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We investigate Gevrey order and summability properties of formal power series solutions of some classes of inhomogeneous linear partial di¤erential equations with variable coe¢ cients and analytic initial conditions. In particular, we give necessary and su¢ cient conditions under which these solutions are convergent or are k-summable, for a convenient k, in a given direction.

Introduction

In recent years, various works have been done towards the summability of divergent solutions of partial di¤erential equations with constant coe¢ cients (see [START_REF] Balser | Divergent solutions of the heat equation: on an article of Lutz, Miyake and Schäfke[END_REF][START_REF] Balser | Multisummability of formal power series solutions of partial di¤erential equations with constant coe¢ cients[END_REF][START_REF] Balser | Summability of formal solutions of certain partial di¤erential equations[END_REF][START_REF] Balser | Gevrey order of formal power series solutions of inhomogeneous partial di¤erential equations with constant coef-…cients[END_REF][START_REF] Miyake | On the borel summability of divergent solutions of the heat equation[END_REF][START_REF] Miyake | Borel summability of divergent solutions of the Cauchy problem to non-Kovaleskian equations[END_REF] etc.) or variable coe¢ cients (see [4, 9-11, 15, 16] etc.) in two variables.

In the present article, we are interested in some classes of inhomogeneous linear partial di¤erential equation with variable coe¢ cients and analytic initial conditions. More precisely, we consider Cauchy problems of the form (1.1) @ t u a(x; t)@ p x u = e q(x; t) @ j t u(x; t) jt=0 = ' j (x) ; j = 0; :::; 1 1 where and p are two positive integers,

' j (x) 2 O(D 1
) is holomorphic for all j = 0; :::; 1 in a disc D 1 with center 0 2 C and radius 1 > 0, a(x; t) 2 O(D 1 D 2 ) is holomorphic in the two variables x and t in a polydisc D 1 D 2 centered at (0; 0) 2 C 2 and satis…es a(0; 0) 6 = 0, e q(x; t) 2 O(D 1 )[[t]]1 may be smooth or not.

Note that Cauchy problems of type (1.1) play an important role in physics since many classical problems, such as the heat initial conditions problem, the wave initial conditions problem, the beams initial conditions problem, etc. are of this form.

A …rst study of problem (1.1) has been done by D. A. Lutz, M. Miyake and R. Schäfke in 1999 in the special case where a 1 and e q 0 [START_REF] Miyake | On the borel summability of divergent solutions of the heat equation[END_REF][START_REF] Miyake | Borel summability of divergent solutions of the Cauchy problem to non-Kovaleskian equations[END_REF]. In particular, they proved that this problem has a unique formal series solution e u(x; t) in O(D 1 )[ [t]] which converges for 1 p and diverges (in general) in the opposite case 1 < p; in this latter case, they more precisely showed that e u(x; t) is a s-Gevrey series (see de…nition 3.1 below for the exact de…nition of a s-Gevrey series) with s = p= 1 and they gave necessary and su¢ cient conditions under which e u(x; t) is k-summable, with k = 1=s, in a given direction arg(t) = . More recently, in a 2009 article [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF], W. Balser and M. Loday-Richaud investigated problem (1.1) in the case ( ; p) = (1; 2) and a(x; t) = (x) analytic at x = 0. Again, they proved that this problem has a unique formal series solution and they gave necessary and su¢ cient conditions under which it is 1-summable.

The aim of this article is to extend the results above to the very general problem (1.1), where no generic assumption on a and e q is made. For notational convenience, we rewrite from now problem (1.1) in the form (1.2)

1 @ t (a(x; t)@ p x ) u = e f (x; t)

where @ 1 t u stands for the anti-derivative Z t 0 u(x; s)ds of u with respect to t which vanishes at t = 0 and where e f (x; t) := @ t e q(x; t) 2 O(D 1 )[[t]] satis…es @ j t e f (x; t) jt=0 = ' j (x) for all j = 0; :::; 1.

The organization of the article is as follows. In section 2, we prove that problem (1.2) has a unique formal series solution e u(x; t) 2 O(D 1 )[[t]] and we give a characterization of its coe¢ cients. In section 3, we show that e u(x; t) and the coe¢ cient e f (x; t) are together convergent when 1 p and s-Gevrey with s = p= 1 when 1 < p. In section 4, we restrict ourselves to this latter case and we investigate the summability of e u(x; t). In particular, we give necessary and su¢ cient conditions under which e u(x; t) is k-summable with k = 1=s in a given direction arg(t) = (theorem 4.3), conditions which coincide with those given in [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF][START_REF] Miyake | On the borel summability of divergent solutions of the heat equation[END_REF][START_REF] Miyake | Borel summability of divergent solutions of the Cauchy problem to non-Kovaleskian equations[END_REF]. We provide thus a new proof of the results of [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF][START_REF] Miyake | On the borel summability of divergent solutions of the heat equation[END_REF][START_REF] Miyake | Borel summability of divergent solutions of the Cauchy problem to non-Kovaleskian equations[END_REF].

