
Interactive certificate for the verification of

Wiedemann’s Krylov sequence: application to the

certification of the determinant, the minimal and

the characteristic polynomials of sparse matrices

Jean-Guillaume Dumas∗ Erich Kaltofen†

Emmanuel Thomé‡

July 3, 2015

Abstract

Certificates to a linear algebra computation are additional data struc-

tures for each output, which can be used by a—possibly randomized—

verification algorithm that proves the correctness of each output. Wiede-

mann’s algorithm projects the Krylov sequence obtained by repeatedly

multiplying a vector by a matrix to obtain a linearly recurrent sequence.

The minimal polynomial of this sequence divides the minimal polynomial

of the matrix. For instance, if the n×n input matrix is sparse with n
1+o(1)

non-zero entries, the computation of the sequence is quadratic in the di-

mension of the matrix while the computation of the minimal polynomial

is n
1+o(1), once that projected Krylov sequence is obtained.

In this paper we give algorithms that compute certificates for the

Krylov sequence of sparse or structured n × n matrices over an abstract

field, whose Monte Carlo verification complexity can be made essentially

linear. As an application this gives certificates for the determinant, the

minimal and characteristic polynomials of sparse or structured matrices

at the same cost.

1 Introduction

We consider a square sparse or structured matrix A ∈ F
n×n. By sparse or

structured we mean that the multiplication of a vector by A requires less opera-

∗Laboratoire J. Kuntzmann, Université de Grenoble. 51, rue des Mathématiques,
umr CNRS 5224, bp 53X, F38041 Grenoble, France, Jean-Guillaume.Dumas@imag.fr,
ljk.imag.fr/membres/Jean-Guillaume.Dumas.

†Department of Mathematics. North Carolina State University. Raleigh, NC 27695-8205,
USA. kaltofen@math.ncsu.edu, www.kaltofen.us.

‡CARAMEL Project – INRIA Nancy Grand Est. 615 rue du Jardin Botanique–54602
Villiers-les-Nancy – France. Emmanuel.Thome@gmail.com, www.loria.fr/˜thome/.

1

mailto:Jean-Guillaume.Dumas@imag.fr
http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/
mailto:kaltofen@math.ncsu.edu
http://www.kaltofen.us
mailto:Emmanuel.Thome@gmail.com
http://www.loria.fr/\protect \unhbox \voidb@x \penalty \@M \ {}thome

tions than that of a dense matrix-vector multiplication. The arithmetic cost to
apply A is denoted by µ which thus satisfies µ ≤ n(2n− 1) (n2 multiplications
and n(n − 1) additions). In the following we also need to perform row-vector-
times-matrix multiplications, which, by the transposition principle, cost O(µ)
operations [3]. In the following we will simply consider that both operations (left
or right multiplication by a row or column vector) cost less than µ arithmetic
operations.

The main idea of this paper is to use a Baby-step/Giant-step verification of
Wiedemann’s Krylov sequence generation. Once the sequence is verified, the
remaining operations, of lower cost, can be replayed by the Verifier.

The verification procedure used throughout this paper is that of essentially
optimal interactive certificates with the taxonomy of [8]. Indeed, in the follow-
ing, we consider a Prover, nicknamed Peggy, who will perform a computation,
potentially together with additional data structures. We also consider a Veri-
fier, nicknamed Victor, who will check the validity of the computation, faster
that just by recomputing it.

By certificates for a problem that is given by input/output specifications, we
mean, as in [15, 16], an input-dependent data structure and an algorithm that
computes from that input and its certificate the specified output, and that has
lower computational complexity than any known algorithm that does the same
when only receiving the input. Correctness of the data structure is not assumed
but validated by the algorithm.

By interactive certificate, we mean certificates modeled as
∑

-protocols (as
defined in [7]) were the Prover submits a Commitment, that is some result of
a computation; the Verifier answers by a Challenge, usually some uniformly
sampled random values; the Prover then answers with a Response, that the
Verifier can use to convince himself of the validity of the commitment. To be
useful, such proof systems is said to be complete if the probability that a true
statement is rejected by the Verifier can be made arbitrarily small. Similarly,
the protocol is sound if the probability that a false statement is accepted by
the verifier can be made arbitrarily small. In the following we will actually only
consider perfectly complete certificates, that is were a true statement is never
rejected by the Verifier.

There two may ways to design such certificates. On the one hand, effi-
cient protocols can be designed for delegating computational tasks. In recent
years, generic protocols have been designed for circuits with polylogarithmic
depth [13, 18]. The resulting protocols are interactive and their cost for the
Verifier is usually only roughly proportional to the input size. They however
can produce a non negligible overhead for the Prover and are restricted to cer-
tain classes of circuits. Variants with an amortized cost for the Verifier can also
be designed, see for instance [17], quite often using relatively costly homomor-
phic routines. Moreover, we want the Verifier to run faster than the Prover, so
we discard amortized models where the Verifier is allowed to do a large amount
of precomputations, that can be amortized if, say, the same matrix is repeatedly
used [5, 12].

On the other hand, dedicated certificates (data structures and algorithms

2

that are verifiable a posteriori, without interaction) have also been developed
in the last few years, e.g., for dense exact linear algebra [11, 16, 10], even
for problems that have no good circuit representation. There the certificate
constitute a proof of correctness of a result, not of a computation, and can thus
also stand a direct public verification. The obtained certificates are ad-hoc, but
try to reduce as much as possible the overhead for the Prover, while preserving
a fast verification procedure.

In the current paper we follow the later line of research, that is ad-hoc cer-
tificate with fast verification and negligible overhead for the Prover.

In exact linear algebra, the most simple problem to have an optimal cer-
tificate is the linear system solution, LinSolve: for a matrix A and a vector
b, checking that x is actually a solution is done by one multiplication of x by
A. The cost of this check similar to that of just enumerating all the non-zero
coefficients of A. Thus certifying a linear system is reduced to multiplying a
matrix by a vector: LinSolve≺MatVecMult. In [8], two essentially opti-
mal reductions have been made, that the rank can be certified via certificates
for linear systems, and that the characteristic polynomial can be certified via
certificates for the determinant: CharPoly≺Det and Rank≺LinSolve. But
no reduction was given for the determinant. We bridge this gap in this pa-
per. We first use Wiedemann’s reduction of the determinant to the minimal
polynomial of a sequence, Det≺MinPoly≺Sequence, [21], and then show
that the computation of a sequence generated by projections of matrix-vector
iterations can be checked by a small number of matrix-vector multiplications:
Sequence≺MatVecMult.

