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This paper focuses on Bayesian Lamb wave-based damage localization in structural health monitoring of anisotropic composite materials. A Bayesian framework is applied to take account for uncertainties from experimental time-of-flight measurements and angular dependent group velocity within the composite material. An original parametric analytical expression of the direction dependence of group velocity is proposed and validated numerically and experimentally for anisotropic composite and sandwich plates. This expression is incorporated into time-of-arrival (ToA: ellipse-based) and time-difference-of-arrival (TDoA: hyperbola-based) Bayesian damage localization algorithms. This way, the damage location as well as the group velocity profile are estimated jointly and a priori information taken into consideration. The proposed algorithm is general as it allows to take into account for uncertainties within a Bayesian framework, and to model effects of anisotropy on group velocity. Numerical and experimental results obtained with different damage sizes or locations and for different degrees of anisotropy validate the ability of the proposed algorithm to estimate both the damage location and the group velocity profile as well as the associated confidence intervals. Results highlight the need to consider for anisotropy in order to increase localization accuracy, and to use Bayesian analysis to quantify uncertainties in damage localization.

Introduction

Structural Health Monitoring (SHM) is an emerging technology that aims at designing systems able to continuously monitor structures [START_REF] Sohn | A Review of Structural Health Monitoring Literature:1996-2001[END_REF]. One commonly used SHM technique is that of "active sensing" whereby permanently attached actuators launch Lamb waves in the structure under inspection and a set of sensors records the structural responses in order to extract some damage related information [START_REF] Farrar | A statistical pattern recognition paradigm for vibration-based structural health monitoring[END_REF][START_REF] Giurgiutiu | Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring[END_REF][START_REF] Lin | Damage detection of a plate using migration technique[END_REF]. One of the outstanding advantage of using Lamb waves for SHM is that such waves can travel over relatively long distance and can be used to monitor various types of damage (delaminations, disbonds, fiber breaking, impact, holes, etc...). However, phenomena like dispersion and anisotropy (dependence of the wave velocity with respect to frequency and propagation direction), mode conversion (change in wave velocity when wave interacts with structural discontinuities or boundaries) as well as changing environment and operational conditions make reliable damage localization a challenging task.

For damage localization, each piezoelectric element attached to the structure acts as an actuator while the others are used as sensors. Performing the difference between signals recorded on healthy and damaged states, a scattered signal containing information related to the damage (location, size, orientation, type) is obtained (Yu et al., 2012). Time-of-flight (ToF), which corresponds to the time taken by the wave packet to travel from an actuator to a sensor through a given path, is a feature extracted from the scattered signal that is widely used for damage localization [START_REF] Flynn | Maximum-likelihood estimation of damage location in guided-wave structural health monitoring[END_REF][START_REF] Ihn | Pitch-catch active sensing methods in structural health monitoring for aircraft structures[END_REF][START_REF] Lu | Crack identification in aluminium plates using lamb wave signals of a pzt sensor network[END_REF][START_REF] Michaels | Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors[END_REF][START_REF] Moll | Multi-site damage localization in anisotropic platelike structures using an active guided wave structural health monitoring system[END_REF][START_REF] Su | Identification of Damage Using Lamb Waves[END_REF]. Knowing the ToF values and the wave velocity, the damage localization problem becomes straightforward: solve a set of deterministic nonlinear equations that describe the relationship between the coordinates of the damage, the ToF, and the wave velocity. Two kind of equations can be used to do so: those relying on time-of-arrival (ToA) and provide damage location as the intersection of several ellipses and other based on time-difference-of-arrival (TDoA) and provide damage location as the intersection of hyperbolas. Many authors have successfully used these strategies for damage localization [START_REF] Coverley | Impact damage location in composite structures using optimized sensor triangulation procedure[END_REF][START_REF] Flynn | Maximum-likelihood estimation of damage location in guided-wave structural health monitoring[END_REF][START_REF] Michaels | Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors[END_REF][START_REF] Su | Identification of Damage Using Lamb Waves[END_REF]. However, to the knowledge of the authors, the influence of the use of ToA of DToA on localization accuracy has yet not been addressed and thus constitutes the first issue discussed in this paper.

As stated above, a model involving the waves group velocity linking the damage position and the ToFs is necessary to achieve accurate localization. Modelling Lamb wave propagation in isotropic composite plates at a given frequency is relatively simple as only a direction independent group velocity is involved. However, for composite anisotropic plate-like structures, such a model is much more complicated to establish. Indeed, in case of anisotropic plates the wave velocity is now a function of the propagation angle and not a single value [START_REF] Li | Damage localization in composite laminates based on a quantitative expression of anisotropic wavefront[END_REF]. Several techniques have been proposed to overcome this difficulty. In general, these techniques fall in two groups. The first group deals with strategies in which the group velocity profile [START_REF] Coverley | Impact damage location in composite structures using optimized sensor triangulation procedure[END_REF][START_REF] Hajzargerbashi | An improved algorithm for detecting point of impact in anisotropic inhomogeneous plates[END_REF][START_REF] Kundu | Point of impact prediction in isotropic and anisotropic plates from the acoustic emission data[END_REF]) is assumed to be known. The second group includes strategies based on clusters of sensors (sensors are regrouped by zone) in which the knowledge of the group velocity profile is not required [START_REF] Ciampa | A new algorithm for acoustic emission localization and flexural group velocity determination in anisotropic structures[END_REF][START_REF] Kundu | Acoustic source localization in anisotropic plates[END_REF]. The assumption behind those strategies is that sensors located in the same cluster have the same group velocity. Following the methods of the first group, the second point addressed in this paper is to propose and validate an efficient and simple parametric modeling of the group velocity profile in order to deal easily with anisotropy.

Finally, ToF measurements error may arise due to experimental noise, and may corrupt the damage localization results [START_REF] Niri | Adaptive multisensor data fusion for acoustic emission source localization in noisy environment[END_REF][START_REF] Niri | A probabilistic framework for acoustic emission source localization in plate-like structures[END_REF]. Strategies are thus also needed to take into account for these uncertainties. To face parts of this problem, some Bayesian approaches have already been developed. The advantage of the Bayesian methodology, is that expert judgments or knowledge can be incorporated into the Bayesian model as prior information to reduce the variance error. Many authors have previously used Bayesian estimation to update the belief in the parameter estimation results in various field of engineering [START_REF] Beck | Bayesian updating of structural models and reliability using markov chain monte carlo simulation[END_REF][START_REF] Beck | Updating models and their uncertainties. part i: Bayesian statistical framework[END_REF][START_REF] Vanik | Bayesian probabilistic approach to structural health monitoring[END_REF]. For some years now, Bayesian approaches play a key role in SHM. They have been applied for damage assessment [START_REF] Jiang | Bayesian wavelet methodology for structural damage detection[END_REF], damage prediction [START_REF] Karandikar | Prediction of remaining useful life for fatigue-damaged structures using bayesian inference[END_REF], sensor placement optimization [START_REF] Todd | A bayesian approach to optimal sensor placement for structural health monitoring with application to active sensing[END_REF], etc. Regarding damage localization, [START_REF] Zhao | Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. defect detection, localization and growth monitoring[END_REF] combined a probabilistic approach with a tomography-based damage imaging method to improve damage localization accuracy. [START_REF] Flynn | Maximum-likelihood estimation of damage location in guided-wave structural health monitoring[END_REF] proposed a maximum likelihood estimation (MLE) of damage location in an aluminium plate. [START_REF] Yu | Application of kernel density estimation in lamb wave-based damage detection[END_REF] proposed an application of kernel density estimation in order to account for the uncertainties in ToF measurements in an aluminium plate. A non-parametric estimation is performed to draw a probabilistic distribution of the ToF data in order to improve the damage localization. Recently, [START_REF] Niri | A probabilistic framework for acoustic emission source localization in plate-like structures[END_REF] proposed a probabilistic approach based on an extended Kalman filter approach (EKF) for acoustic source localization in composite anisotropic panels. They take into account uncertainties in both ToF measurements and group velocity. Yan (2013) proposed a Bayesian system identification for damage localization in plate-like structure using Lamb waves. This approach also takes into account uncertainties in ToF measurement and group velocity. All these studies are however limited to the particular isotropic case where the group velocity is not a function of the angle of propagation, which is not the case for anisotropic materials, as stated above. The third point addressed by this paper is the use of a probabilistic framework in order to take into account for both measurement and material uncertainties in an anisotropic context.