From now on, we denote by D ;p the operator D ;p := 1 @ t (a(x; t)@ p x ) and, for any series e u(x; t)

2 O(D 1 )[[t]], we denote e u(x; t) = X j 0 u j; (x) t j j! = X n 0 e u ;n (t) x n n! = X j;n 0 u j;n t j j!
x n n! :

2 Existence and uniqueness of formal series solutions 

: O(D 1 )[[t]] ! O(D 1 )[[t]] is a linear isomorphism. Proof. Let e f (x; t) 2 O(D 1 )[[t]]. A series e u(x; t) = X j 0 u j; (x) t j j! is solution of D ;p e u = e
f is and only if its coe¢ cients u j; (x) satisfy, for all j 0, the identities (2.1)

u j; (x) = f j; (x) + j X m=0 j m a m; (x)@ p x u j m; (x)
with the classical convention that the sum is 0 if j < . Thereby, equation D ;p e u = e f admits a unique solution e u(x; t) 2 O(D 1 )[[t]]; hence, the bijectivity of D ;p . The remark just above achieves the proof.

As a direct consequence of theorem 2.1, we deduce the following result on the existence and the uniqueness of formal series solutions of problems (1.2 Recall that the solution e u(x; t) may be divergent or not (see for example the case a

1 and e q 0 treated in [START_REF] Miyake | On the borel summability of divergent solutions of the heat equation[END_REF][START_REF] Miyake | Borel summability of divergent solutions of the Cauchy problem to non-Kovaleskian equations[END_REF]). In section 3 below, we shall investigate in great details Gevrey properties of e u(x; t). In particular, we shall show that e u(x; t) and the inhomogeneity e f (x; t) have the same Gevrey order.

Gevrey properties

Before starting the study of Gevrey properties of formal solutions e u(x; t), let us recall the de…nition and some results about the s-Gevrey formal series.

s-Gevrey formal series

In this article, we consider t as the variable and x as a parameter. The classical notion of s-Gevrey formal series is then extended to x-families as follows.

De…nition 3.1 Let s 0. A series e u(x; t) = X j 0

u j; (x) t j j! 2 O(D 1 )[[t]] is
said to be Gevrey of order s (in short, s-Gevrey) if there exist 0 < r 1 1 , C > 0 and K > 0 such that inequalities ju j; (x)j CK j (1 + (s + 1)j) hold for all j 0 and x 2 D r 1 .

Observe that de…nition 3.1 means that e u(x; t) is s-Gevrey in t uniformly in x on a neighborhood of x = 0.

We denote by O(D 

w j; (x) = j X k=0 j k u k; (x)v j k; (x)
we have, for all j 0, sup

x2Dr 1 jw j; (x)j C 2 K j j X k=0 j k (1 + (s + 1)k) (1 + (s + 1)(j k)) | {z } a j;k :
where, according to relations between the Gamma and Beta functions,

a j;k = (2 + (s + 1)j) Z 1 0 t (s+1)k (1 t) (s+1)(j k) dt (2 + (s + 1)j):
Thereby,

sup x2Dr 1 jw j; (x)j C 2 K j (2 + (s + 1)j) j X k=0 j k = C 2 (2K) j (1 + (s + 1)j) (1 + (s + 1)j)
and, consequently, there exist C 0 ; K 0 > 0 such that sup x2Dr 1 jw j; (x)j C 0 K 0j (1 + (s + 1)j) for all j 0:

/ Derivation @ x . Let e u(x; t) 2 O(D 1 )[[t]]
s and e w(x; t) = @ x e u(x; t). For a given r 0 1 < r 1 , Cauchy integral formula gives us

w j; (x) = @ x u j; (x) = 1 2i Z jx 0 xj=r 1 r 0 1 u j; (x 0 ) (x 0 x) 2 dx 0
for all j 0 and x 2 D r 0 1 . Hence, the inequalities

sup x2D r 0 1 jw j; (x)j C 0 K j (1 + (s + 1)j) with C 0 = C r 1 r 0 1 for all j 0: / Derivation @ t . Let e u(x; t) 2 O(D 1 )[[t]]
s and e w(x; t) = @ t e u(x; t). From relations w j; (x) = u j+1; (x), we deduce sup x2Dr 1 jw j; (x)j CK j+1 (1 + (s + 1)(j + 1)) for all j 0.

Let us now choose an integer S s + 1. Inequalities 2 1 + (s + 1)(j + 1) 1 + (s + 1)j + S and the increase of the Gamma function on [2; +1[ then imply

(1 + (s + 1)(j + 1)) (1 + (s + 1)j + S) = (1 + (s + 1)j) S Y `=1
((s + 1)j + `):

Hence, there exist

C 0 ; K 0 > 0 such that sup x2Dr 1 jw j; (x)j C 0 K 0j (1 + (s + 1)j) for all j 0. / Anti-derivation @ 1 x . Let e u(x; t) 2 O(D 1 )[[t]] s and e w(x; t) = @ 1 x e u(x; t). Since w j; (x) = @ 1 x u j; (x), we clearly have sup x2Dr 1 jw j; (x)j C 0 K j (1 + (s + 1)j) with C 0 = Cr 1 for all j 0. / Anti-derivation @ 1 t . Let e u(x; t) 2 O(D 1 )[[t]]
s and e w(x; t) = @ 1 t e u(x; t). We have w 0; 0 and w j; (x) = u j 1; (x) for all j 1; hence, the inequalities sup x2Dr 1 jw j; (x)j CK j 1 (1 + (s + 1)(j 1)) for all j 1.

