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PART ONE MOBILITY APPLICATIONS Maritime Monitoring

Results for filtering process with 10 m tolerance 1 Maritime Monitoring

Maritime Context

The maritime environment still represents an unexploited potential for modelling, management and understanding of mobility data. The environment is diverse, open but partly ruled, and covers a large spectrum of ships from small sailing-boats to super tankers which generally exhibit type-related behaviours. Similarly to terrestrial or aerial domains, several real-time positioning systems, such as the Automatic Identification System (AIS), have been developed for keeping track of vessel movements. However the huge amounts of data provided by these reporting systems are rarely used for knowledge discovery. This chapter aims at discussing different aspects of maritime mobilities understanding. This chapter enables readers to, first, understand the intrinsic behaviour of maritime positioning systems and then proposes a methodology to illustrate the different steps leading to trajectory patterns for the understanding of outlier detection.

Maritime Traffic

The maritime environment has a huge impact on the world economy and our everyday lives. Beyond, being a space where numerous marine species live, the sea is also a place where human activities (sailing, cruising, fishing, goods transportation...) evolve and increase drastically. For example, world maritime trade of goods volume has doubled since the seventies and reached about 90% of global trade in terms of volume and 70% in terms of value. This ever increasing traffic leads to navigation difficulties and risks in coastal and crowded areas where numerous ships exhibit different movement objectives (sailing, fishing, ...) which can be conflicting. The disasters and damages caused in the event of sea collisions can pose serious threats to the environment and human lives. Such disasters and damages often lead to highly negative effects on maritime ecosystems and are threats not only for the important populations of marine protected and endangered species, but also for economic, scientific, and cultural sectors. Safety and security have therefore become a major concern, especially in Europe.

Consideration of this security issue by the International Maritime Organization (IM O) has partly evolved in the last decade from ship design, education, navigational rules (e.g. International Regulations for Preventing Collisions at Sea: COLREGS), to technical answers for traffic monitoring. Nowadays, ships are fitted out with almost real-time position report systems whose objective is to identify and locate vessels at distance. Figure 1.1 shows, for instance, ships' trajectories obtained through the Automatic Identification System (AIS) in Europe during one month. often behave similarly, in straight lines, leading to visually noticeable trends and patterns. This naturally favours the analysis of aggregated behaviours in order to detect maritime routes, dense areas, evolution of the traffic, and finally at individual levels, abnormal trajectories and locations.

Maritime Positioning Systems

Two of the most successful systems used in maritime navigation and positioning are the Automatic Radar Plotting Aid (ARP A) and the Automatic Identification System (AIS). Both are used by vessels and Vessel Traffic Services on shore (V T S) in order to facilitate navigation decisions and warn about possible collisions. Vessel traffic services also take advantage of their higher computing and networking resources to store data locally and share them at national and worldwide levels (e.g. program SafeSeaNet of the European Maritime Safety Agency).

Marine radar with automatic radar plotting aid tracks vessels using radar contacts. Radar transmitter generates very short pulses of radio waves. When the radio waves of one of these pulses encounter any obstacle, such as a ship, shore line or big sea waves, part of the radiated energy is reflected and received by the emitting radar. The reflected pulse constitutes a radio echo. The time between the pulse and the echo can be accurately measured and used to calculate the distance between the radar and the echo. The direction of the echo reflects the direction of the pulse. When a target echo appears on a radar screen, an operator plots the relative motion of the echo in order to get the target's course and speed. The maximum range of an object detected is affected by the height of the radar antenna as well as the height of the object due to the curvature of the earth. In the same way, mountainous sea lines cause blind areas, and objects behind these areas cannot be detected. Bad weather conditions can also affect significantly the effectiveness of radar tracking. Thus, any target should be acquired and confirmed in at least five of ten scans over a period of 2 minutes in order to be brought to the attention of the operator with an identifier and coordinates.