On the basis of the framework developed by [START_REF] Yan | A bayesian approach for damage localization in plate-like structures using lamb waves[END_REF], we propose a general localization algorithm that allows (i) to take into account for for both measurement and material uncertainties within a Bayesian framework, (ii) to model easily the effects of anisotropy on group velocity and, (iii) to rely on ToA or TDoA informations. The original feature of this approach is that it incorporates anisotropic wave propagation via a parametrized analytic expression of the angle dependence of the wave velocity profile in the Bayesian localization model and allows to use both ToA and TDoA informations. Using this algorithm we highlight the need to take into account for anisotropy in order to achieve accurate damage localization and compare the efficiency of the use of ToA and DToA information for damage localization. The paper is organized as follows: Section 2 introduces the background of damage localization in anisotropic plates. The parametric expression of the group velocity profile proposed here is detailed in Section 3 and validated in Section 4. In Section 5, the Bayesian framework and the Markov Chain Monte Carlo (MCMC) method used to solve it are presented. Numerical and experimental results are presented in Section 6 for an anisotropic composite plate before drawing a conclusion in Section 7.

Lamb waves-based damage localization in composite plates

Lamb waves-based damage localization in structures is based on the fundamental idea that a traveling wave in a damaged plate will be scattered by the damage [START_REF] Su | Identification of Damage Using Lamb Waves[END_REF]. Performing the difference between signals recorded on healthy and damaged states, a scattered signal containing information related to the damage (location, size, orientation, type) is obtained. Time-of-flight (ToF), which corresponds to the time taken by the wave packet to travel from an actuator to a sensor through a given path, is a feature extracted from the scattered signal that is widely used for damage localization [START_REF] Flynn | Maximum-likelihood estimation of damage location in guided-wave structural health monitoring[END_REF][START_REF] Ihn | Pitch-catch active sensing methods in structural health monitoring for aircraft structures[END_REF][START_REF] Lu | Crack identification in aluminium plates using lamb wave signals of a pzt sensor network[END_REF][START_REF] Michaels | Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors[END_REF][START_REF] Moll | Multi-site damage localization in anisotropic platelike structures using an active guided wave structural health monitoring system[END_REF][START_REF] Su | Identification of Damage Using Lamb Waves[END_REF] as detailed in Section 2.1. ToF algorithms usually fall within two groups: the ToA-based algorithm (ellipse method, see Section 2.2) and the TDoA-based algorithm (hyperbola method, see Section 2.3) [START_REF] Flynn | Maximum-likelihood estimation of damage location in guided-wave structural health monitoring[END_REF][START_REF] Moll | Multi-site damage localization in anisotropic platelike structures using an active guided wave structural health monitoring system[END_REF] that are brielfy presented in the following.

Time-of-Flight (ToF) estimation

ToF estimation is an important issue in Lamb wave-based damage localization, since uncertainties in measurements can affect localization accuracy [START_REF] Niri | Adaptive multisensor data fusion for acoustic emission source localization in noisy environment[END_REF][START_REF] Niri | A probabilistic framework for acoustic emission source localization in plate-like structures[END_REF][START_REF] Yan | A bayesian approach for damage localization in plate-like structures using lamb waves[END_REF]. To tackle this problem, a variety of methods have been developed. Commonly used methods include short-time Fourier transform (STFT), Hilbert-Huang transform (HHT), matching pursuit decomposition (MPD), Wigner-Ville distribution (WVD), cross-correlation method (CCM), Hilbert transform (HT), and continuous wavelet transform (CWT) [START_REF] Jeong | Wavelet analysis of plate wave propagation in composite laminates[END_REF][START_REF] Niethammer | Time-frequency representations of lamb waves[END_REF][START_REF] Raghavan | Guided-wave signal processing using chirplet matching pursuits and mode correlation for structural health monitoring[END_REF][START_REF] Tua | Detection of cracks in plates using piezo-actuated lamb waves[END_REF][START_REF] Xu | Advanced methods for time-of-flight estimation with application to lamb wave structural health monitoring[END_REF]. In this study, CWT was used to perform time-frequency decomposition of the scattered signal in order to extract the component of the signal corresponding to the frequency of interest. CWT is a bandpass filtering procedure in which the signal is convolved with the wavelet centered on the driving frequency. Thereafter, HT was used to estimate ToF by extracting the time of the first maximum of the envelope of the signal component at the frequency of interest. Consider a transducers network with N piezoelectric elements bonded on the plate. Each transducer can act as both actuator and sensor. The geometric relationship for damage localization in plate-like structures using ToA model is schematically shown in Figure 1(a) for a single piezoelectric actuator-sensor pair. The coordinates of the actuator are (x a , y a ), and (x s , y s ) for the sensor. When a wave travels from the actuator across a point-like damage to the sensor, the ToA of the scattered signal corresponds to the wave travel time of the actuator-damage-sensor path and can be expressed as [START_REF] Ihn | Pitch-catch active sensing methods in structural health monitoring for aircraft structures[END_REF][START_REF] Michaels | Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors[END_REF] :

ToA a-s = (x d -x a ) 2 + (y d -y a ) 2 V g (f, α a ) + (x d -x s ) 2 + (y d -y s ) 2 V g (f, α s ) (1)
where (x d , y d ) is the damage coordinate, V g (f, α) is the group velocity of the Lamb wave, which depends on the frequency f , and the propagation direction in composite material α. V g (f, α a ) and V g (f, α s ) represent the group velocity in the actuator-damage path and damage-sensor path respectively. In the model given by Equation (1), the sizes of the actuator, sensor, and damage area are not taken into account. For isotropic material, group velocity is angular independent and the solution of Equation ( 1) is an ellipse for each actuator-sensor pair, and the damage location corresponds to the intersection point of all ellipses for all actuators sensors paths [START_REF] Yan | A bayesian approach for damage localization in plate-like structures using lamb waves[END_REF]. The problem is more complicated for anisotropic materials since the group velocity of the interrogating waves depends on the propagation direction [START_REF] Ciampa | A new algorithm for acoustic emission localization and flexural group velocity determination in anisotropic structures[END_REF].

