
HAL Id: hal-01170967
https://hal.science/hal-01170967

Submitted on 2 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Similarity Measures for OLAP Sessions
Julien Aligon, Matteo Golfarelli, Patrick Marcel, Stefano Rizzi, Elisa

Turricchia

To cite this version:
Julien Aligon, Matteo Golfarelli, Patrick Marcel, Stefano Rizzi, Elisa Turricchia. Similarity Measures
for OLAP Sessions. Knowledge and Information Systems (KAIS), 2014, pp.463. �10.1007/s10115-013-
0614-1�. �hal-01170967�

https://hal.science/hal-01170967
https://hal.archives-ouvertes.fr

Under consideration for publication in Knowledge and Information
Systems

Similarity Measures for OLAP Sessions

Julien Aligon1, Matteo Golfarelli2, Patrick Marcel1, Stefano Rizzi2 and Elisa Turricchia2

1Laboratoire d’Informatique – Université François Rabelais Tours, France;
2DISI – University of Bologna, Italy

Abstract. OLAP queries are not normally formulated in isolation, but in the form of
sequences called OLAP sessions. Recognizing that two OLAP sessions are similar would
be useful for different applications, such as query recommendation and personalization;
however, the problem of measuring OLAP session similarity has not been studied so
far. In this paper we aim at filling this gap. First, we propose a set of similarity criteria
derived from a user study conducted with a set of OLAP practitioners and researchers.
Then we propose a function for estimating the similarity between OLAP queries based
on three components: the query group-by set, its selection predicate, and the mea-
sures required in output. To assess the similarity of OLAP sessions we investigate
the feasibility of extending four popular methods for measuring similarity, namely the
Levenshtein distance, the Dice coefficient, the tf-idf weight, and the Smith-Waterman
algorithm. Finally, we experimentally compare these four extensions to show that the
Smith-Waterman extension is the one that best captures the users’ criteria for session
similarity.

Keywords: OLAP; Similarity measures; Query comparison; Sequence comparison

1. Introduction and Motivation

The OLAP paradigm has revolutionized the way users access information in
multidimensional databases. This paradigm achieves the ambitious goal of cou-
pling a large querying expressiveness with a small query formulation effort, by
providing a set of operators (such as drill-down and slice-and-dice) to transform
one multidimensional query into another. As a consequence, OLAP queries are
not normally formulated in isolation, but in the form of sequences (OLAP ses-
sions). During an OLAP session focused on a phenomenon –such as sales– the
user analyzes the results of a query and, depending on the specific data she

Received xxx
Revised xxx
Accepted xxx

2 J. Aligon et al

sees, interactively chooses to apply one operator to determine a new query that
will give her a better view of that phenomenon. The extemporary sequences of
queries that are created this way are strongly related to the issuing user, to the
analyzed phenomenon, and to the current data.

The capability of recognizing that two OLAP sessions are similar would be
quite beneficial for different classes of applications, in particular:

– Query recommendation. Based on the current session and on the similar ses-
sions that were issued in the past, the system suggests further queries to help
users navigating the cube (Giacometti, Marcel and Negre, 2009).

– Query personalization. By comparing the current session with the similar ones,
the system extracts a set of preferences to better focus the analysis process
(Golfarelli, Rizzi and Biondi, 2011).

– Query formulation support. By comparing the current session with similar past
sessions, the system either auto-completes the query that a non-expert user is
currently writing (Khoussainova, Kwon, Balazinska and Suciu, 2010), or lets
her browse similar past sessions for query reuse (Khoussainova, Kwon, Liao,
Balazinska, Gatterbauer and Suciu, 2011).

The problem of measuring query similarity has been largely investigated in
the literature, mostly in the contexts of information retrieval and collabora-
tive filtering (see for instance Ögüdücü, 2010). Though some works are focused
on assessing the similarity between OLAP queries (Aouiche, Jouve and Dar-
mont, 2006; Golfarelli, 2003; Sapia, 2000), similarity of OLAP sessions has been
only marginally taken into account. The similarity of sessions of SQL queries,
disregarding order, is assessed by Chatzopoulou, Eirinaki, Koshy, Mittal, Poly-
zotis and Varman (2011). Aouiche et al. (2006) propose a basic measure for
similarity between sets of OLAP queries (again disregarding query order) aimed
at clustering a workload. Giacometti et al. (2009) compare OLAP sessions based
on the order of queries, using edit distance, but at the extensional level —which
may create efficiency problems. However, no systematic study exist to compare
different similarity measures for OLAP sessions; in particular, though both Gia-
cometti et al. (2009) and Chatzopoulou et al. (2011) aim at assisting the user, no
users were apparently involved in the design of the similarity measures proposed.

