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Maritime Monitoring

1.1 Maritime Context

The maritime environment still represents an unexploited potential for

modelling, management and understanding of mobility data. The envir-

onment is diverse, open but partly ruled, and covers a large spectrum of

ships from small sailing-boats to super tankers which generally exhibit

type-related behaviours. Similarly to terrestrial or aerial domains, sev-

eral real-time positioning systems, such as the Automatic Identification

System (AIS), have been developed for keeping track of vessel move-

ments. However the huge amounts of data provided by these reporting

systems are rarely used for knowledge discovery. This chapter aims at

discussing different aspects of maritime mobilities understanding. This

chapter enables readers to, first, understand the intrinsic behaviour of

maritime positioning systems and then proposes a methodology to il-

lustrate the different steps leading to trajectory patterns for the under-

standing of outlier detection.

1.1.1 Maritime Traffic

The maritime environment has a huge impact on the world economy

and our everyday lives. Beyond, being a space where numerous marine

species live, the sea is also a place where human activities (sailing, cruis-

ing, fishing, goods transportation...) evolve and increase drastically. For

example, world maritime trade of goods volume has doubled since the

seventies and reached about 90% of global trade in terms of volume and

70% in terms of value. This ever increasing traffic leads to navigation

difficulties and risks in coastal and crowded areas where numerous ships

exhibit different movement objectives (sailing, fishing, ...) which can be
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conflicting. The disasters and damages caused in the event of sea colli-

sions can pose serious threats to the environment and human lives. Such

disasters and damages often lead to highly negative effects on maritime

ecosystems and are threats not only for the important populations of

marine protected and endangered species, but also for economic, scien-

tific, and cultural sectors. Safety and security have therefore become a

major concern, especially in Europe.

Consideration of this security issue by the International Maritime Or-

ganization (IMO) has partly evolved in the last decade from ship design,

education, navigational rules (e.g. International Regulations for Prevent-

ing Collisions at Sea: COLREGS), to technical answers for traffic mon-

itoring. Nowadays, ships are fitted out with almost real-time position re-

port systems whose objective is to identify and locate vessels at distance.

Figure 1.1 shows, for instance, ships’ trajectories obtained through the

Automatic Identification System (AIS) in Europe during one month.

Figure 1.1 Ships’ trajectories, density map in Europe during one
month (AIS positions, December 2010).

The maritime environment, represented in Figure 1.1, is diverse and

open, but partly ruled. Regulation is ensured by Traffic Separation Schemes

(TSS) set up in order to split and regulate the traffic in crowded spaces

into traffic-lanes, and by the definition of exclusion areas and Particu-

larly Sensitive Sea Areas (PSSA) the ships have to avoid (e.g. biodi-

versity areas. Trajectories in such an open space are very typical; ships
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often behave similarly, in straight lines, leading to visually noticeable

trends and patterns. This naturally favours the analysis of aggregated

behaviours in order to detect maritime routes, dense areas, evolution

of the traffic, and finally at individual levels, abnormal trajectories and

locations.

1.1.2 Maritime Positioning Systems

Two of the most successful systems used in maritime navigation and

positioning are the Automatic Radar Plotting Aid (ARPA) and the

Automatic Identification System (AIS). Both are used by vessels and

Vessel Traffic Services on shore (V TS) in order to facilitate navigation

decisions and warn about possible collisions. Vessel traffic services also

take advantage of their higher computing and networking resources to

store data locally and share them at national and worldwide levels (e.g.

program SafeSeaNet of the European Maritime Safety Agency).

Marine radar with automatic radar plotting aid tracks vessels using

radar contacts. Radar transmitter generates very short pulses of radio

waves. When the radio waves of one of these pulses encounter any ob-

stacle, such as a ship, shore line or big sea waves, part of the radiated

energy is reflected and received by the emitting radar. The reflected

pulse constitutes a radio echo. The time between the pulse and the echo

can be accurately measured and used to calculate the distance between

the radar and the echo. The direction of the echo reflects the direction

of the pulse. When a target echo appears on a radar screen, an operator

plots the relative motion of the echo in order to get the target’s course

and speed. The maximum range of an object detected is affected by

the height of the radar antenna as well as the height of the object due

to the curvature of the earth. In the same way, mountainous sea lines

cause blind areas, and objects behind these areas cannot be detected.

Bad weather conditions can also affect significantly the effectiveness of

radar tracking. Thus, any target should be acquired and confirmed in at

least five of ten scans over a period of 2 minutes in order to be brought

to the attention of the operator with an identifier and coordinates.

Automatic Identification System has been recently implemented

and made a mandatory standard on commercial and passenger ships.