Time difference of arrival: hyperbola method

The time difference of arrival (TDoA) method considers piezoelectric elements in groups of three with one acting as an actuator (noted a) and the others two as sensors (noted s 1 and s 2 ). If there is a damage at the point (x d , y d ), the difference in the times of arrival of the scattered signals at the two sensors is [START_REF] Michaels | Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors[END_REF][START_REF] Moll | Multi-site damage localization in anisotropic platelike structures using an active guided wave structural health monitoring system[END_REF]:

∆ToA s1-s2 = ToA a-s1 -ToA a-s2
(2)

Since the distance from the actuator to the damage is the same for both receivers (Figure 1(b)), it does not affect the difference in arrival time. Equation (2) can then be simplified as:

∆ToA s1-s2 = (x d -x s1 ) 2 + (y d -y s1 ) 2 V g (f, α s1 ) - (x d -x s2 ) 2 + (y d -y s2 ) 2 V g (f, α s2 ) (3) 
where (x si , y si ) is the coordinate of the sensor i, V g (f, α si ) is the group velocity and α si is the angle of propagation in the direction damage-sensor i (i = 1, 2). Solution of Equation ( 3) is a hyperbola, and the damage location is obtained as the point of intersection of all the hyperbolas obtained for all the possible triplets (a,s i ,s j ) in the transducers network, with i = j. As in the ellipse method, the angular dependence group velocity complicates the resolution of this equation.

Modeling the group velocity profile in an anisotropic composite plate

As aforementioned, the damage location is obtained by solving the set of nonlinear equations given by Equations (1) or (3). For anisotropic structures equipped with N piezo-electric elements, a unique solution for this set of nonlinear equations cannot be found because the number of equations (N -1) is lower than the number of unknowns (N + 2) that are: the damage location coordinates (x d , y d ) and N angular dependent group velocities V g (α i ). Several techniques that falls in two groups have been proposed to overcome this difficulty. The first group deals with strategies in which the group velocity profile [START_REF] Coverley | Impact damage location in composite structures using optimized sensor triangulation procedure[END_REF][START_REF] Hajzargerbashi | An improved algorithm for detecting point of impact in anisotropic inhomogeneous plates[END_REF][START_REF] Kundu | Point of impact prediction in isotropic and anisotropic plates from the acoustic emission data[END_REF]) is assumed to be known. The second group includes strategies based on clusters of sensors (sensors are regrouped by zone) in which the knowledge of the group velocity profile is not required [START_REF] Ciampa | A new algorithm for acoustic emission localization and flexural group velocity determination in anisotropic structures[END_REF][START_REF] Kundu | Acoustic source localization in anisotropic plates[END_REF]. The assumption behind those strategies is that sensors located in the same cluster have the same group velocity. Here, we propose to follow the first group of methods and to use a model of the group velocity profile in order to decrease the number of unknown coefficients in the localization equations given by Equations ( 1) and (3).

Typical group velocity profile in anisotropic composite plates

Before modeling the group velocity profile for an anisotropic composite plate, an example of such a profile is shown. The chosen anisotropic composite is a 4 plies composite lamina with plies orientation [0 • / -45 • /45 • /0 • ] and a 0.28 mm thickness typically used in aeronautic applications. Mechanical properties of one ply of the composite material are listed in Table 1.

Table 1: Mechanical properties of one ply of the chosen composite material Density thickness Numerical studies have been conducted on the selected composite using SDTools (Balmes, 2014), a finite element toolbox developed in MATLAB environment. The objective was to compute Lamb wave dispersion curves for the composite plate (Table 1). Thereby, the dispersion curves were computed using periodic computations [START_REF] Macea | Finite element prediction of wave motion in structural waveguides[END_REF][START_REF] Sorohan | Extraction of dispersion curves for waves propagating in free complex waveguides by standard finite element codes[END_REF]. The dispersion curves are computed only in the low frequency domain, where exist the fundamental antisymmetric Lamb wave mode, A 0 , symmetric Lamb wave mode, S 0 , and the lowest order shear horizontal SH 0 wave mode. Figure 2(a) shows the dispersion curves along different directions of propagation (0 • , 60 • and 90 • ) with respect to the fiber direction. It can be observed that, the wave mode S 0 exhibits reasonably non-dispersive behavior with a nearly constant group velocity and that this mode is the faster one. Furthermore, this wave mode has been recognized to be more sensitive to through-thickness defect [START_REF] Su | Identification of Damage Using Lamb Waves[END_REF], which is the type of defect considered in this study. As a result, the wave mode S 0 at 150 kHz is chosen for damage localization. From the dispersion curves, the velocity profile of the S 0 mode can be determined at 150 kHz and plotted in a polar coordinate system as shown in Figure 2(b). The polar axis represents the propagation angle with respect to the principal material axis. As it can be seen from this figure, there is indeed variation of the group velocity with the propagation angle within this material. Furthermore, since the group velocity profile has an identifiable geometrical shape, a parametric curve can be derived to approximate this velocity profile.
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Proposed parametric ellipse model of the group velocity profile

In order to approximate the angle dependence group velocity profile for the S 0 mode shown in Figure 2(b), we proposed the following parametric ellipse expression:

V g (γ) = V 2 gx + V 2 gy = [a cos(γ)] 2 + [b sin(γ)] 2 (4)
where the physical angle α (for each actuator-sensor path, see Figure 1) is related to the parameter angle γ by the expression:

α = arctan V gy V gx = arctan b a tan(γ) (5) hence, γ = arctan a b tan(α) (6) 
where γ varies from 0 to 360 • . In the above expression the two parameters a and b can be estimated using the minimum and maximum values of the group velocity data. The values for parameters a and b are 5395.5 m/s and 4761.3 m/s respectively. The approximated velocity profile based on the parametric ellipse is shown in Figure 2(b). One can observe an excellent match between numerical group velocity data and the proposed parametric ellipse form. This agreement shows the validity of the proposed parametric function for velocity profile approximation for this material at 150 kHz. The advantage of using this model is to reduce the number of parameters involved in the group velocity profile to only two, whatever the number of sensors that are considered.

Including this model within the ToA and DToA methods presented in Sections. 2.2 and 2.3, and according to the chosen geometry, we then obtain:

• ToA (ellipse method), see Figure 1(a):

α a = ϕ + α 1 and V g (f, α a ) = V g (γ a ) with γ a = arctan a b tan(α a ) α s = ϕ + π -α 2 and V g (f, α s ) = V g (γ s ) with γ s = arctan a b tan(α s ) (7) 
• TDoA (hyperbola method), see Figure 1(b):

α s1 = ϕ + π -α 2 and V g (f, α s1 ) = V g (γ s1 ) with γ s1 = arctan a b tan(α s1 ) α s2 = ϕ + β + α 3 and V g (f, α s2 ) = V g (γ s2 ) with γ s2 = arctan a b tan(α s2 ) (8)
4 Validation of the proposed parametric expression of the group velocity profile for damage localization in a deterministic framework

As stated above, a model involving the wave group velocity that links the damage position and the ToFs is necessary to achieve accurate localization. An efficient and simple parametric modeling of the group velocity profile able to deal easily with anisotropy has been presented in the previous section. This section will now highlight in a deterministic framework the need to take into account for anisotropy in order to increase localization accuracy and thus the benefits associated with this simple model.

