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Abstract

This paper focuses on Bayesian Lamb wave-based damage localization in structural health
monitoring of anisotropic composite materials. A Bayesian framework is applied to take ac-
count for uncertainties from experimental time-of-flight measurements and angular dependent
group velocity within the composite material. An original parametric analytical expression of
the direction dependence of group velocity is proposed and validated numerically and experi-
mentally for anisotropic composite and sandwich plates. This expression is incorporated into
time-of-arrival (ToA: ellipse-based) and time-difference-of-arrival (TDoA: hyperbola-based)
Bayesian damage localization algorithms. This way, the damage location as well as the group
velocity profile are estimated jointly and a priori information taken into consideration. The
proposed algorithm is general as it allows to take into account for uncertainties within a
Bayesian framework, and to model effects of anisotropy on group velocity. Numerical and
experimental results obtained with different damage sizes or locations and for different de-
grees of anisotropy validate the ability of the proposed algorithm to estimate both the damage
location and the group velocity profile as well as the associated confidence intervals. Results
highlight the need to consider for anisotropy in order to increase localization accuracy, and to
use Bayesian analysis to quantify uncertainties in damage localization.

Keywords: Structural health monitoring, damage localization, Lamb waves, anisotropic
composite materials, Bayesian framework, Markov Chain Monte Carlo method.

1 Introduction

Structural Health Monitoring (SHM) is an emerging technology that aims at designing systems able
to continuously monitor structures (Sohn et al., 2003). One commonly used SHM technique is that
of “active sensing” whereby permanently attached actuators launch Lamb waves in the structure
under inspection and a set of sensors records the structural responses in order to extract some
damage related information (Farrar et al., 1999; Giurgiutiu, 2005; Lin and Yuan, 2001). One of the
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outstanding advantage of using Lamb waves for SHM is that such waves can travel over relatively
long distance and can be used to monitor various types of damage (delaminations, disbonds, fiber
breaking, impact, holes, etc...). However, phenomena like dispersion and anisotropy (dependence of
the wave velocity with respect to frequency and propagation direction), mode conversion (change in
wave velocity when wave interacts with structural discontinuities or boundaries) as well as changing
environment and operational conditions make reliable damage localization a challenging task.

For damage localization, each piezoelectric element attached to the structure acts as an actuator
while the others are used as sensors. Performing the difference between signals recorded on healthy
and damaged states, a scattered signal containing information related to the damage (location, size,
orientation, type) is obtained (Yu et al., 2012). Time-of-flight (ToF), which corresponds to the
time taken by the wave packet to travel from an actuator to a sensor through a given path, is
a feature extracted from the scattered signal that is widely used for damage localization (Flynn
et al., 2011; Ihn and Chang, 2008; Lu et al., 2006; Michaels, 2008; Moll et al., 2010; Su and Ye,
2009). Knowing the ToF values and the wave velocity, the damage localization problem becomes
straightforward: solve a set of deterministic nonlinear equations that describe the relationship
between the coordinates of the damage, the ToF, and the wave velocity. Two kind of equations
can be used to do so: those relying on time-of-arrival (ToA) and provide damage location as the
intersection of several ellipses and other based on time-difference-of-arrival (TDoA) and provide
damage location as the intersection of hyperbolas. Many authors have successfully used these
strategies for damage localization (Coverley and Staszewski, 2003; Flynn et al., 2011; Michaels,
2008; Su and Ye, 2009). However, to the knowledge of the authors, the influence of the use of ToA
of DToA on localization accuracy has yet not been addressed and thus constitutes the first issue
discussed in this paper.

As stated above, a model involving the waves group velocity linking the damage position and the
ToFs is necessary to achieve accurate localization. Modelling Lamb wave propagation in isotropic
composite plates at a given frequency is relatively simple as only a direction independent group
velocity is involved. However, for composite anisotropic plate-like structures, such a model is
much more complicated to establish. Indeed, in case of anisotropic plates the wave velocity is now
a function of the propagation angle and not a single value (Li et al., 2013). Several techniques
have been proposed to overcome this difficulty. In general, these techniques fall in two groups. The
first group deals with strategies in which the group velocity profile (Coverley and Staszewski, 2003;
Hajzargerbashi et al., 2011; Kundu et al., 2007) is assumed to be known. The second group includes
strategies based on clusters of sensors (sensors are regrouped by zone) in which the knowledge of the
group velocity profile is not required (Ciampa and Meo, 2010; Kundu et al., 2012). The assumption
behind those strategies is that sensors located in the same cluster have the same group velocity.
Following the methods of the first group, the second point addressed in this paper is to propose
and validate an efficient and simple parametric modeling of the group velocity profile in order to
deal easily with anisotropy.

Finally, ToF measurements error may arise due to experimental noise, and may corrupt the
damage localization results (Niri et al., 2013; Niri and Salamone, 2012). Strategies are thus also
needed to take into account for these uncertainties. To face parts of this problem, some Bayesian
approaches have already been developed. The advantage of the Bayesian methodology, is that
expert judgments or knowledge can be incorporated into the Bayesian model as prior information
to reduce the variance error. Many authors have previously used Bayesian estimation to update
the belief in the parameter estimation results in various field of engineering (Beck and Au, 2002;
Beck and Katafygiotis, 1998; Vanik et al., 2000). For some years now, Bayesian approaches play
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a key role in SHM. They have been applied for damage assessment (Jiang and Mahadevan, 2008),
damage prediction (Karandikar et al., 2012), sensor placement optimization (Flynn and Todd,
2010), etc. Regarding damage localization, Zhao et al. (2007) combined a probabilistic approach
with a tomography-based damage imaging method to improve damage localization accuracy. Flynn
et al. (2011) proposed a maximum likelihood estimation (MLE) of damage location in an aluminium
plate. Yu and Su (2012) proposed an application of kernel density estimation in order to account
for the uncertainties in ToF measurements in an aluminium plate. A non-parametric estimation
is performed to draw a probabilistic distribution of the ToF data in order to improve the damage
localization. Recently, Niri and Salamone (2012) proposed a probabilistic approach based on an
extended Kalman filter approach (EKF) for acoustic source localization in composite anisotropic
panels. They take into account uncertainties in both ToF measurements and group velocity. Yan
(2013) proposed a Bayesian system identification for damage localization in plate-like structure
using Lamb waves. This approach also takes into account uncertainties in ToF measurement and
group velocity. All these studies are however limited to the particular isotropic case where the
group velocity is not a function of the angle of propagation, which is not the case for anisotropic
materials, as stated above. The third point addressed by this paper is the use of a probabilistic
framework in order to take into account for both measurement and material uncertainties in an
anisotropic context.

On the basis of the framework developed by Yan (2013), we propose a general localization
algorithm that allows (i) to take into account for for both measurement and material uncertainties
within a Bayesian framework, (ii) to model easily the effects of anisotropy on group velocity
and, (iii) to rely on ToA or TDoA informations. The original feature of this approach is that
it incorporates anisotropic wave propagation via a parametrized analytic expression of the angle
dependence of the wave velocity profile in the Bayesian localization model and allows to use both
ToA and TDoA informations. Using this algorithm we highlight the need to take into account for
anisotropy in order to achieve accurate damage localization and compare the efficiency of the use
of ToA and DToA information for damage localization.
The paper is organized as follows: Section 2 introduces the background of damage localization in
anisotropic plates. The parametric expression of the group velocity profile proposed here is detailed
in Section 3 and validated in Section 4. In Section 5, the Bayesian framework and the Markov
Chain Monte Carlo (MCMC) method used to solve it are presented. Numerical and experimental
results are presented in Section 6 for an anisotropic composite plate before drawing a conclusion
in Section 7.

