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Abstract

We provide new examples of diffusion operators in dimension 2 and 3 which
have orthogonal polynomials as eigenvectors. Their construction rely on the finite
subgroups of O(3) and their invariant polynomials.
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1 Introduction
We investigate in this paper new examples of bounded domains in R2 on which there
exists a probability measure µ with an orthonormal basis of L2(µ) such that the el-
ements of this basis are eigenvectors of a diffusion operator. To determine such a
basis, one needs first to define a valuation (a definition for the degree) for a polyno-
mial in two variables. The complete determination of all the possible such domains
in R2 has been carried in [3], under the restriction that the valuation is the usual
one (that is the degree of the monomial xpyq is p+ q). We shall show in this paper
that relaxing this requirement on the valuation leads to many new models. We have
no claim to exhaustivity, and for the moment have no clue about a possible scheme
which would lead to a complete classification for the general valuation. However,
the domains that we describe here all share some common algebraic properties that
we want to underline.

The construction of these domains rely mainly on the study of finite subgroups of
O(3), and are in particular related to the Platonic polyhedra. It relies on the study
of invariant polynomials for subgroups of O(3). The analysis of these invariants also
lead to the construction of new polynomial models in dimension 3.

∗Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118 route de Narbonne, 31062
Toulouse, France
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2 Orthogonal polynomials and diffusion opera-
tors
The short description of diffusion operators that we present below is inspired from [1],
and we refer the reader to it for further details.

Diffusion operators are second order differential operators with no zero order
terms, and are central in the study of diffusion processes, solutions of stochastic
differential equations, Riemannian geometry, classical partial differential equations,
potential theory, and many other areas. When they have smooth coefficients, they
may be described in some open subset Ω of Rd as

(2.1) L(f) =
∑
ij

gij(x)∂2
ijf +

∑
i

bi(x)∂i(f),

where the symmetric matrix (gij)(x) is everywhere non negative (the operator L
is said to be semi-elliptic). We are mainly interested here in the case where this
operator is symmetric with respect to some probability measure µ, that is when, for
any smooth functions f, g, compactly supported in Ω, one has

(2.2)
∫

Ω
fL(g)dµ =

∫
Ω
gL(f)dµ.

We then say that µ is a reversible measure for L, which reflects the fact that, in a
probabilistic context, the associated stochastic process has a law which is invariant
under time reversal, provided that the law at time 0 of the process is µ.

When µ has a smooth positive density ρ with respect to the Lebesgue measure,
this symmetry property translates immediately in

(2.3) bi(x) =
∑
j

∂jg
ij(x) +

∑
j

gij∂j log ρ,

which shows a fundamental relation between the coefficients of L and the measure µ,
and allows in general to completely determine µ up to some normalizing constant.

Let us introduce the carré du champ operator Γ. For this, we suppose that we
have in L2(µ) some dense algebra A of functions which is stable under the operator
L, and contains the constant functions. Then, for (f, g) ∈ A, we define

(2.4) Γ(f, f) =
1

2
(L(fg)− fL(g)− gL(f)).

If L is given by equation (2.1), and when the elements of A are at least C2, it
turns out that

Γ(f, g) =
∑
ij

gij∂if∂jg,

so that Γ describes in fact the second order part of L. The semi-ellipticity of L
translates into the fact that Γ(f, f) ≥ 0, for any f ∈ A. If we apply formula (2.2)
with g = 1, we observe that

∫
Ω Lfdµ = 0 for any f ∈ A. Then, applying (2.2) again,

we see immediately that, for any (f, g) ∈ A

(2.5)
∫

Ω
fL(g)dµ = −

∫
Ω

Γ(f, g)dµ,
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so that the knowledge of Γ and µ describes entirely the operator L. We call such a
triple (Ω,Γ, µ) a Markov triple, although we should also add the algebra A. Thanks
to (2.1), we see that L(xi) = bi and Γ(xi, xj) = gij . The operator Γ is called the co-
metric, and in our system of coordinates is described by a matrix Γ =

(
Γ(xi, xj)

)
=

(gij).
In our setting, we shall always chose A to be the set of polynomials. Under the

conditions that we shall describe below, we may as well extend A to be the set of
the restrictions to Ω of the smooth functions defined in a neighborhood of Ω, but
this extension is useless in what follows.

The fact that L is a second order differential operator translates into the change of
variable formulas. Whenever f = (f1, · · · , fn) ∈ An, and whenever Φ(f1, · · · , fn) ∈
A, for some smooth function Φ : Rn 7→ R, then

(2.6) L(Φ(f)) =
∑
i

∂iΦ(f)L(fi) +
∑
ij

∂2
ijΦ(f)Γ(fi, fj)

and also

(2.7) Γ(Φ(f), g) =
∑
i

∂iΦ(f)Γ(fi, g).

When A is the algebra of polynomials, this applies in particular for any polynomial
function Φ. Indeed, in this context, properties (2.6) and (2.7) are equivalent.

As long as polynomials are concerned, it may be convenient to use complex
coordinates. That is, for a pair of variables (x, y), consider z = x + iy and z̄ =
x − iy, using linearity and bilinearity to extend L and Γ to z and z̄, for example
setting L(z) = L(x) + iL(y), Γ(z, z) = Γ(x, x) − Γ(y, y) + 2iΓ(x, y). Then one may
compute L

(
P (z, z̄)

)
and Γ

(
P (z, z̄), Q(z, z̄)

)
for any pair of polynomials P and Q

in the variables (z, z̄) using the change of variable formulas (2.6) and (2.7). One
may then come back to the original variables x and y setting x = (z + z̄)/2, y =
(z − z̄)/(2i).

Moreover, we shall restrict our attention to the case where the matrix (gij) is
everywhere positive definite, that is when the operator L is elliptic. In this situation,
one may expect L to have a self adjoint extension (not unique in general), and then
look for a spectral decomposition for this self adjoint extension. We may expect
then that the spectrum is discrete, and look for the eigenvectors.

It is quite rare that one may exhibit explicitly any eigenvalue or eigenvector, and
this makes the analysis of such operators quite hard. However, a good situation is
when there is a complete L2(µ) basis formed of polynomial eigenvectors, in which
case one may have explicit computation for the eigenvalues and expect a good de-
scription of the eigenvectors (recurrence formulas, generating functions, etc). These
polynomials being eigenvectors of a symmetric operator are orthogonal whenever
the eigenvalues are different, and this leads to a family of orthogonal polynomials
for the invariant measure µ.

Unfortunately, this situation does not appear quite often. In dimension 1 for
example, up to affine transformations, there are only 3 cases, corresponding to the
Jacobi, Laguerre and Hermite polynomials, see for example [2].
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1. The Hermite case corresponds to the Gaussian measure e−x2/2
√

2π
dx on R and to

the Ornstein–Uhlenbeck operator

LOU =
d2

dx2
− x d

dx
.

The Hermite polynomial Hn of degree n satisfy LOUPn = −nPn.
2. The Laguerre polynomials operator correspond to the measure µa(dx) = Cax

a−1e−x dx
on (0,∞) , a > 0, and to the Laguerre operator

La = x
d2

dx2
+ (a− x)

d

dx
.

The Laguerre polynomial L(a)
n with degree n satisfies LaL

(a)
n = −nL(a)

n .

3. The Jacobi polynomials correspond to the measure µa,b(dx) = Ca,b(1−x)a−1(1+
x)b−1 dx on (−1, 1), a, b > 0 and to the Jacobi operator

La,b = (1− x2)
d2

dx2
−
(
a− b+ (a+ b)x

) d
dx
.

The Jacobi polynomial (J
(a,b)
n )n with degree n satisfy

La,bJ
(a,b)
n = −n(n+ a+ b− 1)J (a,b)

n .

In this paper, we concentrate on probability measures on bounded domains Ω ⊂
Rd. For such measures, the set of polynomials is dense in L2(µ), and we want to
construct bases of L2(µ) formed with polynomials. There is not an unique choice
for such a basis.

First, we choose a valuation. That is, choosing some positive integers a1, · · · , ad,
we decide that the degree of a monomial xp11 · · ·x

pd
d is a1p1 + · · · adpd. Then, the

degree of a polynomial is the maximum of the degrees of its monomials.
This being done, for n ∈ N, we look at the finite dimensional vector space Hn of

polynomials with degrees less than n. One has Hn ⊂ Hn+1, and ∪nHn is the vector
space of polynomials. It is dense in L2(µ). Then, a polynomial basis is a choice, for
any n, of an orthonormal basis is the orthogonal complement of Hn+1 in Hn.

