Jean-Guillaume Dumas 
email: jean-guillaume.dumas@imag.fr@ljk.imag.fr
  
Erich Kaltofen 
email: kaltofen@math.ncsu.edu
  
Emmanuel Thomé 
email: emmanuel.thome@gmail.com@www.loria.fr
  
Guillaume Dumas 
  
Interactive certificate for the verification of Wiedemann's Krylov sequence: application to the certification of the determinant, the minimal and the characteristic polynomials of sparse matrices

Certificates to a linear algebra computation are additional data structures for each output, which can be used by a-possibly randomizedverification algorithm that proves the correctness of each output. Wiedemann's algorithm projects the Krylov sequence obtained by repeatedly multiplying a vector by a matrix to obtain a linearly recurrent sequence. The minimal polynomial of this sequence divides the minimal polynomial of the matrix. For instance, if the n×n input matrix is sparse with n 1+o(1) non-zero entries, the computation of the sequence is quadratic in the dimension of the matrix while the computation of the minimal polynomial is n 1+o(1) , once that projected Krylov sequence is obtained.

In this paper we give algorithms that compute certificates for the Krylov sequence of sparse or structured n × n matrices over an abstract field, whose Monte Carlo verification complexity can be made essentially linear. As an application this gives certificates for the determinant, the minimal and characteristic polynomials of sparse or structured matrices at the same cost.

Introduction

We consider a square sparse or structured matrix A ∈ F n×n . By sparse or structured we mean that the multiplication of a vector by A requires less opera-tions than that of a dense matrix-vector multiplication. The arithmetic cost to apply A is denoted by µ which thus satisfies µ ≤ n(2n -1) (n 2 multiplications and n(n -1) additions). In the following we also need to perform row-vectortimes-matrix multiplications, which, by the transposition principle, cost O(µ) operations [START_REF] Bostan | Tellegen's principle into practice[END_REF]. In the following we will simply consider that both operations (left or right multiplication by a row or column vector) cost less than µ arithmetic operations.

The main idea of this paper is to use a Baby-step/Giant-step verification of Wiedemann's Krylov sequence generation. Once the sequence is verified, the remaining operations, of lower cost, can be replayed by the Verifier.

The verification procedure used throughout this paper is that of essentially optimal interactive certificates with the taxonomy of [START_REF] Dumas | Essentially optimal interactive certificates in linear algebra[END_REF]. Indeed, in the following, we consider a Prover, nicknamed Peggy, who will perform a computation, potentially together with additional data structures. We also consider a Verifier, nicknamed Victor, who will check the validity of the computation, faster that just by recomputing it.

By certificates for a problem that is given by input/output specifications, we mean, as in [START_REF] Kaltofen | Exact certification in global polynomial optimization via sums-ofsquares of rational functions with rational coefficients[END_REF][START_REF] Kaltofen | Quadratictime certificates in linear algebra[END_REF], an input-dependent data structure and an algorithm that computes from that input and its certificate the specified output, and that has lower computational complexity than any known algorithm that does the same when only receiving the input. Correctness of the data structure is not assumed but validated by the algorithm.

By interactive certificate, we mean certificates modeled as -protocols (as defined in [START_REF] John | Modular design of secure yet practical cryptographic protocols[END_REF]) were the Prover submits a Commitment, that is some result of a computation; the Verifier answers by a Challenge, usually some uniformly sampled random values; the Prover then answers with a Response, that the Verifier can use to convince himself of the validity of the commitment. To be useful, such proof systems is said to be complete if the probability that a true statement is rejected by the Verifier can be made arbitrarily small. Similarly, the protocol is sound if the probability that a false statement is accepted by the verifier can be made arbitrarily small. In the following we will actually only consider perfectly complete certificates, that is were a true statement is never rejected by the Verifier.

There two may ways to design such certificates. On the one hand, efficient protocols can be designed for delegating computational tasks. In recent years, generic protocols have been designed for circuits with polylogarithmic depth [START_REF] Goldwasser | Delegating computation: interactive proofs for muggles[END_REF][START_REF] Thaler | Time-optimal interactive proofs for circuit evaluation[END_REF]. The resulting protocols are interactive and their cost for the Verifier is usually only roughly proportional to the input size. They however can produce a non negligible overhead for the Prover and are restricted to certain classes of circuits. Variants with an amortized cost for the Verifier can also be designed, see for instance [START_REF] Parno | Pinocchio: Nearly practical verifiable computation[END_REF], quite often using relatively costly homomorphic routines. Moreover, we want the Verifier to run faster than the Prover, so we discard amortized models where the Verifier is allowed to do a large amount of precomputations, that can be amortized if, say, the same matrix is repeatedly used [START_REF] Chung | Improved delegation of computation using fully homomorphic encryption[END_REF][START_REF] Gentry | Using fully homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs[END_REF].