The complexity model we consider here is the algebraic complexity model:
we count field operations, but tests (even such as checking the equality of whole
vectors) are free and uniform sampling of random elements in a field is also free.
This is justified by the fact that for all our proposed certificates, the number of
equality tests is always lower than that of field operations and that the number
of random samples is always lower than that of the communications, itself lower
than that of the Verifier’s work.

The paper is organized as follows. We define Wiedemann’s Krylov sequence
formally in Section 2. Then we use a check-pointing technique to propose a
first non-quadratic certificate in Section 3. Then we derive from this technique
a recursive process that can yield a method of decreasing complexities for the
Verifier in Section 4. The same general idea is modified in Section 5 to get a
certificate verifiable in essentially optimal time. Finally, we show in Section 6
how to derive certificates for the determinant, the minimal and the characteristic
polynomial from these certificates for the Krylov sequence.

3

2 Wiedemann’s Krylov sequence

We consider here the simple Wiedemann’s sequence S (no blocks), defined for
two given vectors.

Definition 1. For A ∈ F
n×n, V0 ∈ F

n and U ∈ F
n, Wiedemann’s Krylov space

is defined for i ≥ 0 as:
KV0

= (Vi)i = (AiV0)i

Wiedemann’s Krylov sequence is also defined as:

S = (s[i])i = (UTAiV0)i = (UTVi)i

In the following, the Prover will compute this sequence, potentially together
with additional data structures, and the Verifier will check the validity of the
sequence, once computed.

Now, for a matrix A whose matrix-vector multiplication costs µ arithmetic
operations, the original cost for the computation of 2n elements of Wiedemann’s
Krylov sequence is trivially:

W (n) = 2nµ+ 4n2 = O (nµ) .

We summarize in table 1, the complexity bounds for certificates of Wiede-
mann’s Krylov sequence, presented in this paper .

Certificate Verifier
Extra

Prover
Communication

§ 3 O
(

n
√
µ
)

O
(

n
√
µ
)

W (n)
§ 4.1 2µ+O (n

√
n) O (n

√
n) W (n) +O (µ

√
n)

§ 4.2 4µ+O (n 3
√
n) O (n 3

√
n) W (n) +O

(

µn2/3
)

§ 4.3 2kµ+O (n k
√
n) O (n k

√
n) W (n) + o(W (n))

§ 5 O
(

µ log2(n)
)

O
(

n log2(n)
)

5W (n)

§ 5 O
(

µ log(n) + n log2(n)
)

O
(

n log2(n)
)

7W (n)

Table 1: Summary of the complexity bounds of the certificates presented in this
paper for Wiedemann’s Krylov sequence

3 An n
1+1/2 certificate

3.1 A four steps Baby-step/Giant-step interactive proto-
col

The protocol has four steps: Victor first selects the vectors for the sequence
that are sent to Peggy. Peggy then computes the sequence and keeps some of
the intermediate vectors, called checkpoints. She then sends the sequence to

4

Victor together with the additional intermediate vectors which Victor will use
to certify the received sequence:

1. Communications from Victor to Peggy

(a) Uniformly sample V0 ∈ F
n, U ∈ F

n;

(b) Sends A, U , V0.

(c) Asks for a sequence of δ + 1 elements.

(d) Asks for a checkpoint every K < min{n, δ} matrix-vector products.

Communication is |A|+ 2n ≤ µ+ 2n.

2. Computations of Peggy:

(a) Vi = AVi−1 for i = 0..δ;

(b) s[i] = UTVi for i = 0..δ.

Complexity is exactly that of Wiedemann’s sequence; that is O
(

nµ+ n2
)

if δ = 2n.

3. Communications from Peggy to Victor

(a) Sends Wj = VjK = AjKV0 for j = 0..⌈ δ
K ⌉;

(b) Sends s[i] for i = 0..δ.

Communication is n⌈ δ
K ⌉+ δ + 1 = O

(

δ n
K

)

.

4. Verifications of Victor.

(a) Uniformly sample R = (r[i]) ∈ F
K and X ∈ F

n, with X 6= U .

Then first compute some baby steps:

(b) Compute Z = XTAK , in Kµ operations;

(c) Compute T =
∑K−1

i=0 r[i]UTAi in (K − 1)µ+ 2Kn operations.

For each j = 1..⌈ δ
K ⌉;

(e) XTWj
?

== ZWj−1 in 2× 2n+ n operations; // Checks the Wj with
X

(f)
∑K−1

i=0 r[i]s[jK + i]
?

== TWj; in 2K + 2n+ 1 operations. // Checks
the s[i] with R once Wj is certified

The overall complexity of the verification step is bounded by:

2K(µ+ n) +

⌈

δ

K

⌉

(2K + 6n). (1)

Lemma 1. The above protocol is perfectly complete.

5

Proof. 4e: XTWj = XTVjK = XTAjKV0 = XTAKA(j−1)KV0, so that we
also have XTWj = XTAKV(j−1)K = ZTWj−1.

4f: r[i]s[jK + i] = r[i]UTVjK+i = r[i]UTAiVjK = r[i]UTAiWj ;

3.2 Optimal Verifier complexity

Theorem 1. Let A ∈ F
n×n whose matrix-vector product can be computed in

less than µ > n arithmetic operations and a vector V0 ∈ F
n. There exists a

certificate of size:
1√
3

√

δn(µ+ n)

for the δ + 1 first elements of Wiedemann’s Krylov sequence associated to A
and V0. This certificate is verifiable in time:

4
√
3
√

δn(µ+ n).

With µ = n1+o(1), and δ = 2n, this is a Verifier in n1.5+o(1) time and commu-
nications.

Proof. The optimal value of K minimizes Equation (1) and is therefore close to:

K ≈
√
3

√

nδ

µ+ n

Substituting the latter into Equation (1) gives the announced time complexity.
For the size of the certificate, apart from the matrix A itself, the additional com-
munications are the initial vectors sent by Victor and the intermediate check-
pointing vectors sent by Peggy. Once again substituting the value for K gives
the announced complexity.

We ran this choice on a very sparse matrix with 3 non zero elements per
row. Results are shown in Table 2: computing the sequence took two hours,
the thousand W checkpoints required about two giga bytes of data, and were
checked in a little more than half a minute.