Our problem is then to describe for which open bounded subsets Ω ⊂ Rd, one
may find a probability measure µ on it with positive density ρ(x) with respect to
the Lebesgue measure, and an elliptic diffusion operator L on Ω such that such a
polynomial basis for µ is made of eigenvectors for L, for some given valuation. We
restrict our attention to those sets Ω with piecewise smooth boundary. Let us call
such a set Ω a polynomial set, and the triple (Ω,Γ, µ) a polynomial model.

We recall here some of the results of [3], where the same structure is described
only for the usual valuation (that is when all the integers ai are equal to 1), but
easily extended to the general valuation case. We have

Proposition 2.1. Choose a valuation deg described as above by some integer pa-
rameters (a1, · · · , ad), and let (Ω,Γ, µ) be a polynomial model in Rd. Then, with L
described by equation (2.1),
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1. for i = 1, · · · , d, bi is a polynomial with deg(bi) ≤ ai;
2. for i, j = 1, · · · , d, gij is a polynomial with deg(gij) ≤ ai + aj;

3. the boundary ∂Ω is included in the algebraic set {det(gij) = 0};
4. if P1 · · ·Pk = 0 is the reduced equation of the boundary ∂Ω (see remark 2.2

below), then, for each q = 1, · · · k, each i = 1, · · · d, one has

(2.8) Γ(logPq, xi) = Li,q,

where Li,q is a polynomial with deg(Li,q) ≤ ai;
5. all the measures µα1,··· ,αk

with densities Cα1,··· ,αk
|P1|α1 · · · |Pk|αk on Ω, where

the αi are such that the density is is integrable on Ω, are such that (Ω,Γ, µα1,··· ,αk
)

is a polynomial model;

6. when the degree of P1 · · ·Pk is equal to the degree of det(gij) there are no other
measures.

Conversely, assume that some bounded domain Ω is such that the boundary ∂Ω
is included in an algebraic surface and has reduced equation P1 · · ·Pk = 0. Assume
moreover that there exists a matrix (gij(x)) which is positive definite in Ω and such
that each component gij(x) is a polynomial with degree at most ai+aj. Let Γ denote
the associated carré du champ operator. Assume moreover that equation (2.8) is
satisfied for any i = 1, · · · , d and any q = 1, · · · , k, with Li,q a polynomial with
degree at most ai.

Let (α1, · · · , αk) be such that the |P1|α1 · · · |Pk|αk is integrable on Ω with respect
to the Lebesgue measure, and denote µα1,··· ,αk

(dx) = Cα1,··· ,αk
Pα1

1 · · ·P
αk
k dx, where

Cα1,··· ,αk
is the normalizing constant such that µα1,··· ,αk

is a probablity measure.
Then (Ω,Γ, µα1,··· ,αk

) is a polynomial model.

Before giving a sketch of the proof of Proposition 2.1, let us make a few remarks.

Remark 2.2. We say that P1 · · ·Pk = 0 is the reduced equation of ∂Ω when

1. The polynomials Pi are not proportional to each other.

2. For i = 1, · · · k, Pi is an irreducible polynomial, both in the real and the complex
field.

3. For each i = 1, · · · , k, there exists at least one regular point of the boundary
∂Ω such that Pi(x) = 0.

4. For each regular point x ∈ ∂Ω, there exist a neighborhood V and of x and some
i such that ∂Ω ∩ V = {Pi(x) = 0} ∩ V.

In particular, this does not mean that any point satisfying Pi(x) = 0 for some i
belongs to ∂Ω.

Remark 2.3. The determination of the polynomial models therefore amounts to the
determination of the domains Ω with an algebraic boundary, with the property that
the reduced equation of ∂Ω is such that the set of equations (2.8) has a non trivial
(and even positive definite concerning (gij)) solution, for gij and Li,q. Looking at
the form of these equations, given the reduced equation of ∂Ω, they appear as a linear
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homogeneous equation in the coefficients of the polynomials gij and of the polynomials
Li,k. Unfortunately, there are in general much more equations to be satisfied that
unknowns, and this requires very strong constraints on the polynomials appearing in
the reduced equation of the boundary.

Remark 2.4. The set of equations (2.8), which are central in the study of polynomial
models, may be reduced to less equations, when k > 1. Indeed, if we set P = P1 · · ·Pk,
it reduces to

(2.9) Γ(xi, logP ) = Li, deg(Li) ≤ ai.

To see this, assume that this last equation holds with some polynomial Li. Then on
the regular part of the boundary described by {Pq(x) = 0}, we have Γ(xi, Pq) = 0,
since

Γ(xi, Pq) = Pq(Li −
∑
l 6=q

Γ(xi, Pl)

Pl
).

Therefore, Pq divides Γ(xi, Pq).

Proof. — (Of Proposition 2.1).
We shall be a bit sketchy in the details, all the arguments being borrowed

from [3]. Let Hn be the finite dimensional vector space of polynomials P such
that deg(P ) ≤ n. From the definition of a polynomial model, L(Hn) ⊂ Hn. In
the representation (2.1) of L, we have bi = L(xi) and gij = Γ(xi, xj). Therefore,
bi ∈ Hai and, from the representation (2.4) of Γ, gij ∈ Hai+aj . This gives items 1
and 2.

Now, since L has polynomial eigenvectors, for any pair (P,Q) of polynomials, we
have ∫

PL(Q)dµ =

∫
QL(P )dµ.

Since the coefficients gij and bi are bounded on Ω with bounded coefficients, this
identity may be extended to any pair (f, g) of smooth functions compactly supported
in Rd (not necessary with support in Ω). Looking at this for smooth functions com-
pactly supported in Ω leads to equation (2.3), which is equivalent to the symmetry
property for such functions. Furthermore, applying this symmetry property to a pair
of smooth function compactly supported in a neighborhood of a regular point of the
boundary, and using Stokes formula, this implies in fact that, for any i = 1, · · · , d,∑

j g
ijnj = 0 at any point of the boundary, where (ni) is the normal vector to the

boundary at that point. Therefore, this normal vector is in the kernel of the matrix
g at any regular point of the boundary, which implies that det(g) = 0 at such a
point. This gives item 3.

We now know that the boundary is included in the algebraic set {det(g) = 0}, and
we may look at the reduced equation for it, say P1 · · ·Pk = P = 0. Let x be a regular
point of the boundary and V a neighborhood of it such that ∂Ω∩V = {Pq = 0}∩V,
for some q = 1, · · · , k. In V, the normal vector (ni) to the boundary is parallel to
∂iPq, so that we also have for all i,

∑
j g

ij∂jPq = 0 on {Pq = 0}∩V. But
∑

j g
ij∂jPq
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is a polynomial, which vanishes in V on the zeros of Pq. This implies (since Pq is
complex irreducible) that

(2.10)
∑
j

gij∂jPq = Li,qPq,

where Li,q is a polynomial, the degree of which is less than ai since deg(
∑

j g
ij∂jPq) ≤

deg(Pq) + ai. Then, equation (2.8) is just a rephrasing of (2.10). This gives item 4.
If we now apply equation (2.8) and look at the value of bi given by formula (2.3),

we see that, when the measure is µα1,··· ,αk
,

bi =
∑
i

∂jg
ij +

∑
k

αkLi,k,

and therefore is a polynomial with deg(bi) ≤ ai.
Therefore, for every n ∈ N, the associated operator maps Hn into Hn. Moreover,

the boundary equation (2.8) shows that for any pair of smooth functions compactly
supported in Rd, for the associted operator Lα1,··· ,αk∫

fLα1,··· ,αk
(h)dµα1,··· ,αk

=

∫
hLα1,··· ,αk

(f)dµα1,··· ,αk
,

and this in particular applies for polynomials. Therefore, the operator Lα1,··· ,αk
is

symmetric on the finite dimensional space Hn, and this allows to construct a basis
of eigenvectors for Lα1,··· ,αk

made of orthogonal polynomials. This gives item 5.
The last item 6, that we shall not use in this note, is more technical, and relies on

the fact that, looking at equation (2.3), any density measure ρ is such that ∂i log ρ is
a rational function, with singularities concentrated on {det(g) = 0}, and degree −ai.
We refer to [3], where the arguments are developed, and which furthermore provides a
complete description of the possible measures in the case where the reduced equation
of ∂Ω is not {det(g) = 0}.

The proof of the reverse part of Proposition 2.1 is just a rephrasing of that of
item 5.