This system, whose objective is to identify and locate vessels at dis-

tance, automatically broadcasts location-based information through self
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organised wireless communications (V HF ). AIS usually integrates a

transceiver system, a GPS receiver, and other navigational sensors on

board, such as a gyrocompass and a rate of turn indicator. An AIS

transponder runs in an autonomous and continuous mode, and regu-

larly broadcasts a position report according to the ship’s behaviour.

The information is broadcast, within a range of 35 nautical miles, to

surrounding ships and maritime authorities on the ground. There are

two different classes of AIS that can be found on ships, search and res-

cue aircrafts and base stations on ground: Mandatory AIS (class A)

for large vessels and low-cost AIS (class B) which has been introduced

for smaller vessels. Devices from these two classes broadcast information

at different time intervals (table 1.1), and at different ranges (typically

20-40 miles for class A and generally 5-10 miles for class B).

Enhanced worldwide positioning systems are emerging especially

to address drawbacks of both systems which are complementary but im-

perfect. On one hand, ARPA is useful to detect and track vessels that

might not have AIS devices on-board. On the other hand, it brings

limited information and cannot identify a mobile object, and its cover-

age include blind areas. The automatic identification system is useful to

obtain more complete information, but devices are not available on all

ships and data can be falsified. The most important issue that guides

evolutions concerns the limited tracking range of both systems which

is insufficient to follow ships engaged on international journeys. Satel-

lite communications systems are going to be more intensively employed,

in particular to enhance or replace the AIS. For instance, Long-Range

Identification and Tracking (LRIT ) reports vessel positions to their flag

administration at least four times a day. Satellite-based AIS-monitoring

service (S − AIS) uses satellite communications to broadcast AIS in-

formation. Nowadays, position reports for European coasts reach almost

1.5 million positions per day (about 72,000 ships). The ever increasing

data flows provided by this evolution is going to emphasize issues on

maritime data integration, fusion, filtering, processing, and analysis.

Location-based data: While radar data is limited to a tuple com-

posed by an identifier, a position, and a related time, the automatic

identification system broadcasts a wide range of richer information. In-

formation systems on-board or in vessel traffic services generally merge

AIS and radar positions into a single accurate one. When a ship is not

fitted with an AIS (typically small boats), the reported information
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for data analysis is only limited to the aforementioned tuple. From our

perspective, this does not impact the data-mining process and therefore

motivate an analysis focusing on the AIS data more easily accessible.

Transmitted AIS data comes from twenty-seven different messages each

providing specific information either related to the behaviour of the AIS

system or to ship’s locations and characteristics. Positioning data de-

fines point-based trajectories describing two-dimensional routes on the

sea surface. That is, an ordered series of locations expressed in WGS84

format (latitude λ, longitude ϕ, time t) of a given mobile object with t

indicating the timestamp of the location (λ, ϕ). Among all the received

data, meaningful information that can be considered in a purpose of

movement discovery and understanding can be classified in the three

following categories:

• Static: MMSI number (Maritime Mobile Service Identity: a unique

ID), Name, Type, International Maritime Organization Code, Call

sign, Dimension.

• Dynamic: Position (Longitude, Latitude), Time, Speed, Heading, Course

over ground (COG), Rate of turn (ROT), Navigational status.

• Trajectory-based : Destination, Estimated time of arrival (ETA), Draught,

Dangerousness.

Quality of data is variable and depends, first, on the quality of the

AIS device itself and the way it implements algorithms and protocols.

Therefore data like coordinates and speed can be more or less accu-

rate. Longitude and latitude are normally given in 1/10000 minute that

should give 0,18m. However, considering this quality factor and intrinsic

behaviour of GPS, the International Maritime Organization only consid-

ers an accuracy of 10m. The quality also depends on people on-board.

Indeed, some data like MMSI, name, destination or navigational status

are manually set and possibly wrong. Contextual information associated

to geographic positions helps to understand ships behaviours according

to space, time, destination, and ships’ types although they require error-

detection and filtering processes.

Space and time gaps: Time is not part of position reports as the

AIS had been initially designed for real-time purpose only. Each re-

ceived message has to be timestamped with the receiver’s clock. While

it communicates on a regular basis, the automatic identification system

does not send these position reports continuously. Transponders broad-

cast data to surrounding listeners at different sampling rates according
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to ship’s behaviours. Table 1.1 presents sampling rates for AIS class A.

Class B devices behave on a similar way but at different sampling rates.

This variation of time intervals is very specific to maritime domain and

can vary from 2 seconds for a fast moving ship to several minutes when

anchored.

Table 1.1 AIS shipborne mobile equipment reporting intervals.

Ship’s dynamic conditions - AIS Class A Freq.