Prover Communications
Verifier

Z Check Z T Check T
1.8 hours 1.9 GB 5.6 s 14.5 s 7.0 s 6.0 s

Table 2: Verification for a matrix with m = n = 253008, 759022 non-zeroes and
of compressed size of 3.8MB. This is 506046 iterations, and K = 503 was chosen
on one core of an i5-4690 @3.50GHz

6

3.3 Soundness

For the soundness, we need to sample from a finite subset S of F.

Theorem 2. If the Verifier samples R and X uniformly and independently
from a finite subset S ⊆ F, then the Verifier mistakenly misses any error in the
sequence or in the check-pointing vectors with probability ≤ 1/|S|.

Proof. 1. W0 = V0 is given. Thus, inductively, Peggy must find Wj for each
j ≥ 1 such that Mj = Wj − AKWj−1 satisfies XTMj = 0, for a random
secret X unknown to her. If Mj is non zero then there is 1/|S| chances
that the dot-product is zero.

2. Afterwards, let Θj be the vector of Θj [i] = UTAiWj = UTAjK+iV0. Wj

being correct, Peggy must find a vector ∆j with ∆j [i] = s[jK + i] such
that Nj = ∆j−Θj satisfies R

TNj = 0, for a random secret R unknown to
her. If Nj is non zero there is 1/|S| chances that the dot-product is zero.

To improve probability, as usual, it is possible to rerun the protocol with
some other vectors X and R, . . .

3.4 Public verifiability

The protocol is publicly verifiable. Indeed, no response from the Prover is
requested after the selection of the challenge X and R. Therefore, any external
participant can also generate its own X and R and re-check the Krylov space
vectors and Wiedemann’s sequence, at the cost given in Theorem 1.

3.5 Constants for block Wiedemann’s algorithm

It is possible to use the same protocol to check the matrix sequence produced
in the block Wiedemann’s algorithm [6] with a projection of s1 vectors on the
left and s2 vectors on the right. The following modifications have to be made,
mainly replacing some vectors by blocks of vectors:

• U ∈ F
n×s1 , Vi ∈ F

n×s2 , Wj ∈ F
n×s2 , S[i] ∈ F

s1×s2 ;

• X and Z remain in F
n while R ∈ F

K×s1 and r[i] is in fact the transpose
of a vector in F

s1 ;

• and T ∈ F
s1×n.

The length of the sequence is now ℓ = n
s1

+ n
s2

+O (1) [14, 19].

1. Communications become: ⌈ ℓ
K ⌉(ns2) + ℓs1s2.

2. Verifications become: (Kµ)+K(s1µ+2s1n+n)+ ⌈ ℓ
K ⌉(4ns2+K(2s1s2+

s2) + 2ns1s2)

7

Now the optimal K becomes:

K ≈
√

1 +
2

s1

√

s2
s1

√

ℓn

µ(12 + 1
2s1

) + n

As (12 + 1
2s1

) ≤ 1, this is a Verifier in time bounded by:

2
√
s2
√
s1 + 2(s1 + 1)

√

ℓn(µ+ n) + 2ℓs1s2

With µ = n1+o(1) and s1 = s2 = s, the length of the sequence is ℓ ≈ 2n
s so that

the Verifier time becomes (sn)1+1/2+o(1).

4 Recursive verification

In fact, in the verification steps of Victor, in the protocol of Section 3, it is
possible to also delegate the computation of Z and T .

4.1 Denser matrices, Verifier in time 2µ+ n
1+1/2+o(1)

Next, we propose to delegate just the matrix-vector operations, so that we get
a good complexity also on matrices with more than n1+o(1) entries. The idea
is that the Verifier can delegate his computations of several successive matrix
vector product and check the whole list of computed vectors. Therefore he
replaces matrix-vector products by checks of validity of vectors. The trick is
that verifying a vector can be done with a single dot-product of cost 2n, while
multiplying a matrix by a vector costs µ operations.

This way, correctness of a full Krylov space can be checked as given in
Algorithm 1.

Algorithm 1 Checking the Krylov Space

Require: a matrix A ∈ F
n×n and a vector V0 ∈ F

n;
Require: a list of d vectors [V0, V1, . . . , Vd−1];
Ensure: [V0, V1, . . . , Vd−1] = [V0, AV0, . . . , A

d−1V0].
1: For S ⊆ F, uniformly sample Y ∈ S

n;
2: Compute H = Y TA;

3: return HVi−1
?

== Y TVi, for i = 1..d.

Lemma 2. Algorithm 1 is sound, perfectly complete and requires µ+4dn arith-
metic operations.

Proof. Perfect completeness is granted inductively because V0 is known and then
since HVi−1 = Y TAAi−1V0 = Y TAiV0 = Y TVi. Soundness is granted because
whenever AVi−1−V i 6= 0, its dot-product with a uniformly selected Y ∈ S

n will
be zero only with probability |S|−1. Complexity for the Verifier is µ operations
to compute H and then d checks performed by two dot-products of size n.

8

The idea is to delegate the computation of both Z (Point 4b of the protocol
of section 3) and T (Point 4c of the protocol of section 3). Then to only check
both resulting Krylov spaces. Note that it is mandatory that this delegation of
the computation of Z and T takes place after the commitment of the Wj and
the s[i] by the Prover.

In the complexity of Theorem 1, this replaces two Kµ factors (now an ad-
ditional, but neglectible, cost to the Prover), each by a µ + 4Kn factor. This
gives a new complexity of 2µ+ 10Kn+

⌈

δ
K

⌉

(2K + 6n) for the Verifier. There
are some extra communications, the vectors used for the computation of Z and
T , namely 2n(K − 1) field elements. We have proven:

Corollary 1. Let A ∈ F
n×n whose matrix-vector product can be computed in

less than µ > n arithmetic operations and a vector V0 ∈ F
n. For any 1 ≤ K ≤

min{n, δ}, there exists a sound and perfectly complete protocol verifying the first
δ+1 elements of Wiedemann’s Krylov sequence associated to A and V0, in time
2µ+ 10Kn+

⌈

δ
K

⌉

(2K + 6n). The associated certificate has size n
⌈

δ
K

⌉

+ 2nK.

The extra work for the Prover is that of the computation of Z and T , both
bounded by O (µK) = O

(

µn2/3
)

, negligible with respect to the computation of
the sequence, O (µn).