From Proposition 2.1, the important data are the set Ω (open subset of Rd,
bounded with piecewise smooth boundary given by an algebraic reduced equation
P1 · · ·Pk = 0), and the operator Γ, given by polynomial functions (gij), elliptic in
Ω, satisfying the degree condition 2, and the boundary equation 4.

To fix the ideas, we provide a few definitions

Definition 2.5.

1. A polynomial domain Ω ⊂ Rd is a bounded open set in Rd with boundary
∂Ω included in some algebraic surface with reduced equation {P (x) = 0}, and
such that there exists some valuation {a1, · · · , ad} and some elliptic co-metric
Γ = (gij) on Ω with deg(gij) ≤ ai +aj satisfying the boundary equation (2.10).

2. A polynomial system (Ω,Γ) is given by a polynomial domain Ω together with
the associated co-metric Γ.
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3. A polynomial model is a triple (Ω,Γ, µ), where (Ω,Γ) is a polynomial system,
and µ is probability measure on Ω with smooth density ρ such that Γ(xi, log ρ) =
Si, with deg(Si) ≤ ai.

By definition, to each polynomial domain corresponds at least one polynomial
system (there may indeed be many different co-metrics Γ associated with the same
domain Ω, see [3]). Moreover, we saw that to any polynomial system corresponds
many polynomial models.

Remark 2.6. The valuation is not unique. Beyond the trivial change (a1, · · · , ad) 7→
(ca1, · · · , caq), the same polynomial model (or system) may correspond to various
valuations. We shall make no effort to provide the lowest ones since in general a
good choice is provided by a simple look at the co-metric Γ.

In [3], a complete description of all polynomial models is provided when the
chosen valuation is the natural one (we give this description in Section 10 at the
end of the paper for completeness). This description relies in an essential way on
the fact that for the natural valuation, the problem is affine invariant, that is that a
polynomial domain Ω is transformed into another one through affine transformations.
This allows for an analysis of the boundary equation, and to the classification of
algebraic curves in the plane for which the boundary equation (2.8) has a non trivial
solution, through the analysis of the singular points of the curve and its dual.

This affine invariance is lost for other valuations, since an affine transformation
no longer maps the set Hn of polynomials with degree at most n into itself. This
paves the way for the construction of new models. In what follows, we shall mainly
concentrate on the construction of polynomial systems in dimension 2. These two
dimensional models also provides new 3-d models through the use of 2-fold covers
of our 2-d models. These two fold covers already appear in [3]. But even for the 2-d
models which already appear there (Ω11 and Ω13 of Section 7, e.g.), some two-fold
coverings appear as new. The reason is that in [3], only the models with natural
valuation are considered. Here, even though the 2-d models may be considered with
the usual valuation, this is no longer the case for their coverings.

3 Constructing polynomial systems
A generic way for the construction of polynomial models in dimension d is to consider
some other symmetric diffusion operator L (often in higher dimension) and look for
functions (X1, · · · , Xd) such that, setting X = (X1, · · · , Xd)

L(Xi) = Bi(X), Γ(Xi, Xj) = Gij(X),

where Bi and Gij are some smooth functions. Then according to formula (2.6),

L(Φ(X)) = L̂(Φ)(X),

where
L̂Φ =

∑
ij

Gij(X)∂2
ij +

∑
i

Bi(X)∂i.
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This new operator L̂ has as reversible measure µ̂ which is the image of the reversible
measure µ of L under X. This is often a good way to identify image measures,
through equation (2.3). Then, L̂ corresponds to a new triple (Ω̂, Γ̂, µ̂), where Ω̂ is
the image X(Ω), Γ̂ = (Gij) and µ̂ is the image of µ.

Definition 3.1.

1. When we have such functions (X1, · · · , Xd) such that Γ(Xi, Xj) = Gij(X), we
say that (X1, · · · , Xd) form a closed system for Γ.

2. If moreover L(Xi) = Bi(X), we say that we have a closed system for L.

It may happen that for some specific polynomial model (Ω,Γ, µ) and some func-
tions X = (X1, · · · , Xd), X is a closed system for Γ, but not for L.

Now, if L itself maps polynomials with degree n into polynomials with degree n
(say with the usual valuation), if Xi is a polynomial with degree ai, and if Bi(X)
and Gij(X) are polynomials in X, then L̂ provide a next polynomial model with
valuation (a1, · · · , ad).

It may also happen that this transformation x 7→ X = (X1, · · · , Xd) is a diffeo-
morphism, in which case we do not distinguish between those two models. If this
diffeomorphism and its inverse are given through polynomial transformations, and
if both are polynomial systems or models, we say that these systems or models are
isomorphic. It is not always easy to see when a model is an image of another one,
or when they are isomorphic.

Apart of one specific case (example 7 of Section 10), all the models which appears
in [3] may be constructed either from the Euclidean Laplace operator in R2 acting
on function invariant under the symmetries of a regular lattice (examples 1, 6 and
11 in Section 10), or from the spherical Laplace operator on the unit sphere S2 ⊂ R3

acting on functions which are invariant under some finite subgroup of O(3) (all the
other models of Section 10). Here, we shall explore in a systematic way all the models
that one may construct from the finite subgroups of O(3). This construction may
be also carried in higher dimension letting the spherical Laplace operator on Sd−1

act on polynomials in Rd (that is on the restriction to Sd−1 of such polynomials).
The spherical Laplace operator on Sd−1 may be described through its action on

linear forms. If e is any vector in the Euclidean space Rd, we look at the associated
linear form e∗ : x 7→ e · x, and more precisely to its restriction to the unit sphere, as
a function Sd−1 7→ R. Then, for the Laplace operator LS and its associated carré du
champ ΓS, we have

(3.11) LS(e∗) = −(d− 1)e∗, ΓS(e∗, f∗) = e · f − e∗f∗.

Therefore, looking at the canonical basis (ei) of Rd, we see that any polynomial
in the variables xi (= e∗i ) is transformed under LS into a polynomial with the same
(natural) degree. Moreover, the spherical Laplace operator commutes with all the
elements of O(d). Then, if we are given any subgroup of O(d) and if we look at
the set of polynomials invariants under the group action, LS will preserve this set.
If we may describe some polynomial basis for these invariant polynomials, then we
expect to get in such a way a closed system, and therefore construct new polynomial
models.
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4 Invariant polynomials
The theory of invariant polynomials has a long history going back to D. Hilbert, E.
Noether, etc. It now plays an important role in coding theory and combinatorics (see
[7]). In what follows, we provide a brief account which is useful for the understanding
of our construction method, reducing to the case of finite subgroups of O(n). We
refer to [5, 6] for further details.

Given any finite subgroup G of O(n), any element g ∈ G acts on the set of linear
functionals (x1, · · · , xn). We may consider its action on homogeneous polynomials in
the variables (x1, · · · , xn) and look for invariant polynomials, that are homogeneous
polynomials which are invariant under the group action. If one denotes by dn the
dimension of the vector space of invariant polynomials with homogeneous degree
n, then Molien’s formula allows to compute the Hilbert sum F (G, t) =

∑
n dnt

n

through

(4.12) F (G, t) =
1

|G|
∑
g∈G

1

det(Id− tg)
.

Moreover, the set of invariant polynomials may be represented as follows. First,
there exist n algebraically independent polynomials (θ1, · · · , θn), called primary in-
variants, and some other invariant polynomials (η1, · · · , ηk) (the number of them
may depend on the choice of the θi), called secondary invariants, such that any
invariant may be written as

P0(θ1, · · · , θn) +
k∑
i=1

ηiPi(θ1, · · · , θn),

where Pi are polynomials (in the variables (θ1, · · · , θn)). Moreover, each ηi satis-
fies some monic polynomial equation in the variables θ = (θj), that is satisfies an
algebraic identity of the form

ηpii + ηpi−1
i Qi,1(θ) + · · ·+Qi,pi(θ) = 0,

where Qi,k(θ) are polynomials in the variables (θ1, · · · , θn). These algebraic relations
are called syzygies.

Furthermore, there are only primary generators if and only if the group G is
generated by reflections, that is when G is a Coxeter group.

In order to construct polynomial systems, we then consider finite subgroups
of O(n), compute their invariants (primary and secondary when they exist), look
at their restriction to the unit sphere (that is consider those polynomials modulo∑

i x
2
i − 1). They are no longer homogeneous, and, since

∑
i x

2
i may always be

considered as a primary invariant, we may reduce to n− 1 primary invariants, plus
some number of secondary invariants. We then let the spherical Laplace operator act
on them. Since the spherical Laplace operator commutes with rotations, it preserves
the set of invariant polynomials. Moreover, it maps polynomials with degree n into
polynomials with the same degree. Constructing such polynomial systems amounts
then to choose some family (ζ1, · · · , ζp) of invariants, and look for Γ(ζi, ζj), expecting
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that it may be written as Gij(ζ1, · · · , ζp) (that is to provide a closed system for Γ).
Then, the extra condition on the degrees will be automatically satisfied, where the
valuation is defined through ai = deg(ξi). The difficulty then is to produce such a
closed system (ζi) of algebraically independent polynomials. When such happens,
we produce a polynomial system which is an image of the starting Laplace operator.