Ship at anchor or moored and not moving faster than 3 knots 3 m

Ship at anchor or moored and moving faster than 3 knots 10 s

Speed between 0 and 14 knots 10 s

Speed between 0 and 14 knots and changing course 3 1
3

s

Speed between 14 and 23 knots 6 s

Speed between 14 and 23 knots and changing course 2 s

Speed over 23 knots 2 s

Speed over 23 knots and changing course 2 s

The range covered by all VTS on shore is limited and coverage areas

might not overlap everywhere. In such a context, the observation of the

maritime traffic at a given time lead to a partial view due to space

and time gaps. These received positions will mostly not correspond to

the selected times for snapshots analysis (e.g. a ship communicated its

position 10 seconds before the analysis time). This implies to consider

time intervals and the definition of trajectories for a successful analysis

and understanding of the ships’ behaviours. Let us note that these large

and variable gaps between two position reports will affect significantly

the way trajectories can be computed.

1.2 A Monitoring System Based on Data Mining
Processes

The increase of maritime location-based information brings opportuni-

ties for knowledge discovery on movement behaviours at sea over a long

period of time. This section shows how maritime data can be processed

and analysed in order to qualify a given position or trajectory with
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computed patterns. This process allows for instance to detect outliers

including real-time traffic monitoring. It is based on data-mining princi-

ples presented in other chapters, especially Chapter 6. The methodology

postulates that normal moving objects following a same itinerary at sea

behaves in a similar optimised way. Such a behaviour illustrated in figure

1.1 helps to compute accurate trajectory patterns.

Figure 1.2 presents the functional process used to extract spatio-

temporal patterns from spatio-temporal databases and qualify ship posi-

tions and trajectories. First, an acquisition step (Step 1 in figure 1.2) in-

tegrates AIS raw data from several monitoring systems into a structured

spatio-temporal database (STDB). In this database, zones of interest

(ZOI) define either an origin or a destination of a trip. Each identi-

fied ZOI is associated to its surface and linked to its neighbours (and

stored in the spatio-temporal database). Then trajectories are clustered

(Step 3) according to their itineraries in order to obtain Homogeneous

Groups of Trajectories (HGT ). A statistical analysis of these clusters

gives the median trajectory of each cluster and spatio-temporal inter-

vals around them (Step 4). Median trajectories and intervals are com-

bined together to define the spatio-temporal pattern of HGTs. These

patterns are stored in a knowledge database (Step 5). They can be used

either for geovisual analyses or to qualify in real-time ship positions and

trajectories (Step 6).

Spatio-temporal
data mining

Storage
Spatio-temporal

analysis Visualisation

Acquisition

Knowledge
database

Visualisation of
qualified positions
and trajectories

Display

Spatio-temporal
qualificationPatterns

Qualified
data

Spatio-temporal patterns
computation

Patterns

Similar trajectories 
cluster, filter, resample Area of

interest

Homogeneous group of trajectories

Real time data integration (AIS positions)

Spatio-temporal
databasePositions Positions Positions

Area of
interest

Traffic monitoring operator

1

3

4

2

5

6 7

8

Figure 1.2 Data mining and trajectories’ qualification process.

This functional process has been experimented and used in different

contexts: real-time tracking of sailing races and maritime navigation in

the coastal area of Brest: Processing and analysis of AIS raw data from

Aegean, North and East China seas, and from aggregated real-time data

flows from NATO countries. A maritime case study based on passenger
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ships in bay of Brest, France illustrates, throughout this chapter, this

qualification process for safety purpose (a sample dataset is available at

ChoroChronos repository, http://www.chorochronos.org).

1.2.1 Platform, Database Model

This functional process (figure 1.2) relies on a generic and scalable in-

formation system that has been designed for real-time monitoring and

spatio-temporal analysis of different types of moving objects at sea. So

far, the underlying platform developed is a Java-based computing sys-

tem based on a PostgreSQL/PostGIS spatial database for data ma-

nipulation and storage. It has been designed with four tiers client-server

architecture, and organised through a distributed data and processing

model. The information system is based on different functions:

• real-time integration of positioning information (figure 1.2, Step 1),

• spatio-temporal data mining (figure 1.2, Steps 3-5),

• spatio-temporal analysis (figure 1.2, Step 6),

• web-based visualisation (figure 1.2, Step 7).