2 Lamb waves-based damage localization in composite plates

Lamb waves-based damage localization in structures is based on the fundamental idea that a
traveling wave in a damaged plate will be scattered by the damage (Su and Ye, 2009). Performing
the difference between signals recorded on healthy and damaged states, a scattered signal containing
information related to the damage (location, size, orientation, type) is obtained. Time-of-flight
(ToF), which corresponds to the time taken by the wave packet to travel from an actuator to a
sensor through a given path, is a feature extracted from the scattered signal that is widely used for
damage localization (Flynn et al., 2011; Ihn and Chang, 2008; Lu et al., 2006; Michaels, 2008; Moll
et al., 2010; Su and Ye, 2009) as detailed in Section 2.1. ToF algorithms usually fall within two
groups: the ToA-based algorithm (ellipse method, see Section 2.2) and the TDoA-based algorithm
(hyperbola method, see Section 2.3) (Flynn et al., 2011; Moll et al., 2010) that are brielfy presented
in the following.
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2.1 Time-of-Flight (ToF) estimation

ToF estimation is an important issue in Lamb wave-based damage localization, since uncertainties
in measurements can affect localization accuracy (Niri et al., 2013; Niri and Salamone, 2012; Yan,
2013). To tackle this problem, a variety of methods have been developed. Commonly used meth-
ods include short-time Fourier transform (STFT), Hilbert-Huang transform (HHT), matching pur-
suit decomposition (MPD), Wigner-Ville distribution (WVD), cross-correlation method (CCM),
Hilbert transform (HT), and continuous wavelet transform (CWT) (Jeong and Jang, 2000; Ni-
ethammer et al., 2001; Raghavan and Cesnik, 2007; Tua et al., 2004; Xu et al., 2009). In this
study, CWT was used to perform time-frequency decomposition of the scattered signal in order to
extract the component of the signal corresponding to the frequency of interest. CWT is a band-
pass filtering procedure in which the signal is convolved with the wavelet centered on the driving
frequency. Thereafter, HT was used to estimate ToF by extracting the time of the first maximum
of the envelope of the signal component at the frequency of interest.

2.2 Time of arrival (ToA): ellipse method

(a) (b)

Figure 1: Damage localization in anisotropic plate-like structures: (a) Ellipse method, (b) Hyper-
bola method.

Consider a transducers network with N piezoelectric elements bonded on the plate. Each trans-
ducer can act as both actuator and sensor. The geometric relationship for damage localization in
plate-like structures using ToA model is schematically shown in Figure 1(a) for a single piezoelec-
tric actuator-sensor pair. The coordinates of the actuator are (xa, ya), and (xs, ys) for the sensor.
When a wave travels from the actuator across a point-like damage to the sensor, the ToA of the
scattered signal corresponds to the wave travel time of the actuator-damage-sensor path and can
be expressed as (Ihn and Chang, 2008; Michaels, 2008) :

ToAa−s =

√
(xd − xa)2 + (yd − ya)2

Vg(f, αa)
+

√
(xd − xs)2 + (yd − ys)2

Vg(f, αs)
(1)

where (xd, yd) is the damage coordinate, Vg(f, α) is the group velocity of the Lamb wave, which
depends on the frequency f , and the propagation direction in composite material α. Vg(f, αa)
and Vg(f, αs) represent the group velocity in the actuator-damage path and damage-sensor path
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respectively. In the model given by Equation (1), the sizes of the actuator, sensor, and damage
area are not taken into account. For isotropic material, group velocity is angular independent and
the solution of Equation (1) is an ellipse for each actuator-sensor pair, and the damage location
corresponds to the intersection point of all ellipses for all actuators sensors paths (Yan, 2013). The
problem is more complicated for anisotropic materials since the group velocity of the interrogating
waves depends on the propagation direction (Ciampa and Meo, 2010).

2.3 Time difference of arrival: hyperbola method

The time difference of arrival (TDoA) method considers piezoelectric elements in groups of three
with one acting as an actuator (noted a) and the others two as sensors (noted s1 and s2). If there
is a damage at the point (xd, yd), the difference in the times of arrival of the scattered signals at
the two sensors is (Michaels, 2008; Moll et al., 2010):

∆ToAs1−s2 = ToAa−s1 − ToAa−s2 (2)

Since the distance from the actuator to the damage is the same for both receivers (Figure 1(b)),
it does not affect the difference in arrival time. Equation (2) can then be simplified as:

∆ToAs1−s2 =

√
(xd − xs1)2 + (yd − ys1)2

Vg(f, αs1)
−
√

(xd − xs2)2 + (yd − ys2)2

Vg(f, αs2)
(3)

where (xsi , ysi) is the coordinate of the sensor i, Vg(f, αsi) is the group velocity and αsi is the
angle of propagation in the direction damage-sensor i (i = 1, 2). Solution of Equation (3) is a
hyperbola, and the damage location is obtained as the point of intersection of all the hyperbolas
obtained for all the possible triplets (a,si,sj) in the transducers network, with i 6= j. As in the
ellipse method, the angular dependence group velocity complicates the resolution of this equation.

3 Modeling the group velocity profile in an anisotropic composite plate

As aforementioned, the damage location is obtained by solving the set of nonlinear equations
given by Equations (1) or (3). For anisotropic structures equipped with N piezo-electric elements,
a unique solution for this set of nonlinear equations cannot be found because the number of
equations (N − 1) is lower than the number of unknowns (N + 2) that are: the damage location
coordinates (xd, yd) and N angular dependent group velocities Vg(αi). Several techniques that falls
in two groups have been proposed to overcome this difficulty. The first group deals with strategies
in which the group velocity profile (Coverley and Staszewski, 2003; Hajzargerbashi et al., 2011;
Kundu et al., 2007) is assumed to be known. The second group includes strategies based on clusters
of sensors (sensors are regrouped by zone) in which the knowledge of the group velocity profile is
not required (Ciampa and Meo, 2010; Kundu et al., 2012). The assumption behind those strategies
is that sensors located in the same cluster have the same group velocity. Here, we propose to follow
the first group of methods and to use a model of the group velocity profile in order to decrease the
number of unknown coefficients in the localization equations given by Equations (1) and (3).

3.1 Typical group velocity profile in anisotropic composite plates

Before modeling the group velocity profile for an anisotropic composite plate, an example of such
a profile is shown. The chosen anisotropic composite is a 4 plies composite lamina with plies
orientation [0◦/− 45◦/45◦/0◦] and a 0.28 mm thickness typically used in aeronautic applications.
Mechanical properties of one ply of the composite material are listed in Table 1.

5



Table 1: Mechanical properties of one ply of the chosen composite material

Density thickness E11 E22 E33 G12 = G13 = G23 ν12
(g/m3) (mm) (GPa) (GPa) (GPa) (GPa)

1554 0.28 60 40 8.1 4.8 0.03

(a) (b)

Figure 2: (a) Dispersion curves for different directions. (b) Numerical and approximated velocity profile
for the S0 Mode at 150 kHz.