On the other hand, dedicated certificates (data structures and algorithms that are verifiable a posteriori, without interaction) have also been developed in the last few years, e.g., for dense exact linear algebra [START_REF] Freivalds | Fast probabilistic algorithms[END_REF][START_REF] Kaltofen | Quadratictime certificates in linear algebra[END_REF][START_REF] Fiore | Publicly verifiable delegation of large polynomials and matrix computations, with applications[END_REF], even for problems that have no good circuit representation. There the certificate constitute a proof of correctness of a result, not of a computation, and can thus also stand a direct public verification. The obtained certificates are ad-hoc, but try to reduce as much as possible the overhead for the Prover, while preserving a fast verification procedure.

In the current paper we follow the later line of research, that is ad-hoc certificate with fast verification and negligible overhead for the Prover.

In exact linear algebra, the most simple problem to have an optimal certificate is the linear system solution, LinSolve: for a matrix A and a vector b, checking that x is actually a solution is done by one multiplication of x by A. The cost of this check similar to that of just enumerating all the non-zero coefficients of A. Thus certifying a linear system is reduced to multiplying a matrix by a vector: LinSolve≺MatVecMult. In [START_REF] Dumas | Essentially optimal interactive certificates in linear algebra[END_REF], two essentially optimal reductions have been made, that the rank can be certified via certificates for linear systems, and that the characteristic polynomial can be certified via certificates for the determinant: CharPoly≺Det and Rank≺LinSolve. But no reduction was given for the determinant. We bridge this gap in this paper. We first use Wiedemann's reduction of the determinant to the minimal polynomial of a sequence, Det≺MinPoly≺Sequence, [START_REF] Douglas | Solving sparse linear equations over finite fields[END_REF], and then show that the computation of a sequence generated by projections of matrix-vector iterations can be checked by a small number of matrix-vector multiplications: Sequence≺MatVecMult.

The complexity model we consider here is the algebraic complexity model: we count field operations, but tests (even such as checking the equality of whole vectors) are free and uniform sampling of random elements in a field is also free. This is justified by the fact that for all our proposed certificates, the number of equality tests is always lower than that of field operations and that the number of random samples is always lower than that of the communications, itself lower than that of the Verifier's work.

The paper is organized as follows. We define Wiedemann's Krylov sequence formally in Section 2. Then we use a check-pointing technique to propose a first non-quadratic certificate in Section 3. Then we derive from this technique a recursive process that can yield a method of decreasing complexities for the Verifier in Section 4. The same general idea is modified in Section 5 to get a certificate verifiable in essentially optimal time. Finally, we show in Section 6 how to derive certificates for the determinant, the minimal and the characteristic polynomial from these certificates for the Krylov sequence.

Wiedemann's Krylov sequence

We consider here the simple Wiedemann's sequence S (no blocks), defined for two given vectors. Definition 1. For A ∈ F n×n , V 0 ∈ F n and U ∈ F n , Wiedemann's Krylov space is defined for i ≥ 0 as:

K V0 = (V i ) i = (A i V 0 ) i
Wiedemann's Krylov sequence is also defined as:

S = (s[i]) i = (U T A i V 0 ) i = (U T V i ) i
In the following, the Prover will compute this sequence, potentially together with additional data structures, and the Verifier will check the validity of the sequence, once computed. Now, for a matrix A whose matrix-vector multiplication costs µ arithmetic operations, the original cost for the computation of 2n elements of Wiedemann's Krylov sequence is trivially:

W (n) = 2nµ + 4n 2 = O (nµ) .
We summarize in table 1, the complexity bounds for certificates of Wiedemann's Krylov sequence, presented in this paper .

Certificate

Verifier Extra Prover Communication 

§ 3 O n √ µ O n √ µ W (n) § 4.1 2µ + O (n √ n) O (n √ n) W (n) + O (µ √ n) § 4.2 4µ + O (n 3 √ n) O (n 3 √ n) W (n) + O µn 2/3 § 4.3 2 k µ + O (n k √ n) O (n k √ n) W (n) + o(W (n)) § 5 O µ log 2 (n) O n log 2 (n) 5W (n) § 5 O µ log(n) + n log 2 (n) O n log 2 (n) 7W (n)
∈ F n , U ∈ F n ; (b) Sends A, U , V 0 .
(c) Asks for a sequence of δ + 1 elements.

(d) Asks for a checkpoint every K < min{n, δ} matrix-vector products.

Communication is |A| + 2n ≤ µ + 2n.

Computations of Peggy:

(a)

V i = AV i-1 for i = 0..δ; (b) s[i] = U T V i for i = 0..δ.
Complexity is exactly that of Wiedemann's sequence; that is

O nµ + n 2 if δ = 2n. 3. Communications from Peggy to Victor (a) Sends W j = V jK = A jK V 0 for j = 0..⌈ δ K ⌉; (b) Sends s[i] for i = 0..δ. Communication is n⌈ δ K ⌉ + δ + 1 = O δ n K . 4. Verifications of Victor. (a) Uniformly sample R = (r[i]) ∈ F K and X ∈ F n , with X = U .
Then first compute some baby steps:

(b) Compute Z = X T A K , in Kµ operations; (c) Compute T = K-1 i=0 r[i]U T A i in (K -1)µ + 2Kn operations. For each j = 1..⌈ δ K ⌉; (e) X T W j ? == ZW j-1 in 2 × 2n + n operations; // Checks the W j with X (f) K-1 i=0 r[i]s[jK + i] ? == T W j ; in 2K + 2n + 1 operations. // Checks the s[i] with R once W j is certified
The overall complexity of the verification step is bounded by:

2K(µ + n) + δ K (2K + 6n). (1) 
Lemma 1. The above protocol is perfectly complete.