From the increase of the Gamma function on [2; +1[, we get

(1 + (s + 1)(j 1)) (1 + (s + 1)j)
for all j 2 and

(1 + (s + 1)(j 1)) = (1) = (2) (1 + (s + 1)j) for j = 1. Consequently, sup x2Dr 1 jw j; (x)j C 0 K j (1 + (s + 1)j) with C 0 = C K for all j 0.
The proof is complete.

Note that the stability under @ x is guaranteed by the condition "there exists r 1 1 ..." in de…nition 3.1. Note also that proposition 3.2 implies that the linear operators D ;p act inside O(D 1 )[[t]] s for any ; p 1 and s 0. Theorem 3.3 below shall precise this result.

Gevrey order of formal series solutions

We are now able to state the main result of this section. Theorem 3.3 Let ; p 1. Let s 0 be de…ned by

s = 0 if 1 p p= 1 if 1 < p :
Then, the map

D ;p : O(D 1 )[[t]] s ! O(D 1 )[[t]] s is a linear isomorphism.
Following corollary 3.4 is straightforward from theorem 3.3 and gives us some properties about the Gevrey orders of formal series solutions of problems (1.2). The proof of theorem 3.3 is developed in next section 3.3. Before starting it, let us …rst recall the de…nition and some main properties of Nagumo norms on which we are going to be based. For more details, we refer for instance to [START_REF] Nagumo | Über das Anfangswertproblem partieller Di¤erentialgleichungen[END_REF] or [START_REF] Canalis-Durand | Gevrey solutions of singularly perturbed di¤erential equations[END_REF]. De…nition 3.6 (Nagumo norms) Let f 2 O(D ), q 0 and 0 < r . Let d r (x) = r jxj denote the Euclidian distance of x 2 D r to the boundary of the disc D r . Then, the Nagumo norm jjf jj q;r of f is de…ned by kf k q;r := sup x2Dr jf (x)d r (x) q j : Proposition 3.7 (Properties of Nagumo norms) Let f; g 2 O(D ). Let q; q 0 0 and 0 < r . One has the following properties:

1. k k q;r is a norm on O(D ).

2. For all x 2 D r , jf (x)j kf k q;r d r (x) q .

3. kf k 0;r = sup x2Dr jf (x)j is the usual sup-norm on D r .

4. kf gk q+q 0 ;r kf k q;r kgk q 0 ;r .

5. k@ x f k q+1;r e(q + 1) kf k q;r .

Note that the same index r occurs on both sides of inequalities 4 and 5. In particular, we get estimates for the product f g in terms of f and g and for the derivative @ x f in terms of f without having to shrink the disc D r .

Let us now turn to the proof of theorem 3.3.

Proof of theorem 3.3

Calculations below are based on similar arguments to those detailed in [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF] in the case ( ; p) = (1; 2). Nevertheless, they are much more complicated because s may not be an integer.

Let us begin by observing that proposition 3.2 implies D

;p (O(D 1 )[[t]] s ) O(D 1 )[[t]
] s and that theorem 2.1 implies the linearity and the injectivity of D ;p . Thereby, we are left to prove that D ;p is surjective. To do that, let us …x e f (x; t) = X j 0

f j; (x) t j j! 2 O(D 1 )[[t]] s and let e u(x; t) = X j 0 u j; (x) t j j! 2 O(D 1 )[[t]
] denote the unique formal series solution of D k;p e u = e f (x; t) (see theorem 2.1). The coe¢ cients f j; (x) satisfy conditions

f j; (x) 2 O(D 1
) for all j 0, there exist 0 < r 1 1 , C > 0 and K > 0 such that jf j; (x)j CK j (1 + (s + 1)j) for all j 0 and x 2 D r 1 and we must prove that the coe¢ cients u j; (x) satisfy similar conditions. / It results from identities (2.1) that relations

u j; (x) (1 + (s + 1)j) = f j; (x) (1 + (s + 1)j) + j X m=0 j m a m; (x) @ p x u j m; (x) (1 + (s + 1)j)
hold for all j 0 (as before, we use the classical convention that the sum is 0 when j < ). Applying then the Nagumo norms of indices (pj; r 1 ), we deduce from property 4 of proposition 3.7 that

ku j; (x)k pj;r 1 (1 + (s + 1)j) kf j; (x)k pj;r 1 (1 + (s + 1)j) + j X m=0 j m ka m; (x)k p( +m 1);r 1 k@ p x u j m; (x)k p(j m+1);r 1 (1 + (s + 1)j)
and from property 5 of proposition 3.7 that

ku j; (x)k pj;r 1 (1 + (s + 1)j) kf j; (x)k pj;r 1 (1 + (s + 1)j) + j X m=0 e p A ;p;m ka m; (x)k p( +m 1);r 1 m! ku j m; (x)k p(j m);r 1 where 
A ;p;m = m 1 Y `=0 (j `)! p 1 Y `0=0 (p(j m + 1) `0) ! (1 + (s + 1)j)
with the convention that the …rst product is 1 when m = 0. The following two lemmas allow to bound A ;p;m .