The contributions we give to fill this gap can be summarized as follows:

1. We propose a set of criteria for OLAP sessions similarity derived from the
results of a user study conducted with a set of practitioners and researchers
in the OLAP field.

2. We propose a function for estimating the similarity between OLAP queries
based on three components: the query group-by set, its selection predicate,
and the measures required in output.

3. To assess the similarity of OLAP sessions we investigate the feasibility of two-
level extensions (i.e., that compare query sequences based on the similarity
between their elements) of four popular methods for measuring similarity,
namely the Levenshtein distance, the Dice coefficient, the tf-idf weight, and
the Smith-Waterman algorithm.

4. We experimentally compare these four extensions from both points of view of
efficiency and effectiveness. The results clearly show that the Smith-Waterman
extension is the one that best captures the users’ criteria for session similarity.

Noticeably, our focus is on an application-independent evaluation of the exten-

Similarity Measures for OLAP Sessions 3

sions proposed. For this reason, effectiveness tests will be based on the results
of the user study and on a set of templates that model intuitive notions of what
similar OLAP sessions might be. Evaluating our extensions with specific ref-
erence to the different applications outlined above is outside the scope of this
paper.

The paper is structured as follows. Section 2 lists a number of requirements an
approach for computing OLAP session similarity should have, and Section 3 uses
these requirements to critically review the literature for candidate approaches.
Section 4 introduces the formalization we adopt for the multidimensional model.
Section 5 defines our query and session model and describes in detail the exten-
sions we propose, while Section 6 compares them through a set of experimental
tests. Finally, Section 7 draws the conclusions.

2. Requirements for OLAP Session Similarity

The goal of this section is to list a number of requirements to be used for (i) under-
standing which approaches, among all those proposed in the literature for query
and sequence comparison, are eligible for the OLAP context; and (ii) driving the
adaptation and extension of the eligible approaches towards the development of
an original approach to OLAP session comparison.

We start by proposing a first set of requirements, suggested by the specific
features of the OLAP context and by our experience in the field:

]1 Multidimensional databases store huge amounts of data, and OLAP queries
may easily return large volumes of results. Computing similarity at the ex-
tensional level, i.e., by comparing the data resulting from queries, would pose
serious efficiency problems in this context, and would discourage the use of
the approach for recommendation and personalization —that require a fast
interaction with users. Indeed, as noted by Chatzopoulou et al. (2011) in the
case of recommendation of SQL queries, there is a clear trade-off between
efficiency and quality, when a fragment based model or a tuple based model
is used. For this reason we compute similarity at the intensional level, i.e.,
considering only query expressions.

]2 It is unlikely that two OLAP sessions share identical queries; this feature
is better managed by having comparisons of single queries result in a score
rather than in a Boolean.

]3 A typical OLAP query is defined by the fact to be analyzed, one or more
measures to be computed, a set of hierarchy levels for aggregating measure
values, a predicate for filtering a subset of events, and a presentation. Though
the presentation chosen for displaying the results of an OLAP query (e.g., a
cross-tab or a pie-chart) certainly has an influence on how easily users can
interpret these results, it does not affect the actual informative content, so it
should not be considered when comparing queries.

To discover additional requirements for OLAP sessions similarity, we con-
ducted a user study. We prepared a questionnaire asking to give a qualitative
evaluation of the similarity between couples of OLAP queries and couples of
OLAP sessions over a simple multidimensional schema (more details will be

4 J. Aligon et al

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

%
 U

s
e
rs

measures group-by selection

Low sim.

Fair sim.

Good sim.

High sim.

Queries that differ in...

Low sim.

Fair sim.

Good sim.

High sim.

Low sim.

Fair sim.

Good sim.

High sim.

Fig. 1. Perceived similarities for OLAP queries only differing in one of their three main
components

given in Section 6.1). The questionnaire1 was submitted to all the teachers and
PhD students of the First European Business Intelligence Summer School (eBISS
2011)2, as well as to the master students of two specialistic courses on data ware-
house design at the Universities of Bologna (Italy) and Tours (France). All people
involved had some experience as OLAP users, most of them had some practice
of multidimensional design too. Overall, 41 answers were collected. The addi-
tional requirements emerging from an analysis of the questionnaire results can
be summarized as follows:

]4 The selection predicate is the most relevant component in determining the
similarity between two OLAP queries, followed by the group-by set. The less
important component is the set of measures to be returned.

]5 The order of queries is relevant in determining the similarity between two
sessions, i.e., two sessions sharing the same queries but in different orders
have low similarity.

