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Abstract
We investigate Gevrey order and summability properties of formal

power series solutions of some classes of inhomogeneous linear par-
tial differential equations with variable coeffi cients and analytic initial
conditions. In particular, we give necessary and suffi cient conditions
under which these solutions are convergent or are k-summable, for a
convenient k, in a given direction.
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1 Introduction

In recent years, various works have been done towards the summability of
divergent solutions of partial differential equations with constant coeffi cients
(see [1, 3, 5, 6, 8, 13] etc.) or variable coeffi cients (see [4, 9—11, 15, 16] etc.) in
two variables.
In the present article, we are interested in some classes of inhomogeneous

linear partial differential equation with variable coeffi cients and analytic ini-
tial conditions. More precisely, we consider Cauchy problems of the form

(1.1)
{
∂κt u− a(x, t)∂pxu = q̃(x, t)

∂jtu(x, t)|t=0 = ϕj(x) , j = 0, ..., κ− 1

1
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where

• κ and p are two positive integers,

• ϕj(x) ∈ O(Dρ1) is holomorphic for all j = 0, ..., κ−1 in a disc Dρ1 with
center 0 ∈ C and radius ρ1 > 0,

• a(x, t) ∈ O(Dρ1 ×Dρ2) is holomorphic in the two variables x and t in
a polydisc Dρ1 ×Dρ2 centered at (0, 0) ∈ C2 and satisfies a(0, 0) 6= 0,

• q̃(x, t) ∈ O(Dρ1)[[t]]
1 may be smooth or not.

Note that Cauchy problems of type (1.1) play an important role in physics
since many classical problems, such as the heat initial conditions problem,
the wave initial conditions problem, the beams initial conditions problem,
etc. are of this form.
A first study of problem (1.1) has been done by D. A. Lutz, M. Miyake

and R. Schäfke in 1999 in the special case where a ≡ 1 and q̃ ≡ 0 [8, 13]. In
particular, they proved that this problem has a unique formal series solution
ũ(x, t) in O(Dρ1)[[t]] which converges for 1 ≤ p ≤ κ and diverges (in gen-
eral) in the opposite case 1 ≤ κ < p; in this latter case, they more precisely
showed that ũ(x, t) is a s-Gevrey series (see definition 3.1 below for the exact
definition of a s-Gevrey series) with s = p/κ − 1 and they gave necessary
and suffi cient conditions under which ũ(x, t) is k-summable, with k = 1/s, in
a given direction arg(t) = θ. More recently, in a 2009 article [4], W. Balser
and M. Loday-Richaud investigated problem (1.1) in the case (κ, p) = (1, 2)
and a(x, t) = α(x) analytic at x = 0. Again, they proved that this problem
has a unique formal series solution and they gave necessary and suffi cient
conditions under which it is 1-summable.

The aim of this article is to extend the results above to the very gen-
eral problem (1.1), where no generic assumption on a and q̃ is made. For
notational convenience, we rewrite from now problem (1.1) in the form

(1.2)
(
1− ∂−κt (a(x, t)∂px)

)
u = f̃(x, t)

where ∂−1
t u stands for the anti-derivative

∫ t

0

u(x, s)ds of u with respect to t

which vanishes at t = 0 and where f̃(x, t) := ∂−κt q̃(x, t) ∈ O(Dρ1)[[t]] satisfies
∂jt f̃(x, t)|t=0 = ϕj(x) for all j = 0, ..., κ− 1.

1We denote q̃ with a tilde to emphasize the possible divergence of the series q̃.
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The organization of the article is as follows. In section 2, we prove that
problem (1.2) has a unique formal series solution ũ(x, t) ∈ O(Dρ1)[[t]] and
we give a characterization of its coeffi cients. In section 3, we show that
ũ(x, t) and the coeffi cient f̃(x, t) are together convergent when 1 ≤ p ≤ κ
and s-Gevrey with s = p/κ − 1 when 1 ≤ κ < p. In section 4, we restrict
ourselves to this latter case and we investigate the summability of ũ(x, t).
In particular, we give necessary and suffi cient conditions under which ũ(x, t)
is k-summable with k = 1/s in a given direction arg(t) = θ (theorem 4.3),
conditions which coincide with those given in [4, 8, 13]. We provide thus a
new proof of the results of [4,8,13].

From now on, we denote by Dκ,p the operator Dκ,p := 1− ∂−κt (a(x, t)∂px)
and, for any series ũ(x, t) ∈ O(Dρ1)[[t]], we denote

ũ(x, t) =
∑
j≥0

uj,∗(x)
tj

j!
=
∑
n≥0

ũ∗,n(t)
xn

n!
=
∑
j,n≥0

uj,n
tj

j!

xn

n!
.

2 Existence and uniqueness of formal series
solutions

Let us first observe that Dκ,p is a linear operator acting inside O(Dρ1)[[t]].
Indeed, (O(Dρ1)[[t]], ∂x, ∂t) is a C-differential algebra and a(x, t) ∈ O(Dρ1 ×
Dρ2) ⊂ O(Dρ1)[[t]]. More precisely, we have the following.

Theorem 2.1 Let κ, p ≥ 1. The map Dκ,p : O(Dρ1)[[t]] −→ O(Dρ1)[[t]] is a
linear isomorphism.

Proof. Let f̃(x, t) ∈ O(Dρ1)[[t]]. A series ũ(x, t) =
∑
j≥0

uj,∗(x)
tj

j!
is solution

of Dκ,pũ = f̃ is and only if its coeffi cients uj,∗(x) satisfy, for all j ≥ 0, the
identities

(2.1) uj,∗(x) = fj,∗(x) +

j−κ∑
m=0

(
j − κ
m

)
am,∗(x)∂pxuj−κ−m,∗(x)

with the classical convention that the sum is 0 if j < κ. Thereby, equa-
tion Dκ,pũ = f̃ admits a unique solution ũ(x, t) ∈ O(Dρ1)[[t]]; hence, the
bijectivity of Dκ,p. The remark just above achieves the proof.

As a direct consequence of theorem 2.1, we deduce the following result on
the existence and the uniqueness of formal series solutions of problems (1.2).
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Corollary 2.2 Problem (1.2) admits, for any κ, p ≥ 1, a unique formal
series solution ũ(x, t) ∈ O(Dρ1)[[t]]. Moreover, its coeffi cients uj,∗(x) are
recursively determined for all j ≥ 0 by identities (2.1).