Numerical studies have been conducted on the selected composite using SDTools (Balmes,
2014), a finite element toolbox developed in MATLAB environment. The objective was to compute
Lamb wave dispersion curves for the composite plate (Table 1). Thereby, the dispersion curves were
computed using periodic computations (Macea et al., 2005; Sorohan et al., 2011). The dispersion
curves are computed only in the low frequency domain, where exist the fundamental antisymmetric
Lamb wave mode, A0, symmetric Lamb wave mode, S0, and the lowest order shear horizontal SH0

wave mode. Figure 2(a) shows the dispersion curves along different directions of propagation (0◦,
60◦ and 90◦) with respect to the fiber direction. It can be observed that, the wave mode S0

exhibits reasonably non-dispersive behavior with a nearly constant group velocity and that this
mode is the faster one. Furthermore, this wave mode has been recognized to be more sensitive to
through-thickness defect (Su and Ye, 2009), which is the type of defect considered in this study.
As a result, the wave mode S0 at 150 kHz is chosen for damage localization. From the dispersion
curves, the velocity profile of the S0 mode can be determined at 150 kHz and plotted in a polar
coordinate system as shown in Figure 2(b). The polar axis represents the propagation angle with
respect to the principal material axis. As it can be seen from this figure, there is indeed variation
of the group velocity with the propagation angle within this material. Furthermore, since the
group velocity profile has an identifiable geometrical shape, a parametric curve can be derived to
approximate this velocity profile.
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3.2 Proposed parametric ellipse model of the group velocity profile

In order to approximate the angle dependence group velocity profile for the S0 mode shown in
Figure 2(b), we proposed the following parametric ellipse expression:

Vg(γ) =
√
V 2
gx + V 2

gy =

√
[a cos(γ)]

2
+ [b sin(γ)]

2
(4)

where the physical angle α (for each actuator-sensor path, see Figure 1) is related to the parameter
angle γ by the expression:

α = arctan

(
Vgy
Vgx

)
= arctan

(
b

a
tan(γ)

)
(5)

hence,

γ = arctan
(a
b

tan(α)
)

(6)

where γ varies from 0 to 360◦. In the above expression the two parameters a and b can be
estimated using the minimum and maximum values of the group velocity data. The values for
parameters a and b are 5395.5 m/s and 4761.3 m/s respectively. The approximated velocity
profile based on the parametric ellipse is shown in Figure 2(b). One can observe an excellent
match between numerical group velocity data and the proposed parametric ellipse form. This
agreement shows the validity of the proposed parametric function for velocity profile approximation
for this material at 150 kHz. The advantage of using this model is to reduce the number of
parameters involved in the group velocity profile to only two, whatever the number of sensors that
are considered.

Including this model within the ToA and DToA methods presented in Sections. 2.2 and 2.3,
and according to the chosen geometry, we then obtain:

• ToA (ellipse method), see Figure 1(a):

αa = ϕ+ α1 and Vg(f, αa) = Vg(γa) with γa = arctan
(a
b

tan(αa)
)

αs = ϕ+ π − α2 and Vg(f, αs) = Vg(γs) with γs = arctan
(a
b

tan(αs)
)

(7)

• TDoA (hyperbola method), see Figure 1(b):

αs1 = ϕ+ π − α2 and Vg(f, αs1) = Vg(γs1) with γs1 = arctan
(a
b

tan(αs1)
)

αs2 = ϕ+ β + α3 and Vg(f, αs2) = Vg(γs2) with γs2 = arctan
(a
b

tan(αs2)
)

(8)

4 Validation of the proposed parametric expression of the group velocity
profile for damage localization in a deterministic framework

As stated above, a model involving the wave group velocity that links the damage position and the
ToFs is necessary to achieve accurate localization. An efficient and simple parametric modeling of
the group velocity profile able to deal easily with anisotropy has been presented in the previous
section. This section will now highlight in a deterministic framework the need to take into account
for anisotropy in order to increase localization accuracy and thus the benefits associated with this
simple model.
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4.1 Finite element model

The same [0◦/45◦/−45◦/0◦] composite laminate described previously is used here. A set of N = 5
piezoelectric (PZT) elements (Noliac NCE51) from NOLIAC Inc., each with a diameter of 20 mm
and thickness of 0.1 mm are surface-mounted on the composite plate. Each piezoelectric element
can act both as actuator and sensor. An illustration of the plate and sensor placement is shown
in Figure 3. The coordinates of the piezoelectric elements and of the damage are listed in Table 2.

(a) (b) (c)

Figure 3: (a) Schematic view of the composite plate with a damage. (b) Meshing of the PZT. (c) Meshing
of the Damage

Table 2: Coordinates of the piezoelectric elements

PZT1 PZT2 PZT3 PZT4 PZT5 Damage

x (mm) 30 200 370 113.5 286.5 300

y (mm) 75 75 75 225 225 160

To perform damage localization, numerical simulations are conducted using SDTools. Squared
elements with dimension 2 mm × 2 mm were used for the meshing. This mesh size is compatible
with the propagating wavelength of the S0 mode which value is 8 mm at 150 kHz. The excitation
signal is chosen as a 5 cycles sinusoidal tone burst at a central frequency of f0 = 150 kHz, which
is modulated by a Hanning window. The time step for the transient simulation is 0.3 µs chosen as
sampling period whose sampling frequency is 3.33 MHz. The damage has a circular shape with 20
mm of diameter. The damage is represented by a reduction of material properties (a reduction of
rigidity of 90%) in a chosen area as shown in Figure 3(c). To introduce it, an automatic approach
has been developed where a damage-patch is generated with a specific mesh. The dimension and
the material properties of this damage-patch can be changed and adjusted. The introduction of
this patch before changing its properties does not alter the modal properties of the structure in
the frequency range of interest. Moreover, nodes inside this damage-patch could be removed to
create crack or hole damages. The center location of the damage is (300,160) mm. Details of the
FEM model with the meshing of the PZT and the damage are shown in Figures 3(b)(c). It is
worth mention that this FEM model was validated through experiments conducted on the same
specimens (Balmes et al., 2014).
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4.2 Signal processing and ToF extraction

The signal scattered from damage is extracted by performing the difference of signals between the
healthy and damaged plate for each PZT. In order to extract ToF information from the scattered
signal, a CWT Gabor wavelet is chosen for the data processing (see Section 2.1). Thereafter a
Hilbert transform is applied to the processed signal in order to extract its envelope and thus, the
ToF information. The processed scattered signal and its Hilbert transform are shown in Figure4.

(a) (b)

Figure 4: Signals scattered by damage -numerical study- (a) and the Hilbert transform (b) at central
frequency of 150 kHz when PZT 4 acts as actuator. The ToF from actuator to the sensors is represented
by vertical dashed lines. The starting time for the ToF calculation is labeled as Tref.

4.3 Damage localization results

Assuming each node in the composite plate as a possible damage location, theoretical ToA or
DToA can be computed at each node (x, y) knowing the group velocity by means of Equations (1)
or (3). This procedure is repeated for each node and each actuator sensor path, and a damage
index P (x, y) at any node (x, y) is obtained by comparing the theoretical ToA or DToA tTH

i (x, y)
to the data extracted from scattered signal tXP

i as follows:

P (x, y) =

Np∑
i=1

exp

[
−|t

TH
i (x, y)− tXP

i |
τ0

]
(9)

where Np is the total number of actuator sensor pathes and τ0 is a decay factor playing the
role of a decay rate of an exponential windowed function applied to reduce secondary reflections
of the scattered signal; its value is fixed at 5 µs in this study. The estimated damage location is
then chosen as the point having the maximum value of P (x, y). In order to highlight the need
to account for anisotropy, localization is performed using both the approximate proposed velocity
profile and an isotropic model that assumes that velocities along different directions are the same
and equal to the average velocity across all angles.

Figure 5 shows the localization result for both ellipse and hyperbola methods and when taking
account for anisotropy or not. Black circle represents actual damage position and white circle
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represent the estimated damage location. Localization results for both methods and with and
without anisotropy are listed in Table 3. From Figure 5 and Table 3, it can be seen that both
methods provide accurate localization results and that the ellipse-based method appears to be
slightly more accurate for this example. We can notice that taking account for anisotropy allows
to greatly increase the localization accuracy and to reduce localization ambiguities.

(a) Anisotropic - ToA (b) Anisotropic - TDoA

(c) Isotropic - ToA (d) Isotropic - TDoA

Figure 5: Damage localization results - numerical study - : (a) ellipse method using the proposed
parametrized group velocity profile,(b) hyperbola method using the proposed parametrized group velocity
profile, (c) ellipse method using an isotropic velocity profile, and (d) hyperbola method using an isotropic
velocity profile.