Automatic Identification System has been recently implemented and made a mandatory standard on commercial and passenger ships. This system, whose objective is to identify and locate vessels at distance, automatically broadcasts location-based information through self organised wireless communications (V HF ). AIS usually integrates a transceiver system, a GP S receiver, and other navigational sensors on board, such as a gyrocompass and a rate of turn indicator. An AIS transponder runs in an autonomous and continuous mode, and regularly broadcasts a position report according to the ship's behaviour. The information is broadcast, within a range of 35 nautical miles, to surrounding ships and maritime authorities on the ground. There are two different classes of AIS that can be found on ships, search and rescue aircrafts and base stations on ground: Mandatory AIS (class A) for large vessels and low-cost AIS (class B) which has been introduced for smaller vessels. Devices from these two classes broadcast information at different time intervals (table 1.1), and at different ranges (typically 20-40 miles for class A and generally 5-10 miles for class B).

Enhanced worldwide positioning systems are emerging especially to address drawbacks of both systems which are complementary but imperfect. On one hand, ARP A is useful to detect and track vessels that might not have AIS devices on-board. On the other hand, it brings limited information and cannot identify a mobile object, and its coverage include blind areas. The automatic identification system is useful to obtain more complete information, but devices are not available on all ships and data can be falsified. The most important issue that guides evolutions concerns the limited tracking range of both systems which is insufficient to follow ships engaged on international journeys. Satellite communications systems are going to be more intensively employed, in particular to enhance or replace the AIS. For instance, Long-Range Identification and Tracking (LRIT ) reports vessel positions to their flag administration at least four times a day. Satellite-based AIS-monitoring service (S -AIS) uses satellite communications to broadcast AIS information. Nowadays, position reports for European coasts reach almost 1.5 million positions per day (about 72,000 ships). The ever increasing data flows provided by this evolution is going to emphasize issues on maritime data integration, fusion, filtering, processing, and analysis.

Location-based data: While radar data is limited to a tuple composed by an identifier, a position, and a related time, the automatic identification system broadcasts a wide range of richer information. Information systems on-board or in vessel traffic services generally merge AIS and radar positions into a single accurate one. When a ship is not fitted with an AIS (typically small boats), the reported information for data analysis is only limited to the aforementioned tuple. From our perspective, this does not impact the data-mining process and therefore motivate an analysis focusing on the AIS data more easily accessible. Transmitted AIS data comes from twenty-seven different messages each providing specific information either related to the behaviour of the AIS system or to ship's locations and characteristics. Positioning data defines point-based trajectories describing two-dimensional routes on the sea surface. That is, an ordered series of locations expressed in WGS84 format (latitude λ, longitude ϕ, time t) of a given mobile object with t indicating the timestamp of the location (λ, ϕ). Among all the received data, meaningful information that can be considered in a purpose of movement discovery and understanding can be classified in the three following categories: Quality of data is variable and depends, first, on the quality of the AIS device itself and the way it implements algorithms and protocols. Therefore data like coordinates and speed can be more or less accurate. Longitude and latitude are normally given in 1/10000 minute that should give 0,18m. However, considering this quality factor and intrinsic behaviour of GPS, the International Maritime Organization only considers an accuracy of 10m. The quality also depends on people on-board. Indeed, some data like MMSI, name, destination or navigational status are manually set and possibly wrong. Contextual information associated to geographic positions helps to understand ships behaviours according to space, time, destination, and ships' types although they require errordetection and filtering processes.

Space and time gaps: Time is not part of position reports as the AIS had been initially designed for real-time purpose only. Each received message has to be timestamped with the receiver's clock. While it communicates on a regular basis, the automatic identification system does not send these position reports continuously. Transponders broadcast data to surrounding listeners at different sampling rates according to ship's behaviours. Table 1.1 presents sampling rates for AIS class A. Class B devices behave on a similar way but at different sampling rates. This variation of time intervals is very specific to maritime domain and can vary from 2 seconds for a fast moving ship to several minutes when anchored. The range covered by all VTS on shore is limited and coverage areas might not overlap everywhere. In such a context, the observation of the maritime traffic at a given time lead to a partial view due to space and time gaps. These received positions will mostly not correspond to the selected times for snapshots analysis (e.g. a ship communicated its position 10 seconds before the analysis time). This implies to consider time intervals and the definition of trajectories for a successful analysis and understanding of the ships' behaviours. Let us note that these large and variable gaps between two position reports will affect significantly the way trajectories can be computed.