Recall that the solution ũ(x, t) may be divergent or not (see for example
the case a ≡ 1 and q̃ ≡ 0 treated in [8, 13]). In section 3 below, we shall
investigate in great details Gevrey properties of ũ(x, t). In particular, we
shall show that ũ(x, t) and the inhomogeneity f̃(x, t) have the same Gevrey
order.

3 Gevrey properties

Before starting the study of Gevrey properties of formal solutions ũ(x, t), let
us recall the definition and some results about the s-Gevrey formal series.

3.1 s-Gevrey formal series

In this article, we consider t as the variable and x as a parameter. The
classical notion of s-Gevrey formal series is then extended to x-families as
follows.

Definition 3.1 Let s ≥ 0. A series ũ(x, t) =
∑
j≥0

uj,∗(x)
tj

j!
∈ O(Dρ1)[[t]] is

said to be Gevrey of order s (in short, s-Gevrey) if there exist 0 < r1 ≤ ρ1,
C > 0 and K > 0 such that inequalities

|uj,∗(x)| ≤ CKjΓ(1 + (s+ 1)j)

hold for all j ≥ 0 and x ∈ Dr1 .

Observe that definition 3.1 means that ũ(x, t) is s-Gevrey in t uniformly
in x on a neighborhood of x = 0.
We denote by O(Dρ1)[[t]]s the set of all the formal series in O(Dρ1)[[t]]

which are s-Gevrey. Note that the set O(Dρ1)[[t]]0 coincides with the set
C{x, t} of germs of analytic functions at the origin (0, 0) ∈ C2.

Proposition 3.2 Let s ≥ 0. Then, (O(Dρ1)[[t]]s, ∂x, ∂t) is a C-differential
algebra stable under anti-derivations ∂−1

x and ∂−1
t .

Proof. Since proposition 3.2 is true for O(Dρ1)[[t]] instead of O(Dρ1)[[t]]s, it
is suffi cient to prove that O(Dρ1)[[t]]s is stable under multiplication, deriva-
tions and anti-derivations.
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/ Multiplication. Let ũ(x, t), ṽ(x, t) ∈ O(Dρ1)[[t]]s. We can always assume
that ũ(x, t) and ṽ(x, t) satisfy conditions of definition 3.1 with the same con-
stants r1, C and K. Denote by w̃(x, t) their product. Since the coeffi cients
wj,∗(x) of w̃(x, t) are given by

wj,∗(x) =

j∑
k=0

(
j
k

)
uk,∗(x)vj−k,∗(x)

we have, for all j ≥ 0,

sup
x∈Dr1

|wj,∗(x)| ≤ C2Kj

j∑
k=0

(
j
k

)
Γ(1 + (s+ 1)k)Γ(1 + (s+ 1)(j − k))︸ ︷︷ ︸

aj,k

.

where, according to relations between the Gamma and Beta functions,

aj,k = Γ(2 + (s+ 1)j)

∫ 1

0

t(s+1)k(1− t)(s+1)(j−k)dt ≤ Γ(2 + (s+ 1)j).

Thereby,

sup
x∈Dr1

|wj,∗(x)| ≤ C2KjΓ(2 + (s+ 1)j)

j∑
k=0

(
j
k

)
= C2(2K)j(1 + (s+ 1)j)Γ(1 + (s+ 1)j)

and, consequently, there exist C ′, K ′ > 0 such that

sup
x∈Dr1

|wj,∗(x)| ≤ C ′K ′jΓ(1 + (s+ 1)j) for all j ≥ 0.

/ Derivation ∂x. Let ũ(x, t) ∈ O(Dρ1)[[t]]s and w̃(x, t) = ∂xũ(x, t). For a
given r′1 < r1, Cauchy integral formula gives us

wj,∗(x) = ∂xuj,∗(x) =
1

2iπ

∫
|x′−x|=r1−r′1

uj,∗(x
′)

(x′ − x)2
dx′

for all j ≥ 0 and x ∈ Dr′1
. Hence, the inequalities

sup
x∈Dr′1

|wj,∗(x)| ≤ C ′KjΓ(1 + (s+ 1)j) with C ′ =
C

r1 − r′1
for all j ≥ 0.
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/ Derivation ∂t. Let ũ(x, t) ∈ O(Dρ1)[[t]]s and w̃(x, t) = ∂tũ(x, t). From
relations wj,∗(x) = uj+1,∗(x), we deduce

sup
x∈Dr1

|wj,∗(x)| ≤ CKj+1Γ(1 + (s+ 1)(j + 1)) for all j ≥ 0.

Let us now choose an integer S ≥ s+ 1. Inequalities

2 ≤ 1 + (s+ 1)(j + 1) ≤ 1 + (s+ 1)j + S

and the increase of the Gamma function on [2,+∞[ then imply

Γ(1 + (s+ 1)(j+ 1)) ≤ Γ(1 + (s+ 1)j+S) = Γ(1 + (s+ 1)j)
S∏
`=1

((s+ 1)j+ `).

Hence, there exist C ′, K ′ > 0 such that

sup
x∈Dr1

|wj,∗(x)| ≤ C ′K ′jΓ(1 + (s+ 1)j) for all j ≥ 0.

/ Anti-derivation ∂−1
x . Let ũ(x, t) ∈ O(Dρ1)[[t]]s and w̃(x, t) = ∂−1

x ũ(x, t).
Since wj,∗(x) = ∂−1

x uj,∗(x), we clearly have

sup
x∈Dr1

|wj,∗(x)| ≤ C ′KjΓ(1 + (s+ 1)j) with C ′ = Cr1 for all j ≥ 0.

/ Anti-derivation ∂−1
t . Let ũ(x, t) ∈ O(Dρ1)[[t]]s and w̃(x, t) = ∂−1

t ũ(x, t).
We have w0,∗ ≡ 0 and wj,∗(x) = uj−1,∗(x) for all j ≥ 1; hence, the inequalities

sup
x∈Dr1

|wj,∗(x)| ≤ CKj−1Γ(1 + (s+ 1)(j − 1)) for all j ≥ 1.

From the increase of the Gamma function on [2,+∞[, we get

Γ(1 + (s+ 1)(j − 1)) ≤ Γ(1 + (s+ 1)j)

for all j ≥ 2 and

Γ(1 + (s+ 1)(j − 1)) = Γ(1) = Γ(2) ≤ Γ(1 + (s+ 1)j)

for j = 1. Consequently,

sup
x∈Dr1

|wj,∗(x)| ≤ C ′KjΓ(1 + (s+ 1)j) with C ′ =
C

K
for all j ≥ 0.