The data model set up in the PostGIS database relies on the afore-

mentioned classification ofAIS messages: static, dynamic and trajectory-

based (table 1.2). Table labelled AISPositions stores all the dynamic po-

sition reports of ships. Table AISShips contains the static information,

especially ship’s type which can be used later to cluster trajectories of

similar ships (cargo, passenger ships, sailing ships...). Table AISTrips

is used to store ships’ trip based on information such as its destina-

tion and the type of goods it is carrying. In addition to these tables

that are containing raw information, some derived data can be added to

the database. Table Trajectories is obtained from positions of the table

AISPositions and from AISTrips in order to link position reports of a

same ship together and to reconstruct its path (table 1.2, field trajecto-

ries.shape). As table AISTrips gives information about ships’ destina-

tions, these destinations can be extracted as zones of interest (ZOI) and

stored in a new table Zones. The zones of interest can also be manually

defined by an operator according to various criteria such as regulations

(waiting areas, traffic channels, restricted areas), geography (obstacles,

isthmuses, straits, inlets), and economy (shops, loading sites, ports, fish-

ing areas). These zones of interest, represented as spatial zones, can be

connected together to define a zone graph in order to analyse ships’

mobility and describe their itinerary (Table Itineraries).
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Table 1.2 Database model.

Table Description

Data provided by AIS

AISPositions Position reports of each ship with additional dynamic
information
MMSI (numeric), Time (timestamp), Heading (nu-
meric), Speed (numeric), COG (numeric), ROT (nu-
meric), Coordinates (geometry), Status (text)

AISShips Static information about ships
MMSI, OMI Number (numeric), Name (text), Call-
sign (text), Type (text), Length (numeric), Width (nu-
meric)

AISTrips Trajectory-based information
MMSI, Draught (numeric), Danger (boolean), Destina-
tion (text), ETA (timestamp), Reported Time (times-
tamp)

Derived data added to the model

Trajectories Trajectories extracted from raw data
MMSI, Beginning Time (timestamp), End Time
(timestamp), Shape (geometry)

Zones Zones of interest (ZOI)
ZID (numeric), Name (text), Shape (geometry)

Itineraries Itineraries between ZOI
IID (numeric), Start Zone ID (numeric), End Zone ID
(numeric)

For richer analysis, taking geographic information into account might

also be of interest. The database could therefore include a large set of

tables obtained from official S − 57 vector charts that contain different

kind of objects useful for spatial analysis:

• Points of interest: buoys, shipwrecks, containers at sea, ...

• Lines of interest: coastlines, path, channels, crossing lines, ...

• Zones of interest: oil spill, ports, restricted areas, PSSA, ...

The zone graph of the bay of Brest is illustrated on figure 1.3.b. The

numerous dots shown in figure 1.3.a represent positions of ships. An

itinerary (I) is an arc between two zones of the graph. Parts c and d

of figure 1.3 illustrating trajectory patterns will be presented later in

sections 1.2.3 and 1.2.4.
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Figure 1.3 From raw data to trajectory pattern (Bay of Brest).

1.2.2 From Raw Positions to Trajectories

As shown in figure 1.3.a, the numerous position reports of ships can be

put together in order to build a trajectory and address point-based query

limits. Point-based queries (strictly based on raw positions) exhibit two

limits. First, a computing limit as point-based spatial queries are very

expensive in terms of computing cost. Second, it reaches a spatial limit

as queries are applied on reported locations provided by the AIS (a

ship passing through a narrow restricted area can report positions on

both sides, due to AIS behaviour and sampling frequency, even if the

trajectory of the ship crosses the zone). Therefore it is difficult to identify

whether a ship went through a narrow passage, entered a restricted
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area or computed exact minimal distances to the coast (this requires

interpolation and additional computing costs).

Trajectory features are required to query more correctly and efficiently

the AIS database. Further, it allows for distance computation based on

polylines instead of raw positions, route definitions, trajectory compar-

isons and clear identification of passage through an area or a line. Due

to the computing limit, number of positions for each trajectory must be

reduced using a filtering algorithm in order to apply spatial operators

and functions to efficiently answer end-users questions. This trajectories

production stage is located between Step 2 and 3 of the data mining and

qualification process (figure 1.2).

Many approaches can be considered to define what is a maritime tra-

jectory and build such trajectories from a sequence of AIS positions.

Let’s consider the time ordered sequence of all AIS positions of a given

ship defined by S = {p0, ..., pn}. A trajectory T of this ship can be

defined as a sub-sequence of S so that T ⊂ S ∧ T = (pb, ..., pj , ..., pe)

where pb stands for the beginning position of the trajectory and pe for

the ending one.