Finite element model

The same [0 • /45 • / -45 • /0 • ] composite laminate described previously is used here. A set of N = 5 piezoelectric (PZT) elements (Noliac NCE51) from NOLIAC Inc., each with a diameter of 20 mm and thickness of 0.1 mm are surface-mounted on the composite plate. Each piezoelectric element can act both as actuator and sensor. An illustration of the plate and sensor placement is shown in Figure 3. The coordinates of the piezoelectric elements and of the damage are listed in Table 2. To perform damage localization, numerical simulations are conducted using SDTools. Squared elements with dimension 2 mm × 2 mm were used for the meshing. This mesh size is compatible with the propagating wavelength of the S 0 mode which value is 8 mm at 150 kHz. The excitation signal is chosen as a 5 cycles sinusoidal tone burst at a central frequency of f 0 = 150 kHz, which is modulated by a Hanning window. The time step for the transient simulation is 0.3 µs chosen as sampling period whose sampling frequency is 3.33 MHz. The damage has a circular shape with 20 mm of diameter. The damage is represented by a reduction of material properties (a reduction of rigidity of 90%) in a chosen area as shown in Figure 3(c). To introduce it, an automatic approach has been developed where a damage-patch is generated with a specific mesh. The dimension and the material properties of this damage-patch can be changed and adjusted. The introduction of this patch before changing its properties does not alter the modal properties of the structure in the frequency range of interest. Moreover, nodes inside this damage-patch could be removed to create crack or hole damages. The center location of the damage is (300,160) mm. Details of the FEM model with the meshing of the PZT and the damage are shown in Figures 3(b)(c). It is worth mention that this FEM model was validated through experiments conducted on the same specimens [START_REF] Balmes | Effects of temperature on the impedance of piezoelectric actuators used for SHM[END_REF].

Signal processing and ToF extraction

The signal scattered from damage is extracted by performing the difference of signals between the healthy and damaged plate for each PZT. In order to extract ToF information from the scattered signal, a CWT Gabor wavelet is chosen for the data processing (see Section 2.1). Thereafter a Hilbert transform is applied to the processed signal in order to extract its envelope and thus, the ToF information. The processed scattered signal and its Hilbert transform are shown in Figure4. 

Damage localization results

Assuming each node in the composite plate as a possible damage location, theoretical ToA or DToA can be computed at each node (x, y) knowing the group velocity by means of Equations ( 1) or (3). This procedure is repeated for each node and each actuator sensor path, and a damage index P (x, y) at any node (x, y) is obtained by comparing the theoretical ToA or DToA t TH i (x, y) to the data extracted from scattered signal t XP i as follows:

P (x, y) = Np i=1 exp - |t TH i (x, y) -t XP i | τ 0 (9)
where N p is the total number of actuator sensor pathes and τ 0 is a decay factor playing the role of a decay rate of an exponential windowed function applied to reduce secondary reflections of the scattered signal; its value is fixed at 5 µs in this study. The estimated damage location is then chosen as the point having the maximum value of P (x, y). In order to highlight the need to account for anisotropy, localization is performed using both the approximate proposed velocity profile and an isotropic model that assumes that velocities along different directions are the same and equal to the average velocity across all angles.

Figure 5 shows the localization result for both ellipse and hyperbola methods and when taking account for anisotropy or not. Black circle represents actual damage position and white circle represent the estimated damage location. Localization results for both methods and with and without anisotropy are listed in Table 3. From Figure 5 and Table 3, it can be seen that both methods provide accurate localization results and that the ellipse-based method appears to be slightly more accurate for this example. We can notice that taking account for anisotropy allows to greatly increase the localization accuracy and to reduce localization ambiguities. parametrized group velocity profile,(b) hyperbola method using the proposed parametrized group velocity profile, (c) ellipse method using an isotropic velocity profile, and (d) hyperbola method using an isotropic velocity profile.

Bayesian approach for damage localization

We then consider the use of a probabilistic framework in order to take into account for both measurement and material uncertainties which have been ignored in the anisotropic context developed in the previous section. Rather than a single damage location, the Bayesian approach will provide a probability density function of the unknown parameters (that includes damage location), with a mean and a confidence interval [START_REF] Yan | A bayesian approach for damage localization in plate-like structures using lamb waves[END_REF][START_REF] Yu | Application of kernel density estimation in lamb wave-based damage detection[END_REF]. In the present damage localization problem, the parameter vector is in general θ

= [x d , y d , V g (f, α a ), V g (f, α s )]
for each actuator-damage-sensor path. Considering the parametric elliptical form for the group velocity profile described in section 3.2 this parameter vector can be simplified as θ 

= [x d , y d , a, b].

Probabilistic description of ToF

In this part we introduce the probabilistic model describing the ToF data and the associated measurement uncertainties for both ToA-based and TDoA-based algorithm.

Ellipse method

Let's assume that the measurements uncertainties are described by 1 , a zero-mean Gaussian random variable with variance σ2 1 . The probabilistic description of the measured ToA for the ith actuator-sensor path ToA a-si m can be expressed as:

ToA a-si m = ToA a-si c (θ) + 1 (10) 
where ToA a-si c (θ) is the calculated ToA in the ith actuator-sensor path using Equation (1), with parameter vector θ. We then obtain : ], given the predicted ToA values provided by Equation (1) and parameter vector θ. N p is the total number of actuator-sensor paths in the transducers network. Assuming conditional independence of the time-of-flight measurements for each actuator-sensor path given the damage location, the fused likelihood function can be expressed as the product of the individual likelihoods associated with each ToA:

1 σ 1 √ 2π exp (ToA a-si m -ToA a-si c (θ)) 2 2σ 2 1 The likelihood function p 1 (D|θ, σ 2 1 )
p 1 (D|θ, σ 2 1 ) = Np i=1 1 σ 1 √ 2π exp (ToA a-si m -ToA a-si c (θ)) 2 2σ 2 1 = 1 (2πσ 2 1 ) Np/2 exp - Q 1 (D, θ) 2σ 2 1 where Q 1 (D, θ) = Np i=1 (ToA a-si m -ToA a-si c (θ)) 2

Hyperbola method

As aforementioned, hyperbola methods uses a set of 3 piezoelectric elements, one acting as actuator and the two others as sensors. The probabilistic description of the measured TDoA between sensors i, j (i = j) can again be expressed as:

TDoA si-sj m = TDoA si-sj c (θ) + 2 (11)
where TDoA si-sj c (θ) is the calculated TDoA for sensors pair i, j using Equation (3), with parameter vector θ. Note that in parameter vector θ, the group velocity correspond to the propagation angle between actuator-sensor i and actuator-sensor j paths respectively. Assuming 2 be a zeromean Gaussian random variable with variance σ 2 2 and following the same approach as in the case of ellipse method, with conditional independence of the time-of-flight measurements, the fused likelihood function can be written as :

p 2 (D|θ, σ 2 2 ) = 1 (2πσ 2 2 ) Nt/2 exp - Q 2 (D, θ) 2σ 2 2 , ( 12 
)
where,

Q 2 (D, θ) = N -1 i=1 N j=i+1 (TDoA si-sj m -TDoA si-sj c (θ)) 2 N t = (N -1)(N -2)/2
is the total number of piezoelectrics triplet actuated by the same actuator. N is the total number of piezoelectric elements mounted into the structure.