The proof is complete.

Note that the stability under ∂x is guaranteed by the condition “there
exists r1 ≤ ρ1 ...” in definition 3.1. Note also that proposition 3.2 implies
that the linear operators Dκ,p act inside O(Dρ1)[[t]]s for any κ, p ≥ 1 and
s ≥ 0. Theorem 3.3 below shall precise this result.
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3.2 Gevrey order of formal series solutions

We are now able to state the main result of this section.

Theorem 3.3 Let κ, p ≥ 1. Let s ≥ 0 be defined by

s =

{
0 if 1 ≤ p ≤ κ
p/κ− 1 if 1 ≤ κ < p

.

Then, the map Dκ,p : O(Dρ1)[[t]]s −→ O(Dρ1)[[t]]s is a linear isomorphism.

Following corollary 3.4 is straightforward from theorem 3.3 and gives
us some properties about the Gevrey orders of formal series solutions of
problems (1.2).

Corollary 3.4 Let κ, p and s as in theorem 3.3.
Let ũ(x, t) ∈ O(Dρ1)[[t]] be the unique formal series solution of problem (1.2).
Then, ũ(x, t) is a s-Gevrey series if and only if f̃(x, t) is a s-Gevrey series.

In particular, in the case 1 ≤ p ≤ κ, this provides us a necessary and
suffi cient condition under which the formal solution ũ(x, t) is convergent.

Corollary 3.5 Let 1 ≤ p ≤ κ and ũ(x, t) ∈ O(Dρ1)[[t]] be the unique formal
series solution of problem (1.2). Then, ũ(x, t) is convergent if and only if
f̃(x, t) is convergent.

The proof of theorem 3.3 is developed in next section 3.3. Before starting
it, let us first recall the definition and some main properties of Nagumo norms
on which we are going to be based. For more details, we refer for instance to
[14] or [7].

Definition 3.6 (Nagumo norms) Let f ∈ O(Dρ), q ≥ 0 and 0 < r ≤ ρ.
Let dr(x) = r− |x| denote the Euclidian distance of x ∈ Dr to the boundary
of the disc Dr. Then, the Nagumo norm ||f ||q,r of f is defined by

‖f‖q,r := sup
x∈Dr
|f(x)dr(x)q| .

Proposition 3.7 (Properties of Nagumo norms) Let f, g ∈ O(Dρ). Let
q, q′ ≥ 0 and 0 < r ≤ ρ. One has the following properties:

1. ‖·‖q,r is a norm on O(Dρ).

2. For all x ∈ Dr, |f(x)| ≤ ‖f‖q,r dr(x)−q.
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3. ‖f‖0,r = sup
x∈Dr
|f(x)| is the usual sup-norm on Dr.

4. ‖fg‖q+q′,r ≤ ‖f‖q,r ‖g‖q′,r.

5. ‖∂xf‖q+1,r ≤ e(q + 1) ‖f‖q,r.

Note that the same index r occurs on both sides of inequalities 4 and
5. In particular, we get estimates for the product fg in terms of f and g
and for the derivative ∂xf in terms of f without having to shrink the disc Dr.

Let us now turn to the proof of theorem 3.3.

3.3 Proof of theorem 3.3

Calculations below are based on similar arguments to those detailed in [4]
in the case (κ, p) = (1, 2). Nevertheless, they are much more complicated
because s may not be an integer.

Let us begin by observing that proposition 3.2 impliesDκ,p(O(Dρ1)[[t]]s) ⊂
O(Dρ1)[[t]]s and that theorem 2.1 implies the linearity and the injectivity of
Dκ,p. Thereby, we are left to prove that Dκ,p is surjective. To do that, let

us fix f̃(x, t) =
∑
j≥0

fj,∗(x)
tj

j!
∈ O(Dρ1)[[t]]s and let ũ(x, t) =

∑
j≥0

uj,∗(x)
tj

j!
∈

O(Dρ1)[[t]] denote the unique formal series solution of Dk,pũ = f̃(x, t) (see
theorem 2.1). The coeffi cients fj,∗(x) satisfy conditions

• fj,∗(x) ∈ O(Dρ1) for all j ≥ 0,

• there exist 0 < r1 ≤ ρ1, C > 0 and K > 0 such that |fj,∗(x)| ≤
CKjΓ(1 + (s+ 1)j) for all j ≥ 0 and x ∈ Dr1

and we must prove that the coeffi cients uj,∗(x) satisfy similar conditions.

/ It results from identities (2.1) that relations

uj,∗(x)

Γ(1 + (s+ 1)j)
=

fj,∗(x)

Γ(1 + (s+ 1)j)
+

j−κ∑
m=0

(
j − κ
m

)
am,∗(x)

∂pxuj−κ−m,∗(x)

Γ(1 + (s+ 1)j)

hold for all j ≥ 0 (as before, we use the classical convention that the sum
is 0 when j < κ). Applying then the Nagumo norms of indices (pj, r1), we
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deduce from property 4 of proposition 3.7 that

‖uj,∗(x)‖pj,r1
Γ(1 + (s+ 1)j)

≤
‖fj,∗(x)‖pj,r1

Γ(1 + (s+ 1)j)
+

j−κ∑
m=0

(
j − κ
m

)
‖am,∗(x)‖p(κ+m−1),r1

‖∂pxuj−κ−m,∗(x)‖p(j−κ−m+1),r1

Γ(1 + (s+ 1)j)

and from property 5 of proposition 3.7 that

‖uj,∗(x)‖pj,r1
Γ(1 + (s+ 1)j)

≤
‖fj,∗(x)‖pj,r1

Γ(1 + (s+ 1)j)
+

j−κ∑
m=0

epAκ,p,m
‖am,∗(x)‖p(κ+m−1),r1

m!
‖uj−κ−m,∗(x)‖p(j−κ−m),r1

where

Aκ,p,m =

(
m−1∏
`=0

(j − κ− `)
)(

p−1∏
`′=0

(p(j − κ−m+ 1)− `′)
)

Γ(1 + (s+ 1)j)

with the convention that the first product is 1 when m = 0. The following
two lemmas allow to bound Aκ,p,m.