5 Bayesian approach for damage localization

We then consider the use of a probabilistic framework in order to take into account for both mea-
surement and material uncertainties which have been ignored in the anisotropic context developed
in the previous section. Rather than a single damage location, the Bayesian approach will pro-
vide a probability density function of the unknown parameters (that includes damage location),
with a mean and a confidence interval (Yan, 2013; Yu and Su, 2012). In the present damage
localization problem, the parameter vector is in general θ = [xd, yd, Vg(f, αa), Vg(f, αs)] for each
actuator-damage-sensor path. Considering the parametric elliptical form for the group velocity
profile described in section 3.2 this parameter vector can be simplified as θ = [xd, yd, a, b].
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Table 3: Estimated location and errors for the damage position (300, 160) in mm

Anisotropic model Isotropic model

ToA method TDoA method ToA method TDoA method

Coordinates xd yd xd yd xd yd xd yd
Estimation (mm) 299 159 295 159 272 165 279 149

Error (mm) 1 1 5 1 28 −5 21 11

5.1 Probabilistic description of ToF

In this part we introduce the probabilistic model describing the ToF data and the associated
measurement uncertainties for both ToA-based and TDoA-based algorithm.

5.1.1 Ellipse method

Let’s assume that the measurements uncertainties are described by ε1, a zero-mean Gaussian
random variable with variance σ2

ε1 . The probabilistic description of the measured ToA for the ith

actuator-sensor path ToAa−si
m can be expressed as:

ToAa−si
m = ToAa−si

c (θ) + ε1 (10)

where ToAa−si
c (θ) is the calculated ToA in the ith actuator-sensor path using Equation (1), with

parameter vector θ. We then obtain :

ε1 ∼ N (0, σ2
ε1) =

1

σε1
√

2π
exp

(
(ToAa−si

m − ToAa−si
c (θ))2

2σ2
ε1

)
The likelihood function p1(D|θ, σ2

ε1) is a probabilistic statement about the distribution of the

measured ToA data D = [ToAa−s1
m , ...,ToA

a−sNp
m ], given the predicted ToA values provided by

Equation (1) and parameter vector θ. Np is the total number of actuator-sensor paths in the
transducers network. Assuming conditional independence of the time-of-flight measurements for
each actuator-sensor path given the damage location, the fused likelihood function can be expressed
as the product of the individual likelihoods associated with each ToA:

p1(D|θ, σ2
ε1) =

Np∏
i=1

1

σε1
√

2π
exp

(
(ToAa−si

m − ToAa−si
c (θ))2

2σ2
ε1

)
=

1

(2πσ2
ε1)Np/2

exp

(
−Q1(D,θ)

2σ2
ε1

)
where

Q1(D,θ) =

Np∑
i=1

(ToAa−si
m − ToAa−si

c (θ))2

5.1.2 Hyperbola method

As aforementioned, hyperbola methods uses a set of 3 piezoelectric elements, one acting as actuator
and the two others as sensors. The probabilistic description of the measured TDoA between sensors
i, j (i 6= j) can again be expressed as:

TDoAsi−sj
m = TDoAsi−sj

c (θ) + ε2 (11)
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where TDoAsi−sj
c (θ) is the calculated TDoA for sensors pair i, j using Equation (3), with parameter

vector θ. Note that in parameter vector θ, the group velocity correspond to the propagation
angle between actuator-sensor i and actuator-sensor j paths respectively. Assuming ε2 be a zero-
mean Gaussian random variable with variance σ2

ε2 and following the same approach as in the case
of ellipse method, with conditional independence of the time-of-flight measurements, the fused
likelihood function can be written as :

p2(D|θ, σ2
ε2) =

1

(2πσ2
ε2)Nt/2

exp

(
−Q2(D,θ)

2σ2
ε2

)
, (12)

where,

Q2(D,θ) =

N−1∑
i=1

N∑
j=i+1

(TDoAsi−sj
m − TDoAsi−sj

c (θ))2

Nt = (N − 1)(N − 2)/2 is the total number of piezoelectrics triplet actuated by the same actuator.
N is the total number of piezoelectric elements mounted into the structure.

5.2 Bayesian inference

For convenience, we will note in the sequel, p(D|θ, σ2
ε ) without subscript 1 or 2 as in the likelihood

function for both ToA and TDoA methods. Bayesian analysis relies on Bayes theorem, relating
the joint prior parameter probability density function (PDF) pπ(θ, σ2

ε ) and the likelihood function
p(D|θ, σ2

ε ) to the joint posterior distribution p(θ, σ2
ε |D) via

p(θ, σ2
ε |D) =

p(D|θ, σ2
ε )pπ(θ, σ2

ε )

p(D)
(13)

Equation (13) provides us a simple means of relating prior information to the parameter dis-
tribution we seek. The term

p(D) =

∫
p(D|θ, σ2

ε )pπ(θ, σ2
ε )dθdσ2

ε

in the demonimator, is a normalizing constant that can be ignored in the following development.
The joint posterior parameter distribution contains the desired marginal distribution of each of the
parameters vector. If we want to obtain the marginal distribution of a parameter θk (k = 1,2,3 or
4), part of θ, performing an integration of Equation (13) with respect to the variance σ2

ε and with
respect to all the rest of parameters other than θk we have:

p(θk|D) ∝
∫
p(θ, σ2

ε |D)pπ(θ, σ2
ε )dθ−kdσ

2
ε (14)

where the notation
∫
dθ−kdσ

2
ε denotes the multidimensional integral over all parameters other than

θk. Solving Equation (14) would lead to an estimation of the update (posterior) distribution of
the damage position and the angle dependent group velocity. Unfortunately, it is usually difficult
to obtain an analytical solution of Equation (14) because of the very complicated expression of
the likelihood function, and the high-dimensional integral involved. Fortunately there exists a
convenient numerical approach to sampling from marginal parameter distributions. In this study,
we used Markov Chain Monte Carlo (MCMC) methods for estimating the posterior distributions
of the parameters.
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5.3 Markov Chain Monte Carlo methods

Monte Carlo methods refer to simulation techniques for describing parameters in term of proba-
bility distribution, where samples are drawn from the marginal parameters distributions. These
techniques can be highly efficient, especially when independent samples can be generated. Un-
fortunately, posterior distributions used in Bayesian inference are often complicated, making it
difficult to draw independent samples. An alternative of using standard Monte Carlo methods is
to use Markov Chain Monte Carlo (MCMC) simulation techniques. In this case, the new sam-
ple values are determined by using a few fixed number of previous samples values. The result of
MCMC simulation is a dependent sequence of sample called a Markov chain. This Markov chain
has stationary distributions equal to the distribution we wish to sample.

Metropolis-Hastings algorithm is a widely used technique for sampling from distributions for
which the conditional densities cannot be computed, or are of a form from which it is difficult
to sample (Bernardo and Smith, 1994). This technique uses a proposal distribution, from which
sampling is easy, and accepts a sample with a probability that depends on the proposal distribution
and the density from which we wish to sample. In this study, we applied joint Gibbs sampling
(Bernardo and Smith, 1994) and Metropolis-Hastings algorithms as an alternative for sampling
the full conditional distribution. The technique employed here is based on the rejection sampling
and is detailed in the Appendix A.

6 Validation of the proposed parametric expression of the group velocity
profile for the damage localization in a bayesian framework

As stated above, a model involving the wave group velocity that links the damage position and the
ToFs is necessary to achieve accurate localization. An efficient and simple parametric modeling of
the group velocity profile able to deal easily with anisotropy has been presented in the previous
section. A Bayesian framework is considered to take into account for the facts that experimental
times of flight are corrupted by noise and measurement errors and that variability of group velocity
exists within composite materials. This section will now highlight in a bayesian framework the
need to take into account for anisotropy in order to increase localization accuracy and thus the
benefits associated with this simple model.