]6 Recent queries are more relevant than old queries in determining the similarity
between two OLAP sessions. Since the time actually elapsed between two
consequent queries in a session depends on several unpredictable factors (e.g.,
the query execution time, the size and complexity of the data returned, the
user’s query formulation skills), only the order of queries will be considered.

]7 The longest the matching fraction of two sessions, the highest their similarity.

]8 Two sessions that match with one or more gaps (i.e., one or more non-
matching queries are present) are similar, but their similarity is lower than
the one of two sessions that match with no gaps.

In particular, as to point]4, in Figure 1 we show the percentages of users that
perceive a given level of similarity for couples of queries that only differ in either
their measure sets, or their selection predicates, or their group-bys. Apparently,
measures are the less important component in determining similarity since most
users perceive as highly similar two queries that only differ in their measures.
The opposite holds for the selection predicate component.

1 Available at http://www.julien.aligon.fr/recherche/similarityform.aspx.
2 http://cs.ulb.ac.be/conferences/ebiss2011/

Similarity Measures for OLAP Sessions 5

3. A Critical Review of Similarity Approaches

This section reviews the literature for similarity functions that could possibly be
used to compare OLAP sessions. Since OLAP sessions are sequences of queries,
we first review the approaches for comparing sequences (Subsection 3.1) and
then those for comparing database queries (Subsection 3.2). At the end of each
subsection, the requirements expressed in Section 2 are used to restrict the set
of approaches that are candidate to be adopted in the OLAP context.

3.1. Sequence Comparison Approaches

Comparing sequences has attracted a lot of attention especially in the context
of string processing, with applications like information retrieval, spell-checkers,
bioinformatics, and record linkage (Cohen, Ravikumar and Fienberg, 2003; Moreau,
Yvon and Cappé, 2008). The existing approaches are inspired by different prin-
ciples.

In token-based approaches sequences are treated as bags of elements, and
classical set similarity functions like Jaccard and Hausdorff, and all their variants,
can be used or adapted. Of course, these approaches are not sensible to the
order of sequence elements. When the sequences to be compared are taken from
a corpus, the popular term frequency-inverse document frequency (tf-idf) weight
can be adopted, which weighs each element of a sequence using (positively) their
frequency in the sequence and (negatively) their frequency in the corpus. A cosine
is then used to measure the similarity between two vectors of weights.

Some approaches compare two sequences by comparing their subsequences.
A basic approach here is to use the size of the longest common subsequence
(LCS).3 An approach often used in statistical natural language processing relies
on n-grams, i.e., substrings of size n of a given sequence (Brown, Pietra, de Souza,
Lai and Mercer, 1992). A popular similarity function using n-grams is the Dice
coefficient, an extension of the Jaccard index defined as twice the number of
shared n-grams over the total number of n-grams:

SimDice(s, s
′) =

2|ngrams(s) ∩ ngrams(s′)|
|ngrams(s)|+ |ngrams(s′)|

Other approaches compare sequences based on their edit distance, i.e., in
terms of the cost of the atomic operations necessary to transform one sequence
into another. Many edit distances have been proposed that differ on the number,
type, and cost of the edit operations. The most popular are the Levenshtein dis-
tance, that allows insert, delete, and substitute, and the sequence alignment dis-
tance, that allows match, replace, delete, and insert (Cohen et al., 2003; Navarro,
2001).

Finally, in two-level approaches sequences are compared based on the similar-
ity between their elements. A simple example is the Hausdorff distance between
sets, that relies on the distance between elements of the set. In (Monge and
Elkan, 1997) the similarity between sequences s and s′ is the average of the

3 Note that, while substrings are consecutive parts of a string, subsequences need not be.

6 J. Aligon et al

highest similarities between pairs of elements of s and s′:

SimM&E(s, s′) =
1

|s|
∑
si∈s

maxs′j∈s′{Simelem(si, s
′
j)}

where Simelem measures the similarity between single elements. In soft tf-idf
(Cohen et al., 2003), the tf-idf weight is extended using the similarity of sequence
elements; more precisely,

Simsoft(s, s
′) =

∑
si∈Closeθ(s,s′)

T (si, s) · T (si, s
′) ·maxs′j∈s′{Simelem(si, s

′
j)}

where T (si, s) is a normalized form of the tf-idf of element si within sequence s,
θ is a threshold, and Closeθ(s, s

′) is the set of elements si ∈ s such that there
is at least an element s′j ∈ s′ with Simelem(si, s