A Monitoring System Based on Data Mining Processes

The increase of maritime location-based information brings opportunities for knowledge discovery on movement behaviours at sea over a long period of time. This section shows how maritime data can be processed and analysed in order to qualify a given position or trajectory with computed patterns. This process allows for instance to detect outliers including real-time traffic monitoring. It is based on data-mining principles presented in other chapters, especially Chapter 6. The methodology postulates that normal moving objects following a same itinerary at sea behaves in a similar optimised way. Such a behaviour illustrated in figure 1.1 helps to compute accurate trajectory patterns. Figure 1.2 presents the functional process used to extract spatiotemporal patterns from spatio-temporal databases and qualify ship positions and trajectories. First, an acquisition step (Step 1 in figure 1.2) integrates AIS raw data from several monitoring systems into a structured spatio-temporal database (ST DB). In this database, zones of interest (ZOI) define either an origin or a destination of a trip. Each identified ZOI is associated to its surface and linked to its neighbours (and stored in the spatio-temporal database). Then trajectories are clustered (Step 3) according to their itineraries in order to obtain Homogeneous Groups of Trajectories (HGT ). A statistical analysis of these clusters gives the median trajectory of each cluster and spatio-temporal intervals around them (Step 4). Median trajectories and intervals are combined together to define the spatio-temporal pattern of HGT s. These patterns are stored in a knowledge database (Step 5). They can be used either for geovisual analyses or to qualify in real-time ship positions and trajectories (Step 6). This functional process has been experimented and used in different contexts: real-time tracking of sailing races and maritime navigation in the coastal area of Brest: Processing and analysis of AIS raw data from Aegean, North and East China seas, and from aggregated real-time data flows from N AT O countries. A maritime case study based on passenger ships in bay of Brest, France illustrates, throughout this chapter, this qualification process for safety purpose (a sample dataset is available at ChoroChronos repository, http://www.chorochronos.org).

Platform, Database Model

This functional process (figure 1.2) relies on a generic and scalable information system that has been designed for real-time monitoring and spatio-temporal analysis of different types of moving objects at sea. So far, the underlying platform developed is a Java-based computing system based on a P ostgreSQL/P ostGIS spatial database for data manipulation and storage. It has been designed with four tiers client-server architecture, and organised through a distributed data and processing model. The information system is based on different functions:

• real-time integration of positioning information (figure 1.2, Step 1), • spatio-temporal data mining (figure 1.2, Steps 3-5), • spatio-temporal analysis (figure 1.2, Step 6), • web-based visualisation (figure 1.2, Step 7).
The data model set up in the P ostGIS database relies on the aforementioned classification of AIS messages: static, dynamic and trajectorybased (table 1.2). Table labelled AISPositions stores all the dynamic position reports of ships. Table AISShips contains the static information, especially ship's type which can be used later to cluster trajectories of similar ships (cargo, passenger ships, sailing ships...). Table AISTrips is used to store ships' trip based on information such as its destination and the type of goods it is carrying. In addition to these tables that are containing raw information, some derived data can be added to the database. Table Trajectories is obtained from positions of the table AISPositions and from AISTrips in order to link position reports of a same ship together and to reconstruct its path (table 1.2, field trajectories.shape). As table AISTrips gives information about ships' destinations, these destinations can be extracted as zones of interest (ZOI) and stored in a new table Zones. The zones of interest can also be manually defined by an operator according to various criteria such as regulations (waiting areas, traffic channels, restricted areas), geography (obstacles, isthmuses, straits, inlets), and economy (shops, loading sites, ports, fishing areas). These zones of interest, represented as spatial zones, can be connected together to define a zone graph in order to analyse ships' mobility and describe their itinerary (Table Itineraries). For richer analysis, taking geographic information into account might also be of interest. The database could therefore include a large set of tables obtained from official S -57 vector charts that contain different kind of objects useful for spatial analysis:

• Points of interest: buoys, shipwrecks, containers at sea, ... • Lines of interest: coastlines, path, channels, crossing lines, ... 