In terms of computational time for the verifier, the associated optimal K

factor becomes K =
√

3
5

√
δ and the Verifier complexity is transformed into:

4n+ 2µ+ 4n
√
15δ.

With δ = 2n, this gives a Verifier complexity bounded by 2µ+ 21.91n1.5, with
a certificate of size bounded by 4.02n1.5.

4.2 Optimal 2-levels of recursion and an n
1+1/3 certificate

for Wiedemann’s algorithm

Now, instead of just delegating the matrix-vector products, we delegate the
whole computation of Z and T :

1. For Z, it is actually sufficient to reuse the scheme of Section 4.1 with
δ = K, choosing a K2 < K, and Z will be certified as the last Wj vector.
The time for the Verifier for this step is thus bounded by 2µ + 10nK2 +
K
K2

(2K2 + 6n).

2. For T , the protocol is twofold:

(a) Send the r[i], U and A, and ask just for T in return;

(b) Only now, send a uniformly sampled vector Ψ and ask for a certificate
of the sequence Γ = γ[i] = UTAiΨ;

(c) Then one can check that
∑

r[i]γ[i]
?

== TΨ.

9

Theorem 3. For A ∈ F
n×n whose matrix-vector product can be computed in less

than µ > n arithmetic operations and a vector V0 ∈ F
n, there exists a sound and

perfectly complete interactive certificate for the associated Wiedemann’s Krylov
sequence of size O

(

n1+1/3
)

. This certificate is verifiable in time

4µ+O
(

n1+1/3
)

.

Proof. We still use the protocol of Section 3, but replace the computation of Z
and T by the above delegated scheme.

The protocol is perfectly complete, since
∑

r[i]γ[i] =
∑

r[i](UTAiΨ) =
∑

(r[i]UTAi)Ψ = TΨ.
The protocol is sound because the γ[i] are correctly verified by a sound

protocol. Then Ψ being unknown when asking for T , T cannot be engineered
to satisfy the last check: if G = T −∑

r[i](UTAi) is non zero then there is 1/|S|
chances that its dot-product with Ψ is zero.

Verifier time and space for T are that of Corollary 1 for the sequence Γ, and
a supplementary dot-product. Verifier time and space for Z are also that of
Corollary 1. Therefore, since 6n + 2K ≤ 8n, overall, the Verifier runs now in
time bounded by:

2

(

2µ+ 10nK2 + 8n
K

K2

)

+2n+8n

⌈

δ

K

⌉

= 4µ+O
(

nK2 + n
K

K2
+ n

δ

K

)

(2)

with a certificate of size bounded by:

O
(

n
δ

K
+ n

K

K2
+ nK2

)

.

With δ = 2n, optimal values forK andK2 are now respectively n2/3 and n1/3

for a Verifier in time 4µ+O
(

n1+1/3
)

with a certificate of size O
(

n1+1/3
)

.

The extra work for the Prover is that of the computation of Z and T both
bounded by O (µK) = O

(

µn2/3
)

, of Γ (if done together with that of T , this
requires only K dot-products), and of the Zs and Ts for the verifications of Z,
T and Γ. Those are bounded by O (µK2) = O

(

µn1/3
)

. All this is negligible
with respect to the computation of the sequence, O (µn).

4.3 More levels and a Verifier in time n
1+1/k+o(1)

Once it is proven that the computation of Z and T can be delegated, then
the computation of Z2 and T2 in their verification can also be delegated. The
idea, is thus to use the protocol of section 4.2, also for Z and T , but with two
parameters K1 and K2 to set and δ = K in equation (2). The verification time

for Z and T becomes 4µ + O
(

nK2 + nK1

K2

+ n K
K1

)

for each and, overall, the

Verifier thus runs now in time bounded by:

8µ+O
((

nK2 + n
K1

K2
+ n

K

K1

)

+ n
δ

K

)

. (3)

10

With K2 = nα2 , K1 = nα1 , K = nβ, the optimal values should equal 1 + α2 =
1 + α1 − α2 = 1 + β − α1 = 2− β, or differently written, 2α2 − α1 = 0;−α2 +
2α1 − β = 0;−α1 + 2β = 1. This yields [α2 = 1/4, α1 = 1/2, β = 3/4], so that
K2 = n1/4, K1 = n1/2, K = n3/4 and the complexity is bounded:

8µ+O
(

n1+1/4
)

.

As previously, the size of the certificate is also reduced to O
(

n1+1/4
)

and the

extra work for the Prover is increased to O
(

µn3/4
)

, still negligible with respect
to O (µn).

More generally, for any k, we have

2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 . . . 0 −1 2 −1
0 0 −1 2

αk−2

αk−3

...
α2

α1

β

=

0
...
...
...
0
1

(4)

For L a unit lower triangular matrix, the latter gives, via Gaussian elimination
without pivoting:

2 −1 0 0 . . . 0
0 3

2 −1 0 . . . 0

0
. . . 4

3

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . 0 0 k−1
k−2 −1

0 0 0 k
k−1

αk−2

αk−3

...
α2

α1

β

= L−1

0
...
...
...
0
1

=

0
...
...
...
0
1

(5)

So that the solution is:

[

αk−2 αk−3 . . . α2 α1 β
]

=
[

1
k

2
k . . . k−2

k
k−1
k

]

(6)

Thus n1+αk−2 = n1+αk−3−αk−2 = . . . = n1+β−α1 = n2−β = n1+1/k.
The size of the certificate is thus O

(

n1+1/k
)

, the time for the Verifier is

2kµ+O
(

n1+1/k
)

and the extra work for the Prover becomes
∑k

t=1 2
tµn1−t/k =

O
(

µn1−1/k
)

, still negligible with O (µn).

5 µ log(n) + n log2(n) certificate

The same idea actually gives rise to a certificate verifiable with only log2(n)
matrix-vector products: use a recursive certificate with K = δ/2.

11

We first need to separate the interactive protocol of Section 4.2 into atomic
parts: a recursive interactive protocol for certifying a single vector corresponding
to a large power of A times an initial vector and a combination of mutually
recursive protocols for the sequence.

5.1 Certificate for the large powers

We want here to certify that Z
?

== AdV . For this we will need to check
successive powers of two.

5.1.1 Certificate for the large powers with a logarithmic number of

matrix-vector products

We define the certificate PowerCertificate(A, V, d) to be two vectors Z,Z/2

that satisfy Z
?

== AdV and Z/2
?