Lemma 3.8 Let j ≥ κ and m ∈ {0, ..., j − κ}. Then,

m−1∏
`=0

(j − κ− `)

Γ(1 + (s+ 1)j)
≤ 1

Γ(1 + (s+ 1)(j −m))
.

Proof. Since the inequality is clear when m = 0, we assume below m ≥ 1
(hence, j > κ). From relation

Γ(1 + (s+ 1)j) = Γ(1 + (s+ 1)j −m)

m−1∏
`=0

((s+ 1)j − `),

we first deduce that

m−1∏
`=0

(j − κ− `)

Γ(1 + (s+ 1)j)
=

m−1∏
`=0

j − κ− `
(s+ 1)j − `

Γ(1 + (s+ 1)j −m)
≤ 1

Γ(1 + (s+ 1)j −m)
.
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Lemma 3.8 follows then from inequalities

1 + (s+ 1)j −m ≥ 1 + (s+ 1)(j −m) ≥ 1 + (s+ 1)κ ≥ 2

and from the increase of the Gamma function on [2,+∞[.

Lemma 3.9 Let j ≥ κ and m ∈ {0, ..., j − κ}. Then,
p−1∏
`′=0

(p(j − κ−m+ 1)− `′)

Γ(1 + (s+ 1)(j −m))
≤ κp

Γ(1 + (s+ 1)(j − κ−m))
.

Proof. • When 1 ≤ p ≤ κ (hence, s = 0), lemma 3.9 stems from relations

p−1∏
`′=0

(p(j − κ−m+ 1)− `′) = κp
p−1∏
`′=0

(
p

κ
(j −m+ 1)− p− `′

κ

)

≤ κp
p−1∏
`′=0

(
j −m+ 1− p− `′

κ

)
and

Γ(1 + j −m) = Γ(1 + j − κ−m)
κ−1∏
`′=0

(j −m− `′).

Indeed, we clearly have

p−1∏
`′=0

(p(j − κ−m+ 1)− `′)

Γ(1 + j −m)
≤
κp

p−1∏
`′=0

j −m+ 1− p− `′

κ
j −m− `′

Γ(1 + j − κ−m)

≤ κp

Γ(1 + j − κ−m)
.

• In the opposite case 1 ≤ κ ≤ p (hence, s = p/κ− 1), lemma 3.9 is proved
in a similar way by using relations

p−1∏
`′=0

(p(j − κ−m+ 1)− `′) = κp
p−1∏
`′=0

(
(s+ 1)(j −m+ 1)− p− `′

κ

)
and

Γ(1 + (s+ 1)(j −m)) = Γ(1 + (s+ 1)(j −m)− p)
p−1∏
`′=0

((s+ 1)(j −m)− `′).
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Indeed, we get

p−1∏
`′=0

(p(j − κ−m+ 1)− `′)

Γ(1 + (s+ 1)(j −m))
=

κp
p−1∏
`′=0

(s+ 1)(j −m+ 1)− p− `′

κ
(s+ 1)(j −m)− `′

Γ(1 + (s+ 1)(j −m)− p)

≤ κp

Γ(1 + (s+ 1)(j −m)− p)
and we conclude by observing that Γ(1 + (s + 1)(j −m) − p) = Γ(1 + (s +
1)(j − κ−m)).

Hence, the following inequalities

‖uj,∗(x)‖pj,r1
Γ(1 + (s+ 1)j)

≤ gj +

j−κ∑
m=0

αm
‖uj−κ−m,∗(x)‖p(j−κ−m),r1

Γ(1 + (s+ 1)(j − κ−m))

hold for all j ≥ 0 with

gj =
‖fj,∗(x)‖pj,r1

Γ(1 + (s+ 1)j)
and αm =

(eκ)p ‖am,∗(x)‖p(κ+m−1),r1

m!
.

/ Let us now bound the ‖uj,∗(x)‖pj,r1’s. To do that, we shall use a tech-
nique of majorant series. Let us consider the numerical sequence (vj) defined
for all j ≥ 0 by the recursive relations

vj = gj +

j−κ∑
m=0

αmvj−κ−m

(with the same classical convention as above on the sum). By construction,
we have

0 ≤
‖uj,∗(x)‖pj,r1

Γ(1 + (s+ 1)j)
≤ vj for all j ≥ 0

and the vj’s can be bounded as follows. By assumption, we have

0 ≤ gj ≤
CKjΓ(1 + (s+ 1)j)

Γ(1 + (s+ 1)j)
rpj1 = C(Krp1)j

for all j ≥ 0 and the series g(X) =
∑
j≥0

gjX
j is convergent. On the other

hand, since a(x, t) ∈ O(Dρ1){t}, there exist C ′, K ′ > 0 such that |am,∗(x)| ≤
C ′K ′mm! for all m ≥ 0 and x ∈ Dr1 . Then,

0 ≤ αm ≤
(eκ)pC ′K ′mm!

m!
r
p(κ+m−1)
1 =

(eκrκ1 )pC ′

rp1
(K ′rp1)m
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for all m ≥ 0 and, consequently, the series A(X) =
∑
j≥0

αjX
j is convergent

too. From this and from the recurrence relations defining the vj’s, we then
deduce that the series v(X) =

∑
j≥0

vjX
j is also convergent. Indeed, it satisfies

identity (1−XκA(X))v(X) = g(X). Therefore, there exist C ′′, K ′′ > 0 such
that vj ≤ C ′′K ′′j for all j ≥ 0.
This leads then us to the following inequalities:

‖uj,∗(x)‖pj,r1 ≤ C ′′K ′′jΓ(1 + (s+ 1)j) for all j ≥ 0

and we are left to prove similar estimates on the sup-norm of the uj,∗(x)’s.
To this end, we proceed by shrinking the domain Dr1 . Let 0 < r′1 < r1.
Then, for all j ≥ 0 and x ∈ Dr′1

, we have

|uj,∗(x)| =
∣∣∣∣uj,∗(x)dr1(x)pj

1

dr1(x)pj

∣∣∣∣ ≤ 1

(r1 − r′1)pj
∣∣uj,∗(x)dr1(x)pj

∣∣
and, thereby,

sup
x∈Dr′1

|uj,∗(x)| ≤
‖uj,∗(x)‖pj,r1
(r1 − r′1)pj

≤ C ′′
(

K ′′

(r1 − r′1)p

)j
Γ(1 + (s+ 1)j).