From Raw Positions to Trajectories

As shown in figure 1.3.a, the numerous position reports of ships can be put together in order to build a trajectory and address point-based query limits. Point-based queries (strictly based on raw positions) exhibit two limits. First, a computing limit as point-based spatial queries are very expensive in terms of computing cost. Second, it reaches a spatial limit as queries are applied on reported locations provided by the AIS (a ship passing through a narrow restricted area can report positions on both sides, due to AIS behaviour and sampling frequency, even if the trajectory of the ship crosses the zone). Therefore it is difficult to identify whether a ship went through a narrow passage, entered a restricted area or computed exact minimal distances to the coast (this requires interpolation and additional computing costs).

Trajectory features are required to query more correctly and efficiently the AIS database. Further, it allows for distance computation based on polylines instead of raw positions, route definitions, trajectory comparisons and clear identification of passage through an area or a line. Due to the computing limit, number of positions for each trajectory must be reduced using a filtering algorithm in order to apply spatial operators and functions to efficiently answer end-users questions. This trajectories production stage is located between Step 2 and 3 of the data mining and qualification process (figure 1.2).

Many approaches can be considered to define what is a maritime trajectory and build such trajectories from a sequence of AIS positions. Let's consider the time ordered sequence of all AIS positions of a given ship defined by S = {p 0 , ..., p n }. A trajectory T of this ship can be defined as a sub-sequence of S so that T ⊂ S ∧ T = (p b , ..., p j , ..., p e ) where p b stands for the beginning position of the trajectory and p e for the ending one.

The main matter consists in selecting the beginning and ending positions from S in order to create a set of trajectories. These particular positions (considered as stops) can be identified by the mobile object cinematic (e.g. null speed), its spatial position (inside a zone of interest) or the position report sampling rate (transmission gaps). As the position reports from the AIS itself are not regular and depend on the ship's behaviour (table 1.1), a simple time and spatial threshold might not be sufficient to properly detect gaps defining the beginning and ending positions and split sequences of raw positions into trajectories. So, a dynamic spatial (δs) and temporal (δt) thresholds should be derived from the enriched information provided by the AIS which contains heading H p , speed S p , acceleration A p , and rate of turn R p indications. Such an approach can rely on the number of missed frame(s) allowed (n mf ) and the reporting intervals expected by the AIS device on-board (table 1.1) to define the time (δt) and spatial (δs) thresholds. The next position of a trajectory should be transmitted within δt and should be located within a maximum δs distance. Otherwise, the last position is considered as a stop and future positions of the sequence S will be associated to a new trajectory.

Another way to define these stops within a sequence of positions is to rely on zones of interest which can be identified in cartographic information or manually defined by an expert (cf. section 1.2.1). This in-evitably changes the semantic of the trajectory with respect to the previous method. However, such an approach suits better to the analysis of maritime mobilities as ships always have a small number of well-defined origins and destinations (harbour, mooring or waiting area). For a more automatic process, such areas can be also created automatically using a density analysis. In this context, a beginning position of a trajectory is a position which is inside a zone Z and whose next position of the trajectory is outside this zone. A ending position of a trajectory is a position which is inside a zone Z and whose previous position of the trajectory is outside this zone. Therefore, the sequence S of position of a given ship can then be split into a subset of trajectories Γ = {T 0 , ..., T N } such as Γ ⊆ S.

Once the positions are assigned to trajectories, a filtering process selects the key positions of a given trajectory. A position is considered as a key position when either the speed or the direction changes significantly. The other positions can be removed.