== A⌊d/2⌋V . Then checking this certificate is
shown in algorithm 2.

Algorithm 2 Logarithmic Interactive recursive check of
PowerCertificate(A, V, d)

Require: Matrix A ∈ F
n×n, vector V ∈ F

n, exponent d;
Require: A pair of vectors Z,Z/2 = PowerCertificate(A, V, d).

Ensure: Z
?

== AdV and Z/2
?

== A⌊d/2⌋V .
1: if d == 1 then

2: return Z/2
?

== V and Z
?

== AV .
3: else

4: Uniformly sample W ∈ F
n;

5: Request (Y, Y/2) = PowerCertificate(AT ,W, ⌊d/2⌋) and recursively
check it;

6: if d is even then

7: return WTZ/2
?

== Y TV and WTZ
?

== Y TZ/2

8: else

9: return WTZ/2
?

== Y TV and WTZ
?

== Y T (AZ/2).
10: end if

11: end if

Lemma 3. Algorithm 2 is sound and perfectly complete. It requires log2(d)
rounds, 3 log2(d)n communications, 2dµ arithmetic operations for the Prover,
and less than (µ+ 8n) log2(d) + µ arithmetic operations for the Verifier.

Proof. The protocol is perfectly complete by induction: the basis of the in-
duction is given by the case d == 1; then by induction Y = (AT)⌊d/2⌋W , so
that:

WTZ/2 = WTA⌊d/2⌋V = (WTA⌊d/2⌋)V = Y TV

12

and, if d is even:

WTZ = WTAdV = (WTA⌊d/2⌋)(A⌊d/2⌋V) = Y TZ/2

or, if d is odd:

WTZ = WTAdV = (WTA⌊d/2⌋)A(A⌊d/2⌋V) = Y TAZ/2.

The protocol is sound: the Prover produces the commitments Z and Z/2,
then the Verifier sends a challenge W and the Prover responds with Y . There,
the Prover has two possibilities, either he returns a correct Y or not. In the
first case, as W was chosen uniformly at random, there are two sub case, either
Z/2 is wrong or not. if Z/2 was incorrectly chosen so that Z/2 −A⌊d/2⌋V is non
zero, there is 1/|S| chances that its dot-product with WT is zero and thus that

it can pass the WTZ/2
?

== Y TV check. Conversely, if Z/2 is correct, if Z was

incorrectly chosen so that Z −A⌈d/2⌉Z/2 is non zero, there is 1/|S| chances that
its dot-product with WT is zero. Both tests are not independent but overall
there are less than 1/|S| chances to pass both of them. In the second case Y , Y
is incorrect but can very well be made to make both latter dot-products zero, for
any values of Z, Z/2 and W . But if Y is incorrect, it will not pass the recursive
test if ⌊d/2⌋ = 1, and will pass it only with probability |S|−1 for other values
of d. Therefore, if Peggy’s commitment was incorrect, the probability that it
passes all the subsequent tests of Algorithm 2 is less than |S|−1.

Now, Communication is that of the certificate, the 3 vectors W , Y and Y/2,
per recursive call, that is 3 log2(d)n. Time complexity for the Verifier satisfies
{T (d) ≤ T (d/2)+2∗4n+µ, T (1) = µ}, that is less than (µ+8n) log2(d)+µ. Now
the cost has been transferred to the prover, who has to compute the sequence
plus half a sequence, plus a fourth of a sequence, ..., recursively the overall cost
for the Prover is doubled to 2dµ.

5.1.2 Public verifiability of the large power

Another view of the verification of Algorithm 2 can be given as an interactive
certificate in Figure 1.

As the challenge is only random samples selected after the commitment
(and this is true also recursively), Fiat-Shamir heuristic can be used at each
step [9, 1, 2]: W can be just the result of a cryptographically strong hash
function on A, V , d, and Z, Z/2. Then any external verifier can simulate the
whole protocol by recomputing also the hashes.

5.1.3 Certificate for the large powers with a single matrix-vector

product

Actually, algorithm 2 can be made to require a single matrix-vector product.
The speed up for the verifier is obtained by recursively asking for a little more:
some arithmetic cost for the Verifier is traded-off with an extra cost for the
Prover and some extra communications.

13

Peggy V ictor

Input A ∈ F
n×n, V ∈ F

n, d

Commitment AdV,A⌊d/2⌋V
1 : Z,Z/2

//

Challenge
2 : W

oo W ∈ F
n

Response PowerCert(AT ,W, ⌊d/2⌋)
3 : Y, Y/2

//

Recursive check

...
...

if(d = 1) Y
?

== AdW,Y/2
?

== A⌊d/2⌋W

...
...

WTZ
?

== Y TZ/2,W
TZ/2

?
== Y TV

Figure 1: Interactive certificate for AdV

The certificate PowerCertificate(A, V, d) is modified to be three vectors:

for any t such that 2t ≥ d, we check AdV , together with A2tV and A2t−1

V .

Algorithm 3 Interactive recursive check of PowerCertificate(A, V, d, 2t)

Require: Matrix A ∈ F
n×n, vector V ∈ F

n, exponent d ≥ 2, t such that 2t ≥ d;
Require: A triple of vectors Zt, Z, Zt−1 = PowerCertificate(A, V, d, 2t).

Ensure: Zt−1
?

== A2t−1

V and Z
?

== AdV and Zt
?

== A2tV .
1: Uniformly sample W ∈ F

n;
2: if d == 2 then

3: Compute Y = ATW ;

4: return WTZ0
?

== Y TV and WTZ
?

== Y TZ0 and Z1
?

== Z.
5: else

6: Request (Yt−1, Y, Yt−2) = PowerCertificate(AT ,W, d− 2t−1, 2t−1) and
recursively check it;

7: return WTZt−1
?

== Y TV and WTZ
?

== Y TZt−1 and WTZt
?

==
Y T
t−1Zt−1.

8: end if

Lemma 4. Algorithm 3 is sound and perfectly complete. It requires log2(d)
rounds, 4 log2(d)n communications, 2t+1µ, less than 4dµ arithmetic operations
for the Prover, and less than µ+8n+12n log2(d) arithmetic operations for the
Verifier.

The proof is similar to that of Lemma 3.