This achieves the proof of theorem 3.3.

4 Summability

As we saw in corollary 3.4, the unique formal series solution ũ(x, t) and the
inhomogeneity f̃(x, t) of problem (1.2) are together s-Gevrey. In particular,
this provides us in the case 1 ≤ p ≤ κ a necessary and suffi cient condition
under which ũ(x, t) is convergent (see corollary 3.5). In this section, we
consider the opposite case 1 ≤ κ < p and we are interested in the summability
of ũ(x, t). More precisely, our aim is to display necessary and suffi cient
conditions under which ũ(x, t) is k-summable for k = 1/s in a given direction
arg(t) = θ.
Before starting the calculations, let us recall the definition and some prop-

erties of the k-summability.

4.1 k-summable formal series

As in section 3, we consider t as the variable and x as a parameter. Doing
that, ũ(x, t) can be seen as a formal power series in t with coeffi cients in the
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Banach space O(Dρ1). To define the k-summability of such formal series, one
then extends the classical notion of k-summability to families parametrized
by x in requiring similar conditions, the estimates being however uniform
with respect to x. For a general treatment of this theory, we refer for in-
stance to [2]. Here below, we choose, among the many equivalent definitions
of k-summability in a given direction arg(t) = θ at t = 0, a generaliza-
tion of Ramis’definition which states that a formal series g̃ is k-summable
in direction θ if there exists a holomorphic function g which is 1/k-Gevrey
asymptotic to g̃ in an open sector Σθ,>π/k bisected by θ and with opening
larger than π/k [17, Def. 3.1]. To express the 1/k-Gevrey asymptotic, there
also exist various equivalent ways. We choose here the one which sets con-
ditions on the successive derivatives of g (see [12, p. 171] or [17, Thm. 2.4]
for instance).

Definition 4.1 (k-summability) Let k > 0 and s = 1/k. A formal series
ũ(x, t) ∈ O(Dρ1)[[t]] is said to be k-summable in the direction arg(t) = θ if
there exist a sector Σθ,>πs, a radius 0 < r1 ≤ ρ1 and a function u(x, t) called
k-sum of ũ(x, t) in direction θ such that

1. u is defined and holomorphic on Dr1 × Σθ,>πs;

2. For any x ∈ Dr1 , the map t 7→ u(x, t) has ũ(x, t) =
∑
j≥0

uj,∗(x)
tj

j!
as

Taylor series at 0 on Σθ,>πs;

3. For any proper2 subsector Σ b Σθ,>πs, there exist constants C > 0 and
K > 0 such that, for all ` ≥ 0, all t ∈ Σ and all x ∈ Dr1 ,∣∣∂`tu(x, t)

∣∣ ≤ CK`Γ(1 + (s+ 1)`).

We denote by O(Dρ1){t}k;θ the subset of O(Dρ1)[[t]] made of all the k-
summable formal series in the direction arg(t) = θ. Obviously, we have
O(Dρ1){t}k;θ ⊂ O(Dρ1)[[t]]s.

Note that, for any fixed x ∈ Dr1 , the k-summability of ũ(x, t) coincides
with the classical k-summability. Consequently, Watson’s lemma implies the
unicity of its k-sum, if any exists.
Note also that the k-sum of a k-summable formal series ũ(x, t) ∈ O(Dρ1){t}k;θ

may be analytic with respect to x on a disc Dr1 smaller than the common

2A subsector Σ of a sector Σ′ is said to be a proper subsector and one denotes Σ b Σ′

if its closure in C is contained in Σ′ ∪ {0}.
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disc Dρ1 of analyticity of the coeffi cients uj,∗(x) of ũ(x, t).

Obsviously, the set O(Dρ1){t}k;θ is a subspace of O(Dρ1)[[t]]. Proposi-
tion 4.2 below precises its algebraic structure.

Proposition 4.2 Let k > 0 and θ ∈ R/2πZ. Then, (O(Dρ1){t}k;θ, ∂x, ∂t) is
a C-differential algebra stable under anti-derivatives ∂−1

x and ∂−1
t .

Proof. The stability of O(Dρ1){t}k;θ under ∂−1
x , ∂t and ∂

−1
t is straightfor-

ward. As for the stability under ∂x, it is obtained in the same way of the
stability of s-Gevrey formal series by using Cauchy integral formula on a disc
Dr′1

with 0 < r′1 < r1.
We are left to prove that O(Dρ1){t}k;θ is stable under multiplication. Let
ũ(x, t) and ṽ(x, t) be two k-summable formal series in direction θ. We can al-
ways assume that ũ(x, t) and ṽ(x, t) satisfy conditions of definition 4.1 with
the same constants r1, C and K and the same sector Σθ,>πs. Denote by
w̃(x, t) their product. It obvious satisfies conditions 1 and 2 of definition 4.1.
Moreover, given a proper subsector Σ b Σθ,>πs and using Leibniz formula,
we get, for all ` ≥ 0, x ∈ Dr1 and t ∈ Σ,

∣∣∂`t w̃(x, t)
∣∣ ≤ ∑̀

j=0

(
`
j

) ∣∣∂jt ũ(x, t)
∣∣ ∣∣∣∂`−jt ṽ(x, t)

∣∣∣
≤ C2K

∑̀
j=0

(
`
j

)
Γ(1 + (s+ 1)j)Γ(1 + (s+ 1)(`− j)).

Similar calculations to those detailed in the proof of proposition 3.2 (see page
5) lead then us to an inequality of the form∣∣∂`t w̃(x, t)

∣∣ ≤ C ′K ′`Γ(1 + (s+ 1)`)

with convenient constants C ′, K ′ > 0; this proves condition 3 of definition
3.1. Hence the stability of O(Dρ1){t}k;θ under multiplication.

4.2 Main result

The main result of this section is the following.

Theorem 4.3 Let 1 ≤ κ < p, s = p/κ − 1 and k = 1/s. Let arg(t) = θ ∈
R/2πZ be a direction issuing from 0. Then,
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1. The unique formal series solution ũ(x, t) ∈ O(Dρ1)[[t]] of problem (1.2)
is k-summable in the direction θ if and only if the inhomogeneity f̃(x, t)
and the coeffi cients ũ∗,n(t) ∈ C[[t]] for n = 0, ..., p− 1 are k-summable
in the direction θ.