The algorithm initially introduced by Douglas and Peuker in 1973 is relevant as it performs well on typical straight trajectories of vessels. The principles of the original algorithm are as follows. The start and end points of a given polyline are connected by a straight line segment. Perpendicular offsets for all intervening end points of segments are then calculated from this segment, and the point with the highest offset is identified. If the offset of this point is less than the tolerance distance, then the straight line segment is considered adequate for representing the line in a simplified form. Otherwise, this point is selected, and the line is subdivided at this point of maximum offset. The selection procedure is then recursively applied to the two parts of the polyline until the tolerance criteria is satisfied. Selected points are finally chained to produce a simplified line.

This simplification algorithm for trajectory filtering could be adapted in order to be more efficient. Conversely to Meratnia and By in 2004 who used Euclidean Distance between points at a same time, the Haversine distance can be used. This distance is the shortest distance (d s ) between two points measured along a path on the surface of a sphere. The perpendicular distance is therefore derived as a spatio-temporal distance d ST and is as follows:

d ST (T i , T j , t) = d s (p i (t) -p j (t))
The spatio-temporal distances between position p i of the trajectory T j , and position p i of the interpolated trajectory T j taken at a same time (relative time from the departure) are computed. Let us note that these spatio-temporal distances are influenced by the speed and the direction of the mobile object. A tolerance distance should be defined appropriately. According to the GPS position accuracy, a tolerance of 10 meters is acceptable.

In order to exemplify this filtering process, three vessel trajectories have been selected for illustration purpose. The first trajectory concerns a passenger boat, called Bindy whose trajectory is smooth and speed is regular. The second trajectory is the one of a port pilot ship in the harbour of La Rochelle. This trajectory is very sinuous, and several loops appeared. The third trajectory is composed of long straight polylines made by the cargo ship AB Valencia.

Table 1.3 summarises the filtering result. One can note that their lengths are very close. This leads to a filtering process where more than 80% of the received positions can be filtered. The performance of the filtering process is likely to increase for large ships, and decrease for small ships due to the intrinsic characteristics of their navigation.

Trajectory Clustering Process

Once the trajectory concept is defined, different trajectory clustering techniques can be used to get homogeneous groups of trajectories. Some of them are presented in Chapter 6. Another technique based on the zone graph and itineraries can be used to extract clusters from trajectories following the same itinerary I. This set is called a homogeneous group of trajectories (HGT ).

The first selection criterion of this approach is based on static infor-mation such as the type of mobile objects; This information is provided by AIS messages (table 1.2). The second selection criterion is a geographical one. The first position of the trajectory (p b ) must be the only one within the departure zone (Z D ) of the itinerary, and the last position of the trajectory (p e ) must be the only one within the arrival zone (Z A ) of the itinerary. Taking into account the frequency of trajectory samples and the speed of the mobile object, trajectories that cross a zone of the graph should have at least one position within this zone. The last selection criterion used is time. Some moving objects can follow this itinerary periodically. These different trajectories can be distinguished using a time interval. Finally, the trajectory should not intersect any other zone of the graph G Z that does not belong to the itinerary I.

All valid trajectories previously extracted from the ST DB compose the HGT to be analysed. Figure 1.3.c illustrates the extraction of the HGT of 500 passenger ships' trajectories following the itinerary between Brest and Naval Academy (arc A-F of G Z ). Some density differences can be noticed on this HGT . This HGT highlights the outlier trajectories represented in light blue (outside the deep blue dense area).

Spatio-Temporal Pattern Mining

Once the HGT clusters have been extracted and filtered, the next step aims at defining the pattern followed by most trajectories of each HGT . The main matter of this mining task is to deduce the median trajectory followed by the HGT and the spatial and temporal density distribution. Studies on several trajectory clusters showed that this data does not belong to any particular statistical distribution. Gaps between mean and median values are important. Density around these values change frequently. For example, for time dimension, it's easier for mobile objects to arrive late than early. For this kind of ordered set of data in descriptive statics, box plot series are very useful to describe the evolution of data according times. Box Plot, proposed by John Tukey in 1977, graphically describes groups of numerical data through five important sample percentiles :

• the sample minimum (smallest observation),

• the lower quartile or the 1st decile,

• the median, • the upper quartile or the 9th decile,

• the sample maximum (largest observation).