The main matter consists in selecting the beginning and ending po-

sitions from S in order to create a set of trajectories. These particular

positions (considered as stops) can be identified by the mobile object cin-

ematic (e.g. null speed), its spatial position (inside a zone of interest) or

the position report sampling rate (transmission gaps). As the position

reports from the AIS itself are not regular and depend on the ship’s

behaviour (table 1.1), a simple time and spatial threshold might not

be sufficient to properly detect gaps defining the beginning and ending

positions and split sequences of raw positions into trajectories. So, a dy-

namic spatial (δs) and temporal (δt) thresholds should be derived from

the enriched information provided by the AIS which contains heading

Hp, speed Sp, acceleration Ap, and rate of turn Rp indications. Such an

approach can rely on the number of missed frame(s) allowed (nmf ) and

the reporting intervals expected by the AIS device on-board (table 1.1)

to define the time (δt) and spatial (δs) thresholds. The next position of a

trajectory should be transmitted within δt and should be located within

a maximum δs distance. Otherwise, the last position is considered as a

stop and future positions of the sequence S will be associated to a new

trajectory.

Another way to define these stops within a sequence of positions is

to rely on zones of interest which can be identified in cartographic in-

formation or manually defined by an expert (cf. section 1.2.1). This in-
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evitably changes the semantic of the trajectory with respect to the pre-

vious method. However, such an approach suits better to the analysis of

maritime mobilities as ships always have a small number of well-defined

origins and destinations (harbour, mooring or waiting area). For a more

automatic process, such areas can be also created automatically using a

density analysis. In this context, a beginning position of a trajectory is a

position which is inside a zone Z and whose next position of the trajec-

tory is outside this zone. A ending position of a trajectory is a position

which is inside a zone Z and whose previous position of the trajectory is

outside this zone. Therefore, the sequence S of position of a given ship

can then be split into a subset of trajectories Γ = {T0, ..., TN} such as

Γ ⊆ S.

Once the positions are assigned to trajectories, a filtering process se-

lects the key positions of a given trajectory. A position is considered as a

key position when either the speed or the direction changes significantly.

The other positions can be removed.

The algorithm initially introduced by Douglas and Peuker in 1973 is

relevant as it performs well on typical straight trajectories of vessels.

The principles of the original algorithm are as follows. The start and

end points of a given polyline are connected by a straight line segment.

Perpendicular offsets for all intervening end points of segments are then

calculated from this segment, and the point with the highest offset is

identified. If the offset of this point is less than the tolerance distance,

then the straight line segment is considered adequate for representing

the line in a simplified form. Otherwise, this point is selected, and the

line is subdivided at this point of maximum offset. The selection pro-

cedure is then recursively applied to the two parts of the polyline until

the tolerance criteria is satisfied. Selected points are finally chained to

produce a simplified line.

This simplification algorithm for trajectory filtering could be adapted

in order to be more efficient. Conversely to Meratnia and By in 2004 who

used Euclidean Distance between points at a same time, the Haversine

distance can be used. This distance is the shortest distance (ds) between

two points measured along a path on the surface of a sphere. The per-

pendicular distance is therefore derived as a spatio-temporal distance

dST and is as follows:

dST (Ti, Tj , t) = ds(pi(t)− pj(t))
The spatio-temporal distances between position pi of the trajectory

Tj , and position p′i of the interpolated trajectory T ′
j taken at a same time

(relative time from the departure) are computed. Let us note that these



1.2 A Monitoring System Based on Data Mining Processes 13

Table 1.3 Results for filtering process with 10 m tolerance.

Vessel Trajectory % of position % of length
duration kept kept (km)

Bindy 28m 01s 14.0% 99.91%
(32/229) (11.284/11.294)

Port pilot boat 1h 07m 36s 21.7% 99.82%
(122/562) (24.846/24.892)

AB Valencia 7h 04m 20s 12.0% 99.98%
(279/2316) (175.07/175.109)

spatio-temporal distances are influenced by the speed and the direction

of the mobile object. A tolerance distance should be defined appropri-

ately. According to the GPS position accuracy, a tolerance of 10 meters

is acceptable.

In order to exemplify this filtering process, three vessel trajectories

have been selected for illustration purpose. The first trajectory concerns

a passenger boat, called Bindy whose trajectory is smooth and speed

is regular. The second trajectory is the one of a port pilot ship in the

harbour of La Rochelle. This trajectory is very sinuous, and several loops

appeared. The third trajectory is composed of long straight polylines

made by the cargo ship AB Valencia.

Table 1.3 summarises the filtering result. One can note that their

lengths are very close. This leads to a filtering process where more than

80% of the received positions can be filtered. The performance of the

filtering process is likely to increase for large ships, and decrease for

small ships due to the intrinsic characteristics of their navigation.

1.2.3 Trajectory Clustering Process

Once the trajectory concept is defined, different trajectory clustering

techniques can be used to get homogeneous groups of trajectories. Some

of them are presented in Chapter 6. Another technique based on the zone

graph and itineraries can be used to extract clusters from trajectories

following the same itinerary I. This set is called a homogeneous group

of trajectories (HGT ).