Proof. 4e:

X T W j = X T V jK = X T A jK V 0 = X T A K A (j-1)K V 0 , so that we also have X T W j = X T A K V (j-1)K = Z T W j-1 . 4f: r[i]s[jK + i] = r[i]U T V jK+i = r[i]U T A i V jK = r[i]U T A i W j ;

Optimal Verifier complexity

Theorem 1. Let A ∈ F n×n whose matrix-vector product can be computed in less than µ > n arithmetic operations and a vector V 0 ∈ F n . There exists a certificate of size:

1 √ 3 δn(µ + n)
for the δ + 1 first elements of Wiedemann's Krylov sequence associated to A and V 0 . This certificate is verifiable in time:

4 √ 3 δn(µ + n).
With µ = n 1+o (1) , and δ = 2n, this is a Verifier in n 1.5+o (1) time and communications.

Proof. The optimal value of K minimizes Equation ( 1) and is therefore close to:

K ≈ √ 3 nδ µ + n
Substituting the latter into Equation (1) gives the announced time complexity. For the size of the certificate, apart from the matrix A itself, the additional communications are the initial vectors sent by Victor and the intermediate checkpointing vectors sent by Peggy. Once again substituting the value for K gives the announced complexity.

We ran this choice on a very sparse matrix with 3 non zero elements per row. Results are shown in Table 2: computing the sequence took two hours, the thousand W checkpoints required about two giga bytes of data, and were checked in a little more than half a minute.

Prover

Communications Verifier Z Check Z T Check T 1.8 hours 1.9 GB 5.6 s 14.5 s 7.0 s 6.0 s Table 2: Verification for a matrix with m = n = 253008, 759022 non-zeroes and of compressed size of 3.8MB. This is 506046 iterations, and K = 503 was chosen on one core of an i5-4690 @3.50GHz

Soundness

For the soundness, we need to sample from a finite subset S of F.

Theorem 2. If the Verifier samples R and X uniformly and independently from a finite subset S ⊆ F, then the Verifier mistakenly misses any error in the sequence or in the check-pointing vectors with probability ≤ 1/|S|.

Proof.

1. W 0 = V 0 is given. Thus, inductively, Peggy must find W j for each j ≥ 1 such that M j = W j -A K W j-1 satisfies X T M j = 0, for a random secret X unknown to her. If M j is non zero then there is 1/|S| chances that the dot-product is zero.

2. Afterwards, let Θ j be the vector of Θ j

[i] = U T A i W j = U T A jK+i V 0 . W j
being correct, Peggy must find a vector ∆ j with ∆ j [i] = s[jK + i] such that N j = ∆ j -Θ j satisfies R T N j = 0, for a random secret R unknown to her. If N j is non zero there is 1/|S| chances that the dot-product is zero.

To improve probability, as usual, it is possible to rerun the protocol with some other vectors X and R, . . .

Public verifiability

The protocol is publicly verifiable. Indeed, no response from the Prover is requested after the selection of the challenge X and R. Therefore, any external participant can also generate its own X and R and re-check the Krylov space vectors and Wiedemann's sequence, at the cost given in Theorem 1.

Constants for block Wiedemann's algorithm

It is possible to use the same protocol to check the matrix sequence produced in the block Wiedemann's algorithm [START_REF] Coppersmith | Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm[END_REF] with a projection of s 1 vectors on the left and s 2 vectors on the right. The following modifications have to be made, mainly replacing some vectors by blocks of vectors:

• U ∈ F n×s1 , V i ∈ F n×s2 , W j ∈ F n×s2 , S[i] ∈ F s1×s2 ;
• X and Z remain in F n while R ∈ F K×s1 and r[i] is in fact the transpose of a vector in F s1 ;

• and T ∈ F s1×n .

The length of the sequence is now ℓ = n s1 + n s2 + O (1) [START_REF] Kaltofen | Analysis of Coppersmith's block Wiedemann algorithm for the parallel solution of sparse linear systems[END_REF][START_REF] Villard | Further analysis of Coppersmith's block Wiedemann algorithm for the solution of sparse linear systems[END_REF].

1. Communications become: ⌈ ℓ K ⌉(ns 2 ) + ℓs 1 s 2 .
2. Verifications become: (Kµ) + K(s

1 µ + 2s 1 n + n) + ⌈ ℓ K ⌉(4ns 2 + K(2s 1 s 2 + s 2 ) + 2ns 1 s 2 )
Now the optimal K becomes: 1) and s 1 = s 2 = s, the length of the sequence is ℓ ≈ 2 n s so that the Verifier time becomes (sn) 1+1/2+o (1) .