In our maritime context, data lower than the first decile or upper than the 9th decile are considered as outliers. The idea is to enhance box plot series to produce 2D plus time patterns. Each pattern summarises a cluster of trajectories (HGT ) thanks to the median value, and the symmetry and dispersion of the data set.

First of all, a synthetic median trajectory (T m ) can be computed using an iterative refinement technique similar to the k-means algorithm. A trajectory from the HGT is chosen as initial T m . T m is an ordered set of positions: P mi . To optimize this algorithm, a trajectory with length and time duration close to median length and median time duration have to be chosen as initial T m . Then, all positions of each trajectory of this HGT are assigned to one position of T m using a matching process. Amongst existing algorithms, Dynamic Time Warping (DT W ) or Fréchet matching can be employed. They can align trajectories' positions in order to minimise the sum of the spatial distances between matched positions of two trajectories (DT W ), or minimise the maximum distance between matched positions (Fréchet). They also take into account the temporal order of the positions of trajectories. Figure 1.4 illustrates the clusters of matched positions (Cm pi ) between positions of trajectories of the HGT and the P mi in yellow. Coloured lines show links between matched positions.

Once every position is matched, the coordinate and the timestamp of P mi are updated, by computation of median X ( X), median Y ( Ỹ ), and median timestamp ( t). A medoid approach is also possible but requires more time for similar results. Assignment and update steps are repeated until the distance (Fréchet distance or average distance) between two consecutive points reaches a minimal threshold value.

As the studied mobile objects move in an open area, some of them can move away from the main trajectory. Normal slight temporal or spatial deviations must be distinguished from outliers. Two channels are computed to distinguish the spatio-temporal outliers. First, the spatial channel is defined. Once the median trajectory is computed, a statistical density analysis can be performed on every cluster of matched positions (Cm pi ). These clusters are split into two subsets of positions L pi (left sided) and R pi (right sided) according to their side to the median position P mi using the P mi heading. Then, spatial distances between positions from L pi and the P mi are computed. After a statistical analysis, the ninth decile is chosen as left limit of the channel for this Cm pi . The same process is computed to define the right limit of Cm pi . The left (right) limits are linked according to the time to define the left (right) limit of the spatial channel. Figure 1.4 presents the limits of the spatial channel in blue. Some positions are visually outside this channel and can be defined as outliers. In the same way, the temporal channel is defined. Positions of Cm pi inside the spatial channel are split into two subsets, late sided and early sided, according to the difference between relative timestamps of positions and on the median matched position. The early and the late limits are computed to define the temporal channel of each Cm pi . Positions outside the spatial channel are not taken into account because these parts of trajectories including these positions could be shortcuts or detours. Spatial and temporal channels at each relative time can be combined to create the spatio-temporal channel which is then stored in the knowledge database. The cyan one includes right outlier at the beginning of the trajectory. This spatio-temporal pattern must be computed for each HGT . As new positions are frequently acquired by the system, this spatio-temporal channel could be improved by updating it periodically. Quality of the set of patterns depends on the precision of the ZOI graph and the set of mobile object types. This quality could be verified if the spatial and temporal distributions of positions of each Cm pi is unimodal. If several modes appear, a new analysis can be carried out to split the set of mobile objects according to types or to add new ZOI in the graph.

Outlier detection

For each cluster, the associated spatio-temporal pattern splits the set of trajectory positions in the outlier position group and the usual position group. For a new vessel position, this knowledge data could be useful to detect and to qualify this position. Therefore, this section suggests to combine the knowledge database and the production database to obtain an inductive database and to detect the outlier positions in real-time. Let's consider a new position p received. The position qualification process is decomposed into three steps (illustrated in Figure 1.6):

• trajectory extraction from the last ZOI encountered by the mobile object to p, • matching process between this trajectory and the median trajectories of a pattern, • spatio-temporal comparison between p and selected pattern.