Bayesian inference

For convenience, we will note in the sequel, p(D|θ, σ 2 ) without subscript 1 or 2 as in the likelihood function for both ToA and TDoA methods. Bayesian analysis relies on Bayes theorem, relating the joint prior parameter probability density function (PDF) p π (θ, σ 2 ) and the likelihood function p(D|θ, σ 2 ) to the joint posterior distribution p(θ, σ 2 |D) via

p(θ, σ 2 |D) = p(D|θ, σ 2 )p π (θ, σ 2 ) p(D) (13) 
Equation ( 13) provides us a simple means of relating prior information to the parameter distribution we seek. The term p(D) = p(D|θ, σ 2 )p π (θ, σ 2 )dθdσ 2 in the demonimator, is a normalizing constant that can be ignored in the following development. The joint posterior parameter distribution contains the desired marginal distribution of each of the parameters vector. If we want to obtain the marginal distribution of a parameter θ k (k = 1,2,3 or 4), part of θ, performing an integration of Equation ( 13) with respect to the variance σ 2 and with respect to all the rest of parameters other than θ k we have:

p(θ k |D) ∝ p(θ, σ 2 |D)p π (θ, σ 2 )dθ -k dσ 2 (14)
where the notation dθ -k dσ 2 denotes the multidimensional integral over all parameters other than θ k . Solving Equation ( 14) would lead to an estimation of the update (posterior) distribution of the damage position and the angle dependent group velocity. Unfortunately, it is usually difficult to obtain an analytical solution of Equation ( 14) because of the very complicated expression of the likelihood function, and the high-dimensional integral involved. Fortunately there exists a convenient numerical approach to sampling from marginal parameter distributions. In this study, we used Markov Chain Monte Carlo (MCMC) methods for estimating the posterior distributions of the parameters.

Markov Chain Monte Carlo methods

Monte Carlo methods refer to simulation techniques for describing parameters in term of probability distribution, where samples are drawn from the marginal parameters distributions. These techniques can be highly efficient, especially when independent samples can be generated. Unfortunately, posterior distributions used in Bayesian inference are often complicated, making it difficult to draw independent samples. An alternative of using standard Monte Carlo methods is to use Markov Chain Monte Carlo (MCMC) simulation techniques. In this case, the new sample values are determined by using a few fixed number of previous samples values. The result of MCMC simulation is a dependent sequence of sample called a Markov chain. This Markov chain has stationary distributions equal to the distribution we wish to sample. Metropolis-Hastings algorithm is a widely used technique for sampling from distributions for which the conditional densities cannot be computed, or are of a form from which it is difficult to sample [START_REF] Bernardo | Bayesian Theory[END_REF]. This technique uses a proposal distribution, from which sampling is easy, and accepts a sample with a probability that depends on the proposal distribution and the density from which we wish to sample. In this study, we applied joint Gibbs sampling [START_REF] Bernardo | Bayesian Theory[END_REF] and Metropolis-Hastings algorithms as an alternative for sampling the full conditional distribution. The technique employed here is based on the rejection sampling and is detailed in the Appendix A.

Validation of the proposed parametric expression of the group velocity profile for the damage localization in a bayesian framework

As stated above, a model involving the wave group velocity that links the damage position and the ToFs is necessary to achieve accurate localization. An efficient and simple parametric modeling of the group velocity profile able to deal easily with anisotropy has been presented in the previous section. A Bayesian framework is considered to take into account for the facts that experimental times of flight are corrupted by noise and measurement errors and that variability of group velocity exists within composite materials. This section will now highlight in a bayesian framework the need to take into account for anisotropy in order to increase localization accuracy and thus the benefits associated with this simple model.

Numerical example

Illustrative case study

The specimen under study remains the same as in Section 4.1 with material properties listed in Table 1. The FEM of the composite plate is also the same as shown in Figure 3, with a damage located at (300,160) mm. The Bayesian approach is applied for both ToA and TDoA-based method and angle dependent (anisotropy) or independant (isotropy) velocity profiles using the ToF data collected from the scattered signal for each sensor. In the anisotropic case, the parameters vector is

θ = [x d , y d , a, b].
Uniform prior are assumed for these parameters: x d , y d are uniformly distributed in [0,400] mm, [0,300] mm respectively, and wave velocity parameters a, b, are uniformly distributed in [0, 9000] m/s each. In the isotropic case, the parameters vector becomes θ = [x d , y d , V g ], where uniform prior is assumed for V g ∼ U(0, 9000). It is worth mention that prior distributions on parameters a and b could be chosen using prior information gained by analyzing the damage pitchcatch free data (estimate of the velocity through least squares approach for example). This point will be illustrated later in the experimental study.

For each case and each parameter, a total of 120000 samples are considered to draw the Markov chain as shown in Figure 6(a) for damage location in the case of angle dependent group velocity.

The first 10000 are set as the burn-in period. The histogram of each estimated parameter exhibits a Gaussian trend as shown in Figure 6(b) and we thus used normal distribution to fit the histograms of each of the estimated MCMC parameters. The estimated parameters as well as the confidence intervals and estimation errors are listed in Table 4 for the anisotropic case and in Table 5 for the isotropic case. The error for damage position is defined as the difference between the real damage position and the estimated damage position. For the group velocity parameters a and b, the relative error is defined as the difference between the estimated values and the actual values (a = 5395.5 m/s and b = 4761.3 m/ssee section 3.2) divided the actual values. For the velocity V g in the isotropic case, no error can be defined as there exists no actual value. A zoomed 2D view of the damage location for the four cases is represented in Figure 7. The black circle represents the real damage location while PDF contour represents the estimated damage location. One can observe from Table 4 that both localization methods (ToA, TDoA) give satisfying results for each estimated parameters. By comparing the results of Table 4 andTable 5, one can observe that taking into account the angle dependence of the wave velocity profile in the damage localization clearly increases localization accuracy. Figure 8 (a)(b) show the comparison between the actual and estimated group velocity profile for both case isotropy and anisotropy. For anisotropy assumption Figure 8 (a)(b), the group velocity profile is well estimated close to its actual profile with acceptable errors for both ToA and TDoA algorithms. This estimation become worst in the case of isotropy assumption (Figure 8 (c)(d)) as expected. This explains the failure of both algorithms relying on the isotropy assumption to provide an accurate damage localization for the present example.

Sensitivity to damage position

In order to further demonstrate the robustness of the proposed algorithm, we ran 5 other simulations with different damage locations, and computed statistics on the error. The objective of this approach is to show how sensitive the estimation is with respect to the changes in the damage location. The damage locations considered for this analysis are listed in Table 6. The estimation results with and without the anisotropy assumption are listed in Tables 7, 8 and 9,10 for both ellipse-based and hyperbola-based methods respectively. The root mean square error (RMSE) is 

RMSE( θ) = E[( θ -θ) 2 ] (15)
where, θ is the estimated value and θ is the real value. The RMSE is a standard statistic metric used to measure estimator performance, and its value increases with the variance of the estimator. From the results presented in Tables 7,8, 9, 10 and in Figures 9 and 10 it can be observed that the proposed Bayesian approach leads to a good estimation in term of both damage location and group velocity profile. Indeed, the estimated parameters are in good agreement with the exact values for both ToA-based and TDoA-based methods, and for each damage location. For ToA-based algorithm and for the D4 damaged configuration, the RMSE for the parameter b in the isotropic model is higher than its value in the anisotropic assumption. This deviation is due to the high value of σ b in the anisotropic model compared to its value in the isotropic case (see Tables 18-21 in appendix B), leading to high value of RMSE according to Equation 15. By choosing an estimator that has minimum variance, one also choose an estimator having minimum RMSE. It can been observed from the RMSE values listed in appendix B that the RMSE decreases with the variance for each of the estimated parameters. Although the hyperbola-based algorithm does not lead to a monotonic trend in terms of accuracy between isotropic and anisotropic assumption for each damaged case and for each estimated parameter, the proposed parametric group velocity model still performs well. 

Sensitivity to changes in the anisotropy of the material

The sensitivity of the localization algorithm to a strong anisotropy is also analyzed in order to validate its applicability in a numerical framework. The material considered here exhibits a strong anisotropy in one of the principal direction (along x axis). The material properties is listed in Table 11. The dimensions of the plate and the sensors location remain the same. The Lamb waves dispersion curve of this new material is shown in Figure 11. The parameters of the parametric ellipse model for the group velocity are estimated to be a = 6092.9 m/s and b = 4921.0 m/s.