6.1 Numerical example

6.1.1 Illustrative case study

The specimen under study remains the same as in Section 4.1 with material properties listed in
Table 1. The FEM of the composite plate is also the same as shown in Figure 3, with a damage
located at (300,160) mm. The Bayesian approach is applied for both ToA and TDoA-based method
and angle dependent (anisotropy) or independant (isotropy) velocity profiles using the ToF data
collected from the scattered signal for each sensor. In the anisotropic case, the parameters vector is
θ = [xd, yd, a, b]. Uniform prior are assumed for these parameters: xd, yd are uniformly distributed
in [0,400] mm, [0,300] mm respectively, and wave velocity parameters a, b, are uniformly distributed
in [0, 9000] m/s each. In the isotropic case, the parameters vector becomes θ = [xd, yd, Vg], where
uniform prior is assumed for Vg ∼ U(0, 9000). It is worth mention that prior distributions on
parameters a and b could be chosen using prior information gained by analyzing the damage pitch-
catch free data (estimate of the velocity through least squares approach for example). This point
will be illustrated later in the experimental study.
For each case and each parameter, a total of 120000 samples are considered to draw the Markov
chain as shown in Figure 6(a) for damage location in the case of angle dependent group velocity.
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The first 10000 are set as the burn-in period. The histogram of each estimated parameter exhibits a
Gaussian trend as shown in Figure 6(b) and we thus used normal distribution to fit the histograms
of each of the estimated MCMC parameters.

(a) (b)

Figure 6: (a) MCMC samples for damage location (b) Histograms of MCMC samples for damage location-
ToA: ellipse method - Anisotropy assumption in the group velocity (numerical study)

The estimated parameters as well as the confidence intervals and estimation errors are listed
in Table 4 for the anisotropic case and in Table 5 for the isotropic case. The error for damage
position is defined as the difference between the real damage position and the estimated damage
position. For the group velocity parameters a and b, the relative error is defined as the difference
between the estimated values and the actual values (a = 5395.5 m/s and b = 4761.3 m/s -
see section 3.2) divided the actual values. For the velocity Vg in the isotropic case, no error can
be defined as there exists no actual value. A zoomed 2D view of the damage location for the four
cases is represented in Figure 7. The black circle represents the real damage location while PDF
contour represents the estimated damage location.

Table 4: Estimation results and confidence intervals: numerical study (anisotropic case).

ToA method TDoA method

Parameter xd(mm) yd(mm) a(m/s) b(m/s) xd(mm) yd(mm) a(m/s) b(m/s)

µ 300.6 161.1 5526 4420 293.1 156.3 5438 4779

σ 6.5 4.3 155.3 192.9 5.0 4.1 196 264

Error -0.6 -1.10 -2.4 % 7.1 % 6.9 3.7 0.78 % 0.37 %

Table 5: Estimation results and confidence intervals: numerical study (isotropic case)

ToA method TDoA method

PDF param. xd(mm) yd(mm) Vg(m/s) xd(mm) yd(mm) Vg(m/s)

µ 315.9 166.6 5426 311.6 167.6 6166

σ 7.1 6.4 159 4.6 3.9 190

Error (mm) -15.9 -6.6 - -11.6 -7.6 -
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(a) Ellipse, anisotropy assumed. (b) Hyperbol, anisotropy assumed.

(c) Ellipse, isotropy assumed. (d) Hyperbol, isotropy assumed.

Figure 7: PDF of damage location for the four localization algorithms. Black circle represents true damage
location.

One can observe from Table 4 that both localization methods (ToA, TDoA) give satisfying
results for each estimated parameters. By comparing the results of Table 4 and Table 5, one
can observe that taking into account the angle dependence of the wave velocity profile in the
damage localization clearly increases localization accuracy. Figure 8 (a)(b) show the comparison
between the actual and estimated group velocity profile for both case isotropy and anisotropy.
For anisotropy assumption Figure 8 (a)(b), the group velocity profile is well estimated close to its
actual profile with acceptable errors for both ToA and TDoA algorithms. This estimation become
worst in the case of isotropy assumption (Figure 8 (c)(d)) as expected. This explains the failure
of both algorithms relying on the isotropy assumption to provide an accurate damage localization
for the present example.

6.1.2 Sensitivity to damage position

In order to further demonstrate the robustness of the proposed algorithm, we ran 5 other simula-
tions with different damage locations, and computed statistics on the error. The objective of this
approach is to show how sensitive the estimation is with respect to the changes in the damage
location. The damage locations considered for this analysis are listed in Table 6. The estimation
results with and without the anisotropy assumption are listed in Tables 7, 8 and 9,10 for both
ellipse-based and hyperbola-based methods respectively. The root mean square error (RMSE) is
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(a) Ellipse, anisotropy assumed. (b) Hyperbol, anisotropy assumed.

(c) Ellipse, isotropy assumed. (d) Hyperbol, isotropy assumed.

Figure 8: Group velocity profile and the associated Confidence Interval (CI): numerical study

also computed using the real damage location and the estimated damage location as follow:

RMSE(θ̂) =

√
E[(θ̂ − θ)2] (15)

where, θ̂ is the estimated value and θ is the real value. The RMSE is a standard statistic metric
used to measure estimator performance, and its value increases with the variance of the estimator.

Table 6: Damage coordinates for sensitivity analysis

Damages D1 D2 D3 D4 D5

x (mm) 100 150 150 200 250

y (mm) 150 150 200 150 100

From the results presented in Tables 7, 8, 9, 10 and in Figures 9 and 10 it can be observed
that the proposed Bayesian approach leads to a good estimation in term of both damage location
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Table 7: Estimated location and RMSE for each damage position: numerical study (Ellipse method,
anisotropy assumption)

D1 D2 D3 D4 D5

Coordinates xd yd xd yd xd yd xd yd xd yd
RMSE 12.2 8.6 8.8 10.1 9.5 7.6 16.6 8.1 6.8 9.8

Vg Param. a b a b a b a b a b
RMSE 195.3 493.7 152.2 183.7 260.9 304.7 369.4 481.4 235.5 320.4

Table 8: Estimated location and RMSE for each damage position: numerical study (Ellipse method,
isotropy assumption)

D1 D2 D3 D4 D5

Coordinates xd yd xd yd xd yd xd yd xd yd
RMSE 20.0 15.1 9.1 15.0 18.3 33.9 27.9 18.7 11.0 22.4

Vg Param. a b a b a b a b a b
RMSE 230.1 789.9 282.2 373.3 440.9 769.9 544.4 195.3 315.7 442.8

Table 9: Estimated location and RMSE for each damage position : numerical study (Hyperbola method,
anisotropy assumption)

D1 D2 D3 D4 D5

Coordinates xd yd xd yd xd yd xd yd xd yd
RMSE 44.4 10.1 3.7 7.5 12.4 8.5 7.1 8.0 6.0 13.4

Vg Param. a b a b a b a b a b
RMSE 1007.4 442.9 249.5 502.8 543.0 481.5 327.3 368.1 312.0 616.4

Table 10: Estimated location and RMSE for each damage position : numerical study (Hyperbola method,
isotropy assumption)

D1 D2 D3 D4 D5

Coordinates xd yd xd yd xd yd xd yd xd yd
RMSE 42.0 7.5 4.6 8.1 52.0 41.3 7.9 9.0 6.9 15.3

Vg Param. a b a b a b a b a b
RMSE 1077.6 443.4 189.4 548.1 833.1 1368.4 312.3 467.1 344.9 324.1

and group velocity profile. Indeed, the estimated parameters are in good agreement with the
exact values for both ToA-based and TDoA-based methods, and for each damage location. For
ToA-based algorithm and for the D4 damaged configuration, the RMSE for the parameter b in the
isotropic model is higher than its value in the anisotropic assumption. This deviation is due to the
high value of σb in the anisotropic model compared to its value in the isotropic case (see Tables
18-21 in appendix B), leading to high value of RMSE according to Equation 15. By choosing an
estimator that has minimum variance, one also choose an estimator having minimum RMSE. It
can been observed from the RMSE values listed in appendix B that the RMSE decreases with
the variance for each of the estimated parameters. Although the hyperbola-based algorithm does
not lead to a monotonic trend in terms of accuracy between isotropic and anisotropic assumption
for each damaged case and for each estimated parameter, the proposed parametric group velocity
model still performs well.
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Figure 9: RMSE of the estimated parameters, numerical study : ellipse method.