In the first step, database is queried to select the start position from the trajectory. This position is the last one of the mobile object inside the surface of one ZOI. Positions between p and this departure position are timestamp-ordered to define a trajectory path. This last one does not link two ZOIs consequently, it is called a partial trajectory (T p ). In Figure 1.6, the last ZOI is A and the start position is (b). The partial trajectory is the blue polyline. The second step must match T p with part of a median trajectory. This matching can be done according to:

• the type of the moving object,

• the geometry of the partial trajectory,

• the set of median trajectories from the departure ZOI,

• information about the course of the moving object to destination.

Unfortunately, information about the destination is often false or unknown, so only the type of vessel and geometries properties can be used. In order to match two linear geometries, the Fréchet discrete distance is selected as DT W does not allow partial matching processes. Fréchet distance gives the maximal distance between two lines. The Fréchet discrete distance applied to two discrete trajectories (ordered set of points) can match trajectories together preserving order of theirs points. [START_REF] Alt | Computing the Fréchet Distance Between two Polygonal Curves[END_REF] demonstrate the advantage of this measure. Devogele in 2002 proposes to enhance this distance in order to compute the distance between a line and an homologous part of another line. This partial discrete Fréchet distance (dP dF ) is very useful to match a trajectory where only the departure is known. Thanks to this dP dF , the distance between T p and median trajectories from the same departure ZOI can be computed. Only the spatio-temporal patterns for the same type of this object are taken into account. T p can be partially matched with one median trajectory ( T ) where dP dF (T p ; T ) is lower than the dP dF with other median trajectories plus a threshold. dP dF (T p ; T ) must also be less than a maximal value. In the example, the distance between T p and two median trajectories (from ZOI A to E and from A to F ) are computed. The second distance is the lowest, so T p is matched with median trajectories from A to F .

Finally, the position p could be qualified according to the selected pattern. The relative time of p from departure ZOI is employed to infer the spatio-temporal channel from the knowledge database. The 3D channel is cut at this timestamp and the space is split into five areas (right, left, usual, late and early). Qualification of p is given by the area that contains p. For example, the spatial channel of the matched pattern is limited with brown lines and the usual area at the relative time of p is the green area. Position p is an outlier and is located in the late area, so this object can be spatially qualified as "inside the channel" but temporally as "running behind schedule". Such real-time analysis methods can be used to predict the destination and time of arrival of the ship once an itinerary has been matched, and if the position is normal. The destination prediction can be higher than 90%. In the same way, confidence interval of time of arrival could be the width of temporal channel at the arrival.

Conclusion

Maritime environment represents an increasing potential in terms of modelling, management and understanding of mobility data. The environment is typical and recently several real-time positioning systems, such as the Automatic Identification System (AIS), have been developed for keeping track of vessel movements. This chapter outlines different aspects of maritime mobilities understanding through pattern discovery and analysis of ships' trajectories. Underlying issues concern in particular trajectories modelling problems, trajectory querying and simplification, similarity functions, classification and clustering algorithms, and knowledge discovery (trends, unusual behaviours, and event detection).

Assuming that moving objects at sea that are following the same itinerary behave in a similar way (considered as the normality), this chapter illustrates the different steps leading to outliers's detection. The suggested methodology considers several steps. First, the data flow provided by the automatic identification systems is managed in structured spatio-temporal databases. Then, data mining processes are used to extract trajectories (vessels of the same type) and spatio-temporal patterns between two zones of interests (an origin, a destination). Each pattern includes a median trajectory and a spatio-temporal channel that describes the dispersion of the set of trajectories. Such trajectory patterns are meaningful to understand maritime traffic and detect outlier positions in real-time. Indeed, each new position (partial trajectory) can be spatially and temporally qualified according to spatial and temporal criteria. For end-users monitoring maritime traffic, such real-time qualification of positions and trajectories tied with triggers automatically executed when a new outlier is detected, and adapted geovisualisation process are essential for safety purposes.

