N

N

JQuery Ul like approximate autocomplete
Ibrahim Chegrane, Djamal Belazzougui, Mathieu Raffinot

» To cite this version:

Ibrahim Chegrane, Djamal Belazzougui, Mathieu Raffinot. JQuery UI like approximate autocomplete.
International Symposium on Web Algorithms, Jun 2015, Deauville, France. hal-01171136

HAL Id: hal-01171136
https://hal.science/hal-01171136
Submitted on 2 Jul 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01171136
https://hal.archives-ouvertes.fr

15* International Symposium on Web AlGorithms e June 2015

JQuery Ul like approximate autocomplete

Ibrahim Chegrane
LRIA, USTHB, Algeria.
ibra.chegrane@gmail.com

Djamal Belazzougui
Dep. of Computer
Science FI-00014 Univ.

Mathieu Raffinot
CNRS, LIAFA, Université Paris

Diderot —Paris 7, France.

of Helsinki, Finland.

Abstract

Approzimate auto complete facilitates and speeds
up input writing by offering a list of suggestions
which complements the few characters typed by the
user. In this paper we present a method based on a
trie to do an efficient 1 edit error approximate auto
complete in client server architecture, and we dis-
cuss different strategies to improve the efficiency of
auto completion, depending on different scenarios.
We also propose a method that reduces the number
of outgoing transition tested in each node - espe-
cially in the first levels - of the trie. It uses a hash
based indexr to gemerate candidate characters to be
tested at each branch.

We present a library (named appacolib), in fact
a set of different language libraries, to be of use
either on the server or the client browser or both
to rapidly answer approrimate requests on an UTF-8
dictionary.

I. INTRODUCTION

Text fields are used to enter data to the com-
puter, and they have been improved across the
years. Today, they are equipped with many fea-
tures to help user, and among the most inter-
esting one we find auto completion (also called
auto suggestion), which is a technique that fa-
cilitates and speeds up writing, by offering a list
of words or phrases (suggestions) complement-
ing the few characters typed into the text input,
in a very short time (usually few milliseconds).
The usual, but not mandatory, way those words
are chosen is that they accept the few characters
typed as prefix. Then, considering this list, the
user can either choose one of the words or con-
tinue typing characters, which brings up new
lists of words. Auto completion is very useful
and popular in several domains and systems. In
the web, this feature is provided by many web
browsers to complement urls (e.g. Mozilla Fire-
fox, Google Chrome). On desktop computers

this feature is integrated in many applications,
"Tab” key when using a command line inter-
preter (bash shell in UNIX).

Considering auto-suggestion programming li-
braries, one of the most used auto-suggest li-
brary for allowing programmer to add such
a feature on they input field is JQuery
UT auto-complete (see http://api.jqueryui.
com/autocomplete/)).

However, and this is the main motivation of
this work, the input string (the few characters)
being typed may contain errors. It’s maybe a
keystroke error, especially when typing fast, or
the user don’t know the correct spelling (person
name, product name...etc.). JQuery UI auto-
complete and other auto-complete libraries we
are aware of do not allow typing errors. This
limits the suggestions of the auto-complete sys-
tem to exact prefix matches, which can thus be
incomplete or misleading.

To solve this problem we have to tolerate
some number of errors in the prefix typed, and
in the list of suggestions to obtain a list exact
and approximate completions. The most com-
monly used metric to determine the difference
between two strings x and y is called “edit dis-
tance” [I2] that is defined as follow: the min-
imum number of operations needed on string
x to get string y using three basic operations:
deletion, insertion, and substitution.

A direct consequence of tolerating errors is
that the list of suggestions might be very large;
to reduce the number of results we thus pro-
pose a new auto-complete JQuery like library
(named appacolib) which (a) limit the number
of possible error to at most 1 and (b) report
k most highly ranked suggestions in decreasing
order of their ranks. We call this the top-k sug-
gestions; the parameter k is given by the user.
The appacolib library, in fact a set of differ-
ent language libraries, can be used either on
the server (C/C++) or the client (JavaScript)

http://api.jqueryui.com/autocomplete/
http://api.jqueryui.com/autocomplete/

15* International Symposium on Web AlGorithms e June 2015

or both to rapidly answer approximate requests
on an UTF-8 dictionary. When dealing with real
world data, practical problems appear that are
usually not taken into account in theoretical
work. In particular, managing UTF-8 files effi-
ciently in time and memory space is not that
technically trivial. Our libraries permit to deal
with UTF-8 dictionaries, whatever the underly-
ing language.