K ≈ 1 + 2 s 1 s 2 s 1 ℓn µ( 1 2 + 1 2s1 ) + n As ( 1 2 + 1 2s1 ) ≤ 1, this is a Verifier in time bounded by: 2 √ s 2 √ s 1 + 2(s 1 + 1) ℓn(µ + n) + 2ℓs 1 s 2 With µ = n 1+o(

Recursive verification

In fact, in the verification steps of Victor, in the protocol of Section 3, it is possible to also delegate the computation of Z and T .

4.1 Denser matrices, Verifier in time 2µ + n 1+1/2+o (1) Next, we propose to delegate just the matrix-vector operations, so that we get a good complexity also on matrices with more than n 1+o (1) entries. The idea is that the Verifier can delegate his computations of several successive matrix vector product and check the whole list of computed vectors. Therefore he replaces matrix-vector products by checks of validity of vectors. The trick is that verifying a vector can be done with a single dot-product of cost 2n, while multiplying a matrix by a vector costs µ operations.

This way, correctness of a full Krylov space can be checked as given in Algorithm 1.

Algorithm 1 Checking the Krylov Space Require: a matrix A ∈ F n×n and a vector

V 0 ∈ F n ; Require: a list of d vectors [V 0 , V 1 , . . . , V d-1 ]; Ensure: [V 0 , V 1 , . . . , V d-1 ] = [V 0 , AV 0 , . . . , A d-1 V 0 ]. 1: For S ⊆ F, uniformly sample Y ∈ S n ; 2: Compute H = Y T A; 3: return HV i-1 ? == Y T V i , for i = 1..d.
Lemma 2. Algorithm 1 is sound, perfectly complete and requires µ + 4dn arithmetic operations.

Proof. Perfect completeness is granted inductively because V 0 is known and then since

HV i-1 = Y T AA i-1 V 0 = Y T A i V 0 = Y T V i .
Soundness is granted because whenever AV i-1 -V i = 0, its dot-product with a uniformly selected Y ∈ S n will be zero only with probability |S| -1 . Complexity for the Verifier is µ operations to compute H and then d checks performed by two dot-products of size n.

The idea is to delegate the computation of both Z (Point 4b of the protocol of section 3) and T (Point 4c of the protocol of section 3). Then to only check both resulting Krylov spaces. Note that it is mandatory that this delegation of the computation of Z and T takes place after the commitment of the W j and the s[i] by the Prover.

In the complexity of Theorem 1, this replaces two Kµ factors (now an additional, but neglectible, cost to the Prover), each by a µ + 4Kn factor. This gives a new complexity of 2µ + 10Kn + δ K (2K + 6n) for the Verifier. There are some extra communications, the vectors used for the computation of Z and T , namely 2n(K -1) field elements. We have proven:

Corollary 1. Let A ∈ F n×n whose matrix-vector product can be computed in less than µ > n arithmetic operations and a vector V 0 ∈ F n . For any 1 ≤ K ≤ min{n, δ}, there exists a sound and perfectly complete protocol verifying the first δ + 1 elements of Wiedemann's Krylov sequence associated to A and V 0 , in time 2µ + 10Kn + δ K (2K + 6n). The associated certificate has size n δ K + 2nK. The extra work for the Prover is that of the computation of Z and T , both bounded by O (µK) = O µn 2/3 , negligible with respect to the computation of the sequence, O (µn).

In terms of computational time for the verifier, the associated optimal K factor becomes K = 3 5 √ δ and the Verifier complexity is transformed into:

4n + 2µ + 4n √ 15δ.
With δ = 2n, this gives a Verifier complexity bounded by 2µ + 21.91n 1.5 , with a certificate of size bounded by 4.02n 1.5 .

4.2 Optimal 2-levels of recursion and an n 1+1/3 certificate for Wiedemann's algorithm

Now, instead of just delegating the matrix-vector products, we delegate the whole computation of Z and T :

1. For Z, it is actually sufficient to reuse the scheme of Section 4.1 with δ = K, choosing a K 2 < K, and Z will be certified as the last W j vector. The time for the Verifier for this step is thus bounded by 2µ + 10nK 2 + K K2 (2K 2 + 6n). 2. For T , the protocol is twofold: (a) Send the r[i], U and A, and ask just for T in return;

(b) Only now, send a uniformly sampled vector Ψ and ask for a certificate of the sequence Γ = γ[i] = U T A i Ψ;

(c) Then one can check that

r[i]γ[i] ? == T Ψ.
Theorem 3. For A ∈ F n×n whose matrix-vector product can be computed in less than µ > n arithmetic operations and a vector V 0 ∈ F n , there exists a sound and perfectly complete interactive certificate for the associated Wiedemann's Krylov sequence of size O n 1+1/3 . This certificate is verifiable in time

4µ + O n 1+1/3 .
Proof. We still use the protocol of Section 3, but replace the computation of Z and T by the above delegated scheme.