While complete, the suggested methodology still leaves aside several additional challenges. First, cartographic information and environmental data such as currents, tides, and winds that affect ships' movements could be taken into account for further improvements. Many other algorithmic approaches for trajectory representation and reconstruction can be considered for other knowledge discovery objectives. Interactive and adaptive geovisualisation is also of interest. Another challenge concerns new itineraries. Many factors can influence ship's behaviour leading to the apparition of new itineraries. The proposed approach handles such regular trajectories as outliers. An adaptive process should be therefore considered in order to detect a new pattern and possibility remove 1.4 Bibliographic Notes an outdated one. Finally, the approach described could be applied or extended to other kind of moving objects evolving in open spaces especially those having 3-dimensional trajectories (e.g. underwater vehicles or planes that behave quite similarly to ships).
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Figure 1 . 2

 12 Figure 1.2 Data mining and trajectories' qualification process.

•

  Zones of interest: oil spill, ports, restricted areas, P SSA, ... The zone graph of the bay of Brest is illustrated on figure 1.3.b. The numerous dots shown in figure 1.3.a represent positions of ships. An itinerary (I) is an arc between two zones of the graph. Parts c and d of figure 1.3 illustrating trajectory patterns will be presented later in sections 1.2.3 and 1.2.4.

Figure 1 . 3

 13 Figure 1.3 From raw data to trajectory pattern (Bay of Brest).

Figure 1 . 4

 14 Figure 1.4 Clusters of positions and spatial pattern.

  Figure 1.3.d illustrate the spatio-temporal channel of the HGT (figure 1.3.c) extracted from zone A to F of the zone graph (figure 1.3.b). The spatial and temporal widths change. For example, for the straight part of the pattern, the spatial width is bigger than the curved part's one. The spatio-temporal pattern defines five different zones (usual position zone, right outlier zone, left outlier zone, late outlier zone, and early outlier zone) for each relative time. This spatio-temporal pattern (median trajectory plus spatio-temporal channel) is a 2D+t enhancement of the box plot concept. It can be illustrated in 3D using the Z axis to represent the relative time as shown in Figure 1.5. The median trajectory is plotted in yellow, the usual 3D zones are the green boxes defined for some key positions of median trajectory linked together. The early limits of the spatio-temporal channel are outlined in green and the late limits in red. Two examples of outliers trajectories (cyan and purple lines) getting out of the spatio-temporal channel are presented in this figure. The purple one includes late outlier position at the end of the trajectory.

Figure 1

 1 Figure 1.5 3D spatio-temporal pattern of an itinerary and outlier trajectories.

Figure 1 . 6

 16 Figure 1.6 Outlier detection.

Table 1 .

 1 1 AIS shipborne mobile equipment reporting intervals.

	Ship's dynamic conditions -AIS Class A	Freq.
	Ship at anchor or moored and not moving faster than 3 knots	3 m
	Ship at anchor or moored and moving faster than 3 knots	10 s
	Speed between 0 and 14 knots	10 s
	Speed between 0 and 14 knots and changing course	3 1 3 s
	Speed between 14 and 23 knots	6 s
	Speed between 14 and 23 knots and changing course	2 s
	Speed over 23 knots	2 s
	Speed over 23 knots and changing course	2 s

Table 1 .

 1 2 Database model.

Table 1 .

 1 3 Results for filtering process with 10 m tolerance.

	Vessel	Trajectory	% of position	% of length
		duration	kept	kept (km)
	Bindy	28m 01s	14.0%	99.91%
			(32/229)	(11.284/11.294)
	Port pilot boat 1h 07m 36s	21.7%	99.82%
			(122/562)	(24.846/24.892)
	AB Valencia	7h 04m 20s	12.0%	99.98%
			(279/2316)	(175.07/175.109)

Author index

Ray, C., 1 Devogele, T., 1