In all the examples in dimension 3, one may always chose 2 primary invariant
(θ1, θ2) to produce a closed system (this is no longer true in higher dimension, see
Section 11). Moreover, when one adds one secondary invariant η, we always obtain a
closed system with 3 variables (θ1, θ2, η) = (ζ1, ζ2, ζ3). Now, it turns out that, if one
forgets about the algebraic relations Q(θ1, θ2, η) = 0, and consider the polynomials
Gij(ζi, ζj) = Γ(ζi, ζj) as a polynomial co-metric in dimension 3, it provides a poly-
nomial model on a bounded domain in R3 which has the surface Q(ζ1, ζ2, ζ3) = 0
(the syzygy) as a part of its boundary. Although the first construction with just
the primary invariants (θ1, θ2) is not surprising (all our groups are sub-groups of
Coxeter groups), the second property (construction of 3-dimensional models from
2-dimensional ones through the syzygies) remains quite mysterious.

Let us show this phenomenon in dimension 1, on the simpler form of the cyclic
group Zn acting in R2, as a rotation in the complex plane with angle 2π/n. Writing
z = x+ iy, we may choose as primary invariant X = <(zn), and secondary invariant
Y = =(zn). We now restrict them to the unit circle S1 and let the spherical Laplace
operator act on it. Using formulas (3.11), or the computations provided at the
beginning of Section 6, one sees that

Γ(X,X) = n2(1−X2), L(X) = −n2X,

and therefore it provides a closed system for L which corresponds (up to the factor
n2), to the classical Jacobi operator on (−1, 1). Now, if we add the variable Y , we
get again a closed system for Γ, with co-metric(

Γ(X,X) Γ(X,Y )
Γ(X,Y ) Γ(X,Y )

)
= n2

(
1−X2 −XY
−XY 1− Y 2

)
The determinant of this matrix is 1−X2− Y 2, and indeed we have X2 + Y 2 = 1 in

our model (this is the syzygy relating X and Y ). But the metric
(

1−X2 −XY
−XY 1− Y 2

)
is a metric on the unit ball Ω = {1−X2 − Y 2 > 0} ⊂ R2 which corresponds to the
model 2 in the 2-d polynomial models of [3] in Section 10. The various probability
measures for this model have the form Ca(1−X2−Y 2)adXdY , whith a > −1. When
a = (d− 3)/2, for some integer d ≥ 2, this corresponds to the image of the Laplace
operator on Sd through the projection (x1, · · · , xd+1) ∈ Rd+1 7→ (x1 = X,x2 = Y ).
This measure concentrates when a → −1 to the uniform measure on the boundary
S1. The case that we just described as the image of the Laplace operator on S1

corresponds in this model to a limiting case when d→ 1.
This is this phenomenon that will remain valid in dimension 2 in the examples

described below, although we will not provide such simple geometric interpretation
for the various 3 dimensional models constructed from the syzygies.
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5 Finite subgroups of O(3)

In our context, we shall restrict to finite subgroups of O(3). We first describe
them, following [4]. There are only five (families of) finite subgroups of SO(3),
described by F. Klein, corresponding to the cyclic, dihedral, tetrahedral, octahedral
and icosahedral respectively, denoted in what follows as Cn,Dn, T ,O, I respectively.
The groups T ,O, I correspond to the elements of O(3) preserving respectively the
tetrahedron, the octahedron or its dual the cube, the icosahedron or its dual the
dodecahedron.

The finite subgroups of O(3) are described in two ways. The first class is obtained
adding the central symmetry J : x 7→ −x to one of the subgroups of SO(3). If G is
such a group, we denote GJ this new group, with |GJ | = 2|G|.

The second class is obtained by those groups G of SO(3) which contain a sub-
group G1 of index 2. A new group denoted G1|G is obtained as G1∪{Jg, g ∈ G\G1}.
This provides the groups T |O, Cn|Dn,Dn|D2n, Cn|C2n, where in the case of the cyclic
and dihedral groups, the structure of invariants may depend on the fact that n is
odd or even. A complete table of Molien’s formulas is provided in [4] together with
the associated list of invariants (with however some error in the secondary invariant
for the group I).

In the following sections, we shall describe the various invariants, and provide
the polynomial models which they produce, both in dimension 2 with the primary
invariants, and then in dimension 3 with the use of the secondary ones and their
syzygies.

Among the subgroups of O(3), the following are Coxeter groups: Dn,J (n even)
and Dn|D2n (n odd) ; Cn|Dn, for all n ; T |O, OJ and IJ . They will yield the
primary invariants and hence a closed system and a model. Among them, some
were known: those obtained from C2|D2 (coaxial parabolas), D3|D6 (the cuspidal
cubic with secant), T |O (the swallow tail), OJ (the cuspidal cubic with tangent).
But Dn,J (n even) and Dn|D2n (n odd) for n larger yield new models involving
Tchebychev polynomials, not very surprising ; and IJ yields a nice model with an
angle based on π/5 whose existence has been the initial motivation of this work.

Since each other subgroup of O(3) is a subgroup of one of these Coxeter groups,
we obtain the higher dimensional models by adding the secondary invariant as aux-
iliary variable. In most examples, if the equation of the boundary of the two dimen-
sionnal model yield by the Coxeter group is P (X,Y ) = 0, then the equation of the
boundary of the three dimensionnal models are either of the form Z2−P (X,Y ) = 0,
of the form X(Z2−P (X,Y )) = 0 or of the form Z2−XP (X,Y ) = 0 and the bound-
ary of the three dimensional domain is either a bounded two leaves cover of the two
dimensional domain, either the same but bounded also by a plane. The case of the
groups Cn|C2n or Cn,J is special in that we have more than one secondary invariant;
each of them yield a different three dimensional system.

From now on, the operator Γ will always be the carré du champ operator of the
sphere S2.
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6 Cyclic and dihedral groups
Let (x, y, z) be the standard coordinate system in R3. On the unit circle {z = 0}∩S2,
we choose n equidistant points (ei, i = 1, · · ·n). The group Zn acts on them by
circular permutations, which consist of elements of SO(3) with vertical axis and
angle 2π/n.

We first consider the complex function Z = x+ iy, with its conjugate Z̄ = x− iy,
and observe that

Γ(Z,Z) = −Z2,Γ(Z̄, Z̄) = −Z̄2,Γ(Z, Z̄) = 2− ZZ̄,

and
Γ(z, z) = 1− z2,Γ(z, Z) = −zZ, Γ(z, Z̄) = −zZ̄.

With this in hand, we set

Xn = <(Zn) =
1

2
(Zn + Z̄n), Yn = =(Zn) =

1

2i
(Zn − Z̄n).

The 3 variables (z,Xn, Yn) are linked by the relation X2
n + Y 2

n = (1− z2)n.
Then, the table

Γ =

Γ(z, z)) Γ(z,Xn) Γ(z, Yn)
Γ(Xn, Xn) Γ(Xn, Yn)

Γ(Yn, Yn)


is given by

(6.13)

1− z2 −nzXn −nzYn
n2((1− z2)n−1 −X2

n) −n2XnYn
n2((1− z2)n−1 − Y 2

n


We may chose θ1 = z, θ2 = Xn as primary invariants; these are the invariants

of the Coxeter group Cn|Dn. Hence, consider (θ1, θ2) = (z,Xn). From table (6.13),
we see that they form a closed system for Γ. Let Γ1 be the extracted matrix corre-
sponding to the two first lines and columns from Γ.

Γ1 =

(
1− θ2

1 −nθ1θ2

n2((1− θ2
1)n−1 − θ2

2)

)
.

Up to the factor n2, the determinant of this matrix is P (θ1, θ2) = (1− θ2
1)n− θ2

2,
and according to n being odd or even, it has 1 or 2 irreducible factors. Then, it is
quite immediate to see that

Γ1(θ1, logP ) = −2nθ1,Γ1(θ2, logP ) = −2n2θ2.