Figure 10: RMSE of the estimated parameters, numerical study : hyperbola method.

6.1.3 Sensitivity to changes in the anisotropy of the material

The sensitivity of the localization algorithm to a strong anisotropy is also analyzed in order to
validate its applicability in a numerical framework. The material considered here exhibits a strong
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anisotropy in one of the principal direction (along x axis). The material properties is listed in
Table 11. The dimensions of the plate and the sensors location remain the same. The Lamb waves
dispersion curve of this new material is shown in Figure 11. The parameters of the parametric
ellipse model for the group velocity are estimated to be a = 6092.9 m/s and b = 4921.0 m/s.

Table 11: Mechanical properties of one ply of the new chosen composite material

Density thickness E11 E22 E33 G12 = G13 = G23 ν12
(g/m3) (mm) (GPa) (GPa) (GPa) (GPa)

1554 0.28 80 40 8.1 4.8 0.03

Figure 11: Dispersion curve for the new material and its corresponding parametric fit

The previous described MCMC procedure was applied for damage localization in this new plate.
The damage is located at (250,100) mm with 18 mm diameter. The estimated parameters are
listed in Table 12 and 13 for both ToA-based and TDoA-based Bayesian Algorithm respectively,
with and without taking into account for the anisotropy. The RMSE are plotted in Figure 12.
The comparison between the RMSE and the estimated parameters values (µ and σ) in isotropic
and anisotropic cases show that even for materials with strong anisotropy, the Bayesian damage
localization performs well and the proposed parametric expression for the group velocity remains
applicable and leads to results with acceptable errors.

Table 12: Estimation results and confidence intervals: numerical study (ToA-based algorithm).

Anisotropic case Isotropic case

Parameter xd(mm) yd(mm) a(m/s) b(m/s) xd(mm) yd(mm) a(m/s) b(m/s)

µ 237.5 109.3 5978.1 4.936.9 233.9 103.2 5.7023 5.7023

σ 5.7 5.7 156.0 266.6 7.2 13.4 143.4 143.4

RMSE 13.6 10.9 193.7 267.0 17.6 13.8 416.1 794.3
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Table 13: Estimation results and confidence intervals : numerical study (TDoA-based algorithm).

Anisotropic case Isotropic case

Parameter xd(mm) yd(mm) a(m/s) b(m/s) xd(mm) yd(mm) a(m/s) b(m/s)

µ 233.8 108.1 6220.1 5227.9 231.9 96.4 6.3365 6.3365

σ 4.0 5.5 284.2 471.3 4.4 6.4 298.4 298.4

RMSE 16.7 9.8 311.3 562.4 18.5 7.3 385.2 1446.6

Figure 12: RMSE of the estimated parameters, numerical study : (left) ellipse method, (right) hyperbola
method

6.2 Experimental application : composite laminate

6.2.1 Experimental setup

To further illustrate the effectiveness of the proposed algorithm, experimental studies are con-
ducted on a composite plate. The test specimen is a 4 plies composite plate with plies orientation
[0◦/− 45◦/45◦/0◦]. The dimensions of the laminate is 400 mm × 300 mm × 1.2 mm as in the
numerical study. Mechanical properties of the lamina are listed in Table 14. A set of N = 5
piezoelectric elements (Noliac NCE51) from NOLIAC Inc., each with a diameter of 20 mm and
thickness of 0.1 mm are surface mounted on the composite plate. The sensor placement is the
same as in the numerical study (see Section 4.1).

Table 14: Mechanical properties of the lamina in the experimental study

Density ply thickness E11 = E22 E33 G12 = G13 = G23 ν12
(g/m3) (mm) (GPa) (GPa) (GPa)

1554 0.28 69 8.1 4.8 0.03

The experimental setup is shown in Figure 13(a). The excitation signal is a 5 cycles sinusoidal
tone burst with a central frequency of f0 = 200 kHz, modulated by a Hanning window, as previ-
ously. The excitation signal is generated by a 33500B series Waveform Generator, and amplified
to 10 V using a voltage amplifier from FLC Electronics. The sensors signals are visualized and
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recorded by a Tektronix Digital Phosphor Oscilloscope (DPO3014 series) whose sampling rate is
set at 25 MHz.

(a) (b)

Figure 13: Experimental setup (a), parametric ellipse construction with experimental group velocity in
composite [0◦/− 45◦/45◦/0◦] ply laminate at 200 kHz: least-squares fitting (b)

After the recording of the signals for the healthy plate, the group velocity can be estimated
for several propagation angles using the ToF method. Figure 13(b) shows the experimental group
velocity data points as well as the parametric ellipse fitted to these points. The values of the
parameters a and b are estimated by a least-squares method, and are: 5214.4 m/s and 5472.6
m/s respectively. One can observe in Figure 13(b) a good match between experimental data and
least-squares estimation results using these values. One can also observe that material used here
is not as anisotropic as the one used in the numerical simulations.

The two damages considered in this study are impacts with diameters of 14 mm and 22 mm.
These impacts are calibrated damages, obtained using a Drop Weight Impact Test System. Fig-
ures 14(a) and 15(a) show the composite plate with the impacts. Damage characterization was
performed using ultrasonic non destructive testing (NDT) before and after the impact as shown
in the figures. The damage is at the opposite face to which the transducer elements are bounded.
The center location of the 14 mm damaged impact is at (300,150) mm and the center location of
the 22 mm damaged impact is at (100,150). Figure 14(b) and Figure 15(b) illustrates the damaged
composite plate with sensors placement and the damages location. After recording the signals
from the healthy and damaged plates, a signal scattered by damage is obtained and the procedure
described in Section 2.1 is used to obtain the ToFs for each damage case.

6.2.2 Results for the 14 mm impact damage

In the anisotropic case, the posterior distributions of the parameters vector θ = [xd, yd, a, b] is
estimated by the previously described MCMC procedure. Uniform prior are assumed for each
parameter. That is xd, yd are uniformly distributed in [0,400] mm, [0,300] mm respectively, and
wave velocity parameters a, b, are uniformly distributed in [0, 8000] m/s each. For each case
and each parameter, a total of 120000 samples are considered to draw the Markov chain. The

21



(a) (b)

Figure 14: (a) Composite plate with the 14 mm impact (top) C-scan of the impact (bottom), (b) Coor-
dinates of the impact (300,150)mm.

(a) (b)

Figure 15: (a) Composite plate with the 22 mm impact (top) C-scan of the impact (bottom), (b) Coor-
dinates of the impact (100,150)mm.

first 10000 are set as the burn-in period. The histogram of each estimated parameter exhibits a
Gaussian trend as shown in Figure 16(b) and we thus used normal distribution to fit the histograms
of each of the estimated MCMC parameters. The estimated parameters as well as the estimation
errors and confidence intervals are listed in Table 15. The error are defined as previously. 2D
view of the damage location estimates for the different cases that are considered are represented
in Figure 17. The black circle represents the real damage (impact) location while PDF contour
represents the estimated damage location.

One can observe from Table 15 that both localization methods (ToA, TDoA) give satisfying
results with acceptable errors for each estimated parameters. These results further demonstrate
the effectiveness of the proposed Bayesian damage localization based on the parametric expression
of the wavefront.

6.2.3 Result for the 22 mm impact damage

The same procedure as in the previous damaged case is followed here. The estimated parameters
as well as the estimation errors and confidence intervals are listed in Table 16. 2D view of the
damage location is represented in Figure 18. The black circle represents the real damage (impact)
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(a) (b)

Figure 16: Experimental Results for composite plate: (a) MCMC samples for damage location (14 mm)
(b) Histograms of MCMC samples for damage location - ToA: ellipse method - Anisotropy assumption in
the group velocity

Table 15: Estimation results and confidence intervals for composite plate - 14 mm.