Lemma 3.8 Let j and m 2 f0; :::; j g. Then,

m 1 Y `=0 (j `) (1 + (s + 1)j) 1 (1 + (s + 1)(j m)) :
Proof. Since the inequality is clear when m = 0, we assume below m 1 (hence, j > ). From relation

(1 + (s + 1)j) = (1 + (s + 1)j m) m 1 Y `=0
((s + 1)j `);

we …rst deduce that (p(j m + 1) `0)

m 1 Y `=0 (j `) (1 + (s + 1)j) = m 1 Y `=0 j (s + 1)j ` (1 + (s + 1)j m)
(1 + (s + 1)(j m)) p (1 + (s + 1)(j m)) :
Proof. When 1 p (hence, s = 0), lemma 3.9 stems from relations

p 1 Y `0=0 (p(j m + 1) `0) = p p 1 Y `0=0 p (j m + 1) p `0 p p 1 Y `0=0 j m + 1 p `0
and

(1 + j m) = (1 + j m) 1 Y `0=0
(j m `0):

Indeed, we clearly have

p 1 Y `0=0
(p(j m + 1) `0)

(1 + j m) p p 1 Y `0=0 j m + 1 p `0 j m `0 (1 + j m) p (1 + j m) :
In the opposite case 1 p (hence, s = p= 1), lemma 3.9 is proved in a similar way by using relations

p 1 Y `0=0 (p(j m + 1) `0) = p p 1 Y `0=0
(s + 1)(j m + 1) p `0

and

(1 + (s + 1)(j m)) = (1 + (s + 1)(j m) p) p 1 Y `0=0
((s + 1)(j m) `0):

Indeed, we get p 1 Y `0=0
(p(j m + 1) `0)

(1 + (s + 1)(j m)) = p p 1 Y `0=0
(s + 1)(j m + 1) p `0

(s + 1)(j m) `0

(1 + (s + 1)(j m) p) p (1 + (s + 1)(j m) p)
and we conclude by observing that

(1 + (s + 1)(j m) p) = (1 + (s + 1)(j m)).
Hence, the following inequalities

ku j; (x)k pj;r 1 (1 + (s + 1)j) g j + j X m=0 m ku j m; (x)k p(j m);r 1 (1 + (s + 1)(j m))
hold for all j 0 with g j = kf j; (x)k pj;r 1

(1 + (s + 1)j) and m = (e ) p ka m; (x)k p( +m 1);r 1 m! :

/ Let us now bound the ku j; (x)k pj;r 1 's. To do that, we shall use a technique of majorant series. Let us consider the numerical sequence (v j ) de…ned for all j 0 by the recursive relations

v j = g j + j X m=0 m v j m
(with the same classical convention as above on the sum). By construction, we have 0 ku j; (x)k pj;r 1

(1 + (s + 1)j) v j for all j 0 and the v j 's can be bounded as follows. By assumption, we have

0 g j CK j (1 + (s + 1)j) (1 + (s + 1)j) r pj 1 = C(Kr p 1 ) j
for all j 0 and the series g(X) = X j 0 g j X j is convergent. On the other hand, since a(x; t) 2 O(D 1 )ftg, there exist C 0 ; K 0 > 0 such that ja m; (x)j C 0 K 0m m! for all m 0 and x 2 D r 1 . Then,

0 m (e ) p C 0 K 0m m! m! r p( +m 1) 1 = (e r 1 ) p C 0 r p 1 (K 0 r p 1 ) m
for all m 0 and, consequently, the series A(X) = X j 0 j X j is convergent too. From this and from the recurrence relations de…ning the v j 's, we then deduce that the series v(X) = X j 0 v j X j is also convergent. Indeed, it satis…es identity (1 X A(X))v(X) = g(X). Therefore, there exist C 00 ; K 00 > 0 such that v j C 00 K 00j for all j 0. This leads then us to the following inequalities:

ku j; (x)k pj;r 1 C 00 K 00j (1 + (s + 1)j) for all j 0
and we are left to prove similar estimates on the sup-norm of the u j; (x)'s.