′
j) > θ. While the two previous

two-level approaches do not consider the ordering of elements within sequences,
the Smith-Waterman algorithm relies on element ordering; it can be used to
efficiently find the best alignment between subsequences of two given sequences
by ignoring the non-matching parts of the sequences (Smith and Waterman,
1981). It is a dynamic programming algorithm based on a matrix H whose value
in position (i, j) expresses the score for aligning subsequences of s and s′ that
end in elements si and s′j , respectively. This matrix is recursively defined based
on the following formula:

H(i, j) = max

0;

H(i− 1, j − 1) + Simelem(si, s
′
j);

maxk≥1{H(i− k, j)− costk};
maxk≥1{H(i, j − k)− costk}

where costk is the cost of introducing a gap of length k in the matching between
s and s′. Note that, here, the similarity between two elements can be negative, to
express that there is a mismatch between them; intuitively, the algorithm seeks
an optimal trade-off between the cost for introducing a gap in the matching
subsequences and the cost for including a poorly matching pair of elements.

We conclude this overview with a couple of brief observations about the
features a sequence comparison approach should have to be used for OLAP
sessions:

– In OLAP sessions, the order of queries is relevant (requirement]5), which
discourages from taking token-based approaches.

– Mostly, OLAP sessions do not share the very same queries (requirement]2).
This makes two-level approaches, that take advantage of a similarity function
for OLAP queries, more suitable for our purposes.

– Following requirement]8, it is important to be able to determine similar re-
gions in two globally different sessions, which favors a sequence alignment
approach.

3.2. Query Comparison Approaches

We can distinguish two main motivations for comparing database queries. The
first one is query optimization, where a query q to be evaluated is compared
to another query q′, with the goal of finding a better way of evaluating q. This

Similarity Measures for OLAP Sessions 7

motivation attracted a lot of attention, and covers classical problems like view
usability (Garcia-Molina, Ullman and Widom, 2008; Gupta and Mumick, 1999),
query containment (Abiteboul, Hull and Vianu, 1995), plan selection (Ghosh,
Parikh, Sengar and Haritsa, 2002), view selection (Aouiche et al., 2006; Golfarelli,
2003), and data prefetching (Sapia, 2000). The second, more recent, motivation is
to suggest a query to the user without focusing on its evaluation. In this context,
a query is compared to another one with the goal of helping the user exploring
or analyzing a database. This includes query completion (Yang, Procopiuc and
Srivastava, 2009) and query recommendation (Stefanidis, Drosou and Pitoura,
2009; Drosou and Pitoura, 2011; Chatzopoulou, Eirinaki and Polyzotis, 2009;
Chatzopoulou et al., 2011; Akbarnejad, Chatzopoulou, Eirinaki, Koshy, Mittal,
On, Polyzotis and Varman, 2010; Giacometti et al., 2009).

From a technical point of view, the approaches found in the literature can
be classified according to (i) the query model they adopt, i.e., the structure
used to compactly represent queries; (ii) the information source from which the
representation of each query is derived; and (iii) the function used to compute
similarity.

Query models range from a string corresponding to the uninterpreted SQL
sentence (Yao, An and Huang, 2005) to the set of tuples resulting from the query
evaluation (Stefanidis et al., 2009; Drosou and Pitoura, 2011). Queries can also
be modeled as vectors of features with either a score or a Boolean for each feature
(Akbarnejad et al., 2010; Agrawal, Rantzau and Terzi, 2006; Aouiche et al., 2006;
Ghosh et al., 2002), or as sets of fragments, each representing a particular part
of the query, such as the attributes required in output (SELECT clause) or the
table names in the cross product (FROM clause) (Sapia, 2000; Aligon, Golfarelli,
Marcel, Rizzi and Turricchia, 2011). Finally, queries are sometimes modeled as
graphs, following the database schema like in (Yang et al., 2009).

As to the information source, it can be the query expression, e.g., the unin-
terpreted query text (Yao et al., 2005) or the list of query fragments (selection
predicates, projection, etc.) (Garcia-Molina et al., 2008; Yang et al., 2009). When
fragments are used, only some of them may be taken into account; for instance,
only the selection attributes are used by Agrawal et al. (2006) and Yang et al.
(2009) whereas all fragments are used by Garcia-Molina et al. (2008) and Gupta
and Mumick (1999). The information source can also be related to the database
queried; more precisely, it can be:

– The database instance, e.g., the query result or the active domain of the
database attributes (Agrawal et al., 2006; Chatzopoulou et al., 2009; Chat-
zopoulou et al., 2011; Giacometti et al., 2009; Stefanidis et al., 2009; Drosou
and Pitoura, 2011). In the former case, the query can be evaluated either fully
(Stefanidis et al., 2009; Drosou and Pitoura, 2011) or partially (Giacometti
et al., 2009). In this category we also include an approach for measuring
similarity between multidimensional cubes (Baikousi, Rogkakos and Vassil-
iadis, 2011), because obviously an OLAP query returns a multidimensional
cube.