ToA method TDoA method

PDF param. xd(mm) yd(mm) a(m/s) b(m/s) xd(mm) yd(mm) a(m/s) b(m/s)

µ 287.8 139.6 5085 5440 290.6 140.1 5269 5092

σ 3.7 4.5 107 170 8.9 5.0 499 306

Error 12.2 10.4 2.4 % 0.6 % 9.4 9.9 -1.05 % 6.9 %

location while PDF contour represents the estimated damage location. Table 16 further shows
that the proposed damage localization method give satisfying results with acceptable error for
both algorithms.

Table 16: Estimation results and confidence intervals for composite plate - 22 mm.

ToA method TDoA method

PDF param. xd(mm) yd(mm) a(m/s) b(m/s) xd(mm) yd(mm) a(m/s) b(m/s)

µ 115.1 160.2 5325 5803 114.2 160.9 5038 5300

σ 3.9 3.2 81 118 3.6 2.5 255 157

Error -15.1 -10.2 -2.1 % -6.0 % -14.2 -10.9 3.4 % 3.1 %

6.3 Experimental application : sandwich structure

6.3.1 Experimental setup

Another experimental study is conducted on a sandwich structure to validate the proposed algo-
rithm. The test specimen is a sandwich plate. The face sheets are made of the previous described 4
plies composite plate with plies orientation [0◦/− 45◦/45◦/0◦], and the core is made of aluminum.
The dimensions of the sandwich plate is 400 mm × 300 mm × 30.2 mm. 5 piezoelectric elements
from Noliac NCE51 were bonded to the sandwich plate according to the same configuration as

23



(a) Ellipse (b) Hyperbola

Figure 17: Experimental Results for composite plate: PDF of damage location- 2D view (a) ToA: ellipse
method (b) TDoA: hyperbola method. Black circle represents true damage location

(a) ellipse. (b) Hyperbola.

Figure 18: Experimental Results for composite plate: PDF of damage location- 2D view (a) ToA: ellipse
method (b) TDoA: hyperbola method. Black circle represents true damage location

in the previous experimental case. The sensors placement, the mechanical properties of the face
sheets for the sandwich plate and the dimensions of the plate are the same as in the previous study
case.
The excitation signal in this case is a 5 cycles sinusoidal tone burst with a central frequency of
f0 = 50 kHz, modulated by a Hanning window, as previously. The amplitude is set to 10 V, and
the sampling rate at 10 MHz.
After recording the signals for the healthy sandwich plate, the group velocity can be estimated
for several propagation angles using the ToF method. As in the previous experimental study, the
experimental group velocity data points as well as the parametric ellipse fitted to these points
were plotted in Figure 19(b) for the sandwich structure. The values of the parameters a and b
are estimated by a least-squares method, and are: 4282.5 m/s and 4411.4 m/s respectively.
As shown in the figure, the group velocity profile exhibits a quasi-circular shape with a relatively
high variance. The MCMC procedure will be used to quantify the uncertainties associated to this
estimation.

For Bayesian damage localization we consider an impact with diameters of 18 mm. As in the
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(a) (b)

Figure 19: Sandwich plate with a impact (a), parametric ellipse construction with experimental group
velocity in sandwich plate at 50 kHz: least-squares fitting (b)

previous case, The impact is a calibrated damage, obtained using a Drop Weight Impact Test
System. Figure 19(a) shows the sandwich plate with the impact. The damage is at the opposite
face to which the transducer elements are bounded. The center location of the 18 mm damaged
impact is at (303,150) mm. After recording the signals from the healthy and damaged plates, a
signal scattered by damage is obtained and the procedure described in Section 2.1 is used to obtain
the ToFs.

6.3.2 Results for the 18 mm impact damage on sandwich plate

The MCMC procedure was applied to this new damaged case. We used normal distribution prior
for the group velocity parameters a and b, with mean values, those obtained by the least squares
methods (see Section 6.3.1), and the associated variance is equal to the variance of the experimental
data. The MCMC histograms and 2D view of the damage location are represented in Figures 20
and 21 respectively. The black circle represents the real damage (impact) location while PDF
contour represents the estimated damage location. Table 17 further shows that the proposed
damage localization method give satisfying results with acceptable error for both algorithms.

Table 17: Estimation results and confidence intervals for sandwich plate - 18 mm.

ToA method TDoA method

PDF param. xd(mm) yd(mm) a(m/s) b(m/s) xd(mm) yd(mm) a(m/s) b(m/s)

µ 283.0 130.9 4534.4 4160.2 316.3 174.9 4132 4639

σ 11.8 20.9 224.6 330.3 16.07 28.8 525.7 475.4

Error 20 19.1 -5.89 % 5.68 % 13.3 24.9 3.5 % -5.16%

7 Conclusions

This paper focuses on probabilistic Lamb wave-based damage localization in anisotropic composite
materials and the three following points were addressed in this context:
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(a) (b)

Figure 20: Experimental Results for sandwich plate : (a) MCMC samples for damage location (18 mm)
(b) Histograms of MCMC samples for damage location - ToA: ellipse method - Anisotropy assumption in
the group velocity

(a) ellipse. (b) Hyperbola.

Figure 21: Experimental Results for sandwich plate: PDF of damage location- 2D view (a) ToA: ellipse
method (b) TDoA: hyperbola method. Black circle represents true damage location

• The use of a Bayesian framework in order to take into account for both measurement and
material uncertainties in an anisotropic context

• The development and validation of an efficient and simple parametric modeling of the group
velocity profile in order to deal easily with anisotropy.

• The influence of the use of ToA of DToA on localization accuracy.

• The influence of both the damage location and the strong anisotropy of the material in the
estimation results.

A Bayesian framework is considered to take into account for the facts that experimental ToFs
are corrupted by noise and the variability of group velocity exists within composite materials. An
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original parametric analytical expression of the direction dependence group velocity is proposed and
validated numerically and experimentally for anisotropic composite plates and sandwich structure.
This expression is incorporated into time-of-arrival (ToA: ellipse-based) and time-difference-of-
arrival (TDoA: hyperbola-based) bayesian damage localization algorithms. This way, the damage
location as well as the group velocity profile are estimated jointly. On the basis of the framework
developed by Yan (2013), we have proposed and validated numerically and experimentally a general
localization algorithm that allows (i) to take into account for for both measurement and material
uncertainties within a Bayesian framework, (ii) to model easily the effects of anisotropy on group
velocity and, (iii) to rely on ToA or TDoA informations. The original feature of this approach is that
it incorporates anisotropic wave propagation via a parametrized analytic expression of the angle
dependence of the wave velocity profile in the Bayesian localization model and allows to use both
ToA and TDoA algorithms. Numerical and experimental results obtained with different damage
sizes and locations validate the ability of the proposed algorithm to estimate both the damage
location and the group velocity profile as well as the associated confidence intervals. Results
highlight the need to take into account for anisotropy in order to increase localization accuracy.
In addition to the anisotropic model used for localization, the Bayesian approach is more effective
than the classical imaging algorithms in term of uncertainties quantification as shown by the
obtained results. The overall performance shows that ToA-based algorithm leads to better results
in comparison to TDoA-based algorithm.

Acknowledgments

This work was partially supported by the CORALIE project.