It satisfies therefore the boundary equation. When n is odd, the set Ω
(n)
1 =

{P (θ1, θ2) > 0} ⊂ R2 is bounded and (Ω
(n)
1 ,Γ1) provides a polynomial system. When

n = 2p is even, P = P1P2, where P1 = (1− θ2
1)p − θ2, P2 = (1− θ2

1)p + θ2. The area
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Figure 1: Ω
(3)
1 , Ω

(5)
1 and Ω

(11)
1 .

Figure 2: Ω
(4)
1 to illustrate the even case

Ω
(n)
1 plane with P1(θ1, θ2) > 0, P2(θ1, θ2) > 0 and θ1 ∈ (0, 1) has P1P2 = 0 as reduced

boundary equation, and (Ω
(n)
1 ,Γ1) is again a polynomial system. In this model, we

may chose deg(θ1) = 1 and deg(θ2) = n, which comes from the sphere interpretation,
but we may observe that we may as well chose deg(θ1) = 1,deg(θ2) = n−1. Observe
that these domains correspond to the disk if n = 1 (model 2 in Section 10) and to
the double parabola if n = 2 (model 4 in Section 10), but are new as soon as n ≥ 3.

We now add the variable Yn = η in the figure, which is our secondary invariant
(observe that the roles of Xn and Yn are similar, and we may as well exchange them).
This reflects the symmetries of the cyclic group Cn. We now have the co-metric

Γ2 =

1− θ2
1 −nθ1θ2 −nθ1η

n2((1− θ2
1)n−1 − θ2

2) −n2θ2η
n2((1− θ2

1)n−1 − η2)


whose determinant factorizes as n4(1 − θ2

1)n−1((1 − θ2
1)n − θ2

2 − η2). Note that the
last factor

P (θ1, θ2, η) = (1− θ2
1)n − θ2

2 − η2

reflects the syzygy relating η to (θ1, θ2). It is not a surprise that this determinant
vanishes identically, since Γ is the Gramm matrix of the gradients (on the sphere) of
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three functions, and the range of these 3 gradients is at most 2. Observe also that
this syzygy, which will appear in the boundary of the 3-d system, may be written as
P (θ1, θ2)− η2, where P is the boundary equation of the corresponding 2-d system.

But now consider Γ2 as a co-metric in R3 on the bounded domain Ω
(n)
2 = {|θ1| <

1, P (θ1, θ2, η) > 0} ⊂ R3, which has indeed again reduced equation P (θ1, θ2, η) = 0.
We may check that

Γ2(θ1, log(P )) = −2nθ1,Γ2(θ2, log(P )) = −2n2θ2,Γ2(η, log(P )) = −2n2η,

so that indeed (Ω
(n)
2 ,Γ2) is a polynomial system in R3, with degrees deg(θ1) =

1,deg(θ2) = n, deg(η) = n.

Figure 3: Here, the domains Ω
(3)
2 and Ω

(5)
2 .

We now study the case where the groups contain the central symmetry. This
corresponds to the new system of primary invariants (θ1 = z2, θ2 = Xn) associated
with the Coxeter group Dn,J (n even) or Dn|D2n (n odd). We get

Γ3 =

(
4θ1(1− θ1) −2nθ1θ2

n2((1− θ1)n−1 − θ2
2)

)
which, up to a constant, has determinant P (θ1, θ2) = θ1((1−θ1)n−θ2

2) = θ1P1(θ1, θ2).
It has three irreducible components when n is even and 2 when n is odd. Once again

Γ3(θ1, log(θ1)) = 4(1− θ1),Γ3(θ2, log(θ1)) = −2nθ2,

and,
Γ3(θ1, log(P1)) = −4nθ1,Γ3(θ2, log(P1)) = −2n2θ2,

so that the domain Ω3 = {θ1 ∈ (0, 1), P1(θ1, θ2) > 0}, which has reduced bound-
ary equation θ1P1(θ1, θ2) = 0 is such that (Ω3,Γ3) is a polynomial system.
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Figure 4: The domains Ω
(3)
3 and Ω

(5)
3 (for C3,J and C5,J)

Figure 5: The domain Ω
(4)
3

Let us now add the secondary invariant η = Yn, to treat the group Cn,J when n
is even and Cn|C2n when n is odd. We get a new co-metric

Γ4 =

4θ1(1− θ1) −2nθ1θ2 −2nθ1η
n2((1− θ1)n−1 − θ2

2) −n2θ2η
n2((1− θ1)n−1 − η2)


The determinant of this matrix factorizes as

n4(1− θ1)n−1θ1((1− θ1)n − θ2
2 − η2).

The factor P1(θ1, θ2, η) = (1−θ1)n−θ2
2−η2 represents the relation between η, θ1, θ2

(the syzygy). The two factors θ1, P1(θ1, θ2, η) = (1 − θ1)n − θ2
2 − η2 satisfy the

boundary equations

Γ4(θ1, log(θ1)) = 4(1− θ1),Γ4(θ2, log(θ1)) = −2nθ2,Γ4(η, log(θ1)) = −2nη
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Γ4(θ1, log(P1)) = −4nθ1,Γ4(θ2, log(P1)) = −2n2θ2,Γ4(η, log(P1)) = −2n2η.

(This is not true for the factor 1 − θ1). The domain Ω4 ⊂ R3 defined by θ1 ∈
(0, 1), P1(θ1, θ2, η) > 0, which has reduced boundary equation θ1P1(θ1, θ2, η) = 0, is
therefore such that (Ω4,Γ4) is a polynomial system. Observe that the syzygy, which
appears in one component of the boundary of Ω4, may be written as P (θ1, θ2)− η2,
where P is one of the components of the boundary of the corresponding 2-d domain
Ω3.

Figure 6: The domain Ω
(3)
4

We may now consider the dihedral group Dn, which amounts to add to the sym-
metries of Cn the transformation (x, y, z) 7→ (x,−y,−z). It has as primary invariants
θ1 = z2, θ2 = Xn as before (corresponding to the 2-d polynomial system (Ω3,Γ3)),
but now the secondary invariant is η = zYn. The new co-metric in dimension 3 is
then

Γ5 =

4θ1(1− θ1) −2nθ1θ2 −2η((n+ 1)θ1 − 1)
n2((1− θ1)n−1 − θ2

2) −n(n+ 1)θ2η
(1− θ1)n−1(1 + (n2 − 1)θ1)− θ2

2 − (n+ 1)2η2


The determinant of this metric factorizes as

4n2(θ1(1− θ1)n − θ1θ
2
2 − η2)((1− θ1)n−1((n2 − 1)θ1 − 1)− θ2

2) = 4n2P1P2,
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where P1(θ1, θ2, η) = θ1(1− θ1)n− θ1θ
2
2−η2 is the syzygy which relates η to (θ1, θ2).

Observe once again the relation between this syzygy and the boundary equation of
the corresponding 2-d domain Ω3.

Once again, we have

Γ5(θ1, log(P1)) = 4(1−(n+1)θ1),Γ5(θ2, log(P1)) = −2n(n+1)θ2,Γ5(η, log(P1)) = −2(n+1)2η

while the boundary equation is not satisfied for P2. In R3, the domain Ω5 delimited
by θ1 ∈ (0, 1), P1 > 0 is a bounded domain with reduced boundary equation P1 = 0,
and (Ω5,Γ5) provides a 3-dimensional polynomial system.

Figure 7: The domain Ω5 for n = 3

The groups Dn|D2n for n even or Dn,J for n even have primary invariants (z2 =
θ1, X

2
n = θ2) and secondary invariant η1 = zYn or η2 = zXn. However the groups

Cn|C2n (n even) or Cn,J (n odd) have the same primary invariants and as secondary
invariants zXn, zYn, XnYn. It may be worth to observe that (z,X2

n, XnYn) is another
form of the invariants for C2n, since X2n = X2

n − Y 2
n = 2X2

n − (1 − z2)n, and
Y2n = 2XnYn. and therefore they do not provide any new model (although they
provide them under another form).

We first choose θ1 = z2, θ2 = X2
n (for which we already know that it corresponds

to (z2, X2n) through a change of variables. We then get a co-metric

Γ6 = 4

(
θ1(1− θ1) −nθ1θ2

n2θ2((1− θ1)n−1 − θ2)

)
,
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which corresponds to a 2-d domain Ω6 with boundary reduced equation θ1θ2((1 −
θ1)n− θ2) = 0, which is isomorphic to the domain Ω3 when changing n into 2n (this
model has 3 irreducible components in its boundary equation, and two of them may
be reduced to a line, providing then a simpler form).