2. Moreover, the k-sum u(x, t), if any exists, satisfies problem (1.2) in
which f̃(x, t) is replaced by its k-sum f(x, t) in direction θ.

Note that theorem 3.4 coincides with the result stated by W. Balser and
M. Loday-Richaud in [4] in the case (κ, p) = (1, 2) and a(x, t) = α(x) inde-
pendant of t.
The proof of theorem 4.3 is the subject of next section 4.3. Before starting

it, let us first show how theorem 4.3 allows to find the result formulated by
M. Miyake in [13].
The formal series ũ∗,n(t) ∈ C[[t]] for n = 0, ..., p− 1 can be computed (at

least theoretically) in terms of f̃(x, t) from the formula

ũ(x, t) =
∑
m≥0

(∂−κt (a(x, t)∂px))
mf̃(x, t).

Let us assume from now that a(x, t) = a ∈ C∗ is a nonzero constant
and that f̃(x, t) = f(x) =

∑
n≥0

f0,n
xn

n!
is independant of t. Note that this

case is equivalent to problem (1.1) with q̃ ≡ 0 and with initial conditions
ũ(x, 0) = f(x) and ∂jt ũ(x, t)|t=0 ≡ 0 for all j = 1, ..., κ− 1.
Since operators a, ∂x and ∂t commute, we get

ũ(x, t) =
∑
m≥0

am∂−κmt ∂pmx f(x)

and thereby

ũ∗,n(t) =
∑
m≥0

(atκ)m

(κm)!
f0,pm+n for all n = 0, ..., p− 1.

Let us now denote by F̃ the function defined by F̃ (x) =
∑
n≥0

f0,n
xn

[κn/p]!
,

where [κn/p] stands for the integer part of κn/p. Then,

F̃ ((atκ)1/p) =

p−1∑
n=0

(atκ)n/pũ∗,n(t)

and the following result may be proved.
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Proposition 4.4 Let θ ∈ R/2πZ. Then, the following three assertions are
equivalent.

1. The ũ∗,n(t)’s are k-summable for all n ∈ {0, ..., p− 1} in direction θ.

2. F̃ (x) is (k+1)-summable in all the directions (κθ+arg(a))/p mod(2π/p).

3. f(x) is analytic near 0 and can be analytically continued to sectors
neighbouring the directions (κθ+arg(a))/p mod(2π/p) with exponential
growth of order k + 1 at infinity.

Observe that assertion 3 with a = 1 (hence, arg(a) = 0) is the necessary
and suffi cient condition stated by M. Miyake in [13] for the k-summability of
ũ(x, t) and proved via direct k-Borel-Laplace transformations. In particular,
our method provides a new proof of this result.
Observe also that proposition 4.4 coincides with the result proved by W.

Balser and M. Loday-Richaud in [4] in the case (κ, p) = (1, 2).
When f̃(x, t) ∈ O(Dρ1){t}k;θ is a more general k-summable series in a

given direction θ, a result of the same type can be written. Nevertheless,
calculations are much more complicated and require in general to use Borel
and Laplace transforms of f̃(x, t) in both variables. For an exemple in the
case (κ, p) = (1, 2), we refer for instance to [4].

4.3 Proof of theorem 4.3

Let us start this proof with a preliminary remark on ũ(x, t). Writing as

before a(x, t) =
∑
n≥0

a∗,n(t)
xn

n!
with a∗,n(t) ∈ O(Dρ2), an identification of the

powers in x in equation

(1− ∂−κt (a(x, t)∂px)
∑
n≥0

ũ∗,n(t)
xn

n!
=
∑
n≥0

f̃∗,n(t)
xn

n!

brings us to the recurrence relations

a∗,0(t)ũ∗,n+p = ∂κt (ũ∗,n − f̃∗,n)−
n∑

m=1

(
n
m

)
a∗,m(t)ũn+p−m

with n ≥ 0 and the classical convention that the sum is 0 if n = 0. By
assumption, we have a(0, 0) 6= 0 (see page 2); hence, 1/a∗,0(t) is well-defined
in C[[t]] and, consequently, each ũ∗,`(t) is uniquely determined from f̃(x, t)
and from the ũ∗,n(t)’s with n = 0, ..., p − 1. In particular, the same applies
to ũ(x, t).
Let us now turn to the proof of theorem 4.3.
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Point 1. Necessary condition. This is straightforward from proposition
4.2. Indeed, since f̃(x, t) = Dκ,pũ(x, t) and since ũ∗,n(t) = ∂nx ũ(x, t)|x=0, the
k-summability of ũ(x, t) implies the k-summability of f̃(x, t) and the ũ∗,n(t)’s.

Point 1. Suffi cient condition. Prove now that the condition is suffi cient.
To do that, we proceed in a similar way as the proof of [4, Thm. 3.4].
By assumption, we have a(0, 0) 6= 0. Then, b(x, t) := 1/a(x, t) is well-

defined and holomorphic on a domain Dρ′1
×Dρ′2

with convenient ρ′1, ρ
′
2 > 0.

Let us now write

ũ(x, t) =

p−1∑
n=0

ũ∗,n(t)
xn

n!
+ ∂−px ṽ(x, t)

with ṽ(x, t) ∈ O(Dρ1)[[t]] and let us set w̃ := ∂−κt (a(x, t)ṽ). Then, problem
(1.2) can be rewritten on the form

(4.1) (1− ∂−px (b(x, t)∂κt )w̃ = g̃(x, t) with g̃(x, t) =

p−1∑
n=0

ũ∗,n(t)
xn

n!
− f̃(x, t).

Consequently, assuming f̃(x, t) and the ũ∗,n(t)’s k-summable in a given dir-
ection θ, it suffi ces to prove that so is w̃(x, t).
To this end, we proceed through a fixed point method as follows. Let us

set w̃(x, t) =
∑
m≥0

w̃m(x, t) and let us consider the solution of equation (4.1),

where the w̃m(x, t)’s belong to O(Dρ)[[t]] for a suitable common ρ > 0 and
are recursively defined by the relations

(4.2)
{
w̃0 = g̃,
w̃m = ∂−px (b(x, t)∂κt w̃m−1) for m ≥ 1.