Table 11: Mechanical properties of one ply of the new chosen composite material Density thickness The previous described MCMC procedure was applied for damage localization in this new plate. The damage is located at (250,100) mm with 18 mm diameter. The estimated parameters are listed in Table 12 and 13 for both ToA-based and TDoA-based Bayesian Algorithm respectively, with and without taking into account for the anisotropy. The RMSE are plotted in Figure 12. The comparison between the RMSE and the estimated parameters values (µ and σ) in isotropic and anisotropic cases show that even for materials with strong anisotropy, the Bayesian damage localization performs well and the proposed parametric expression for the group velocity remains applicable and leads to results with acceptable errors. The experimental setup is shown in Figure 13(a). The excitation signal is a 5 cycles sinusoidal tone burst with a central frequency of f 0 = 200 kHz, modulated by a Hanning window, as previously. The excitation signal is generated by a 33500B series Waveform Generator, and amplified to 10 V using a voltage amplifier from FLC Electronics. The sensors signals are visualized and recorded by a Tektronix Digital Phosphor Oscilloscope (DPO3014 series) whose sampling rate is set at 25 MHz. After the recording of the signals for the healthy plate, the group velocity can be estimated for several propagation angles using the ToF method. Figure 13(b) shows the experimental group velocity data points as well as the parametric ellipse fitted to these points. The values of the parameters a and b are estimated by a least-squares method, and are: 5214.4 m/s and 5472.6 m/s respectively. One can observe in Figure 13(b) a good match between experimental data and least-squares estimation results using these values. One can also observe that material used here is not as anisotropic as the one used in the numerical simulations.

E11 E22 E33 G12 = G13 = G23 ν12 (g/m 3 ) (mm) (GPa) (GPa) (GPa) ( 
The two damages considered in this study are impacts with diameters of 14 mm and 22 mm. These impacts are calibrated damages, obtained using a Drop Weight Impact Test System. Figures 14(a) and 15(a) show the composite plate with the impacts. Damage characterization was performed using ultrasonic non destructive testing (NDT) before and after the impact as shown in the figures. The damage is at the opposite face to which the transducer elements are bounded. The center location of the 14 mm damaged impact is at (300,150) mm and the center location of the 22 mm damaged impact is at (100,150). Figure 14(b) and Figure 15(b) illustrates the damaged composite plate with sensors placement and the damages location. After recording the signals from the healthy and damaged plates, a signal scattered by damage is obtained and the procedure described in Section 2.1 is used to obtain the ToFs for each damage case.

Results for the 14 mm impact damage

In the anisotropic case, the posterior distributions of the parameters vector θ = [x d , y d , a, b] is estimated by the previously described MCMC procedure. Uniform prior are assumed for each parameter. That is x d , y d are uniformly distributed in [0,400] mm, [0,300] mm respectively, and wave velocity parameters a, b, are uniformly distributed in [0, 8000] m/s each. For each case and each parameter, a total of 120000 samples are considered to draw the Markov chain. The first 10000 are set as the burn-in period. The histogram of each estimated parameter exhibits a Gaussian trend as shown in Figure 16(b) and we thus used normal distribution to fit the histograms of each of the estimated MCMC parameters. The estimated parameters as well as the estimation errors and confidence intervals are listed in Table 15. The error are defined as previously. 2D view of the damage location estimates for the different cases that are considered are represented in Figure 17. The black circle represents the real damage (impact) location while PDF contour represents the estimated damage location.

One can observe from Table 15 that both localization methods (ToA, TDoA) give satisfying results with acceptable errors for each estimated parameters. These results further demonstrate the effectiveness of the proposed Bayesian damage localization based on the parametric expression of the wavefront.

Result for the 22 mm impact damage

The same procedure as in the previous damaged case is followed here. The estimated parameters as well as the estimation errors and confidence intervals are listed in Table 16. 2D view of the damage location is represented in Figure 18. The black circle represents the real damage (impact) As shown in the figure, the group velocity profile exhibits a quasi-circular shape with a relatively high variance. The MCMC procedure will be used to quantify the uncertainties associated to this estimation.

For Bayesian damage localization we consider an impact with diameters of 18 mm. As in the • The use of a Bayesian framework in order to take into account for both measurement and material uncertainties in an anisotropic context

• The development and validation of an efficient and simple parametric modeling of the group velocity profile in order to deal easily with anisotropy.

• The influence of the use of ToA of DToA on localization accuracy.

• The influence of both the damage location and the strong anisotropy of the material in the estimation results.

A Bayesian framework is considered to take into account for the facts that experimental ToFs are corrupted by noise and the variability of group velocity exists within composite materials. An original parametric analytical expression of the direction dependence group velocity is proposed and validated numerically and experimentally for anisotropic composite plates and sandwich structure. This expression is incorporated into time-of-arrival (ToA: ellipse-based) and time-difference-ofarrival (TDoA: hyperbola-based) bayesian damage localization algorithms. This way, the damage location as well as the group velocity profile are estimated jointly. On the basis of the framework developed by [START_REF] Yan | A bayesian approach for damage localization in plate-like structures using lamb waves[END_REF], we have proposed and validated numerically and experimentally a general localization algorithm that allows (i) to take into account for for both measurement and material uncertainties within a Bayesian framework, (ii) to model easily the effects of anisotropy on group velocity and, (iii) to rely on ToA or TDoA informations. The original feature of this approach is that it incorporates anisotropic wave propagation via a parametrized analytic expression of the angle dependence of the wave velocity profile in the Bayesian localization model and allows to use both ToA and TDoA algorithms. Numerical and experimental results obtained with different damage sizes and locations validate the ability of the proposed algorithm to estimate both the damage location and the group velocity profile as well as the associated confidence intervals. Results highlight the need to take into account for anisotropy in order to increase localization accuracy. In addition to the anisotropic model used for localization, the Bayesian approach is more effective than the classical imaging algorithms in term of uncertainties quantification as shown by the obtained results. The overall performance shows that ToA-based algorithm leads to better results in comparison to TDoA-based algorithm.

B Root mean square error: numerical results 
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 21 Figure 1: Damage localization in anisotropic plate-like structures: (a) Ellipse method, (b) Hyperbola method.
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 2 Figure 2: (a) Dispersion curves for different directions. (b) Numerical and approximated velocity profile for the S0 Mode at 150 kHz.