Figure 8: The domain Ω6 for n = 3

We may first add the secondary invariant η1 = zY . We get a co-metric

Γ7 =

4θ1(1− θ1) −4nθ1θ2 2η1(1− (n+ 1)θ1)
4n2θ2((1− θ1)n−1θ1 − θ2) −2n(n+ 1)θ2η1

(1− θ1)n−1(1 + (n2 − 1)θ1)− (n+ 1)2η1 − θ2


The syzygy relation between (θ1, θ2, η) may be written as

P (θ1, θ2, η1) = θ1

(
(1− θ1)n − θ2

)
− η2

1,

once again of the form Q(θ1, θ2)− η2, where Q appears in the boundary equation of
the corresponding 2-d domain Ω6.

One may check that for this co-metric, θ2P divides det(M), and moreover that

Γ7(θ1, log(P )) = 4(1−(n+1)θ1), Γ7(θ2, log(P )) = −4n(n+1)θ2, Γ7(η1, log(P )) = −2(n+1)2η1.

and also

Γ7(θ1, log(θ2)) = −4nθ1, Γ7(θ2, log(θ2)) = 4n2((1−θ1)n−1−θ2,Γ7(η, log(θ2)) = −2n(n+1)η1.

This provides a 3-d domain Ω7 ⊂ R3 with boundary reduced equation θ2P (θ1, θ2, η1) =
0, such that (Ω7,Γ7) is again a polynomial system.

Adding the variable η2 = zX, instead of η1 = zY , to θ1 = z2, θ2 = X2 leads to
the co-metric
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Figure 9: The domain Ω7 for n = 3

Γ8 =

4θ1(1− θ1) −4nθ1θ2 2η2(1− (n+ 1)θ1)
4n2θ2((1− θ1)n−1 − θ2) 2nη2(n(1− θ1)n−1 − (n+ 1)θ2)

n2θ1(1− θ1)n−1 + θ2 − (n+ 1)2η2
2


The determinant of this matrix has 3 factors, 2 of them being P1 = θ1θ2 − η2

2 and
P2 = θ2−(1−θ1)n. P1(θ1, θ2, η2) is the syzygy relating η2 to (θ1, θ2). It is still of the
form Q(θ1, θ2)−η2

2, where Q appears in the boundary equation of the corresponding
2-d domain Ω6.

Now, once again, we have
Γ8(θ1, log(P1)) = 4(1− (n+ 1)θ1),

Γ8(θ2, log(P1)) = 4n((1− θ1)n−1 − (n+ 1)θ2),

Γ8(η2, log(P1)) = −2(n+ 1)2η2,

and 
Γ8(θ1, log(P2)) = −4nθ1,

Γ8(θ2, log(P2)) = −4n2θ2,

Γ8(η2, log(P2)) = −2n(n+ 1)η2.
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The third factor of the determinant does not satisfy the boundary equation. The
domain Ω8 with boundary reduced equation P1P2 = 0 provides a polynomial system
(Ω8,Γ8).

Figure 10: The domain Ω8 for n = 3

We now may add instead the secondary invariant η3 = XnYn. As already ob-
served, the new system (z2 = θ1, X

2
n = θ2, η3 = XnYn) is isomorphic to the system

(θ1 = z2, θ2 = X2n, η = Y2n) described by the metric Γ4 and the domain Ω4. Ob-
serve however that in this presentation, the reduced boundary of the domain is
θ1(θ2(1− θ1)n − θ2

2 − η2
3) = 0, the second factor being the syzygy.

Finally, one may check that adding two of the secondary invariants ηi to θ1 = z2,
θ2 = X2

n will not provide any closed system for Γ. The system (θ1, θ2, η1, η2, η3) pro-
vides a closed 5 dimensional Γ operator, but the determinant of the metric vanishes
(in R5) and there does not seem to be any polynomial system associated with it.

7 Tetrahedron and cube/octahedron
It makes sense, as we shall see, to treat jointly these cases. The groups T ,O corre-
spond to the elements of SO(3) preserving respectively the tetrahedron, the octahe-
dron or its dual the cube. They have respective cardinality 12 and 24. Adding the
central symmetry J : x 7→ −x to each of them we obtain TJ and OJ . Observe that
the first one does not preserve the tetrahedron, while the second one does preserves
the cube. We also consider the group T |O which can be obtained by adding a plane
symmetry with respect to the plane symmetry axes of the tetrahedron and which
preserves the tetrahedron regardless of orientation.
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Figure 11: The domain Ω9 for n = 3.

They are related by the following inclusions diagram :

T
↙ ↓ ↘

TJ O T |O
↘ ↓ ↙
OJ

Let (x, y, z) be the standard coordinate system in R3. We put the cube centered
at the origin and with faces parallel to the coordinate planes. We put the tetrahedron
with edges on the diagonal of the cube. We consider the polynomials

O3 = xyz,O4 = x4 + y4 + z4, O6 = (x2 − y2)(y2 − z2)(z2 − x2),

which will play the same rôle as the one played by (z,XnYn) in the previous one as
basic blocks to construct all the invariants for the various groups concerned in this
section.

We first compute :

Γ =

Γ(O3, O3) Γ(O3, O4) Γ(O3, O6)
Γ(O4, O4) Γ(O4, O6)

Γ(O6, O6)


which is(1−O4)/2− 9O2

3 4O3(1− 3O4) −18O3O6

8(6O2
3 + 3O4 − 1− 2O2

4) 8O6(2− 3O4)
−54O2

3O4 + 18O2
3 − 3O2

4 + 4O4 − 1− 36O2
6

 .
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We consider the primary invariants of the Coxeter group T |O given by (θ1, θ2) =
(O3, O4). The determinant of the submatrix Γ11 given by the first two rows and
columns is

P (θ1, θ2) = −108θ4
1 + 20θ2

1 + 2θ3
2 − 5θ2

2 + 4θ2 − 36θ2
1θ2.

It provides a domain Ω11 with boundary P (X,Y ) = 0. This corresponds to the
model of the swallow tail (example 10 in Section 10).

Figure 12: The domain Ω11 : swallow tail.

For the group T , we can choose η = O6 as secondary invariant. It is alge-
braically related to (θ1, θ2) = (O3, O4) through

η2 = P (θ1, θ2).

If we write the matrix

Γ12 =

Γ(θ1, θ1) Γ(θ1, θ2) Γ(θ1, η)
Γ(θ2, θ2) Γ(θ2, η)

Γ(η, η)

 ,

we get
−9 θ1

2 − θ2/2 + 1/2 −12 θ1θ2 + 4 θ1 −18 θ1η

48 θ2
1 − 16 θ2

2 + 24 θ2 − 8 −24 θ2η + 16 η

−54 θ2
1θ2 + 18 θ2

1 − 3 θ2
2 − 36 η2 + 4 θ2 − 1

 .
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The determinant of this matrix factorizes in

D = 4 (3 θ2 − 1)
(
18 θ1

2 + θ2 − 1
) (

108 θ1
4 + 36 θ1

2θ2 − 2 θ2
3 − 20 θ1

2 + 5 θ2
2 + 4 η2 − 4 θ2 + 1

)
It turns out that the factor

P3(θ1, θ2, η) = 108θ4
1 + 36 θ2

1θ2 − 2 θ3
2 − 20 θ2

1 + 5 θ2
2 + 4 η2 − 4 θ2 + 1

satisfies 
Γ12(θ1, logP3) = −36θ1,

Γ12(θ2, log(P3)) = −48θ2 + 32,

Γ12(η, log(P3)) = −72η,

so that this provides a new polynomial model (Ω12,Γ12) in dimension 3. (The
boundary equation is not satisfied for the two other factors.)

We can check that the complementary of the surface P3(X,Y, Z) = 0 has one
bounded component in R3 and that the determinant does not vanish inside this
component.

Figure 13: Surface P3(X, Y, Z) = 0, bounding Ω12.

We observe that OJ is also a Coxeter group. We can take as primary invariants
(θ1, θ2) = (O2

3, O4) for OJ . We get

Γ13 =

(
Γ(θ1, θ1) = 4θ1((1− θ2)/2− 9θ1) Γ(θ1, θ2) = 8θ1(1− 3θ2)

Γ(θ2, θ2) = 16(3θ1 + 3
2θ2 − 1/2− θ2

2)

)
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whose determinant is given by,

Q(θ1, θ2) = 16θ1(−108θ2
1 + 20θ1 + 2θ3

2 − 5θ2
2 + 4θ2 − 1− 36θ1θ2)

Observe that Q(X2, Y ) = X2P (X,Y ). We recognize that the boundary of the
domain Ω13 is the cuspidal cubic with tangent (model 9 in Section 10).