To this end, we proceed by shrinking the domain D r 1 . Let 0 < r 0 1 < r 1 . Then, for all j 0 and x 2 D r 0 1 , we have

ju j; (x)j = u j; (x)d r 1 (x) pj 1 d r 1 (x) pj 1 (r 1 r 0 1 ) pj u j; (x)d r 1 (x) pj and, thereby, sup x2D r 0 1 ju j; (x)j ku j; (x)k pj;r 1 (r 1 r 0 1 ) pj C 00 K 00 (r 1 r 0 1 ) p j (1 + (s + 1)j):
This achieves the proof of theorem 3.3.

Summability

As we saw in corollary 3.4, the unique formal series solution e u(x; t) and the inhomogeneity e f (x; t) of problem (1.2) are together s-Gevrey. In particular, this provides us in the case 1 p a necessary and su¢ cient condition under which e u(x; t) is convergent (see corollary 3.5). In this section, we consider the opposite case 1 < p and we are interested in the summability of e u(x; t). More precisely, our aim is to display necessary and su¢ cient conditions under which e u(x; t) is k-summable for k = 1=s in a given direction arg(t) = .

Before starting the calculations, let us recall the de…nition and some properties of the k-summability.

k-summable formal series

As in section 3, we consider t as the variable and x as a parameter. Doing that, e u(x; t) can be seen as a formal power series in t with coe¢ cients in the Banach space O(D 1 ). To de…ne the k-summability of such formal series, one then extends the classical notion of k-summability to families parametrized by x in requiring similar conditions, the estimates being however uniform with respect to x. For a general treatment of this theory, we refer for instance to [START_REF] Balser | Formal power series and linear systems of meromorphic ordinary di¤erential equations[END_REF]. Here below, we choose, among the many equivalent de…nitions of k-summability in a given direction arg(t) = at t = 0, a generalization of Ramis'de…nition which states that a formal series e g is k-summable in direction if there exists a holomorphic function g which is 1=k-Gevrey asymptotic to e

g in an open sector ;> =k bisected by and with opening larger than =k [17, Def. 3.1]. To express the 1=k-Gevrey asymptotic, there also exist various equivalent ways. We choose here the one which sets conditions on the successive derivatives of g (see [12, p. 171] 

O(D 1 )[[t]] s .
Note that, for any …xed x 2 D r 1 , the k-summability of e u(x; t) coincides with the classical k-summability. Consequently, Watson's lemma implies the unicity of its k-sum, if any exists.

Note also that the k-sum of a k-summable formal series e u(x; t) 2 O(D 1 )ftg k; may be analytic with respect to x on a disc D r 1 smaller than the common disc D 1 of analyticity of the coe¢ cients u j; (x) of e u(x; t).

Obsviously, the set O(D 1 )ftg k; is a subspace of O(D 1 )[[t]]. Proposition 4.2 below precises its algebraic structure. Proposition 4.2 Let k > 0 and 2 R=2 Z. Then, (O(D 1 )ftg k; ; @ x ; @ t ) is a C-di¤erential algebra stable under anti-derivatives @ 1

x and @ 1 t .

Proof. The stability of O(D 1 )ftg k; under @ 1 x , @ t and @ 1 t is straightforward. As for the stability under @ x , it is obtained in the same way of the stability of s-Gevrey formal series by using Cauchy integral formula on a disc D r 0 1 with 0 < r 0 1 < r 1 . We are left to prove that O(D 1 )ftg k; is stable under multiplication. Let e u(x; t) and e v(x; t) be two k-summable formal series in direction . We can always assume that e u(x; t) and e v(x; t) satisfy conditions of de…nition 4.1 with the same constants r 1 , C and K and the same sector ;> s . Denote by e w(x; t) their product. It obvious satis…es conditions 1 and 2 of de…nition 4.1. Moreover, given a proper subsector b ;> s and using Leibniz formula, we get, for all ` 0, x 2 D r 1 and t 2 , @ t e w(x; t) X j=0 j @ j t e u(x; t) @ ` j t e v(x; t)

C 2 K X j=0 j (1 + (s + 1)j) (1 + (s + 1)(` j)):
Similar calculations to those detailed in the proof of proposition 3.2 (see page 5) lead then us to an inequality of the form

@ t e w(x; t) C 0 K 0` (1 + (s + 1)`)
with convenient constants C 0 ; K 0 > 0; this proves condition 3 of de…nition 3.1. Hence the stability of O(D 1 )ftg k; under multiplication.

Main result

The main result of this section is the following. 2. Moreover, the k-sum u(x; t), if any exists, satis…es problem (1.2) in which e f (x; t) is replaced by its k-sum f (x; t) in direction .

Note that theorem 3.4 coincides with the result stated by W. Balser and M. Loday-Richaud in [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF] in the case ( ; p) = (1; 2) and a(x; t) = (x) independant of t.

The proof of theorem 4.3 is the subject of next section 4.3. Before starting it, let us …rst show how theorem 4.3 allows to …nd the result formulated by M. Miyake in [START_REF] Miyake | Borel summability of divergent solutions of the Cauchy problem to non-Kovaleskian equations[END_REF].