Figure 3 :

 3 Figure 3: (a) Schematic view of the composite plate with a damage. (b) Meshing of the PZT. (c) Meshing of the Damage

Figure 4 :

 4 Figure 4: Signals scattered by damage -numerical study-(a) and the Hilbert transform (b) at central frequency of 150 kHz when PZT 4 acts as actuator. The ToF from actuator to the sensors is represented by vertical dashed lines. The starting time for the ToF calculation is labeled as T ref .
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 5 Figure 5: Damage localization results -numerical study -: (a) ellipse method using the proposed

  is a probabilistic statement about the distribution of the measured ToA data D = [ToA a-s1 m , ..., ToA a-s Np m

Figure 6 :

 6 Figure 6: (a) MCMC samples for damage location (b) Histograms of MCMC samples for damage location-ToA: ellipse method -Anisotropy assumption in the group velocity (numerical study)

Figure 7 :

 7 Figure 7: PDF of damage location for the four localization algorithms. Black circle represents true damage location.

  (a) Ellipse, anisotropy assumed. (b) Hyperbol, anisotropy assumed. (c) Ellipse, isotropy assumed. (d) Hyperbol, isotropy assumed.
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 8 Figure 8: Group velocity profile and the associated Confidence Interval (CI): numerical study
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 9 Figure 9: RMSE of the estimated parameters, numerical study : ellipse method.
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 10 Figure 10: RMSE of the estimated parameters, numerical study : hyperbola method.
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 11 Figure 11: Dispersion curve for the new material and its corresponding parametric fit
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 12 Figure 12: RMSE of the estimated parameters, numerical study : (left) ellipse method, (right) hyperbola method

Figure 13 :

 13 Figure 13: Experimental setup (a), parametric ellipse construction with experimental group velocity in composite [0 • / -45 • /45 • /0 • ] ply laminate at 200 kHz: least-squares fitting (b)

Figure 14 :Figure 15 :

 1415 Figure 14: (a) Composite plate with the 14 mm impact (top) C-scan of the impact (bottom), (b) Coordinates of the impact (300,150)mm.

Figure 17 :

 17 Figure 17: Experimental Results for composite plate: PDF of damage location-2D view (a) ToA: ellipse method (b) TDoA: hyperbola method. Black circle represents true damage location

Figure 18 :

 18 Figure 18: Experimental Results for composite plate: PDF of damage location-2D view (a) ToA: ellipse method (b) TDoA: hyperbola method. Black circle represents true damage location

Figure 20 :

 20 Figure 20: Experimental Results for sandwich plate : (a) MCMC samples for damage location (18 mm) (b) Histograms of MCMC samples for damage location -ToA: ellipse method -Anisotropy assumption in the group velocity

Figure 21 :

 21 Figure 21: Experimental Results for sandwich plate: PDF of damage location-2D view (a) ToA: ellipse method (b) TDoA: hyperbola method. Black circle represents true damage location

Table 2 :

 2 Coordinates of the piezoelectric elements

		PZT1 PZT2 PZT3 PZT4 PZT5 Damage
	x (mm)	30	200	370	113.5	286.5	300
	y (mm)	75	75	75	225	225	160

Table 3 :

 3 Estimated location and errors for the damage position (300, 160) in mm

			Anisotropic model			Isotropic model	
		ToA method TDoA method ToA method TDoA method
	Coordinates	x d	y d	x d	y d	x d	y d	x d	y d
	Estimation (mm) 299	159	295	159	272	165	279	149
	Error (mm)	1	1	5	1	28	-5	21	11

Table 4 :

 4 Estimation results and confidence intervals: numerical study (anisotropic case).

			ToA method			TDoA method	
	Parameter x d (mm) y d (mm) a(m/s) b(m/s) x d (mm) y d (mm) a(m/s) b(m/s)
	µ	300.6	161.1	5526	4420	293.1	156.3	5438	4779
	σ	6.5	4.3	155.3	192.9	5.0	4.1	196	264
	Error	-0.6	-1.10	-2.4 %	7.1 %	6.9	3.7	0.78 % 0.37 %

Table 5 :

 5 Estimation results and confidence intervals: numerical study (isotropic case)

			ToA method			TDoA method	
	PDF param. x d (mm) y d (mm) Vg(m/s) x d (mm) y d (mm) Vg(m/s)
	µ	315.9	166.6	5426	311.6	167.6	6166
	σ	7.1	6.4	159	4.6	3.9	190
	Error (mm)	-15.9	-6.6	-	-11.6	-7.6	-

Table 6 :

 6 Damage coordinates for sensitivity analysis

	Damages D1	D2	D3	D4	D5
	x (mm)	100 150 150 200 250
	y (mm)	150 150 200 150 100

Table 7 :

 7 Estimated location and RMSE for each damage position: numerical study (Ellipse method,

	anisotropy assumption)									
		D 1		D 2		D 3		D 4		D 5	
	Coordinates	x d	y d	x d	y d	x d	y d	x d	y d	x d	y d
	RMSE	12.2	8.6	8.8	10.1	9.5	7.6	16.6	8.1	6.8	9.8
	Vg Param.	a	b	a	b	a	b	a	b	a	b
	RMSE	195.3 493.7 152.2	183.7	260.9 304.7 369.4 481.4	235.5 320.4

Table 8 :

 8 Estimated location and RMSE for each damage position: numerical study (Ellipse method,

	isotropy assumption)										
		D 1		D 2		D 3		D 4		D 5	
	Coordinates	x d	y d	x d	y d	x d	y d	x d	y d	x d	y d
	RMSE	20.0	15.1	9.1	15.0	18.3	33.9	27.9	18.7	11.0	22.4
	Vg Param.	a	b	a	b	a	b	a	b	a	b
	RMSE	230.1 789.9 282.2	373.3	440.9 769.9 544.4 195.3	315.7 442.8

Table 9 :

 9 Estimated location and RMSE for each damage position : numerical study (Hyperbola method,

	anisotropy assumption)									
		D 1		D 2		D 3		D 4		D 5	
	Coordinates	x d	y d	x d	y d	x d	y d	x d	y d	x d	y d
	RMSE	44.4	10.1	3.7	7.5	12.4	8.5	7.1	8.0	6.0	13.4
	Vg Param.	a	b	a	b	a	b	a	b	a	b
	RMSE	1007.4 442.9 249.5	502.8 543.0 481.5 327.3	368.1	312.0 616.4

Table 10 :

 10 Estimated location and RMSE for each damage position : numerical study (Hyperbola method,

	isotropy assumption)										
		D 1		D 2		D 3		D 4		D 5	
	Coordinates	x d	y d	x d	y d	x d	y d	x d	y d	x d	y d
	RMSE	42.0	7.5	4.6	8.1	52.0	41.3	7.9	9.0	6.9	15.3
	Vg Param.	a	b	a	b	a	b	a	b	a	b
	RMSE	1077.6 443.4 189.4	548.1	833.1 1368.4 312.3	467.1 344.9 324.1

Table 12 :

 12 Estimation results and confidence intervals: numerical study (ToA-based algorithm).

Table 14 :

 14 Mechanical properties of the lamina in the experimental study

	Density ply thickness E11 = E22	E33	G12 = G13 = G23	ν12
	(g/m 3 )	(mm)	(GPa)	(GPa)	(GPa)	
	1554	0.28	69	8.1	4.8	0.03

Table 18 :

 18 Numerical results: estimated location and RMSE for each damage position (Ellipse method,

	anisotropic assumption)									
		D 1		D 2		D 3		D 4		D 5	
	Coordinates	x d	y d	x d	y d	x d	y d	x d	y d	x d	y d
	Estimation (mm)	90.6	144.9	142.6	140.5	144.3	201.9	214.6	152.1	248.8	104.0
	σ (mm)	7.8	6.9	4.8	3.5	7.6	7.4	7.8	7.8	6.7	8.9
	Exact Pos. (mm)	100	150	150	150	150	200	200	150	250	100
	RMSE	12.2	8.6	8.8	10.1	9.5	7.6	16.6	8.1	6.8	9.8
	Vg Param.	a	b	a	b	a	b	a	b	a	b
	Estimation (m/s)	5442.0 5134.9 5392.6	4678.2 5394.6	4595.8 5104.5 4398.7 5296.2 4694.1
	σ (m/s)	189.7	322.8	152.2	163.9	260.9	255.9	227.5	316.7	213.5	313.3
	Exact Value(m/s) 5395.5 4761.3 5395.5	4761.3 5395.5	4761.3 5395.5 4761.3 5395.5 4761.3
	RMSE	195.3	493.7	152.2	183.7	260.9	304.7	369.4	481.4	235.5	320.4