Figure 14: The domain Ω13 : cuspidal cubic with tangent.

For the group TJ , we may add the secondary invariant η = O6. We obtain the
co-metric Γ14 :
−36 θ1

2 − 2θ1θ2 + 2θ1 −24 θ1θ2 + 8 θ1 −36θ1η

48 θ1 − 16 θ2
2 + 24 θ2 − 8 −24 θ2η + 16 η

−54 θ1θ2 + 18 θ1 − 3 θ2
2 − 36 η2 + 4 θ2 − 1

 .
The determinant of this matrix factorizes as

16θ1(3θ2 − 1)(18θ1 + θ2 − 1)(−2θ3
2 + 108θ2

1 + 36θ1θ2 + 5θ2
2 + 4η2 − 20θ1 − 4θ2 + 1).

Only the two factors θ1 and

Q3(θ1, θ2, η) = (−2θ3
2 + 108θ2

1 + 36θ1θ2 + 5θ2
2 + 4η2 − 20θ1 − 4θ2 + 1)
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satisfy the boundary equation, with
Γ14(θ1, log(θ1)) = −36θ2 − 2θ2 + 2,

Γ14(θ2, log(θ1)) = −24θ2 + 8,

Γ14(η, log(θ1)) = −36η,

and 
Γ14(θ1, log(Q3)) = −72θ1,

Γ14(θ2, log(Q3)) = −48θ2 + 32,

Γ14(θ3, log(Q3)) = −73θ3.

We observe that this factor writes η2 −Q(θ1, θ2). It appears that the two com-
ponents bound a domain Ω14 on which the other factors do not vanish.

Figure 15: Surface XQ3(X, Y, Z) = 0 bounding the domain Ω14

Finally, for the group O, we use (θ1, θ2, η) = (O2
3, O4, O3O6). We compute

the Γ15 matrix


−36 θ1

2 − 2θ1θ2 + 2θ1 −24 θ1θ2 + 8 θ1 −54θ1η − θ2η + η

48 θ1 − 16 θ2
2 + 24 θ2 − 8 −36ηθ2 + 20η

G3,3

 ,
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with

G3,3 := −81 η2−81 θ1
2θ2

2
+9/2 θ1

2−3 θ1θ2+3/2 θ1+3/2 θ1θ2
2−1/4 t2

4+
7 θ2

3

8
−9 θ2

2

8
+5/8 θ2−1/8.

The determinant of the matrix factorizes as 2Q1Q2, with

Q1 = 2 θ2
4 + 324 θ1

2θ2 − 12 θ1θ2
2 − 7 θ2

3 − 36 θ1
2 + 24 θ1θ2 + 9 θ2

2 − 12 θ1 − 5 θ2 + 1

Q2 = 2 θ1θ2
3 + 108 θ1

3 + 36 θ1
2θ2 + 5 θ1θ2

2 − 20 θ1
2 − 4 θ1θ2 + 4 η2 + θ1.

Only Q2 satisfies the boundary equation, with
Γ15(θ1, log(Q2)) = 2− 108θ1 − 2θ2

Γ15(θ2, log(Q2)) = 40− 72θ2

Γ15(η, log(Q2)) = −162η

We observe that (O3O6)2 = O3
3Q(O2

3, O4) so that η2 = θ1Q(θ1, θ2) =: R(θ1, θ2). We
get then a new domain Ω15 with boundary

Q2(θ1, θ2, η) := η2 −R(θ1, θ2) = 0.

We may observe that in all these cases, the 3-dimensional domains can be cut by the
plane {Z = 0} to get a 2-dimensional domain. In the first case, we get the swallow
tail, in the other two cases, we get the cuspidal cubic with tangent. They provide
various two fold coverings of these two dimensional models. It could be interesting
to investigate the shape of the singularities of the boundaries of these 3-dimensional
domains.

8 Dodecahedron / Icosahedron
We finish by the study of the groups I and IJ of cardinality 60 and 120. The
computations are a bit more painful but the idea is always the same. Let us introduce
as before three new building blocks. With c = (1 +

√
5)/2,

I6 = (c2x2 − y2)(c2y2 − z2)(c2z2 − x2),

I10 = (x+ y + z)(−x+ y + z)(x− y + z)(x+ y − z)
(c−2x2 − c2y2)(c−2y2 − c2z2))(c−2z2 − c2x2),

I15 = xyz(cx+ c−1y + z)(−cx+ c−1y + z)((cx− c−1y + z)(cx+ c−1y − z)
(x+ cy + c−1z)(−x+ cy + c−1z)((x− cy + c−1z)(x+ cy − c−1z)

(c−1x+ y + cz)(−c−1x+ y + cz)(c−1x− y + cz)(c−1x+ y − cz).

We will use the primary invariants (θ1, θ2) = (I6, I10) and the secondary invariant
η = I15. Let us do the computations directly with all the invariants in this family.
With (θ1, θ2, η) = (I6, I10, I15), we get for the co-metric

Γ =

Γ(θ1, θ1) Γ(θ1, θ2) Γ(θ1, η)
Γ(θ2, θ2) Γ(θ2, η)

Γ(η, η)


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Figure 16: Surface R3(X, Y, Z) = 0 bounding the domain Ω15.

with

Γ(θ1, θ1) = −36 θ1
2 −

(√
5 + 2

) (
7 θ1 + 5 θ2 + 2

√
5θ2

)
,

Γ(θ1, θ2) =
(
40− 16

√
5
)
θ1

2 +
(
3
√

5 + 6
)
θ2 + θ1

√
5− 60 θ1 θ2,

Γ(θ2, θ2) =
(
7296− 3264

√
5
)
θ1

3 +
(
96
√

5− 240
)
θ1 θ2

+
(
−432 + 192

√
5
)
θ1

2 − 5
√

5θ2 +
(
6− 3

√
5
)
θ1 − 100 θ2

2,

Γ(θ1, η) = −90 θ1 η − 2
(√

5 + 2
)
η

Γ(θ2, η) = −150 θ2 η + η
((
−100 + 40

√
5
)
θ1 − 2

√
5
)

Γ(η, η) = −225 η2 − 1/4
(
−161 + 72

√
5
)(

13 θ1

√
5 + 45

√
5θ2 + 45 θ1

2 + 4
√

5 + 26 θ1 + 100 θ2 + 9
)(

30 θ1 θ2

√
5− 3 θ1

√
5− 9

√
5θ2 − 19 θ1

2 + 75 θ1 θ2 − 6 θ1 − 20 θ2

)
For the Coxeter group IJ we restrict our attention to (θ1, θ2). Up to some factor,
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the determinant of the sub-matrix Γ21 corresponding to (θ1, θ2) is S(θ1, θ2), with

S(θ1, θ2) = 688
√

5θ4
1 + 6480

√
5θ3

1θ2 + 1728 θ5
1 + 364 θ3

1

√
5 + 6042

√
5θ2

1θ2 + 23400
√

5θ1 θ
2
2

+17050
√

5θ3
2 + 1376 θ4

1 + 14400 θ3
1θ2 + 68 θ2

1

√
5 + 1288 θ1 θ2

√
5 + 1220

√
5θ2

2

−19520
√

5η2 + 819 θ3
1 + 13515 θ2

1θ2 + 52325 θ1 θ
2
2 + 38125 θ3

2 + 152 θ2
1 + 2880 θ1 θ2

+2728 θ2
2

This is a new 2-dimensional domain Ω21.

Figure 17: Domain Ω21 bounded by S(X, Y ) = 0.

For the direct subgroup I, the determinant of Γ22 factorizes (up to some
constant) into S1S2S3, with

S1(θ1, θ2, η) = S(θ1, θ2)− 43648 η2,

S2(θ1, θ2) = 13 θ1

√
5 + 45

√
5θ2 + 45 θ2

1 + 4
√

5 + 26 θ1 + 100 θ2 + 9,
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and,

S3(θ1, θ2) = 30 θ1 θ2

√
5− 3 θ1

√
5− 9

√
5θ2 − 19 θ2

1 + 75 θ1 θ2 − 6 θ1 − 20 θ2.

S1(θ1, θ2, η) is the syzygy relating η to θ1 and θ2, and the polynomial S1 satisfies
the boundary condition for the co-metric Γ22, which once again provides a new
polynomial system with domain Ω22 in dimension 3, since the boundary conditions
are satisfied:

Γ22(θ1, log(S1)) = −4
√

5− 8− 180θ1,

Γ22(θ2, log(S1)) = 4(2
√

5− 5)((30
√

5 + 75)θ2 + 10θ1 + 2 +
√

5),

Γ22(η, log(S1)) = −450η.