– The statistics used by the query optimizer, like table sizes and attribute car-
dinalities (Ghosh et al., 2002).

– The database schema, e.g., the keys defined or the index used to process a
selection (Ghosh et al., 2002; Golfarelli, 2003).

– The query log, if the query model relies on other queries that have previously
been launched on the same database. For instance, Chatzopoulou et al. (2009),

8 J. Aligon et al

Table 1. Query comparison approaches at a glance

Ref. Motivation Model Source Similarity Function
Gupta and Mumick (1999) optimization sets S, P, C fragment tests
Chatzopoulou et al. (2011) recommend. vector db instance, log cosine
Akbarnejad et al. (2010) recommend. vector S, P, log cosine
Agrawal et al. (2006) optimization vector S, db instance cosine
Aouiche et al. (2006) optimization vector S, P, log Hamming distance
Ghosh et al. (2002) optimization vector S, C, db statistics Hamming distance
Stefanidis et al. (2009) (1) recommend. vector log inner product
Stefanidis et al. (2009) (2) recommend. set db instance Jaccard index
Giacometti et al. (2009) recommend. set db instance Hausdorff distance
Sapia (2000) optimization sets S, P query repres. equality
Golfarelli (2003) optimization set P, db schema & statistics group-by lattice
Yao et al. (2005) recommend. string SQL sentence entropy
Yang et al. (2009) recommend. graph S, P, C query repres. equality

Chatzopoulou et al. (2011), Akbarnejad et al. (2010), Aouiche et al. (2006),
and Stefanidis et al. (2009) model a query in terms of its links with other
queries or how many times it appears in the log.

Finally, the result of query comparison can be a Boolean or a score, usu-
ally normalized in the [0..1] interval. The first case applies when queries are
tested for equivalence (Abiteboul et al., 1995) or view adaptation (Gupta and
Mumick, 1999), or when the goal is to group queries based on some criteria
(Sapia, 2000; Yang et al., 2009). In this case, the comparison can be a simple
equality test of the query representations (Sapia, 2000; Yang et al., 2009) or it can
be based on separate tests of query fragments (Gupta and Mumick, 1999). In the
second case, the comparison is normally based on classical functions applied to
the query representations. For instance, if the query is modeled as a vector, cosine
(Agrawal et al., 2006; Akbarnejad et al., 2010; Chatzopoulou et al., 2009; Chat-
zopoulou et al., 2011), inner product (Stefanidis et al., 2009), or Hamming dis-
tance (Aouiche et al., 2006) can be used; if the query is modeled as a set, the
Jaccard index (Stefanidis et al., 2009) or the Hausdorff distance (Giacometti
et al., 2009) can be used. Sometimes, more sophisticated similarity functions are
used. For instance, Yao et al. (2005) use a measure based on entropy to clus-
ter queries modelled as strings. In (Golfarelli, 2003), similarity between OLAP
queries is computed based on the relative position of the query group-by sets
within the group-by lattice.

Table 1 summarizes the approaches reviewed in this section. Note that Ste-
fanidis et al. (2009) propose two ways of comparing queries: (1) based on the
frequency of the query in the log, and (2) based on the query result. Letters S, P,
and C indicate the fragments used by the approach (S for selection, P for gener-
alized projection —including the group-by set and the aggregation operator—,
and C for cross-product).

We conclude this overview with some brief observations about the features a
query comparison approach should have to be used for OLAP queries:

– Following requirement]1, we solely rely on query expressions to derive query
representations. Then we exclude the approaches based on query evaluation
(Giacometti et al., 2009; Stefanidis et al., 2009; Drosou and Pitoura, 2011),
those depending on database instances (Chatzopoulou et al., 2009; Chat-
zopoulou et al., 2011; Agrawal et al., 2006; Baikousi et al., 2011), and those

Similarity Measures for OLAP Sessions 9

using query logs (Aouiche et al., 2006; Akbarnejad et al., 2010; Stefanidis
et al., 2009).

– Our goal is not query optimization, so we drop the approaches aimed at opti-
mization like Ghosh et al., 2002. In that particular work, the idea is to reuse
execution plans, that heavily rely on “physical” properties (like statistics and
presence of indexes); thus, query similarity is more related to how queries are
evaluated than to what they mean to users. This means that two queries that
should be very similar for our purposes could be found to be very dissimilar
using that approach if their execution plans are different (for instance, if one
has a WHERE clause and the other does not).

– According to requirement]2, query comparison should result in a score. So,
Boolean approaches like Gupta and Mumick, 1999 and Yang et al., 2009 are
less relevant in our context.