Related work The concept of auto comple-
tion is not new, in 1990 J. Darragh et al.
have developed The Reactive Keyboard [5] pre-
dicting what the user is going to type next.
There are various approaches that work on dif-
ferent auto completion strategies [3] depending
on whether we do exact and approximate auto
complete, complete to an word, a substring of
a phrase. Bast and Weber [I] propose an in-
dexing method for word completion based on
a document corpus. There are lot of studies
on extending auto-completion to tolerate errors
[3, 16, 10] using edit distance constraints, and
different data structures (e.g g-gram and trie
based completion). Since the list of sugges-
tions can be very large only the the top-k most
highly ranked suggestions are reported [9, [13]
using a ranked trie in which a score is stored in
leaves. Phrase prediction or sentence comple-
tion is more complicated than simple word com-
pletion, the completion is based on a given cor-
pus [I4, 8]. On client/server side Google present
on-line searches suggests query auto comple-
tion strings (terms and/or phrases), based on
database access system [15] [7].

II. PRELIMINARIES

A trie or a prefix tree is an ordered data struc-
ture used to index all dictionary words in order
to search and get a response in time linear in the
length the query word m. The edges are labeled
by string characters; nodes represent a common
prefix of a set of strings; all the outgoing transi-
tions from one node have the same prefix; each
word can be found by traversing the trie from
the root to the leaf by following the characters
on the edges.

The trie can be compacted, and thus called
a compact trie (also sometimes a PATRICIA
tree) by merging any node that is an only child
with its parent and concatenating the labels of
the transitions which become multi-characters
transitions. An important detail is that then
each transitions is in fact labeled with a factor
of one of the words in the dictionary. Thus, to
reduce the memory required but still remain effi-
cient, we code a transition by its first character,
a pointer into the dictionary to the beginning of
an occurrence of the corresponding factor, and
the length of the transition. This implies that in
this approach we keep both the dictionary and
the trie index in main memory.

To efficiently build our compact trie, we also
use a longest common prefix array (LCP array)
[11] which is a table that stores the lengths of
the longest common prefixes between each pair
of consecutive words of the dictionary.

Most of the efficient approximate prefix
searching algorithms first build a type of index
on the dictionary and then use this index to
perform each query efficiently. We build an
index also, that can be compared to a ranked
compact trie of all dictionary words. However,
to keep this structure as small as possible, uft8
characters and integers (pointers are also coded
as integers) are byte-coded [0].

Trie construction algorithm main lines: 1.
order the dictionary in lexicographic order; 2.
build the LCP array of all dictionary words; 3.
build the compacted Trie based on LCP array to
speed up the construction; 4. add score to the
compacted trie : each word is associated with
a static score, in the compacted Trie construc-
tion when we reach the leaf we store the word
score. After the insertion of all words in the
trie, to support efficient top-k completion, for
each intermediate node we recursively keep the
maximum score among its children.

III. SEARCH METHOD

We first begin by explaining the algorithm to
search a result and propose a suggestion list. In
our method the trie is used to answer queries
in an approximate way, using a ranked traversal

15* International Symposium on Web AlGorithms e June 2015

of some promising nodes of the trie. Let w be a
query word where |w| = m, and k is the number
of requested completions.

Find valid locus Given a word w, we name
locus the position in the compacted trie on the
node or in the middle of the edge that represents
the position such that we can’t go forward in the
trie in the exact search for w. Because either we
get to depth |w]| or we get an error before we find
the whole word w.

We name locus node the node that represents
a locus. If the locus ends in a node, this node
is the locus node; otherwise, the locus ends in
the middle of a edge and we consider the node
at the end of the edge as the locus node.

All_valid_nodes algorithm:
Input: query prefix w
Output: a list of valid nodes

a. Find the locus node nd of w.

b. If the locus node nd is at depth at least |w]|,
we find an exact solution, add this node to
the list of valid node.

c. For each node on the lead path to the locus
node found at (a):

e Take the node as a locus node

e Do an edit distance operation on all
outgoing transitions (except for the one
that is on the lead path to the locus
node founded at (a))

e Continue an exact search of the remain-
ing suffix of the query in the subtree of
this new locus node.

e If an approximate match of w is found
we add the locus node of this solution
as a valid node to the list of solution.

Get list of suggestion results Algo-
rithm to compute all top-k suggestion lists once
the set of valid nodes locus have been computed.