14

5.2 Certificate for the sequence

Now the idea is to use the protocol of Section 3, with K = δ/2, but with the
computations of Z and T completely delegated. The computation of Z can be
verified, using either one of the PowerCertificate(. . .) protocols of Section 5.1.
Wiedemann’s Krylov sequence and T will then be verified with two distinct
protocols, mutually recursive:

• For the sequence, with K = δ/2, the verification loop of point 4e is
reduced to the verification of two checkpoint vectors (W,W/2) and of
two parts of the sequence S = (s[i]) = (sH , sL). Thus the data struc-
ture SequenceCertificate(U,A, V, d) is a combination of two vectors
(W,W/2), a sequence S = (s[i]) and two other certificates, one for Z:
PowerCertificate(AT , X, d/2) and the second one for the linear combina-
tion T : CombinationCertificate(R,U,A, d/2), for uniformly sampled X

and R. The checkpoint vectors satisfy W
?

== AdV and W/2
?

== A⌋d/2⌊V ,

and the output sequence satisfies the expected S = (s[i]) = (sH , sL)
?

==
UTAiV for i = 0..d.

• For the delegation of T , it is sufficient to generate a certified sequence with
another right projection. Thus, CombinationCertificate(R,U,A, d) is

a combination of the vector T , that must satisfy as expected T
?

==
∑

r[i]UTAi and of another certificate, SequenceCertificate(U,A,Ψ, d),
for a uniformly sampled Ψ.

Checking these two certificates is done by using the following two mutually
recursive procedures, shown in algorithms 4 and 5.

Theorem 4. Let A ∈ F
n×n whose matrix-vector product can be computed in

less than µ > n arithmetic operations and a vector V0 ∈ F
n. There exists

a certificate of size O (n log(n)) for the δ + 1 first elements of Wiedemann’s
Krylov sequence associated to A and V0. This certificate can be checked using
the protocol of Algorithm 4. Depending on the PowerCertificate(. . .) routine
chosen, the constant factor of this size and the Prover and Verifier arithmetic
complexity bounds for this protocol are given in table 3.

Power
Verifier

Extra
Prover

Certificate Communication

§ 5.1.1 1
2µ log22(n) + 4n log22(n)

3
2n log22(n) 5W (n)

§ 5.1.3 µ log2(n) + 6n log22(n) 2n log22(n) 7W (n)

Table 3: Dominant terms of the complexity bounds for the verification of Wiede-

mann’s Krylov sequence depending on the certification of Z
?

== AdV .

Proof. The protocol is sound and perfectly complete by induction on the size
of sequence: the case d == 1 in Algorithm 4 gives the base of the induction;

15

Algorithm 4 Interactive check of SequenceCertificate(U,A, V, d)

Require: Matrix A ∈ F
n×n, two vectors U, V ∈ F

n, sequence length d+1 with
d ≥ 2;

Require: A pair of vectors W,W/2 ∈ F
n;

Require: A sequence (s[i]) ∈ F
d+1.

Ensure: W = A2⌈ d

2 ⌉V and W/2 = A⌈ d

2 ⌉V ;

Ensure: s[i]
?

== UTAiV for i = 0..d.
1: if d==2 then

2: return s[0]
?

== UTV and W/2
?

== AV and s[1]
?

== UTW/2 and

W
?

== AW/2 and s[2]
?

== UTW .
3: else

4: Uniformly sample X ∈ F
n;

5: Ask for (Z, . . .) = PowerCertificate(AT , X, ⌈d/2⌉) and check it;

6: Let first← XTW/2
?

== ZTV ;

7: Let second← XTW
?

== ZTW/2;

8: Uniformly sample R ∈ F
⌈d2 ⌉+1;

9: Ask for (T, . . .) = CombinationCertificate(R,U,A,
⌈

d
2

⌉

) and check it;

10: Let sL = (s[0], . . . , s
[⌈

d
2

⌉]

) and third← RT sL
?

== T TW/2;

11: Let sH = (s
[⌊

d
2

⌋]

, . . . , s[d]) and fourth← RT sH
?

== T TW ;
12: return first and second and third and fourth.
13: end if

then the four explicit checks are correct thanks to Lemma 1 and sound thanks
to Theorem 2; PowerCertificate(. . .) is correct and sound by Lemma 3 or
Lemma 4; and CombinationCertificate(. . .) is correct and sound, first by
induction on SequenceCertificate(. . .) with half the initial size, and second,
since the explicit check is correct and sound by Theorem 3.

Complexity for the Verifier of the SequenceCertificate(. . .) sequence sat-
isfies

{SequenceCertificate(d) = PowerCertificate(d/2)

+ CombinationCertificate(d/2)+ 12n+ 2d,

SequenceCertificate(2)31 = 2µ+ 6n}.

Complexity for the Verifier of T satisfies {CombinationCertificate(x) =
SequenceCertificate(x)+ 2n+ 2x}.

With PowerCertificate(x) = (µ + 8n) log2(x) + µ (see Lemma 3), the
dominant terms of the complexity bound for the Verifier is thus:

SequenceCertificate(d) =
1

2
µ log22(d) + 4n log22(d)

Similarly, with PowerCertificate(x) = µ+8n+12n log2(x)+µ (see Lemma 4)

16

Algorithm 5 Interactive check of CombinationCertificate(R,U,A, d)

Require: Matrix A ∈ F
n×n, two vectors R ∈ F

d+1 and U ∈ F
n, sequence

length d+ 1;
Require: A vector T ∈ F

n.

Ensure: T
?

==
∑d

i=0 r[i]U
TAi.

1: Uniformly sample Ψ ∈ F
n;

2: Ask for (Γ, . . .) = SequenceCertificate(U,A,Ψ, d) and check it;

3: return RTΓ
?

== TΨ.

we get:
SequenceCertificate(d) = µ log2(d) + 6n log22(d)

With d = 2n we obtain the Verifier column of Table 3.
Similarly, communication is dominated either by 3

2n log22(d) or 2n log22(d).
The Prover has to compute the Krylov space and the Krylov sequence plus

the work for Z, the work for T and the recursive calls: P (d) = (dµ + 2dn) +
PowerCertificate(d/2)+((d/2)µ+2(d/2)n+P (d/2)), so that the overall extra
cost for the Prover is dominated by either 5dµ+6dn or 7dµ+6dn. For d = 2n,
the cost for the Prover without verification isW (()n) = 2nµ+4n2, which induces
the last column of Table 3.

6 Certificate for the determinant, the minimal

and the characteristic polynomials

We denote by SeqCert a certificate for Wiedemann’s Krylov sequence. This
can be for instance any of the subquadratic certificate of Sections 3, 4 or 5.