– OLAP queries are expressed using a friendly visual interface, and the syntax of
the underlying query language (e.g., MDX) is typically transparent to users.
This discourages the adoption of uninterpreted approaches like Yao et al.,
2005.

– According to requirement]3, the OLAP semantics is carried by a number
of different components (e.g., the aggregation level), which encourages the
adoption of a fragment-based query model like in Sapia, 2000, also taking into
account the peculiarities of the multidimensional model like in Golfarelli, 2003.

Among the query similarity functions proposed in the OLAP area, the one
that captures the above requirements at best is Aouiche et al., 2006. In that
approach, similarity between queries q and q′ is based on the number of at-
tributes they share within their SELECT, WHERE, and GROUP-BY clauses;
the normalized form we adopt here for comparison purposes (Section 6.1) is

σAJD(q, q′) =
|L ∩ L′|
|L ∪ L′|

where L and L′ are the attributes appearing in q and q′, respectively.

4. Formal Background

In this section we define the multidimensional model we will use to formalize
our approach and introduce a working example. For simplicity, we will define
hierarchies as total orders instead of partial orders, i.e., we will assume hierarchies
have no branches.4

Definition 4.1 (Multidimensional Schema). A multidimensional schema (or,
briefly, a schema) is a triple M = 〈L,H,M〉 where:

–L = {l1, . . . lp} is a finite set of levels, i.e., categorical attributes;

–H = {h1, . . . , hn} is a finite set of hierarchies, each characterized by (1) a
subset Lev(hi) ⊆ L of levels and (2) a roll-up total order �hi of Lev(hi);

4 While this enables a simpler formalization for group-by sets (see Definition 4.2), it does not
significantly impact on the overall approach. Indeed, partially ordered hierarchies could be
easily dealt with by extending Definition 5.4 to measure the distance between two group-by
sets on the multidimensional lattice as suggested by Golfarelli (2003).

10 J. Aligon et al

State

Region

AllCities

City Race

RaceGroup

MRN

AllRaces

Year

AllYears

RESIDENCE RACE TIME

Occ

AllOccs

OCCUPATION

Sex

AllSexes

SEX

Fig. 2. Roll-up orders for the five hierarchies in the CENSUS schema (MRN stands for Major-
RacesNumber)

–M = {m1, . . . ,ml} is a finite set of measures, i.e., numerical attributes.

For each hierarchy hi, the bottom level is denoted by ALLi, has a single possible
value, and determines the coarsest aggregation.

A group-by set includes one level for each hierarchy, and defines a possible
way to aggregate data.

Definition 4.2 (Group-by Set). Given schemaM = 〈L,H,M〉, letDom(H) =
Lev(h1)× . . .× Lev(hn); each g ∈ Dom(H) is called a group-by set of M.

Example 4.1. IPUMS is a public database storing census microdata for so-
cial and economic research (Minnesota Population Center, 2008). Its CENSUS
multidimensional schema has five hierarchies, namely RACE, TIME, SEX, OCCU-
PATION, and RESIDENCE, and measures AvgIncome, AvgCostGas, AvgCostWtr,
and AvgCostElect. It is City �RESIDENCE State (the complete roll-up orders are
shown in Figure 2); examples of group-by sets are:

g1 = 〈State,Race,Year,AllSexes,Occ〉
g2 = 〈State,RaceGroup,Year,AllSexes,Occ〉
g3 = 〈Region,AllRaces,Year,Sex,Occ〉
g4 = 〈AllCities,AllRaces,AllYears,AllSexes,AllOccs〉

The last group-by set specifies total aggregation. �

5. Measuring OLAP Session Similarity

As observed in Section 3, OLAP session comparison should rely on a two-level
approach that compares query sequences based on the similarity between their
elements. Consistently with this, after proposing in Subsection 5.1 our query
and session model, in Subsection 5.2 we separately discuss the function we adopt
for computing query similarity. Then we propose four techniques for computing
session similarity. The first one (Subsection 5.3) is an extension of the Leven-
shtein distance, and considers the atomic operations necessary to transform one
session into another. The second one (Subsection 5.4) is an extension of the
Dice coefficient, and is based on the number of common subsequences shared
by two sessions. The third one (Subsection 5.5) is an extension of the soft tf-idf
method and is based on the relative importance of queries within a corpus —in

Similarity Measures for OLAP Sessions 11

our case, the log of OLAP sessions. The last one (Subsection 5.6) is an extension
of the Smith-Waterman algorithm and considers the cost for aligning common
subsequences in two sessions.