Observe that we may as well rescale η to get a simpler domain η2 = S(θ1, θ2).

Figure 18: Surface S1(X, Y, Z) = 0 bounding the domain Ω22.
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9 Summary
We summarize here the models detailed above. For the dihedral family, we let

Hn(X,Y ) = (1−X)n − Y.

Group θ1 θ2 η Ω Boundary Picture

Cn|Dn z Xn Ω
(n)
1 Hn(X2, Y 2) = 0

Cn z Xn Yn Ω
(n)
2 Hn(X2, Y 2)− Z2 = 0

Dn,J ,Dn|D2n z2 Xn Ω
(n)
3 XHn(X,Y 2) = 0

CnJ , Cn|C2n z2 Xn Yn Ω
(n)
4 X(Hn(X,Y 2)− Z2) = 0

Dn z2 Xn zYn Ω
(n)
5 XHn(X,Y 2)− Z2 = 0

D2n,J z2 X2
n D6(Ω

(n)
3 ) XYHn(X,Y ) = 0

Dn|D2n,Dn,J

Cn|C2n, Cn,J z2 X2
n zYn Ω

(n)
7 XHn(X,Y )− Z2 = 0

Cn|C2n, Cn,J z2 X2
n zXn Ω

(n)
8 (XY − Z2)Hn(X,Y ) = 0

Cn|C2n, Cn,J z2 X2
n XnYn D9(Ω

(n)
4 ) X(Y Hn(X,Y )− Z2) = 0

When there are two groups, the first one is for n odd, the second is for n even.
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For the tetrahedron / cube / octahedron family, we let H(X,Y ) = 108X2 −
20X − 2Y 3 + 5Y 2− 4Y + 36XY, and for the dodecahedron / icosahedron family, we
set S be as defined in Section 8.

G θ1 θ2 η Ω Boundary Picture

T |O O3 O4 Ω11 H(X2, Y ) = 0

T O3 O4 O6 Ω12 H(X2, Y )− 4Z2 = 0

OJ O2
3 O4 Ω13 XH(X,Y ) = 0

TJ O2
3 O4 O6 Ω14 X(H(X,Y )− 4Z2) = 0

O O2
3 O4 O3O6 Ω15 Z2 −XH(X,Y ) = 0

IJ O6 O10 Ω21 S(X,Y ) = 0

I O6 O10 O15 Ω22 Z2 = S(X,Y )

Covers If H is a subgroup of G, then polynomials that are invariant by G are also
invariant by H. It follows that we can express the G invariants (primary and sec-
ondary) as polynomials in terms of the primary and secondary H-invariants (modulo
x2 + y2 + z2− 1). These polynomials define a mapping from the H-domain onto the
G-domain which is a h-covering, h being the index of H in G.

Let us see what happens for a few examples. This is specially easy for the 2-
covers. We go from 3D to 2D models by simple projection (forgetting variable z).
In other cases the effect is that of adding a new symmetry for instance :

Ω
(n)
1 → Ω

(n)
3

(x, y) 7→ (x2, y)

32 July 6, 2015



preprint under construction

Ω
(n)
2 → Ω

(n)
5

(x, y, z) 7→ (x2, y, xz)

Ω
(n)
2 → Ω

(n)
4

(x, y, z) 7→ (x2, y, z)

The case of C3|D3 as subgroup of T |O is a little bit more tedious because we did
not choose the same coordinates for the representations. We can see what happens
taking for C3|D3 the variables (x+ y+ z)/

√
3 and xyz to have a common invariant.

It is a linear computation to get a, b, c and d such that

x4+y4+z4 = a(x+y+z)4+b(x+y+z)2(x2+y2+z2)+c(x+y+z)xyz+d(x2+y2+z2)2.

We obtain a map of the form :

Ω
(3)
1 → Ω11

(x, y) 7→ (y, ax4 + bx2 + cxy + d).

10 The bounded two dimensional models of [3]

We provide here for completeness the complete list of models in dimension 2 de-
scribed in [3]. With the restriction that the valuation is the usual one, they are the
only ones which may occur up to affine transformations. We indicate the (scalar)
curvature when it is constant (+ when it is a positive constant, 0 otherwise). When
no curvature is indicated, it comes from the fact that the metric is not unique (mod-
els 2 and 3), in which case there exist at least one metric for which the curvature
is constant and positive), or it is not constant (model 7). Up to isomorphism, one
may replace one parabola by an horizontal line in model 4, so that this changes the
degree in the boundary (in this particular case however, the co-metric is no longer
unique).

Up to isomorphism, we have{
(2) ' Ω

(1)
1 , (3) ' Ω

(2)
3 , (4) ' Ω

(2)
1 ' Ω

(1)
3 ,

(5) ' Ω
(2)
6 ' Ω

(4)
4 , (8) ' Ω

(3)
2 , (9) ' Ω13, (10) ' Ω11
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] Curv. d(Ω) Boundary Picture

1 0 4 (1−X2)(1− Y 2) = 0

2 ' 2 1−X2 − Y 2 = 0

3 ' 3 XY (1−X − Y ) = 0

4 + 4, 3 (1−X2)2 − Y 2 = 0

5 + 4 Y (1−X)(X2 − Y )

6 0 4 (Y −X2)((Y + 1)2 − 4X2) = 0

7 ' 3 Y 2 −X2(1−X) = 0

8 + 4 (Y 2 −X3)(X − 1) = 0

9 + 4 (Y 2 −X3)(2(Y − 1)− 3(X − 1)) = 0

10 + 4 4X2 − 27X4 + 16Y − 128Y 2 − 144X2Y + 256Y 3 = 0

11 0 4 (X2 + Y 2)2 + 18(X2 + Y 2)− 8X3 + 24XY 2 − 27 = 0

11 Further remarks
In the various models presented here, it happens that the primary invariants provide
a closed system. The reason is that all these groups are subgroups of finite Coxeter
groups, for which the invariants are our primary invariants. It is not true that this
is always the case. Here is an example provided by Y. Cornulier of a group in
dimension 4 which is not a subgroup of a finite Coxeter group. Let Mp the matrix
of a rotation with angle 2π/p in R2, where p is an odd prime. Let I2 be the 2 × 2
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identity matrix. Then, we consider the group generated by

N1 =

(
Mp 0
0 I2

)
, N2 =

(
I2 0
0 Mp

)
, J =

(
0 I2

I2 0

)
.

This group has 2p2 elements, Nk1
1 Nk2

2 , JNk1
1 Nk2

2 , 0 ≤ k1, k2 ≤ p− 1, and, thanks to
Mollien’s formula (4.12), the Hilbert sum is easily computed

F (t) =
1 + tp + 2tp+2 + 2t2p + t2p+2 + t3p+2

(1− t2)(1− t4)(1− t2p)(1− tp)
.

This leads to the description of primary and secondary invariants when restricted
on the unit sphere in R4. Following Section 6, we identify R4 ' C2, and for a pair
(z1, z2), consider zpj = Xj + iYj and Rj = |zj |2, j = 1, 2. Then we chose

θ1 = X1 +X2, θ2 = X1X2, θ3 = R1R2

as primary invariants, and the secondary invariants may be chosen as

η1 = Y1 + Y2, η2 = (Y1 − Y2)(R1 −R2), η3 = (X1 −X2)(R1 −R2),

η4 = Y1Y2, η5 = (X1 −X2)(Y1 − Y2), η6 = (X1Y1 −X2Y2)(R1 −R2), η7 = η3η4

It turns out that θ1, θ2, θ3 is not closed for Γ, where Γ is the square field operator
on the unit sphere in R4. For example

Γ(θ1, θ2) = p2(Tp−1 − 2θ1θ2),

where Tk = Rk1X2 +Rk2X1, and Tp−1 may be expressed as

Tp−1 = θ1Q1(θ3) + T1Q2(θ3),

where Qi are polynomials, and T1 = (θ1 +η3)/2, so that Γ(θ1, θ2) is not a polynomial
of (θ1, θ2, θ3).

In this example, one may observe that indeed (θ1, θ2, θ3, η3) form a closed system
for Γ, but this does not provide any model in R4 (the boundary equation is not
satisfied).

A final remark is that our various 3-d models constructed from 2-d one could
appear as provided by Coxeter groups in dimension 4. If such would be the case,
the natural Ricci curvature carried by the associated cometric Γ would be constant
(since it would locally be the spherical co-metric seen through a diffeomorphism).
One may easily check that this is not the case.
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