Note that, for all m ≥ 0, the formal series w̃m(x, t) are of order O(xpm) in x
and, consequently, the series w̃(x, t) itself makes sense as a formal series in t
and x.
Let w0(x, t) denote the k-sum of w̃0 = g̃ in direction θ and, for all m ≥ 0,

let wm(x, t) be determined as the solution of system (4.2) in which all the
w̃m are replaced by wm. By construction, all the wm(x, t)’s are defined and
holomorphic on a common domain Dρ′′1

×Σθ,>πs, where the radius ρ′′1 of Dρ′′1
and the radius ρ′′2 of Σθ,>πs can always be chosen so that 0 < ρ′′1 < min(ρ1, ρ

′
1)

and 0 < ρ′′2 < ρ′2. To end the proof, we shall now show that the series∑
m≥0

wm(x, t) is convergent and that its sum w(x, t) is the k-sum of w̃(x, t) in

direction θ.
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According to definition 3.1, the k-summability of w̃0 implies that there
exists 0 < r1 < ρ′′1 such that, for any proper subsector Σ b Σθ,>πs, there exist
constants C,K > 0 such that, for all ` ≥ 0 and (x, t) ∈ Dr1×Σ, the function
w0 satisfies the inequalities

(4.3)
∣∣∂`tw0(x, t)

∣∣ ≤ CK`Γ(1 + (s+ 1)`).

Let us now fix a proper subsector Σ b Σθ,>πs and let us denote by r2 its
radius. Note that inequalities (4.3) still hold with the same constants C and
K for any 0 < r′1 < r1.
Let B := max

(x,t)∈Dρ′′1×Dρ′′2

|b(x, t)|, where Dρ denotes the closed disc with

center 0 and radius ρ. Note that B is well-defined since b(x, t) is holomorphic
onDρ′1

×Dρ′2
and ρ′′j < ρ′j for j = 1, 2. Note also that Cauchy integral formula

gives us

∂`t b(x, t) =
`!

(2iπ)2

∫
|x′−x|=ρ′′1−r1
|t′−t|=ρ′′2−r2

b(x′, t′)

(x′ − x)(t′ − t)`+1
dx′dt′;

hence, inequalities ∣∣∂`t b(x, t)∣∣ ≤ `!B

(
1

ρ′′2 − r2

)`
for all ` ≥ 0 and (x, t) ∈ Dr1 ×Σ. In particular, these estimates only depend
on the radius r2 of sector Σ and not on r1. Thereby, the constant K being
chosen ≥ 1/(ρ′′2 − r2), we get

(4.4)
∣∣∂`t b(x, t)∣∣ ≤ `!BK` for all ` ≥ 0 and (x, t) ∈ Dr1 × Σ.

Proposition 4.5 below provides us some estimates on the derivatives ∂`twm.

Proposition 4.5 Let B′ := (κ+ 1)B. Then, the following inequalities

∣∣∂`twm(x, t)
∣∣ ≤ CB′mKκm+`Γ(1 + (s+ 1)(κm+ `))

|x|pm

(pm)!

hold for all m, ` ≥ 0 and all (x, t) ∈ Dr1 × Σ.

Proof. Proposition 4.5 is clear for m = 0. Prove it for m = 1. From relation
w1 = ∂−px (b(x, t)∂κt w0), we deduce that, for all (x, t) ∈ Dr1 × Σ,

(4.5)
∣∣∂`tw1(x, t)

∣∣ ≤ |x|p
p!

sup
(x,t)∈Dr1×Σ

∣∣∂`t (b(x, t)∂κt w0)(x, t)
∣∣ .
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On the other hand, Leibniz formula implies

∣∣∂`t (b(x, t)∂κt w0)(x, t)
∣∣ ≤ ∑̀

j=0

`!

j!

∣∣∣∣∣ ∂`−jt b

(`− j)!(x, t)
∣∣∣∣∣ ∣∣∂κ+j

t w0(x, t)
∣∣ ;

hence, using inequalities (4.3) and (4.4),

∣∣∂`t (b(x, t)∂κt w0)(x, t)
∣∣ ≤ CBKκ+`

∑̀
j=0

`!

j!
Γ(1 + (s+ 1)(κ+ j))

for all (x, t) ∈ Dr1 × Σ. Then, applying successively technical lemmas 4.6
and 4.7 below, we get

∣∣∂`t (b(x, t)∂κt w0)(x, t)
∣∣ ≤ CBKκ+`

∑̀
j=0

Γ(1 + (s+ 1)(κ+ j) + `− j)

= CBKκ+`Γ(1 + (s+ 1)(κ+ `))×∑̀
j=0

Γ(1 + (s+ 1)(κ+ j) + `− j)
Γ(1 + (s+ 1)(κ+ `))

≤ CBKκ+`Γ(1 + (s+ 1)(κ+ `))× (κ+ 1)

= CB′Kκ+`Γ(1 + (s+ 1)(κ+ `)).

Inequality (4.5) ends the proof form = 1. Form ≥ 2, we proceed by recursion
on m by using relations wm+1 = ∂−px (b(x, t)∂κt wm) and same arguments as
above. This achieves the proof.

Lemma 4.6 For all ` ≥ 0, j ∈ {0, ..., `} and m ≥ 1,

(4.6)
`!

j!
Γ(1 + (s+ 1)(κm+ j)) ≤ Γ(1 + (s+ 1)(κm+ j) + `− j).

Proof. Lemma 4.6 is clear for j = `. Assume now j < ` and write `!/j! on
the form

`!

j!
=
∏̀

n=j+1

n =
∏̀

n=j+1

(j + n− j).

We get

`!

j!
≤
∏̀

n=j+1

((s+ 1)(κm+ j) + n− j) =

`−j∏
n=1

((s+ 1)(κm+ j) + n)
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and relation

Γ(1+(s+1)(κm+j)+`−j) = Γ(1+(s+1)(κm+j))

`−j∏
n=1

((s+1)(κm+j)+n)

proves then inequality (4.6), which ends the proof.

Lemma 4.7 For all ` ≥ 0 and m ≥ 1,

(4.7)
∑̀
j=0

Γ(1 + (s+ 1)(κm+ j) + `− j)
Γ(1 + (s+ 1)(κm+ `))

≤ κ+ 1.

Proof. / Let us first suppose ` ≤ κ. For all j ∈ {0, ..., `}, we have

1 + (s+ 1)(κm+ j) + `− j ≤ 1 + (s+ 1)κm+ `+ sj ≤ 1 + (s+ 1)(κm+ `)

and

1 + (s+ 1)(κm+ j) + `− j ≥ 1 + κm(s+ 1) = 1 + pm ≥ 3.