The formal series e u ;n (t) 2 C[[t]] for n = 0; :::; p 1 can be computed (at least theoretically) in terms of e f (x; t) from the formula

e u(x; t) = X m 0 (@ t (a(x; t)@ p x )) m e f (x; t):
Let us assume from now that a(x; t) = a 2 C is a nonzero constant and that e f (x;

t) = f (x) = X n 0 f 0;n x n n! is independant of t.
Note that this case is equivalent to problem (1.1) with e q 0 and with initial conditions e u(x; 0) = f (x) and @ j t e u(x; t) jt=0 0 for all j = 1; :::; 1. Since operators a, @ x and @ t commute, we get

e u(x; t) = X m 0 a m @ m t @ pm x f (x)
and thereby and the following result may be proved.

Proposition 4.4 Let 2 R=2 Z. Then, the following three assertions are equivalent.

1. The e u ;n (t)'s are k-summable for all n 2 f0; :::; p 1g in direction .

2. e F (x) is (k+1)-summable in all the directions ( +arg(a))=p mod(2 =p).

3. f (x) is analytic near 0 and can be analytically continued to sectors neighbouring the directions ( +arg(a))=p mod(2 =p) with exponential growth of order k + 1 at in…nity.

Observe that assertion 3 with a = 1 (hence, arg(a) = 0) is the necessary and su¢ cient condition stated by M. Miyake in [START_REF] Miyake | Borel summability of divergent solutions of the Cauchy problem to non-Kovaleskian equations[END_REF] for the k-summability of e u(x; t) and proved via direct k-Borel-Laplace transformations. In particular, our method provides a new proof of this result.

Observe also that proposition 4.4 coincides with the result proved by W. Balser and M. Loday-Richaud in [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF] in the case ( ; p) = (1; 2).

When e f (x; t) 2 O(D 1 )ftg k; is a more general k-summable series in a given direction , a result of the same type can be written. Nevertheless, calculations are much more complicated and require in general to use Borel and Laplace transforms of e f (x; t) in both variables. For an exemple in the case ( ; p) = (1; 2), we refer for instance to [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF].

Proof of theorem 4.3

Let us start this proof with a preliminary remark on e u(x; t e w 0 = e g; e w m = @ p x (b(x; t)@ t e w m 1 ) for m 1.

Note that, for all m 0, the formal series e w m (x; t) are of order O(x pm ) in x and, consequently, the series e w(x; t) itself makes sense as a formal series in t and x.

Let w 0 (x; t) denote the k-sum of e w 0 = e g in direction and, for all m 0, let w m (x; t) be determined as the solution of system (4.2) in which all the e w m are replaced by w m . By construction, all the w m (x; t)'s are de…ned and holomorphic on a common domain D 00 1 ;> s , where the radius 00 1 of D 00 1 and the radius 00 2 of ;> s can always be chosen so that 0 < 00 1 < min( 1 ; 0 1 ) and 0 < 00 2 < 0 2 . To end the proof, we shall now show that the series X m 0 w m (x; t) is convergent and that its sum w(x; t) is the k-sum of e w(x; t) in direction .

On the other hand, Leibniz formula implies @ t (b(x; t)@ t w 0 )(x; t) X j=0 `! j! @ ` j t b (` j)! (x; t) @ +j t w 0 (x; t) ; hence, using inequalities (4.3) and (4.4),

@ t (b(x; t)@ t w 0 )(x; t) CBK +`X j=0 `! j! (1 + (s + 1)( + j))
for all (x; t) 2 D r 1 . Then, applying successively technical lemmas 4.6 and 4.7 below, we get @ t (b(x; t)@ t w 0 )(x; t) CBK +`X j=0

(1 + (s + 1)( + j) + ` j)

= CBK +` (1 + (s + 1)( + `)) X j=0 (1 + (s + 1)( + j) + ` j) (1 + (s + 1)( + `)) CBK +` (1 + (s + 1)( + `)) ( + 1) = CB 0 K +` (1 + (s + 1)( + `)):
Inequality (4.5) ends the proof for m = 1. For m 2, we proceed by recursion on m by using relations w m+1 = @ p x (b(x; t)@ t w m ) and same arguments as above. This achieves the proof. Lemma 4.6 For all ` 0, j 2 f0; :::; `g and m 1,

(4.6) `! j! (1 + (s + 1)( m + j)) (1 + (s + 1)( m + j) + ` j):
Proof. Lemma 4.6 is clear for j = `. Assume now j < `and write `!=j! on the form

`! j! = Ỳ n=j+1 n = Ỳ n=j+1 (j + n j):
We get

`! j! Ỳ n=j+1 ((s + 1)( m + j) + n j) = ` j Y n=1 ((s + 1)( m + j) + n)
Thereby, the …rst sum of the right-hand side of (4.8) gives us

` X j=0 (1 + (s + 1)( m + j) + ` j) (1 + (s + 1)( m + `)) (` + 1) (1 + (s + 1)( m + `) s) (1 + (s + 1)( m + `)) = ` + 1 (s + 1)( m + `) (1 + (s + 1)( m + `) s) (1 + (s + 1)( m + `) 1) ` + 1 (s + 1)(`+ m) :
Indeed, we have `> and s = p 1; hence,

3 1 + pm 1 + (s + 1)( m + `) s 1 + (s + 1)( m + `) 1 
and, consequently,

(1 + (s + 1)( m + `) s) (1 + (s + 1)( m + `) 1) 1:
We then conclude by observing that ` + 1 (s + 1)(`+ m)

1 s + 1 1
for all ` 0. This ends the proof of lemma 4.7.