The first selection criterion of this approach is based on static infor-
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mation such as the type of mobile objects; This information is provided

by AIS messages (table 1.2). The second selection criterion is a geo-

graphical one. The first position of the trajectory (pb) must be the only

one within the departure zone (ZD) of the itinerary, and the last position

of the trajectory (pe) must be the only one within the arrival zone (ZA)

of the itinerary. Taking into account the frequency of trajectory sam-

ples and the speed of the mobile object, trajectories that cross a zone

of the graph should have at least one position within this zone. The

last selection criterion used is time. Some moving objects can follow this

itinerary periodically. These different trajectories can be distinguished

using a time interval. Finally, the trajectory should not intersect any

other zone of the graph GZ that does not belong to the itinerary I.

All valid trajectories previously extracted from the STDB compose the

HGT to be analysed.

Figure 1.3.c illustrates the extraction of the HGT of 500 passen-

ger ships’ trajectories following the itinerary between Brest and Naval

Academy (arc A-F of GZ). Some density differences can be noticed on

this HGT . This HGT highlights the outlier trajectories represented in

light blue (outside the deep blue dense area).

1.2.4 Spatio-Temporal Pattern Mining

Once the HGT clusters have been extracted and filtered, the next step

aims at defining the pattern followed by most trajectories of each HGT .

The main matter of this mining task is to deduce the median trajectory

followed by the HGT and the spatial and temporal density distribution.

Studies on several trajectory clusters showed that this data does not be-

long to any particular statistical distribution. Gaps between mean and

median values are important. Density around these values change fre-

quently. For example, for time dimension, it’s easier for mobile objects

to arrive late than early. For this kind of ordered set of data in descrip-

tive statics, box plot series are very useful to describe the evolution of

data according times. Box Plot, proposed by John Tukey in 1977, graph-

ically describes groups of numerical data through five important sample

percentiles :

• the sample minimum (smallest observation),

• the lower quartile or the 1st decile,

• the median,

• the upper quartile or the 9th decile,
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• the sample maximum (largest observation).

In our maritime context, data lower than the first decile or upper than

the 9th decile are considered as outliers. The idea is to enhance box

plot series to produce 2D plus time patterns. Each pattern summarises

a cluster of trajectories (HGT ) thanks to the median value, and the

symmetry and dispersion of the data set.

First of all, a synthetic median trajectory (Tm) can be computed using

an iterative refinement technique similar to the k-means algorithm. A

trajectory from the HGT is chosen as initial Tm. Tm is an ordered set

of positions: Pmi
. To optimize this algorithm, a trajectory with length

and time duration close to median length and median time duration

have to be chosen as initial Tm. Then, all positions of each trajectory

of this HGT are assigned to one position of Tm using a matching pro-

cess. Amongst existing algorithms, Dynamic Time Warping (DTW ) or

Fréchet matching can be employed. They can align trajectories’ positions

in order to minimise the sum of the spatial distances between matched

positions of two trajectories (DTW ), or minimise the maximum distance

between matched positions (Fréchet). They also take into account the

temporal order of the positions of trajectories. Figure 1.4 illustrates the

clusters of matched positions (Cmpi
) between positions of trajectories

of the HGT and the Pmi in yellow. Coloured lines show links between

matched positions.

Once every position is matched, the coordinate and the timestamp of

Pmi
are updated, by computation of median X (X̃), median Y (Ỹ ), and

median timestamp (t̃). A medoid approach is also possible but requires

more time for similar results. Assignment and update steps are repeated

until the distance (Fréchet distance or average distance) between two

consecutive points reaches a minimal threshold value.

As the studied mobile objects move in an open area, some of them

can move away from the main trajectory. Normal slight temporal or

spatial deviations must be distinguished from outliers. Two channels are

computed to distinguish the spatio-temporal outliers. First, the spatial

channel is defined. Once the median trajectory is computed, a statistical

density analysis can be performed on every cluster of matched positions

(Cmpi). These clusters are split into two subsets of positions Lpi (left

sided) and Rpi
(right sided) according to their side to the median posi-

tion Pmi
using the Pmi

heading. Then, spatial distances between posi-

tions from Lpi
and the Pmi

are computed. After a statistical analysis, the

ninth decile is chosen as left limit of the channel for this Cmpi
. The same
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Figure 1.4 Clusters of positions and spatial pattern.

process is computed to define the right limit of Cmpi
. The left (right) lim-

its are linked according to the time to define the left (right) limit of the

spatial channel. Figure 1.4 presents the limits of the spatial channel in

blue. Some positions are visually outside this channel and can be defined

as outliers. In the same way, the temporal channel is defined. Positions

of Cmpi
inside the spatial channel are split into two subsets, late sided

and early sided, according to the difference between relative timestamps

of positions and on the median matched position. The early and the

late limits are computed to define the temporal channel of each Cmpi
.