Hence, using the increasing of the Gamma function on [2,+∞[,

∑̀
j=0

Γ(1 + (s+ 1)(κm+ j) + `− j)
Γ(1 + (s+ 1)(κm+ `))

≤
∑̀
j=0

1 = `+ 1 ≤ κ+ 1

and so inequality (4.7).
/ Let us now suppose ` > κ and let us write the sum of (4.7) on the form

(4.8)
∑̀
j=0

... =

`−κ∑
j=0

...+
∑̀

j=`−κ+1

....

The second sum of the right-hand side of (4.8) is treated as in the first case
and we get

∑̀
j=`−κ+1

Γ(1 + (s+ 1)(κm+ j) + `− j)
Γ(1 + (s+ 1)(κm+ `))

≤
∑̀

j=`−κ+1

1 = κ.

On the other hand, for j ∈ {0, ..., ` − κ}, similar calculations as above lead
us to the following inequalities

3 ≤ 1 + (s+ 1)(κm+ j) + `− j ≤ 1 + (s+ 1)(κm+ `)− κs.
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Thereby, the first sum of the right-hand side of (4.8) gives us

`−κ∑
j=0

Γ(1 + (s+ 1)(κm+ j) + `− j)
Γ(1 + (s+ 1)(κm+ `))

≤ (`− κ+ 1)
Γ(1 + (s+ 1)(κm+ `)− κs)

Γ(1 + (s+ 1)(κm+ `))

=
`− κ+ 1

(s+ 1)(κm+ `)

Γ(1 + (s+ 1)(κm+ `)− κs)
Γ(1 + (s+ 1)(κm+ `)− 1)

≤ `− κ+ 1

(s+ 1)(`+ κm)
.

Indeed, we have ` > κ and κs = p− κ ≥ 1; hence,

3 ≤ 1 + pm ≤ 1 + (s+ 1)(κm+ `)− κs ≤ 1 + (s+ 1)(κm+ `)− 1

and, consequently,

Γ(1 + (s+ 1)(κm+ `)− κs)
Γ(1 + (s+ 1)(κm+ `)− 1)

≤ 1.

We then conclude by observing that

`− κ+ 1

(s+ 1)(`+ κm)
≤ 1

s+ 1
≤ 1

for all ` ≥ 0. This ends the proof of lemma 4.7.

From proposition 4.5, we deduce that, for all ` ≥ 0 and (x, t) ∈ Dr1 × Σ,∑
m≥0

∣∣∂`twm(x, t)
∣∣ ≤ CK`Γ(1 + (s+ 1)`)

∑
m≥0

Am,`(x)

with

Am,`(x) =
Γ(1 + (s+ 1)(κm+ `))

Γ(1 + (s+ 1)`)

(B′Kκ |x|p)m
(pm)!

.

Let us now observe that inequality s+ 1 ≤ p implies

Γ(1 + (s+ 1)(κm+ `)) = Γ(1 + (s+ 1)`+ pm)

= Γ(1 + (s+ 1)`)

pm∏
j=1

((s+ 1)`+ j)

≤ Γ(1 + (s+ 1)`)

pm∏
j=1

(p`+ j)
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and, thereby,

Γ(1 + (s+ 1)(κm+ `))

(pm)!Γ(1 + (s+ 1)`)
≤
(
p`+ pm
pm

)
≤

p`+pm∑
j=0

(
p`+ pm

j

)
= 2p`+pm.

Consequently,∑
m≥0

∣∣∂`twm(x, t)
∣∣ ≤ C(2pK)`Γ(1 + (s+ 1)`)

∑
m≥0

(2pB′Kκ |x|p)m

for all ` ≥ 0 and (x, t) ∈ Dr1 × Σ. Let L = 2pB′Kκrp and choose 0 < r < r1

small enough so that L < 1. Denote C ′ = C
∑
m≥0

Lm ∈ R+ and K ′ = 2pK.

Then, for all ` ≥ 0 and (x, t) ∈ Dr × Σ,

(4.9)
∑
m≥0

∣∣∂`twm(x, t)
∣∣ ≤ C ′K ′`Γ(1 + (s+ 1)`).

In particular, for ` = 0, the series
∑
m≥0

wm(x, t) is normally convergent on

Dr×Σ. Therefore, its sum w(x, t) is well-defined and holomorphic onDr×Σ.
This proves condition 1 of definition 3.1 if we choose for Σ a sector bisected
by θ and opening larger than πs = π/k. Note that such a choice is already
possible due to the definition of proper subsector (see note 2).
For all ` ≥ 1, the series

∑
m≥0

∂`twm(x, t) is also normally convergent on

Dr×Σ. Thereby, the series
∑
m≥0

wm(x, t) can be derivated termwise infinitely

many times with respect to t and inequalities (4.9) imply∣∣∂`twm(x, t)
∣∣ ≤ C ′K ′`Γ(1 + (s+ 1)`)

for all ` ≥ 0 and (x, t) ∈ Dr × Σ. This proves condition 3 of definition 3.1.
Note that the fact that all derivatives ∂`tw(x, t) of w(x, t) are bounded on

Σ implies the existence of lim
t→0
t∈Σ

∂`tw(x, t) for all x ∈ Dr; hence, the existence of

the Taylor series of w at 0 on Σ for all x ∈ Dr. On the other hand, considering
recurrence relations (4.2) with the k-sums wm and g instead of w̃m and g̃,
it is clear that w(x, t) satisfies equation (4.1) with right-hand side g(x, t) in
place of g̃(x, t). Consequently, the Taylor series of w(x, t) also satisfies this
equation. Then, since equation (4.1) admits a unique formal series solution
w̃(x, t) (see theorem 2.1 by exchanging the roles of x and t), it results that
the Taylor expansion of w(x, t) is w̃(x, t); hence, condition 2 of definition 3.1.
This shows the k-summability of w̃(x, t) in direction θ and proves thereby

that the condition is suffi cient.
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Point 2. As for point 2 of theorem 4.3, let us observe that the fact that the
k-sum u(x, t) of ũ(x, t) in direction θ satisfies problem (1.2) in which f̃(x, t)
is replaced by its k-sum f(x, t) in direction θ is equivalent to the fact that
w(x, t) satisfies equation (4.1) with right-hand side g(x, t) instead of g̃(x, t),
which we proved just above. Hence, point 2.
This achieves the proof of theorem 4.3.
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