Table 19 :

 19 Numerical results: estimated location and RMSE for each damage position (Ellipse method,

	isotropic assumption)									
		D 1		D 2		D 3		D 4		D 5	
	Coordinates	x d	y d	x d	y d	x d	y d	x d	y d	x d	y d
	Estimation (mm)	82.1	138.5	142.7	135.8	139.8	225.9	226.3	158.0	246.7	98.9
	σ (mm)	8.8	9.9	5.4	4.9	15.1	21.8	9.2	16.9	10.5	22.4
	Exact Pos. (mm)	100	150	150	150	150	200	200	150	250	100
	RMSE	20.0	15.1	9.1	15.0	18.3	33.9	27.9	18.7	11.0	22.4
	Vg Param.	a	b	a	b	a	b	a	b	a	b
	Estimation (m/s)	5528.6 5528.6 5125.5	5125.5 5392.5	5392.5 4874.8 4874.8 5154.4 5154.4
	σ (m/s)	187.7	187.7	82.0	82.0	440.9	440.9	158.9	158.9	203.9	203.9
	Exact Value(m/s) 5395.5 4761.3 5395.5	4761.3 5395.5	4761.3 5395.5 4761.3 5395.5 4761.3
	RMSE	230.1	789.9	282.2	373.3	440.9	769.9	544.4	195.3	315.7	442.8

Table 20 :

 20 Numerical results: estimated location and RMSE for each damage position (Hyperbola method,

	anisotropic assumption)									
		D 1		D 2		D 3		D 4		D 5	
	Coordinates	x d	y d	x d	y d	x d	y d	x d	y d	x d	y d
	Estimation (mm)	144.4	159.9	151.4	142.6	140.9	195.7	206.6	142.4	253.7	111.4
	σ (mm)	1.3	1.7	3.4	1.7	8.5	7.3	2.7	2.6	4.7	7.0
	Exact Pos. (mm)	100	150	150	150	150	200	200	150	250	100
	RMSE	44.4	10.1	3.7	7.5	12.4	8.5	7.1	8.0	6.0	13.4
	Vg Param.	a	b	a	b	a	b	a	b	a	b
	Estimation (m/s)	4389.1 4934.8 5204.0	4840.1 5760.4	4863.9 5405.6 5095.9 5451.3 5120.9
	σ (m/s)	44.9	407.6	160.0	496.6	402.1	470.4	327.11	213.9	306.9	500.6
	Exact Value(m/s) 5395.5 4761.3 5395.5	4761.3 5395.5	4761.3 5395.5 4761.3 5395.5 4761.3
	RMSE	1007.4	442.9	249.5	502.8	543.0	481.5	327.3	368.1	312.0	616.4

Table 21 :

 21 Numerical results: estimated location and RMSE for each damage position (Hyperbola method,

	isotropic assumption)									
		D 1		D 2		D 3		D 4		D 5	
	Coordinates	x d	y d	x d	y d	x d	y d	x d	y d	x d	y d
	Estimation (mm)	142.0	157.5	152.6	142.1	110.2	225.7	207.2	141.5	254.1	112.9
	σ (mm)	0.3	0.1	3.7	2.1	33.5	32.2	3.2	3.0	5.5	8.2
	Exact Pos. (mm)	100	150	150	150	150	200	200	150	250	100
	RMSE	42.0	7.5	4.6	8.1	52.0	41.3	7.9	9.0	6.9	15.3
	Vg Param.	a	b	a	b	a	b	a	b	a	b
	Estimation (m/s)	4318.0 4318.0 5287.0	5287.0 6007.5	6007.5 5173.5 5173.5 5513.5 5513.5
	σ (m/s)	13.2	13.2	155.2	155.2	565.2	565.2	219.7	219.7	324.1	304.15
	Exact Value(m/s) 5395.5 4761.3 5395.5	4761.3 5395.5	4761.3 5395.5 4761.3 5395.5 4761.3
	RMSE	1077.6	443.4	189.4	548.1	833.1	1368.4	312.3	467.1	344.9	324.1

∼ N (0, σ

1 ) =
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previous case, The impact is a calibrated damage, obtained using a Drop Weight Impact Test System. Figure 19(a) shows the sandwich plate with the impact. The damage is at the opposite face to which the transducer elements are bounded. The center location of the 18 mm damaged impact is at (303,150) mm. After recording the signals from the healthy and damaged plates, a signal scattered by damage is obtained and the procedure described in Section 2.1 is used to obtain the ToFs.

Results for the 18 mm impact damage on sandwich plate

The MCMC procedure was applied to this new damaged case. We used normal distribution prior for the group velocity parameters a and b, with mean values, those obtained by the least squares methods (see Section 6.3.1), and the associated variance is equal to the variance of the experimental data. The MCMC histograms and 2D view of the damage location are represented in Figures 20 and 21 respectively. The black circle represents the real damage (impact) location while PDF contour represents the estimated damage location. Table 17 further shows that the proposed damage localization method give satisfying results with acceptable error for both algorithms. 

Conclusions

This paper focuses on probabilistic Lamb wave-based damage localization in anisotropic composite materials and the three following points were addressed in this context:

Appendix A Metropolis-Hastings Algorithm

Suppose that we wish to draw samples from a specific distribution f (θ) (in our case, f (θ) is p(θ k |D) in Equation ( 14)). The Metropolis-Hastings algorithm generates a sequence {θ (i) } by a 2-step procedure. At stage i a candidate value θ * is sampled based on the current value θ (i-1) ; it is sampled from a distribution function g(x|θ (i-1) ) . Then a Bernoulli trial is performed with success probability:

if the result of the trial is success, we set θ (i) = θ * ; otherwise we set θ (i) = θ (i-1) . More often practice considers a candidate generating distribution which is symmetric in its arguments, that is g(θ (i-1) |θ * ) = g(θ * |θ (i-1) ). If we consider uniform distribution proposal for a candidate θ * on an interval of length 2A centered on θ (i-1) , then density function is:

In a such case, the acceptance probability r reduces to:

Practical implementation of the MCMC algorithm can require some tuning of the interval length A in Equation ( 17). Large values of A reduces the acceptance ratio, and the Markov chain tends to be highly correlated. Low values of A leads to important convergence time. A trade-off between these two aspects is well known. We used in this study an approach proposed by [START_REF] Nichols | A bayesian approach to identifying structural nonlinearity using free-decay response: Application to damage detection in composites[END_REF], where the value of A is adjusted in the "burn-in" period. Uniform transition distribution (proposal distribution) were used in this study. The MCMC algorithm for generating posterior parameters distribution in Equation ( 14) is described in Appendix.

• set the number of total iterations N iter and the number of "burn-in" N B

• choose initial guesses θ

• sample initial variance noise from an inverse gamma (IG) distribution:

Main iteration : increment i by 1 and do: For each parameter k, k = 1 : p

(k-1) , θ • direct sample the variance posterior distribution σ 2 (i) = IG(N m /2 + 1, Q(D, θ (i) )/2), and do i = i + 1

• after i > N B cease adjusting the tuning parameter A k .

• repeat procedure until i = N iter After discarding the N B values corresponding to the burn-in period, the resulting Markov chain of parameter θ k has a stationary distribution that tends to the target distribution p(θ k |D).