The protocol is perfectly complete, since

r[i]γ[i] = r[i](U T A i Ψ) = (r[i]U T A i )Ψ = T Ψ.
The protocol is sound because the γ[i] are correctly verified by a sound protocol. Then Ψ being unknown when asking for T , T cannot be engineered to satisfy the last check: if G = T -r[i](U T A i ) is non zero then there is 1/|S| chances that its dot-product with Ψ is zero.

Verifier time and space for T are that of Corollary 1 for the sequence Γ, and a supplementary dot-product. Verifier time and space for Z are also that of Corollary 1. Therefore, since 6n + 2K ≤ 8n, overall, the Verifier runs now in time bounded by:

2 2µ + 10nK 2 + 8n K K 2 + 2n + 8n δ K = 4µ + O nK 2 + n K K 2 + n δ K (2) 
with a certificate of size bounded by:

O n δ K + n K K 2 + nK 2 .
With δ = 2n, optimal values for K and K 2 are now respectively n 2/3 and n 1/3 for a Verifier in time 4µ + O n 1+1/3 with a certificate of size O n 1+1/3 . The extra work for the Prover is that of the computation of Z and T both bounded by O (µK) = O µn 2/3 , of Γ (if done together with that of T , this requires only K dot-products), and of the Zs and T s for the verifications of Z, T and Γ. Those are bounded by O (µK 2 ) = O µn 1/3 . All this is negligible with respect to the computation of the sequence, O (µn).

More levels and a Verifier in time n

1+1/k+o(1)
Once it is proven that the computation of Z and T can be delegated, then the computation of Z 2 and T 2 in their verification can also be delegated. The idea, is thus to use the protocol of section 4.2, also for Z and T , but with two parameters K 1 and K 2 to set and δ = K in equation [START_REF] Bernhard | How not to prove yourself: Pitfalls of the Fiat-Shamir heuristic and applications to helios[END_REF]. The verification time for Z and T becomes 4µ

+ O nK 2 + n K1 K2 + n K K1
for each and, overall, the Verifier thus runs now in time bounded by:

8µ + O nK 2 + n K 1 K 2 + n K K 1 + n δ K . ( 3 
) With K 2 = n α2 , K 1 = n α1 , K = n β , the optimal values should equal 1 + α 2 = 1 + α 1 -α 2 = 1 + β -α 1 = 2 -β, or differently written, 2α 2 -α 1 = 0; -α 2 + 2α 1 -β = 0; -α 1 + 2β = 1. This yields [α 2 = 1/4, α 1 = 1/2, β = 3/4], so that K 2 = n 1/4 , K 1 = n 1/2 , K = n 3/4
and the complexity is bounded:

8µ + O n 1+1/4 .
As previously, the size of the certificate is also reduced to O n 1+1/4 and the extra work for the Prover is increased to O µn 3/4 , still negligible with respect to O (µn).

More generally, for any k, we have

          2 -1 0 0 . . . 0 -1 2 -1 0 . . . 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 . . . 0 -1 2 -1 0 . . . . . . 0 -1 2                    α k-2 α k-3 . . . α 2 α 1 β          =            0 . . . . . . . . . 0 1            (4) 
For L a unit lower triangular matrix, the latter gives, via Gaussian elimination without pivoting: 

          2 -1 0 0 . . . 0 0 3 2 -1 0 . . . 0 0 . . .
k-1 k-2 -1 0 . . . . . . 0 0 k k-1                    α k-2 α k-3 . . . α 2 α 1 β          = L -1            0 . . . . . . . . . 0 1            =            0 . . . . . . . . . 0 1            (5) 
So that the solution is:

α k-2 α k-3 . . . α 2 α 1 β = 1 k 2 k . . . k-2 k k-1 k (6) 
Thus

n 1+α k-2 = n 1+α k-3 -α k-2 = . . . = n 1+β-α1 = n 2-β = n 1+1/k .
The size of the certificate is thus O n 1+1/k , the time for the Verifier is 2 k µ + O n 1+1/k and the extra work for the Prover becomes

k t=1 2 t µn 1-t/k = O µn 1-1/k , still negligible with O (µn). 5 µ log(n) + n log 2 (n) certificate
The same idea actually gives rise to a certificate verifiable with only log 2 (n) matrix-vector products: use a recursive certificate with K = δ/2.

We first need to separate the interactive protocol of Section 4.2 into atomic parts: a recursive interactive protocol for certifying a single vector corresponding to a large power of A times an initial vector and a combination of mutually recursive protocols for the sequence.

Certificate for the large powers

We want here to certify that Z ? == A d V . For this we will need to check successive powers of two.