5.1. Model

We consider a basic form of OLAP query centered on a single schema and char-
acterized by an aggregation and a selection expressed through a conjunctive
predicate. To be independent of the details related to logical design of multi-
dimensional schemata and to specific query plans, we express queries using an
abstract syntax.5 Following the observations made in Section 3, we opt for a
fragment-based query model with three components:

Definition 5.1 (OLAP Query). A query on schema M = 〈L,H,M〉 is a
triple q = 〈g, P,Meas〉 where:

1. g ∈ Dom(H) is the query group-by set;

2. P = {c1, . . . , cn} is a set of Boolean clauses, one for each hierarchy, whose
conjunction defines the selection predicate for q; conventionally, ci = TRUEi
if no selection on hi is made in q;

3. Meas ⊆M is the measure set whose values are returned by q.

An OLAP session is an ordered sequence of correlated queries formulated by
a user on a schema; typically (but not necessarily), each query in a session is
derived from the previous one by applying an OLAP operator (such as roll-up,
drill-down, and slice-and-dice).

Definition 5.2 (OLAP Session). An OLAP session of length v is a sequence
s = 〈q1, . . . , qv〉 of v queries on schema M.

Example 5.1. All the examples in this section will be based on a simple log
that consists of three sessions:

s =〈q1, q2, q3〉
s′ =〈q4, q5, q6, q7, q8〉
s′′ =〈q9, q10〉

Table 2 represents each query in terms of our query model; the involved group-by
sets are those used in Example 4.1, while the selection predicates are:

P1 = {TRUERESIDENCE, TRUERACE, (Year = 2005),

TRUEOCCUPATION, TRUESEX}
P2 = {TRUERESIDENCE, (RaceGroup = Chinese), TRUETIME,

TRUEOCCUPATION, TRUESEX}
P3 = {TRUERESIDENCE, (RaceGroup = Chinese), (Year = 2005),

TRUEOCCUPATION, TRUESEX}

5 In a relational implementation, a multidimensional schema is translated into a star schema;
in this case, the queries we consider can be classified as GPSJ - Generalized Projection /
Selection / Join queries (Gupta, Harinarayan and Quass, 1995), based on a star join between
the fact table and the dimension tables.

12 J. Aligon et al

Table 2. Queries for Example 5.1
Queries

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10
Group-by set g1 g2 g2 g2 g2 g3 g3 g2 g1 g1

Measures

AvgCostWtr X X X X X X X X
AvgCostElect X X X X X X
AvgCostGas X X X
AvgIncome X X X

Selection predicates P1 P1 P1 P2 P3 P1 P1 P1 P1 P1

The MDX formulation of query q4 is:

SELECT AvgCostWtr ON COLUMNS,

Crossjoin(OCCUPATION.Occ.members,

Crossjoin(TIME.Year.members,RESIDENCE.State.members)) ON ROWS

FROM CENSUS WHERE RACE.RaceGroup.[Chinese]

�

5.2. Query Similarity

In this section we define the similarity function used in our two-level approach
to compare OLAP queries. As remarked in the Section 3.2, this function must
consider the peculiarities of the multidimensional model, be computable based
on query expressions only, and result in a score. Consistently with Definition 5.1,
the function we propose is a combination of three components: one related to
group-by sets, one to selection predicates, and one to measure sets.

To define group-by set similarity, we first introduce the notion of distance
between levels in a hierarchy.

Definition 5.3 (Distance between hierarchy levels). Let M = 〈L,H,M〉
be a schema, hi ∈ H be a hierarchy, and l, l′ ∈ Lev(hi) be two levels. The
distance between l and l′, Distlev(l, l

′), is the difference between the positions of
l and l′ within the roll-up order �hi .

Definition 5.4 (Group-by set similarity). Let q and q′ be two queries, both
on schema M, with group-by sets g and g′, respectively, and let g.hi (g′.hi)
denote the level of hi included in g (g′). The group-by set similarity between q
and q′ is

σgbs(q, q
′) = 1−

∑n
i=1

Distlev(g.hi,g
′.hi)

|Lev(hi)|−1

n

where n is the number of hierarchies in M.

Our definition of selection similarity takes into account both the levels and
the constants that form the selection predicates. In particular, for each hierarchy,
two identical clauses are given maximum similarity, and non-identical clauses
are given decreasing similarities according to the distance between the hierarchy
levels they are expressed on.