This induces directly a certificate for the minimal polynomial of a sequence:
the Prover just produces the sequence, and the Verifier computes by himself the
minimal polynomial of the sequence via the fast extended Euclidean algorithm
(EEA). In a sufficiently large field, Wiedemann has shown that this in turn in-
duces a certificate for the minimal polynomial of a matrix, MinPoly. In smaller
fields one would need to use a certificate for a Block Wiedemann sequence, and
maybe some variants of the certificate of Section 3.5. Then a certificate for the
determinant, Det, is obtained via Wiedemann’s preconditioning, PreCond-

Cyc, insuring the square-freeness of the characteristic polynomial. Finally, to
get a certificate for the characteristic polynomial of a matrix, CharPoly, first
ask for the characteristic polynomial, and then it is sufficient to certify the
determinant at a random point.

We propose in Table 4 a summary of the reductions presented in this section.
The details of these reductions and the proofs of the complexity claims shown
in Table 4 are given in Theorems 5, 6 and 7.

17

MinPoly

Verifier Verify(SeqCert)+EEA
Communication Communicate(SeqCert)+2n

Prover Compute(SeqCert)

Det

Verifier Verifier(MinPoly)
Communication Communicate(MinPoly+PreCondCyc)

Prover Compute(MinPoly+PreCondCyc)

CharPoly

Verifier Verify(Det)+2n
Communication Communicate(Det)+n

Prover Compute(CharPoly)+Compute(Det)

Table 4: Summary of the complexity reductions for the certification of the
determinant, the minimal and the characteristic polynomials of sparse matrices

6.1 MinPoly

Theorem 5 ([21]). Certifying the minimal polynomial can be reduced to the
certification of Wiedemann’s Krylov sequence.

Proof. The minimal polynomial of a linearly recurrent sequence can be com-
puted by the fast Euclidean algorithm, see, e.g., [20, Theorem 12.10]. Then
Wiedemann’s analysis shows that in a sufficiently large field the minimal poly-
nomial of a matrix can be recovered by computing the lowest common multiple
of the minimal polynomial of sequences obtained by random projections [21,
Proposition 4].

Therefore, the work of the Prover is just that of computing minimal poly-
nomials of sequences at given vector projections. Communication is that of the
two vector projections, 2n. Finally the work of the Verifier is to verify the cer-
tificate for the sequence and then to apply the fast Euclidean algorithm, at cost
n1+o(1), to recover the minimal polynomial by himself.

6.2 Det

Theorem 6 ([21]). Certifying the determinant can be reduced to the certification
of the minimal polynomial.

Proof. We use the idea of [21, Theorem 2]: precondition the initial matrix A into
a modified matrix B whose characteristic polynomial is square-free, and whose
determinant is an easily computable modification of that of A. For instance,
such a PreCondCyc preconditioner can be a diagonal matrix if the field is
sufficiently large [4, Theorem 4.2] Precondition to get a square-free charpoly [21,
Theorem 2] and then certify the associated minpoly.

18

6.3 CharPoly

Theorem 7 ([8]). Certifying the characteristic polynomial can be reduced to the
certification of the determinant.

Proof. The reduction is that of [8, Figure 1]: the Prover computes the char-
acteristic polynomial and sends it as a commitment to the Verifier; then the
Verifier gives a point λ as challenge to the Prover which responds with the de-
terminant of λId − A, and a certificate for that determinant (λId − A remains
sparse and costs no more than µ + n to be applied to a vector). Finally, the
verifier simplify evaluates the commitment at λ and checks the equality with
the certified determinant.

6.4 Det over Z

Here the strategy is that of [8, §4.4]: ask forMinPoly, Det, CharPoly over Z.
After the commitment, the Verifier chooses a not so large prime, and ask for
a certificate of that same problem modulo the prime. Then the Verifier checks
the certificate, and checks coherency with the integral counterpart. On the
one hand, the minimal and characteristic polynomial over Z already occupy a
quadratic space, so that taking modular images is already quadratic. On the
other hand, for the determinant, this gives a linear time Verifier.

References

[1] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Victoria Ashby, editor, Pro-
ceedings of the 1st ACM Conference on Computer and Communications Se-
curity, pages 62–73, Fairfax, Virginia, November 1993. ACM Press. URL:
http://www-cse.ucsd.edu/users/mihir/papers/ro.pdf.

[2] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not
to prove yourself: Pitfalls of the Fiat-Shamir heuristic and ap-
plications to helios. In Xiaoyun Wang and Kazue Sako, editors,
Advances in Cryptology - ASIACRYPT’12, volume 7658 of Lecture
Notes in Computer Science, pages 626–643. Springer, 2012. URL:
http://www.uclouvain.be/crypto/services/download/publications.pdf.87e67d05ee05000b.6d61696

[3] A. Bostan, G. Lecerf, and É. Schost. Tellegen’s principle into practice. In
Proceedings of the 2003 International Symposium on Symbolic and Alge-
braic Computation, ISSAC ’03, pages 37–44, New York, NY, USA, 2003.
ACM. doi:10.1145/860854.860870.

[4] Li Chen, Wayne Eberly, Erich Kaltofen, B. David Saunders, William J.
Turner, and Gilles Villard. Efficient matrix preconditioners for black box
linear algebra. Linear Algebra and its Applications, 343-344:119–146, 2002.
doi:10.1016/S0024-3795(01)00472-4.

19

http://www-cse.ucsd.edu/users/mihir/papers/ro.pdf
http://www.uclouvain.be/crypto/services/download/publications.pdf.87e67d05ee05000b.6d61696e2e706466.pdf
http://dx.doi.org/10.1145/860854.860870
http://dx.doi.org/10.1016/S0024-3795(01)00472-4

[5] Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved dele-
gation of computation using fully homomorphic encryption. In Tal Rabin,
editor, Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceed-
ings, volume 6223 of Lecture Notes in Computer Science, pages 483–501.
Springer, 2010. doi:10.1007/978-3-642-14623-7_26.

[6] Don Coppersmith. Solving homogeneous linear equations over GF (2) via
block Wiedemann algorithm. Mathematics of Computation, 62(205):333–
350, January 1994. doi:10.2307/2153413.

[7] Ronald John Fitzgerald Cramer. Modular design of secure yet practical
cryptographic protocols. PhD thesis, University of Amsterdam, 1996.