List_of_suggestions algorithm
Input: list of valid nodes
Output: list of top-k completion.

a. There is an exact solution: we take all out-
going transition nodes with their score (of an
exact valid node) and add them to the prior-
ity queue, iteratively, we get the node with
the largest score which is on the top of the
priority queue. If this node represents a leaf
add the word corresponding into the list of
completions. Otherwise, insert its children
in the priority queue. Do this operation until
we will have k words in the list of suggestion
or the priority queue is empty.

b. If the priority queue is empty before we
have k words in the list of suggestions or
we haven’t an exact solution: we add all the
remaining valid nodes that represent an ap-
proximate solution with their score into the
priority queue, and we do the same thing
until we complete the k words into the list
of suggestions or until the priority queue is
empty again.

Auto completion and user typing. In general,
the user types his query character after char-
acter and can modify the string using any of
combination of keystrokes; the user can append
a character, insert or delete a character either
at the end or anywhere in the string. Thus, not
to recompute all locus nodes from scratch each
time the user types a new key, we remember the
sets of locus positions after each new key and try
to save some computation by starting the search
from them when possible.

I. On the first few key stroke of the
query: we perform All_valid_nodes and
List_of_suggestions algorithms.

II. When characters are appended at the
end: At each new keystroke we don’t
begin the search from the root of the
trie, instead, the locus position in the
last exact search will be considered as
the new root and we continue to search
from this position and we do exactly
the same step in All_valid_nodes and
List_of_suggestions.

ITI. Modification (deletion, insert in the mid-
dle...etc.):

15* International Symposium on Web AlGorithms e June 2015

We save all the nodes on the lead way in a
table (along with the length of the longest
path in the trie); we store each node in
a bucket that corresponds to the depth
of the character in this position. If there
is a common prefix between the modified
query prefix and the previous one, we find
the node corresponding to the same prefix
from the table stored before, we go directly
to the bucket in position (depth of com-
mon prefix), this node will be considered
as a root and we continue the search and
do same step of algorithm 2 and 3. In gen-
eral, if there is a common prefix between
the two query words, start the search from
the node in this level (depth of common
prefix).

IV. REDUCE NUMBER OF OUTGOING
BRANCH TESTED

In order to reduce the number of outgoing
branches, we experimented on the server side
version with using a hash based index to gen-
erate candidate characters to be tested at each
branch. We store substitution lists as defined
in [, 2], but only on prefixes of bounded length.
For every length we store a dictionary that
stores candidate characters for every positions.
A substitution dictionary for length d stores lists
of characters ¢ associated with substitution pat-
terns p?q, such that pcq is a string of length d
which is prefix of some string in the dictionary.
The dictionary is approximate in the sense that,
given a substitution pattern p?q, it could return
a superset of the set of characters ¢ that, when
substituted to the 7, generate a prefix of a string
in the dictionary. In our case, we will have a
parameter D (for example D = 6), such that
we will store substitution lists for all prefixes
of length d < D. We implemented two strate-
gies. Given a query string p[l..m] with m < D,
in the first strategy, we generate all candidate
prefixes by querying the substitution list dictio-
nary m times for patterns p[l..i]?[i + 1..m], for
i € [1..m]. In the second strategy, we query the
candidate dictionary while traversing the trie
top-down. More precisely supposing for a tra-
versed node at depth d, we query the substitu-

tion list dictionary for the substitution pattern
p[l..d—1]?P[d+1..m] to get a list of characters.
We then do the intersection of this list with the
list of characters that label the children of the
node and only continue traversing the nodes la-
beled by the characters in the intersection. We
have tested both strategies and the second one
seems to give much better results. The space is
only increased by very small amount.

V. CLIENT/SERVER STRATEGY

There are two extreme strategies for auto-
completion: either the program runs on the
server (for instance, apache + daemon) and
the client only sends queries and manages re-
sults; or the program runs on the client (using
JavaScript), and the client only sends the final
choice. In between these two extremes, many
scenarios might be considered, depending on the
following important parameters: (a) Dictionary
size; (b) Server load; (c) Connection speed; (d)
Data volume; (e) Number of concurrent connec-
tions on the server; (f) Computing power of the
client (the power of server is supposed to be >
more than this power, but shared); (g) Static vs
dynamic rank; (e) Local vs Global dynamically
ranked dictionary; (f) Update delay.

Our libraries available in https://github.
com/Appacolib/api.appacolib enable us to
execute our algorithms either on the server or
on the client side, depending on the best sce-
nario one is searching for. Our core libraries
are written in C/C++ on the server side and in
JavaScript on the client side. We explain below
its two main uses.