Certificate for the large powers with a logarithmic number of matrix-vector products

We define the certificate PowerCertificate(A, V, d) to be two vectors Z, Z /2 that satisfy Z

? == A d V and Z /2 ? == A ⌊d/2⌋ V . Then checking this certificate is shown in algorithm 2. Algorithm 2 Logarithmic Interactive recursive check of PowerCertificate(A, V, d) Require: Matrix A ∈ F n×n , vector V ∈ F n , exponent d; Require: A pair of vectors Z, Z /2 = PowerCertificate(A, V, d). Ensure: Z ? == A d V and Z /2 ? == A ⌊d/2⌋ V . 1: if d == 1 then 2: return Z /2 ? == V and Z ? == AV . 3: else 4:
Uniformly sample W ∈ F n ;

5:

Request (Y, Y /2 ) = PowerCertificate(A T , W, ⌊d/2⌋) and recursively check it; Proof. The protocol is perfectly complete by induction: the basis of the induction is given by the case d == 1; then by induction Y = (A T ) ⌊d/2⌋ W , so that:

6: if d is even then 7: return W T Z /2 ? == Y T V and W T Z ? == Y T Z /2 8: else 9: return W T Z /2 ? == Y T V and W T Z ? == Y T (AZ /2 ).
W T Z /2 = W T A ⌊d/2⌋ V = (W T A ⌊d/2⌋ )V = Y T V
and, if d is even:

W T Z = W T A d V = (W T A ⌊d/2⌋ )(A ⌊d/2⌋ V ) = Y T Z /2
or, if d is odd:

W T Z = W T A d V = (W T A ⌊d/2⌋ )A(A ⌊d/2⌋ V ) = Y T AZ /2 .
The protocol is sound: the Prover produces the commitments Z and Z /2 , then the Verifier sends a challenge W and the Prover responds with Y . There, the Prover has two possibilities, either he returns a correct Y or not. In the first case, as W was chosen uniformly at random, there are two sub case, either Z /2 is wrong or not. if Z /2 was incorrectly chosen so that Z /2 -A ⌊d/2⌋ V is non zero, there is 1/|S| chances that its dot-product with W T is zero and thus that it can pass the W T Z /2 ? == Y T V check. Conversely, if Z /2 is correct, if Z was incorrectly chosen so that Z -A ⌈d/2⌉ Z /2 is non zero, there is 1/|S| chances that its dot-product with W T is zero. Both tests are not independent but overall there are less than 1/|S| chances to pass both of them. In the second case Y , Y is incorrect but can very well be made to make both latter dot-products zero, for any values of Z, Z /2 and W . But if Y is incorrect, it will not pass the recursive test if ⌊d/2⌋ = 1, and will pass it only with probability |S| -1 for other values of d. Therefore, if Peggy's commitment was incorrect, the probability that it passes all the subsequent tests of Algorithm 2 is less than |S| -1 . Now, Communication is that of the certificate, the 3 vectors W , Y and Y /2 , per recursive call, that is 3 log 2 (d)n. Time complexity for the Verifier satisfies {T (d) ≤ T (d/2)+2 * 4n+µ, T (1) = µ}, that is less than (µ+8n) log 2 (d)+µ. Now the cost has been transferred to the prover, who has to compute the sequence plus half a sequence, plus a fourth of a sequence, ..., recursively the overall cost for the Prover is doubled to 2dµ.

Public verifiability of the large power

Another view of the verification of Algorithm 2 can be given as an interactive certificate in Figure 1.

As the challenge is only random samples selected after the commitment (and this is true also recursively), Fiat-Shamir heuristic can be used at each step [9, 1, 2]: W can be just the result of a cryptographically strong hash function on A, V , d, and Z, Z /2 . Then any external verifier can simulate the whole protocol by recomputing also the hashes.

Certificate for the large powers with a single matrix-vector product

Actually, algorithm 2 can be made to require a single matrix-vector product.

The speed up for the verifier is obtained by recursively asking for a little more: some arithmetic cost for the Verifier is traded-off with an extra cost for the Prover and some extra communications.

P eggy V ictor Input A ∈ F n×n , V ∈ F n , d Commitment A d V, A ⌊d/2⌋ V 1 : Z, Z /2 / / Challenge 2 : W o o W ∈ F n Response P owerCert(A T , W, ⌊d/2⌋) 3 : Y, Y /2 / / Recursive check . . . . . . if (d = 1) Y ? == A d W, Y /2 ? == A ⌊d/2⌋ W . . . . . . W T Z ? == Y T Z /2 , W T Z /2 ? == Y T V Figure 1: Interactive certificate for A d V
The certificate PowerCertificate(A, V, d) is modified to be three vectors: for any t such that 2 t ≥ d, we check A d V , together with A 2 t V and

A 2 t-1 V . Algorithm 3 Interactive recursive check of PowerCertificate(A, V, d, 2 t ) Require: Matrix A ∈ F n×n , vector V ∈ F n , exponent d ≥ 2, t such that 2 t ≥ d; Require: A triple of vectors Z t , Z, Z t-1 = PowerCertificate(A, V, d, 2 t ). Ensure: Z t-1 ? == A 2 t-1 V and Z ? == A d V and Z t ? == A 2 t V . 1: Uniformly sample W ∈ F n ; 2: if d == 2 then 3: Compute Y = A T W ; 4: return W T Z 0 ? == Y T V and W T Z ? == Y T Z 0 and Z 1 ? == Z. 5: else 6: Request (Y t-1 , Y, Y t-2 ) = PowerCertificate(A T , W, d -2 t-1 , 2 t-1
) and recursively check it; The proof is similar to that of Lemma 3.