From proposition 4.5, we deduce that, for all ` 0 and (x; (2 p B 0 K jxj p ) m for all ` 0 and (x; t) 2 D r 1 . Let L = 2 p B 0 K r p and choose 0 < r < r 1 small enough so that L < 1. Denote C 0 = C X m 0 L m 2 R + and K 0 = 2 p K.

t) 2 D r 1 , X m 0 @ t w m (x; t) CK ` (1 + (s + 1)`) X m 0 A m;`( x) with A m;`( x) = (1 + (s + 1)( m + `)) ( 1 
Then, for all ` 0 and (x; t) 2 D r , (4.9) X m 0 @ t w m (x; t) C 0 K 0` (1 + (s + 1)`):

In particular, for `= 0, the series X m 0 w m (x; t) is normally convergent on D r . Therefore, its sum w(x; t) is well-de…ned and holomorphic on D r . This proves condition 1 of de…nition 3.1 if we choose for a sector bisected by and opening larger than s = =k. Note that such a choice is already possible due to the de…nition of proper subsector (see note 2).

For all ` 1, the series X m 0 @ t w m (x; t) is also normally convergent on D r . Thereby, the series X m 0 w m (x; t) can be derivated termwise in…nitely many times with respect to t and inequalities (4.9) imply @ t w m (x; t) C 0 K 0` (1 + (s + 1)`) for all ` 0 and (x; t) 2 D r . This proves condition 3 of de…nition 3.1. Note that the fact that all derivatives @ t w(x; t) of w(x; t) are bounded on implies the existence of lim t!0 t2 @ t w(x; t) for all x 2 D r ; hence, the existence of the Taylor series of w at 0 on for all x 2 D r . On the other hand, considering recurrence relations (4.2) with the k-sums w m and g instead of e w m and e g, it is clear that w(x; t) satis…es equation (4.1) with right-hand side g(x; t) in place of e g(x; t). Consequently, the Taylor series of w(x; t) also satis…es this equation. Then, since equation (4.1) admits a unique formal series solution e w(x; t) (see theorem 2.1 by exchanging the roles of x and t), it results that the Taylor expansion of w(x; t) is e w(x; t); hence, condition 2 of de…nition 3.1. This shows the k-summability of e w(x; t) in direction and proves thereby that the condition is su¢ cient. Point 2. As for point 2 of theorem 4.3, let us observe that the fact that the k-sum u(x; t) of e u(x; t) in direction satis…es problem (1.2) in which e f (x; t) is replaced by its k-sum f (x; t) in direction is equivalent to the fact that w(x; t) satis…es equation (4.1) with right-hand side g(x; t) instead of e g(x; t), which we proved just above. Hence, point 2.

This achieves the proof of theorem 4.3.

1 ( 1 +Lemma 3 . 9

 139 (s + 1)j m) : Lemma 3.8 follows then from inequalities 1 + (s + 1)j m 1 + (s + 1)(j m) 1 + (s + 1) 2and from the increase of the Gamma function on [2; +1[. Let j and m 2 f0; :::; j g. Then,

Theorem 4 . 3

 43 Let 1 < p, s = p= 1 and k = 1=s. Let arg(t) = 2 R=2 Z be a direction issuing from 0. Then, 1. The unique formal series solution e u(x; t) 2 O(D 1 )[[t]] of problem (1.2) is k-summable in the direction if and only if the inhomogeneity e f (x; t) and the coe¢ cients e u ;n (t) 2 C[[t]] for n = 0; :::; p 1 are k-summable in the direction .

1 : 1 X n=0 (

 11n=0 pm+n for all n = 0; :::; p Let us now denote by e F the function de…ned by e F (x) = X n 0 f 0;n x n [ n=p]! , where [ n=p] stands for the integer part of n=p. Then, e F ((at ) 1=p ) = p at ) n=p e u ;n (t)

@

  + (s + 1)`) (B 0 K jxj p ) m(pm)! :Let us now observe that inequality s + 1 p implies(1 + (s + 1)( m + `)) = (1 + (s + 1)`+ pm) t w m (x; t) C(2 p K) ` (1 + (s + 1)`) X m 0

  ).

	Corollary 2.2 Problem (1.2) admits, for any ; p	1, a unique formal
	series solution e u(x; t) 2 O(D 1 )[[t]]. Moreover, its coe¢ cients u j; (x) are recursively determined for all j 0 by identities (2.1).