Positions outside the spatial channel are not taken into account because

these parts of trajectories including these positions could be shortcuts

or detours. Spatial and temporal channels at each relative time can be

combined to create the spatio-temporal channel which is then stored

in the knowledge database. Figure 1.3.d illustrate the spatio-temporal

channel of the HGT (figure 1.3.c) extracted from zone A to F of the

zone graph (figure 1.3.b). The spatial and temporal widths change. For

example, for the straight part of the pattern, the spatial width is bigger

than the curved part’s one.



1.2 A Monitoring System Based on Data Mining Processes 17

The spatio-temporal pattern defines five different zones (usual posi-

tion zone, right outlier zone, left outlier zone, late outlier zone, and early

outlier zone) for each relative time. This spatio-temporal pattern (me-

dian trajectory plus spatio-temporal channel) is a 2D+t enhancement of

the box plot concept. It can be illustrated in 3D using the Z axis to rep-

resent the relative time as shown in Figure 1.5. The median trajectory

is plotted in yellow, the usual 3D zones are the green boxes defined for

some key positions of median trajectory linked together. The early limits

of the spatio-temporal channel are outlined in green and the late lim-

its in red. Two examples of outliers trajectories (cyan and purple lines)

getting out of the spatio-temporal channel are presented in this figure.

The purple one includes late outlier position at the end of the trajectory.

The cyan one includes right outlier at the beginning of the trajectory.

This spatio-temporal pattern must be computed for each HGT . As new

positions are frequently acquired by the system, this spatio-temporal

channel could be improved by updating it periodically.

Figure 1.5 3D spatio-temporal pattern of an itinerary and outlier
trajectories.

Quality of the set of patterns depends on the precision of the ZOI

graph and the set of mobile object types. This quality could be verified

if the spatial and temporal distributions of positions of each Cmpi
is

unimodal. If several modes appear, a new analysis can be carried out to

split the set of mobile objects according to types or to add new ZOI in

the graph.
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1.2.5 Outlier detection

For each cluster, the associated spatio-temporal pattern splits the set of

trajectory positions in the outlier position group and the usual position

group. For a new vessel position, this knowledge data could be useful to

detect and to qualify this position. Therefore, this section suggests to

combine the knowledge database and the production database to obtain

an inductive database and to detect the outlier positions in real-time.

Let’s consider a new position p received. The position qualification pro-

cess is decomposed into three steps (illustrated in Figure 1.6):

• trajectory extraction from the last ZOI encountered by the mobile

object to p,

• matching process between this trajectory and the median trajectories

of a pattern,

• spatio-temporal comparison between p and selected pattern.

In the first step, database is queried to select the start position from

the trajectory. This position is the last one of the mobile object inside

the surface of one ZOI. Positions between p and this departure position

are timestamp-ordered to define a trajectory path. This last one does

not link two ZOIs consequently, it is called a partial trajectory (Tp). In

Figure 1.6, the last ZOI is A and the start position is (b). The partial

trajectory is the blue polyline. The second step must match Tp with part

of a median trajectory. This matching can be done according to:

• the type of the moving object,

• the geometry of the partial trajectory,

• the set of median trajectories from the departure ZOI,

• information about the course of the moving object to destination.

Unfortunately, information about the destination is often false or un-

known, so only the type of vessel and geometries properties can be used.

In order to match two linear geometries, the Fréchet discrete distance

is selected as DTW does not allow partial matching processes. Fréchet

distance gives the maximal distance between two lines. The Fréchet dis-

crete distance applied to two discrete trajectories (ordered set of points)

can match trajectories together preserving order of theirs points. Alt and

Godau (1995) demonstrate the advantage of this measure. Devogele in

2002 proposes to enhance this distance in order to compute the distance

between a line and an homologous part of another line. This partial

discrete Fréchet distance (dPdF ) is very useful to match a trajectory
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Figure 1.6 Outlier detection.

where only the departure is known. Thanks to this dPdF , the distance

between Tp and median trajectories from the same departure ZOI can

be computed. Only the spatio-temporal patterns for the same type of

this object are taken into account. Tp can be partially matched with one

median trajectory (T̃ ) where dPdF (Tp; T̃ ) is lower than the dPdF with

other median trajectories plus a threshold. dPdF (Tp; T̃ ) must also be

less than a maximal value. In the example, the distance between Tp and

two median trajectories (from ZOI A to E and from A to F ) are com-

puted. The second distance is the lowest, so Tp is matched with median

trajectories from A to F .