7: return W T Z t-1 ? == Y T V and W T Z ? == Y T Z t-1 and W T Z t ? == Y T t-1 Z t-

Certificate for the sequence

Now the idea is to use the protocol of Section 3, with K = δ/2, but with the computations of Z and T completely delegated. The computation of Z can be verified, using either one of the PowerCertificate(. . .) protocols of Section 5.1. Wiedemann's Krylov sequence and T will then be verified with two distinct protocols, mutually recursive: 

• For the sequence, with K = δ/2,
) ? == U T A i V for i = 0..d.
• For the delegation of T , it is sufficient to generate a certified sequence with another right projection. Thus, CombinationCertificate(R, U, A, d) is a combination of the vector T , that must satisfy as expected T ? == r[i]U T A i and of another certificate, SequenceCertificate(U, A, Ψ, d), for a uniformly sampled Ψ.

Checking these two certificates is done by using the following two mutually recursive procedures, shown in algorithms 4 and 5.

Theorem 4. Let A ∈ F n×n whose matrix-vector product can be computed in less than µ > n arithmetic operations and a vector V 0 ∈ F n . There exists a certificate of size O (n log(n)) for the δ + 1 first elements of Wiedemann's Krylov sequence associated to A and V 0 . This certificate can be checked using the protocol of Algorithm 4. Depending on the PowerCertificate(. . .) routine chosen, the constant factor of this size and the Prover and Verifier arithmetic complexity bounds for this protocol are given in table 3. )), so that the overall extra cost for the Prover is dominated by either 5dµ + 6dn or 7dµ + 6dn. For d = 2n, the cost for the Prover without verification is W (()n) = 2nµ+4n 2 , which induces the last column of Table 3.

Power Verifier Extra Prover Certificate Communication § 5.1.1 1 2 µ log 2 2 (n) + 4n log 2 2 (n) 3 2 n log 2 2 (n) 5W (n) § 5.1.3 µ log 2 (n) + 6n log 2 2 (n) 2n log 2 2 (n) 7W (n)
6 Certificate for the determinant, the minimal and the characteristic polynomials

We denote by SeqCert a certificate for Wiedemann's Krylov sequence. This can be for instance any of the subquadratic certificate of Sections 3, 4 or 5. This induces directly a certificate for the minimal polynomial of a sequence: the Prover just produces the sequence, and the Verifier computes by himself the minimal polynomial of the sequence via the fast extended Euclidean algorithm (EEA). In a sufficiently large field, Wiedemann has shown that this in turn induces a certificate for the minimal polynomial of a matrix, MinPoly. In smaller fields one would need to use a certificate for a Block Wiedemann sequence, and maybe some variants of the certificate of Section 3.5. Then a certificate for the determinant, Det, is obtained via Wiedemann's preconditioning, PreCond-Cyc, insuring the square-freeness of the characteristic polynomial. Finally, to get a certificate for the characteristic polynomial of a matrix, CharPoly, first ask for the characteristic polynomial, and then it is sufficient to certify the determinant at a random point.

We propose in Table 4 a summary of the reductions presented in this section. The details of these reductions and the proofs of the complexity claims shown in Table 4 are given in Theorems 5, 6 and 7.

CharPoly

Theorem 7 ([8]). Certifying the characteristic polynomial can be reduced to the certification of the determinant.

Proof. The reduction is that of [8, Figure 1]: the Prover computes the characteristic polynomial and sends it as a commitment to the Verifier; then the Verifier gives a point λ as challenge to the Prover which responds with the determinant of λI d -A, and a certificate for that determinant (λI d -A remains sparse and costs no more than µ + n to be applied to a vector). Finally, the verifier simplify evaluates the commitment at λ and checks the equality with the certified determinant.

Det over Z

Here the strategy is that of [8, §4.4]: ask for MinPoly, Det, CharPoly over Z. After the commitment, the Verifier chooses a not so large prime, and ask for a certificate of that same problem modulo the prime. Then the Verifier checks the certificate, and checks coherency with the integral counterpart. On the one hand, the minimal and characteristic polynomial over Z already occupy a quadratic space, so that taking modular images is already quadratic. On the other hand, for the determinant, this gives a linear time Verifier.

3 .

 3 Algorithm 2 is sound and perfectly complete. It requires log 2 (d) rounds, 3 log 2 (d)n communications, 2dµ arithmetic operations for the Prover, and less than (µ + 8n) log 2 (d) + µ arithmetic operations for the Verifier.