On server side, typically if we have a
very big dictionary (more than 1M entries),
we can use the library written in C/C++
with a FASTCGI module to provide a list
of suggestions in JSON format, and query
and send the results back through AJAX
calls and then display the list using our li-
brary written in JavaScript (usually below
an auto complete input). For a demon-
stration, see http://appacolib.xyz/result_
from_server_CGI.html.

https://github.com/AppacoLib/api.appacoLib
https://github.com/AppacoLib/api.appacoLib
http://appacolib.xyz/result_from_server_CGI.html
http://appacolib.xyz/result_from_server_CGI.html

15* International Symposium on Web AlGorithms e June 2015

On client side, we have many strategies de-
pending on the needed scenario, for instance:
1) all approximate auto-complete might be per-
formed in the local browser on the client side. If
the dictionary is not that huge (for instance less
than 1M entries), we can do all operations in
local: the construction of the index, the search
of the query prefix, and the display of the list
of suggestions. In this case we must provide a
list of words to construct the index, the source
of dictionary can be local or on the server and
can be in different format (file, string, array).
2) display the result only in the client side: use
an Ajax call to get a list from the server side. 3)
download the trie already built from the server
and perform the queries locally.

When displaying top-k results, also we pro-
vide an option to get other results if they are
still valid nodes in the priority queue, and dis-
play them group by group. For a demonstration,

see http://appacolib.xyz, button.

VI. TEST AND EXPERIMENT

Test have been done on two files, an English dic-
tionary (213557 words, 2.4 Megabytes), and an
extract or Wikipedia article tiles (1200000 ti-
tles, 11.5 Megabytes). We considered the two
extreme scenarios cited above and performed
some time tests on trie building and requests
and top-k answers (setting k = 10) for query
length varying from 2 to 6. The query strings
were obtained by randomly choosing among pre-
fixes of strings from the dictionary and intro-
ducing random errors at random positions. All
the times were obtained by averaging over 1000
distinct query strings.

Server side, C/C++ Tests have been per-
formed on an Intel core-2 duo e8400, windows 7,
3.0 GHz, 2GB RAM, GNU GCC Compiler ver-
sion 4.4.1. The space occupied by the index is
about 5 Megabytes for the English dataset and
29 Megabytes for the Wikipedia dataset.

For exact searches, it is interesting to note
that the answer time for short queries (len = 2)
are longer than long queries (len = 6), mainly
because there are much more results under a

Query | Exact 1l-error | Exact 1-error
length | (En) (En) (Wi) (Wi)
2 0.02 0.11 0.02 0.34
3 0.017 0.16 0.017 0.44
4 0.013 0.19 0.014 0.53
5 0.010 0.21 0.012 0.58
6 0.009 0.25 0.01 0.61

Table 1: Query + top-k times (in milliseconds) on
English dictionary (En - 213557 words)
and on WikiTitles (Wi - 1200000 titles).
Trie building for En is about 177 ms and
980 ms on Wi.

fixed threshold when the query is short. How-
ever, for 1-error searches, the trie traversal time
is much higher and the time difference in re-
porting results still exist but becomes negligible
compared to the whole response time.

Client side, JavaScript Tests have been
performed on a pc Netbook (now less power-
ful than a SmartPhone), with a processor Intel
Atom CPU N455 1,67 Ghz, 2Go RAM and 32
bits window 7 starter.

Query | Exact l-error | Exact 1l-error
length | (En) (En) (Wi) (Wi)
2 0.006 0.47 0.0123 1.88
3 0.009 0.59 0.0242 2.41
4 0.0114 0.65 0.0186 2.42
5 0.0125 0.62 0.0206 2.28
6 0.0143 0.58 0.0233 2.08

Table 2: Chrome Browser. Query + top-k times
(in milliseconds) on En and Wi. Trie
building for En is about 2.7 seconds and
18 seconds on Wi.

The best performance was obtained with
Opera 26, followed by Google Chrome (slightly
behind), then Firefox 29 and Finally Microsoft
Internet Explorer. For lack of space, we pre-
sented the results only two browses: Chrome,
which is a popular browser and was only slightly
slower than the fastest one and Internet Ex-
plorer which was the slowest.

Substitution List, Server side We experi-
mented with the use of substitution list dictio-

http://appacolib.xyz

15* International Symposium on Web AlGorithms e June 2015

Query | Exact 1l-error | Exact l-error
length | (En) (En) (Wi) (Wi)

2 0.0471 1.64 0.0868 7.07

3 0.0492 1.93 0.0883 8.72

4 0.0608 2.37 0.1063 10.56
5 0.0896 3.29 0.1172 11.07
6 0.1013 3.59 0.1308 10.59

Table 3: Internet Fxplorer browser. Query + top-
k times (in milliseconds) on En and Wi.
Trie building for En is about 30 s. and
150 s. on Wi.

nary. We experimented only with the second
strategy since it gave better results. Interest-
ingly, one can see that, when using the sub-
stitution dictionary, the search time decreases
when we increase the query length. This is due
to the fact that the size of the substitution lists
are shorter for long prefixes than short ones (in-
tuitively a longer substitution pattern p?q will
match less prefixes than a shorter one).