Finally, the position p could be qualified according to the selected pat-

tern. The relative time of p from departure ZOI is employed to infer the

spatio-temporal channel from the knowledge database. The 3D channel

is cut at this timestamp and the space is split into five areas (right,

left, usual, late and early). Qualification of p is given by the area that

contains p. For example, the spatial channel of the matched pattern is

limited with brown lines and the usual area at the relative time of p is

the green area. Position p is an outlier and is located in the late area, so

this object can be spatially qualified as ”inside the channel” but tem-

porally as ”running behind schedule”. Such real-time analysis methods

can be used to predict the destination and time of arrival of the ship

once an itinerary has been matched, and if the position is normal. The

destination prediction can be higher than 90%. In the same way, confi-

dence interval of time of arrival could be the width of temporal channel

at the arrival.
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1.3 Conclusion

Maritime environment represents an increasing potential in terms of

modelling, management and understanding of mobility data. The envir-

onment is typical and recently several real-time positioning systems, such

as the Automatic Identification System (AIS), have been developed for

keeping track of vessel movements. This chapter outlines different as-

pects of maritime mobilities understanding through pattern discovery

and analysis of ships’ trajectories. Underlying issues concern in partic-

ular trajectories modelling problems, trajectory querying and simplifi-

cation, similarity functions, classification and clustering algorithms, and

knowledge discovery (trends, unusual behaviours, and event detection).

Assuming that moving objects at sea that are following the same

itinerary behave in a similar way (considered as the normality), this

chapter illustrates the different steps leading to outliers’s detection. The

suggested methodology considers several steps. First, the data flow pro-

vided by the automatic identification systems is managed in structured

spatio-temporal databases. Then, data mining processes are used to ex-

tract trajectories (vessels of the same type) and spatio-temporal patterns

between two zones of interests (an origin, a destination). Each pattern

includes a median trajectory and a spatio-temporal channel that de-

scribes the dispersion of the set of trajectories. Such trajectory patterns

are meaningful to understand maritime traffic and detect outlier po-

sitions in real-time. Indeed, each new position (partial trajectory) can

be spatially and temporally qualified according to spatial and temporal

criteria. For end-users monitoring maritime traffic, such real-time qual-

ification of positions and trajectories tied with triggers automatically

executed when a new outlier is detected, and adapted geovisualisation

process are essential for safety purposes.

While complete, the suggested methodology still leaves aside several

additional challenges. First, cartographic information and environmen-

tal data such as currents, tides, and winds that affect ships’ movements

could be taken into account for further improvements. Many other algo-

rithmic approaches for trajectory representation and reconstruction can

be considered for other knowledge discovery objectives. Interactive and

adaptive geovisualisation is also of interest. Another challenge concerns

new itineraries. Many factors can influence ship’s behaviour leading to

the apparition of new itineraries. The proposed approach handles such

regular trajectories as outliers. An adaptive process should be there-

fore considered in order to detect a new pattern and possibility remove
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an outdated one. Finally, the approach described could be applied or

extended to other kind of moving objects evolving in open spaces espe-

cially those having 3-dimensional trajectories (e.g. underwater vehicles

or planes that behave quite similarly to ships).

1.4 Bibliographic Notes

Several maritime projects worked to enhance the tracking and monitor-

ing of vessels. This is portrayed for example in MarNIS MarNIS (2009).

These monitoring systems use ARPA and AIS sensors as input. Bole

et al. (2012) describes ARPA system in detail. In a similar way, the

Association of Marine Aids to Navigation and Lighthouse Authorities

describes the AIS in IALA (2004). These new tracking and monitoring

systems are parts of e-Navigation defined by the International Maritime

Organization in IMO (2008). e-Navigation relies on Electronic Naviga-

tion Chart (ENC) defined by the International Hydrographic Organi-

zation in IHO (2000).

If reader needs additional information about some special technical

points of this chapter, several articles can be read. For the filtering part

Meratnia and de By (2004) serves as the base for the filtering process pre-

sented in this chapter. For the similarity measure between trajectories,

Fréchet Distance has been selected. Alt and Godau (1995) explains why

this measure is better for this kind of data. Devogele (2002) describes the

algorithm for discrete partial Fréchet distance. Matching process based

on Dynamic Time Warping is also possible Sakoe and Chiba (1978).

Results are very similar but this later process can align only whole tra-

jectories. Some details about our architecture are introduced in Bertrand

et al. (2007). Finally, Etienne et al. (2012) details the clustering process

and the spatio-temporal pattern based on Box plot. This representation

is defined in Tukey (1977).
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