Table 1 :

 1 Summary of the complexity bounds of the certificates presented in this paper for Wiedemann's Krylov sequence

	3 An n 1+1/2 certificate
	3.1 A four steps Baby-step/Giant-step interactive proto-
	col
	The protocol has four steps: Victor first selects the vectors for the sequence
	that are sent to Peggy. Peggy then computes the sequence and keeps some of
	the intermediate vectors, called checkpoints. She then sends the sequence to

  1 . 8: end if Lemma 4. Algorithm 3 is sound and perfectly complete. It requires log 2 (d) rounds, 4 log 2 (d)n communications, 2 t+1 µ, less than 4dµ arithmetic operations for the Prover, and less than µ + 8n + 12n log 2 (d) arithmetic operations for the Verifier.

  the verification loop of point 4e is reduced to the verification of two checkpoint vectors (W, W /2 ) and of two parts of the sequence S = (s[i]) = (s H , s L ). Thus the data structure SequenceCertificate(U, A, V, d) is a combination of two vectors (W, W /2 ), a sequence S = (s[i]) and two other certificates, one for Z: PowerCertificate(A T , X, d/2) and the second one for the linear combina-

tion T : CombinationCertificate(R, U, A, d/2), for uniformly sampled X and R. The checkpoint vectors satisfy W ? == A d V and W /2 ? == A ⌋d/2⌊ V , and the output sequence satisfies the expected S = (s[i]) = (s H , s L

Table 3 :

 3 Dominant terms of the complexity bounds for the verification of Wiedemann's Krylov sequence depending on the certification of Z Proof. The protocol is sound and perfectly complete by induction on the size of sequence: the case d == 1 in Algorithm 4 gives the base of the induction; Algorithm 5 Interactive check of CombinationCertificate(R, U, A, d) Require: Matrix A ∈ F n×n , two vectors R ∈ F d+1 and U ∈ F n , sequence length d + 1; Require: A vector T ∈ F n . Uniformly sample Ψ ∈ F n ; 2: Ask for (Γ, . . .) = SequenceCertificate(U, A, Ψ, d) and check it; The Prover has to compute the Krylov space and the Krylov sequence plus the work for Z, the work for T and the recursive calls: P (d) = (dµ + 2dn) + PowerCertificate(d/2)+((d/2)µ+2(d/2)n+P (d/2

	Ensure: T	? ==	d i=0 r[i]U T A i .
	3: return R T Γ	? == T Ψ.
	we get:	SequenceCertificate(d) = µ log 2 (d) + 6n log 2 2 (d)
	With d = 2n we obtain the Verifier column of Table 3. Similarly, communication is dominated either by 3 2 n log 2 2 (d) or 2n log 2 2 (d).

? == A d V . 1:

 Algorithm 4Interactive check of SequenceCertificate(U, A, V, d) Require: Matrix A ∈ F n×n , two vectors U, V ∈ F n , sequence length d + 1 with d ≥ 2; Require: A pair of vectors W, W /2 ∈ F n ; Require: A sequence (s[i]) ∈ F d+1 . Ensure:

Uniformly sample X ∈ F n ;

5:

Ask for (Z, . . .) = PowerCertificate(A T , X, ⌈d/2⌉) and check it;

Ask for (T, . . .) = CombinationCertificate(R, U, A, d 2 ) and check it; return f irst and second and third and f ourth. 13: end if then the four explicit checks are correct thanks to Lemma 1 and sound thanks to Theorem 2; PowerCertificate(. . .) is correct and sound by Lemma 3 or Lemma 4; and CombinationCertificate(. . .) is correct and sound, first by induction on SequenceCertificate(. . .) with half the initial size, and second, since the explicit check is correct and sound by Theorem 3.

Complexity for the Verifier of the SequenceCertificate(. . .) sequence satisfies

Complexity for the Verifier of T satisfies {CombinationCertificate(x) = SequenceCertificate(x) + 2n + 2x}.

With PowerCertificate(x) = (µ + 8n) log 2 (x) + µ (see Lemma 3), the dominant terms of the complexity bound for the Verifier is thus: Proof. The minimal polynomial of a linearly recurrent sequence can be computed by the fast Euclidean algorithm, see, e.g., [START_REF] Von | Modern Computer Algebra[END_REF]Theorem 12.10]. Then Wiedemann's analysis shows that in a sufficiently large field the minimal polynomial of a matrix can be recovered by computing the lowest common multiple of the minimal polynomial of sequences obtained by random projections [START_REF] Douglas | Solving sparse linear equations over finite fields[END_REF]Proposition 4]. Therefore, the work of the Prover is just that of computing minimal polynomials of sequences at given vector projections. Communication is that of the two vector projections, 2n. Finally the work of the Verifier is to verify the certificate for the sequence and then to apply the fast Euclidean algorithm, at cost n 1+o (1) , to recover the minimal polynomial by himself.

Det

Theorem 6 ( [START_REF] Douglas | Solving sparse linear equations over finite fields[END_REF]). Certifying the determinant can be reduced to the certification of the minimal polynomial.

Proof. We use the idea of [21, Theorem 2]: precondition the initial matrix A into a modified matrix B whose characteristic polynomial is square-free, and whose determinant is an easily computable modification of that of A. For instance, such a PreCondCyc preconditioner can be a diagonal matrix if the field is sufficiently large [START_REF] Chen | Efficient matrix preconditioners for black box linear algebra[END_REF]Theorem 4.2] Precondition to get a square-free charpoly [21, Theorem 2] and then certify the associated minpoly.