[8] Jean-Guillaume Dumas and Erich Kaltofen. Essentially optimal interactive
certificates in linear algebra. In Katsusuke Nabeshima, editor, ISSAC’2014,
Proceedings of the 2014 ACM International Symposium on Symbolic and
Algebraic Computation, Kobe, Japan, pages 146–153. ACM Press, New
York, July 2014. doi:10.1145/2608628.2608644.

[9] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In A. M. Odlyzko, editor, Advances
in Cryptology - CRYPTO’86, volume 263 of Lecture Notes in Computer
Science, pages 186–194. Springer-Verlag, 1987, 11–15 August 1986. URL:
http://www.cs.rit.edu/~jjk8346/FiatShamir.pdf.

[10] Dario Fiore and Rosario Gennaro. Publicly verifiable delegation of large
polynomials and matrix computations, with applications. In Proceed-
ings of the 2012 ACM Conference on Computer and Communications
Security, CCS ’12, pages 501–512, New York, NY, USA, 2012. ACM.
doi:10.1145/2382196.2382250.

[11] Rūsiņš Freivalds. Fast probabilistic algorithms. In J. Bečvář, editor, Mathe-
matical Foundations of Computer Science 1979, volume 74 of Lecture Notes
in Computer Science, pages 57–69, Olomouc, Czechoslovakia, September
1979. Springer-Verlag. doi:10.1007/3-540-09526-8_5.

[12] Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and
Adam Smith. Using fully homomorphic hybrid encryption to minimize
non-interative zero-knowledge proofs. Journal of Cryptology, pages 1–24,
2014. doi:10.1007/s00145-014-9184-y.

[13] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating
computation: interactive proofs for muggles. In Cynthia Dwork, editor,
STOC’2008, Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, Victoria, British Columbia, Canada, pages 113–122. ACM
Press, May 2008. doi:10.1145/1374376.1374396.

20

http://dx.doi.org/10.1007/978-3-642-14623-7_26
http://dx.doi.org/10.2307/2153413
http://dx.doi.org/10.1145/2608628.2608644
http://www.cs.rit.edu/~jjk8346/FiatShamir.pdf
http://dx.doi.org/10.1145/2382196.2382250
http://dx.doi.org/10.1007/3-540-09526-8_5
http://dx.doi.org/10.1007/s00145-014-9184-y
http://dx.doi.org/10.1145/1374376.1374396

[14] Erich Kaltofen. Analysis of Coppersmith’s block Wiedemann algorithm for
the parallel solution of sparse linear systems. Mathematics of Computation,
64(210):777–806, April 1995. doi:10.2307/2153451.

[15] Erich L. Kaltofen, Bin Li, Zhengfeng Yang, and Lihong Zhi. Ex-
act certification in global polynomial optimization via sums-of-
squares of rational functions with rational coefficients. Jour-
nal of Symbolic Computation, 47(1):1–15, January 2012. URL:
http://www.math.ncsu.edu/~kaltofen/bibliography/09/KLYZ09.pdf,
doi:10.1016/j.jsc.2011.08.002.

[16] Erich L. Kaltofen, Michael Nehring, and B. David Saunders. Quadratic-
time certificates in linear algebra. In Anton Leykin, editor, ISSAC’2011,
Proceedings of the 2011 ACM International Symposium on Symbolic and
Algebraic Computation, San Jose, California, USA, pages 171–176. ACM
Press, New York, June 2011. doi:10.1145/1993886.1993915.

[17] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In Proceedings of the 2013 IEEE
Symposium on Security and Privacy, SP ’13, pages 238–252, Washington,
DC, USA, 2013. IEEE Computer Society. doi:10.1109/SP.2013.47.

[18] Justin Thaler. Time-optimal interactive proofs for circuit eval-
uation. In Ran Canetti and JuanA. Garay, editors, Ad-
vances in Cryptology - CRYPTO’13, volume 8043 of Lec-
ture Notes in Computer Science, pages 71–89. Springer Berlin
Heidelberg, 2013. URL: http://arxiv.org/abs/1304.3812,
doi:10.1007/978-3-642-40084-1_5.

[19] Gilles Villard. Further analysis of Coppersmith’s block Wiedemann algo-
rithm for the solution of sparse linear systems. In Wolfgang W. Küchlin,
editor, ISSAC’97, Proceedings of the 1997 ACM International Symposium
on Symbolic and Algebraic Computation, Maui, Hawaii, pages 32–39. ACM
Press, New York, July 1997. doi:10.1145/258726.258742.

[20] Joachim von zur Gathen and Jürgen Gerhard. Modern Com-
puter Algebra (3. ed.). Cambridge University Press, 2013.
doi:10.1017/CBO9781139856065.

[21] Douglas H. Wiedemann. Solving sparse linear equations over finite fields.
IEEE Transactions on Information Theory, 32(1):54–62, January 1986.
doi:10.1109/TIT.1986.1057137.

21

http://dx.doi.org/10.2307/2153451
http://www.math.ncsu.edu/~kaltofen/bibliography/09/KLYZ09.pdf
http://dx.doi.org/10.1016/j.jsc.2011.08.002
http://dx.doi.org/10.1145/1993886.1993915
http://dx.doi.org/10.1109/SP.2013.47
http://arxiv.org/abs/1304.3812
http://dx.doi.org/10.1007/978-3-642-40084-1_5
http://dx.doi.org/10.1145/258726.258742
http://dx.doi.org/10.1017/CBO9781139856065
http://dx.doi.org/10.1109/TIT.1986.1057137

	Introduction
	Wiedemann's Krylov sequence
	An n1.5 certificate
	A four steps Baby-step/Giant-step interactive protocol
	Optimal Verifier complexity
	Soundness
	Public verifiability
	Constants for block Wiedemann's algorithm

	Recursive verification
	Denser matrices, Verifier in time 2mu+n1.5
	Optimal 2-levels of recursion and an n1.333 certificate for Wiedemann's algorithm
	More levels and a Verifier in time n1+1/k

	Essentially linear certificate
	Certificate for the large powers
	Certificate for the large powers with a logarithmic number of matrix-vector products
	Public verifiability of the large power
	Certificate for the large powers with a single matrix-vector product

	Certificate for the sequence

	Certificate for the determinant, the minimal and the characteristic polynomials
	MinPoly
	Det
	CharPoly
	Det over Z