Appendix

A Metropolis-Hastings Algorithm

Suppose that we wish to draw samples from a specific distribution f(θ) (in our case, f(θ) is
p(θk|D) in Equation (14)). The Metropolis-Hastings algorithm generates a sequence {θ(i)} by a
2-step procedure. At stage i a candidate value θ∗ is sampled based on the current value θ(i−1);
it is sampled from a distribution function g(x|θ(i−1)) . Then a Bernoulli trial is performed with
success probability:

r′ = min{ f(θ∗)g(θ(i−1)|θ∗)
f(θ(i−1))g(θ∗|θ(i−1))

, 1} (16)

if the result of the trial is success, we set θ(i) = θ∗; otherwise we set θ(i) = θ(i−1). More often
practice considers a candidate generating distribution which is symmetric in its arguments, that is
g(θ(i−1)|θ∗) = g(θ∗|θ(i−1)). If we consider uniform distribution proposal for a candidate θ∗ on an
interval of length 2A centered on θ(i−1), then density function is:

g(θ∗|θ(i−1)) =
1

2A
, |θ∗ − θ(i−1)| < A. (17)

In a such case, the acceptance probability r′ reduces to:

r′ = min{ f(θ∗)

f(θ(i−1))
, 1} (18)

Practical implementation of the MCMC algorithm can require some tuning of the interval length
A in Equation (17). Large values of A reduces the acceptance ratio, and the Markov chain tends
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to be highly correlated. Low values of A leads to important convergence time. A trade-off between
these two aspects is well known. We used in this study an approach proposed by (Nichols et al.,
2010), where the value of A is adjusted in the “burn-in” period.
Uniform transition distribution (proposal distribution) were used in this study. The MCMC algo-
rithm for generating posterior parameters distribution in Equation (14) is described in Appendix.

• set the number of total iterations Niter and the number of ”burn-in” NB

• choose initial guesses θ
(0)
k , k = 1, ..., p

• choose initial tuning parameter Ak, k = 1, ..., p

• sample initial variance noise from an inverse gamma (IG) distribution: σ2
ε (0) = IG(Nm/2 +

1, Q(D,θ(0))/2)

Main iteration : increment i by 1 and do:
For each parameter k, k = 1 : p

• Generate a candidate θ∗k = θ
(i−1)
k +2Ak×U(−1, 1), where U(−1, 1) is a uniformly distributed

number on [-1,1].

• compute:

r′ = exp
[
−(0.5/σ2

ε (i− 1))× (Q(D,θ∗)−Q(D,θ(i−1)))
]
× pπk

(θ∗)/pπk
(θ(i−1))

where: θ∗ = [θ
(i)
1 , ..., θ

(i)
(k−1), θ

∗
k, θ

(i−1)
(k+1), ..., θ

(i−1)
p ]

and: θ(i−1) = [θ
(i)
1 , ..., θ

(i)
(k−1), θ

(i−1)
k , θ

(i−1)
(k+1), ..., θ

(i−1)
p ]

– if U(0, 1) < r′, keep the new value θ
(i)
k = θ∗k and adjust tuning parameter Ak = Ak×1.01

– else reject the new value and keep θ
(i)
k = θ

(i−1)
k and adjust the tuning parameter Ak =

Ak/1.007

• direct sample the variance posterior distribution σ2
ε (i) = IG(Nm/2 + 1, Q(D,θ(i))/2), and

do i = i+ 1

• after i > NB cease adjusting the tuning parameter Ak.

• repeat procedure until i = Niter

After discarding the NB values corresponding to the burn-in period, the resulting Markov chain
of parameter θk has a stationary distribution that tends to the target distribution p(θk|D).
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B Root mean square error: numerical results

Table 18: Numerical results: estimated location and RMSE for each damage position (Ellipse method,
anisotropic assumption)

D1 D2 D3 D4 D5

Coordinates xd yd xd yd xd yd xd yd xd yd
Estimation (mm) 90.6 144.9 142.6 140.5 144.3 201.9 214.6 152.1 248.8 104.0

σ (mm) 7.8 6.9 4.8 3.5 7.6 7.4 7.8 7.8 6.7 8.9
Exact Pos. (mm) 100 150 150 150 150 200 200 150 250 100

RMSE 12.2 8.6 8.8 10.1 9.5 7.6 16.6 8.1 6.8 9.8

Vg Param. a b a b a b a b a b
Estimation (m/s) 5442.0 5134.9 5392.6 4678.2 5394.6 4595.8 5104.5 4398.7 5296.2 4694.1

σ (m/s) 189.7 322.8 152.2 163.9 260.9 255.9 227.5 316.7 213.5 313.3
Exact Value(m/s) 5395.5 4761.3 5395.5 4761.3 5395.5 4761.3 5395.5 4761.3 5395.5 4761.3

RMSE 195.3 493.7 152.2 183.7 260.9 304.7 369.4 481.4 235.5 320.4

Table 19: Numerical results: estimated location and RMSE for each damage position (Ellipse method,
isotropic assumption)

D1 D2 D3 D4 D5

Coordinates xd yd xd yd xd yd xd yd xd yd
Estimation (mm) 82.1 138.5 142.7 135.8 139.8 225.9 226.3 158.0 246.7 98.9

σ (mm) 8.8 9.9 5.4 4.9 15.1 21.8 9.2 16.9 10.5 22.4
Exact Pos. (mm) 100 150 150 150 150 200 200 150 250 100

RMSE 20.0 15.1 9.1 15.0 18.3 33.9 27.9 18.7 11.0 22.4

Vg Param. a b a b a b a b a b
Estimation (m/s) 5528.6 5528.6 5125.5 5125.5 5392.5 5392.5 4874.8 4874.8 5154.4 5154.4

σ (m/s) 187.7 187.7 82.0 82.0 440.9 440.9 158.9 158.9 203.9 203.9
Exact Value(m/s) 5395.5 4761.3 5395.5 4761.3 5395.5 4761.3 5395.5 4761.3 5395.5 4761.3

RMSE 230.1 789.9 282.2 373.3 440.9 769.9 544.4 195.3 315.7 442.8

Table 20: Numerical results: estimated location and RMSE for each damage position (Hyperbola method,
anisotropic assumption)

D1 D2 D3 D4 D5

Coordinates xd yd xd yd xd yd xd yd xd yd
Estimation (mm) 144.4 159.9 151.4 142.6 140.9 195.7 206.6 142.4 253.7 111.4

σ (mm) 1.3 1.7 3.4 1.7 8.5 7.3 2.7 2.6 4.7 7.0
Exact Pos. (mm) 100 150 150 150 150 200 200 150 250 100

RMSE 44.4 10.1 3.7 7.5 12.4 8.5 7.1 8.0 6.0 13.4

Vg Param. a b a b a b a b a b
Estimation (m/s) 4389.1 4934.8 5204.0 4840.1 5760.4 4863.9 5405.6 5095.9 5451.3 5120.9

σ (m/s) 44.9 407.6 160.0 496.6 402.1 470.4 327.11 213.9 306.9 500.6
Exact Value(m/s) 5395.5 4761.3 5395.5 4761.3 5395.5 4761.3 5395.5 4761.3 5395.5 4761.3

RMSE 1007.4 442.9 249.5 502.8 543.0 481.5 327.3 368.1 312.0 616.4
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Table 21: Numerical results: estimated location and RMSE for each damage position (Hyperbola method,
isotropic assumption)

D1 D2 D3 D4 D5

Coordinates xd yd xd yd xd yd xd yd xd yd
Estimation (mm) 142.0 157.5 152.6 142.1 110.2 225.7 207.2 141.5 254.1 112.9

σ (mm) 0.3 0.1 3.7 2.1 33.5 32.2 3.2 3.0 5.5 8.2
Exact Pos. (mm) 100 150 150 150 150 200 200 150 250 100

RMSE 42.0 7.5 4.6 8.1 52.0 41.3 7.9 9.0 6.9 15.3

Vg Param. a b a b a b a b a b
Estimation (m/s) 4318.0 4318.0 5287.0 5287.0 6007.5 6007.5 5173.5 5173.5 5513.5 5513.5

σ (m/s) 13.2 13.2 155.2 155.2 565.2 565.2 219.7 219.7 324.1 304.15
Exact Value(m/s) 5395.5 4761.3 5395.5 4761.3 5395.5 4761.3 5395.5 4761.3 5395.5 4761.3

RMSE 1077.6 443.4 189.4 548.1 833.1 1368.4 312.3 467.1 344.9 324.1
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