Query | No SL. with SL | No S with SL
length | (En) (En) (Wi) (Wi)

2 0.11 0.11 0.34 0.37

3 0.16 0.13 0.44 0.4

4 0.19 0.11 0.53 0.32

5 0.21 0.09 0.58 0.2

6 0.25 0.06 0.61 0.13

Table 4: Query time with and without the use of
substitution lists for prefizes of lengths up
to 6. The substitutions lists increased the
indexes size by 0.7 Megabytes for English
and 5 Megabytes for Wiki.

REFERENCES

[1] H. Bast and I. Weber. Type less, find more.
In Proceedings of the 29th annual international
ACM SIGIR conference on Research and devel-
opment in information retrieval - SIGIR 06,
page 364, New York, New York, USA, Aug.
2006. ACM Press.

[2] D. Belazzougui. Faster and space-optimal edit
distance ”1” dictionary. In Combinatorial Pat-
tern Matching, 20th Annual Symposium, CPM
2009, Lille, France, June 22-24, 2009, Proceed-
ings, pages 154-167, 2009.

[3] S. Chaudhuri and R. Kaushik. Extending au-
tocompletion to tolerate errors. In Proceed-
ings of the 2009 ACM SIGMOD International
Conference on Management of Data, SIGMOD
’09, pages 707-718, New York, NY, USA, 2009.
ACM.

[4] 1. Chegrane and D. Belazzougui. Simple, com-
pact and robust approximate string dictionary.
J. Discrete Algorithms, 28:49-60, 2014.

[5] J. Darragh, I. Witten, and M. James. The Re-
active Keyboard: a predictive typing aid. Com-
puter, 23(11):41-49, Nov. 1990.

[6] P.Elias. Universal codeword sets and represen-
tations of the integers. IEEE Transactions on
Information Theory, 21(2):194-203, Mar. 1975.

[7] K. A. Gibbs. Method and system for URL au-
tocompletion using ranked results, 2009.

[8] K. Grabski and T. Scheffer. Sentence comple-
tion. In Proceedings of the 27th annual interna-
tional conference on Research and development
in information retrieval - SIGIR ’04, page 433,
New York, New York, USA, July 2004. ACM
Press.

[9] B.-J. P. Hsu and G. Ottaviano. Space-efficient
data structures for top-k completion. In Pro-
ceedings of the 22Nd International Conference
on World Wide Web, WWW ’13, pages 583—
594, Republic and Canton of Geneva, Switzer-
land, 2013. International World Wide Web
Conferences Steering Committee.

[10] S. Ji, G. Li, C. Li, and J. Feng. Efficient in-
teractive fuzzy keyword search. In Proceedings
of the 18th International Conference on World
Wide Web, WWW ’09, pages 371-380, New
York, NY, USA, 2009. ACM.

[11] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and
K. Park. Linear-Time Longest-Common-Prefix
Computation in Suffix Arrays and Its Appli-
cations. In Proceedings of the 12th Annual
Symposium on Combinatorial Pattern Match-
ing, CPM ’01, pages 181-192. Springer-Verlag,
2001.

[12] V. I. Levenshtein. Binary Codes Capable of

Correcting Deletions, Insertions, and Rever-
sals. Soviet Physics Doklady, 10:707-710, 1966.

[13] D. Matani. An O (k log n) algorithm for prefix
based ranked autocomplete. pages 1-14, 2011.

[14] A. Nandi and H. V. Jagadish. Effective phrase
prediction. In Proceedings of the 83rd Interna-
tional Conference on Very Large Data Bases,

15* International Symposium on Web AlGorithms e June 2015

(15]

(16]

VLDB ’07, pages 219-230. VLDB Endowment,
2007.

R. E. Ortega, J. W. Avery, and R. Frederick.
Search query autocompletion, 2003.

C. Xiao, J. Qin, W. Wang, Y. Ishikawa,
K. Tsuda, and K. Sadakane. Efficient error-
tolerant query autocompletion. Proc. VLDB
Endow., 6(6):373-384, Apr. 2013.

	Introduction
	Preliminaries
	Search Method
	Reduce number of outgoing branch tested
	Client/server strategy
	Test and experiment