  1 )[[t]] s the set of all the formal series in O(D 1 )[[t]] which are s-Gevrey. Note that the set O(D 1 )[[t]] 0 coincides with the set Cfx; tg of germs of analytic functions at the origin (0; 0) 2 C 2 .

	/ Multiplication. Let e u(x; t); e v(x; t) 2 O(D 1 )[[t]] s . We can always assume that e u(x; t) and e v(x; t) satisfy conditions of de…nition 3.1 with the same con-
	stants r 1 , C and K. Denote by e w(x; t) their product. Since the coe¢ cients
	w j; (x) of e w(x; t) are given by
	Proposition 3.2 Let s algebra stable under anti-derivations @ 1 0. Then, (O(D 1 )[[t]] s ; @ x ; @ t ) is a C-di¤erential x and @ 1 t .
	Proof. Since proposition 3.2 is true for O(D 1 )[[t]] instead of O(D 1 )[[t]] s , it is su¢ cient to prove that O(D 1 )[[t]] s is stable under multiplication, deriva-tions and anti-derivations.

  Corollary 3.4 Let , p and s as in theorem 3.3.

Let e u(x; t) 2 O(D 1 )[[t]] be the unique formal series solution of problem (1.2). Then, e u(x; t) is a s-Gevrey series if and only if e f (x; t) is a s-Gevrey series. In particular, in the case 1 p , this provides us a necessary and su¢ cient condition under which the formal solution e u(x; t) is convergent. Corollary 3.5 Let 1 p and e u(x; t) 2 O(D 1 )[[t]] be the unique formal series solution of problem (1.2). Then, e u(x; t) is convergent if and only if e f (x; t) is convergent.

  or[START_REF] Ramis | Les séries k-sommables et leurs applications[END_REF] Thm. 2.4] for instance). Let k > 0 and s = 1=k. A formal series e u(x; t) 2 O(D 1 )[[t]] is said to be k-summable in the direction arg(t) = if there exist a sector ;> s , a radius 0 < r 1

	De…nition 4.1 (k-summability) j 0	u j; (x)	t j j!	as
	Taylor series at 0 on ;> s ;			

1 and a function u(x; t) called k-sum of e u(x; t) in direction such that 1. u is de…ned and holomorphic on D r 1 ;> s ; 2. For any x 2 D r 1 , the map t 7 ! u(x; t) has e u(x; t) = X 3. For any proper 2 subsector b ;> s , there exist constants C > 0 and K > 0 such that, for all ` 0, all t 2 and all x 2 D r 1 , @ t u(x; t) CK ` (1 + (s + 1)`). We denote by O(D 1 )ftg k; the subset of O(D 1 )[[t]] made of all the ksummable formal series in the direction arg(t) = . Obviously, we have O(D 1 )ftg k;

We denote e q with a tilde to emphasize the possible divergence of the series e q.

A subsector of a sector 0 is said to be a proper subsector and one denotes b 0 if its closure in C is contained in 0 [ f0g.

According to de…nition 3.1, the k-summability of e w 0 implies that there exists 0 < r 1 < 00 1 such that, for any proper subsector b ;> s , there exist constants C; K > 0 such that, for all ` 0 and (x; t) 2 D r 1 , the function w 0 satis…es the inequalities (4.3) @ t w 0 (x; t) CK ` (1 + (s + 1)`):

Let us now …x a proper subsector b ;> s and let us denote by r 2 its radius. Note that inequalities (4.3) still hold with the same constants C and K for any 0 < r 0 1 < r 

for all ` 0 and (x; t) 2 D r 1 . In particular, these estimates only depend on the radius r 2 of sector and not on r 1 . Thereby, the constant K being chosen 1=( 00 2 r 2 ), we get (4.4) @ t b(x; t) `!BK `for all ` 0 and (x; t) 2 D r 1 :

Proposition 4.5 below provides us some estimates on the derivatives @ t w m .

Proposition 4.5 Let B 0 := ( + 1)B. Then, the following inequalities

hold for all m; ` 0 and all (x; t) 2 D r 1 .

Proof. Proposition 4.5 is clear for m = 0. Prove it for m = 1. From relation w 1 = @ p x (b(x; t)@ t w 0 ), we deduce that, for all (x; t) 2 D r 1 , (4.5) @ t w 1 (x; t) jxj p p! sup (x;t)2Dr 1 @ t (b(x; t)@ t w 0 )(x; t) :

and relation

proves then inequality (4.6), which ends the proof.

Lemma 4.7 For all ` 0 and m 1,

(1 + (s + 1)( m + j) + ` j)

Proof. / Let us …rst suppose ` . For all j 2 f0; :::; `g, we have

and

Hence, using the increasing of the Gamma function on [2; +1[, ::::

The second sum of the right-hand side of (4.8) is treated as in the …rst case and we get On the other hand, for j 2 f0; :::; ` g, similar calculations as above lead us to the following inequalities 3 1 + (s + 1)( m + j) + ` j 1 + (s + 1)( m + `) s: