2]. It al-
lows us to solve analytical problems that relational
databases struggle to solve in a flexible way (mainly
recursive mesh exploration with CYPHER). We then
use a specific in-house toolkit to create a job to
export subgraphs from Neo4j to Apache Hadoop
HDFS. This allows us to pilote the distributed algo-
rithm from a small client (the creation of the graph
population and its evolution). Note here that the
bits vector representation of our mesh is here in-
deed changed to a sparse adjacency matrix for the
page rank computation. It will then start a dis-
tributed graph processing algorithm using Scala [3]
and Spark’s GraphX module [5]. The GraphX algo-
rithm is serialized and dispatched to Apache Spark
for processing. Once Apache Spark job is done, the



1st International Symposium on Web AlGorithms • June 2015

results are written back to HDFS as a Key-Value
list of property updates to be applied back to Neo4j.
Neo4j is then notified that a property update list is
available from Apache Spark on HDFS. Neo4j batch
imports the results and applies the updates back to
the original graph, where the fitness function can
now be computed for the individual.

V. Conclusion and future works

Mesh optimization is a key concept for SEO. Nu-
merical experiments on a small case example show
the relevance and the possibility to actually improve
your site mesh to push forward pages accordingly to
a prominence metrics which is yours to define. The
difficulty here does not lie in the theorical conception
of the algorithm, but rather in its distributed imple-
mentation on a big data platform. The choice of
open source solutions is here highlighted. It allows a
fast ramp-up for anyone to a high level technological
state.

References

[1] Hadoop. http://hadoop.apache.org.

[2] Neo4j. http://neo4j.com.

[3] Scala. http://www.scala-lang.org.

[4] Spark. https://spark.apache.org.

[5] Spark GraphX. https://spark.apache.org/graphx/.

[6] S. Brin and L. Page. The anatomy of a large-
scale hypertextual web search engine. WWW,
1998.

[7] Qin T. Liu T.Y. Tsai M.F. Li H. Cao, Z. Learn-
ing to rank: from pairwise approach to listwise
approach. Proc. of the 24th Intl. Conference on
Machine Learning, page 129136, 2007.

[8] C. Sanchez F. Xhafa, A. Barolli and L. Barolli.
A simulated annealing algorithm for router
nodes placement problem in wireless mesh net-
works. Simulation Modelling Practice and The-
ory, 19:pp. 22762284, 2011.

[9] D. E. Goldberg and J. H. Holland. Genetic algo-
rithms and machine learning. Machine Learn-
ing. Springer, 1988.

[10] D. E. Goldberg and J. H. Holland. Big Data
Benchmarks, Performance Optimization, and
Emerging Hardware. Springer, 2014.

[11] Keivan Kianmehr Reda Alhajj Jon Rokne Il-
tae Lee, Negar Koochakzadeh. Integrating
Genetic Algorithms and Fuzzy Logic for Web
Structure Optimization, volume 12. Springer,
2010.

[12] Sanjay Ghemawat Jeffrey Dean. Mapreduce: a
flexible data processing tool. Commun. ACM,
53:72–77, 2010.

[13] Tathagata Das Ankur Dave Justin Ma Murphy
McCauley Michael J. Franklin Scott Shenker
Ion Stoica Matei Zaharia, Mosharaf Chowd-
hury. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster com-
puting. Journal of University of California,
Berkeley, 2012.

[14] R. Rodrigues U. A. Acar P. Bhatotia, A. Wieder
and R. Pasquin. Mapreduce for incremental
computations. ACM SOCC, 2011.

[15] Vapnik V.N. Statistical Learning Theory. Wiley,
1998.

[16] Li-Tal Mashiach Ziv Bar-Yossef. Local approxi-
mation of pagerank and reverse pagerank. Pro-
ceedings of the 17th ACM Conference on Infor-
mation and Knowledge Management (CIKM),
pages PP. 279–288, 2008.


	Introduction
	Algorithm
	An e-commerce approach
	Big data implementation
	Conclusion and future works