Definition 5.5 (Distance between selection clauses). LetM = 〈L,H,M〉

Similarity Measures for OLAP Sessions 13

be a schema, and ci and c′i be two selection clauses over hierarchy hi ∈ H. Let
ci.hi ∈ Lev(hi) denote the level of hi involved in ci (conventionally, TRUEi.hi =
ALLi). The distance between ci and c′i is

Distclau(ci, c
′
i) =

{
0, if ci = c′i;

Distlev(ci.hi, c
′
i.hi) + 1, otherwise

According to this definition, the distance between two selection clauses on hi is
0 if they are expressed on the same level and the same constant, 1 if they are
defined on the same level but not on the same constant, greater than 1 if they
are defined on different levels.

Definition 5.6 (Selection similarity). Let q and q′ be two queries, both on
schemaM, with selection predicates P and P ′, respectively, with P = {c1, . . . , cn}
and P ′ = {c′1, . . . , c′n}. The selection similarity between q and q′ is

σsel(q, q
′) = 1−

∑n
i=1

Distclau(ci,c
′
i)

|Lev(hi)|

n

Finally, to define the measure similarity, we use the Jaccard index.

Definition 5.7 (Measure similarity). Let q and q′ be two queries, both on
schemaM, with measure sets Meas and Meas′, respectively. The measure sim-
ilarity between q and q′ is

σmeas(q, q
′) =

|Meas ∩Meas′|
|Meas ∪Meas′|

We can now define the similarity between two OLAP queries as the weighted
average of the three similarity components defined above.

Definition 5.8 (Similarity of OLAP queries). Let q and q′ be two queries,
both on schema M. The similarity between q and q′ is

σque(q, q
′) = α · σgbs(q, q′) + β · σsel(q, q′) + γ · σmeas(q, q′)

where α, β, and γ are normalized to 1.

Example 5.2. The similarity between queries q1 and q4 of Example 5.1 is com-
puted as follows:

σgbs(q1, q4) =1− (0/3 + 1/3 + 0/1 + 0/1 + 0/1)

5
= 0.933

σsel(q1, q4) =1− (0/4 + 3/4 + 2/2 + 0/2 + 0/2)

5
= 0.650

σmeas(q1, q4) =
1

2
= 0.500

σque(q1, q4) =0.694

(assuming for simplicity α = β = γ = 0.333). The overall query similarities for
sessions s and s′ are summarized in Table 3. �

5.3. Edit-Based Session Similarity

The Levenshtein distance compares two strings in terms of the cost of the atomic
operations (typically insertion, deletion, and substitution of a character) neces-

14 J. Aligon et al

Table 3. Query similarities for Example 5.2
q4 q5 q6 q7 q8

q1 0.694 0.927 0.844 0.622 0.866
q2 0.716 0.950 0.866 0.644 0.888
q3 0.661 0.838 0.755 0.616 0.833

sary to transform one string into another (Ristad and Yianilos, 1998). Given two
strings s and s′ of v and v′ characters, respectively, a (v + 1)× (v′ + 1) distance
matrix D of reals is recursively defined in terms of the deletion, insertion, and
substitution costs; the Levenshtein distance between s and s′ is found in the
bottom-right cell of D, that represents the minimum sum of the operation costs
to transform s in s′.

In the traditional formulation, an operation is applied in absence of a perfect
match (i.e., of an identity) between the compared characters. In our case this is
too restrictive, because OLAP queries are complex objects whose match is not
effectively captured by identity (see requirement]2). So we consider two queries
as matching when their similarity is above a given threshold θ, and we apply a
transformation operation when the similarity is under θ. Besides, we normalize
distances using the length of the longest of the two sessions involved, so that the
cost of a single mismatch is lower for longer sessions.

Definition 5.9 (Edit-Based Similarity of OLAP Sessions). Let s and s′

be two OLAP sessions on schema M, of lengths v and v′ respectively. Given a
matching threshold θ, the distance matrix for s and s′ is a (v + 1) × (v′ + 1)
matrix Dθ of reals recursively defined as follows:

Dθ(i, j) =

0, when i = 0 or j = 0

Dθ(i− 1, j − 1), when i,j > 0 and σque(si, s
′
j) ≥ θ

min

Dθ(i− 1, j) + 1;

Dθ(i, j − 1) + 1;

Dθ(i− 1, j − 1) + 1

 , when i,j > 0 and σque(si, s
′
j) < θ

where si is the i-th query of session s. The edit-based similarity between s and
s′ is:

σedit(s, s
′) = 1− Dθ(v, v

′)

max{v, v′}

Note that, like in most applications of the Levenshtein distance, all transforma-
tion costs are set to 1.6 As to complexity of this function, in the general case
it is O(v · v′) where v and v′ are the lengths of the two sessions (Wagner and
Fischer, 1974).

Example 5.3. With reference to Example 5.1 and using θ = 0.7, the min-
imum cost to transform s′ to s is obtained by matching queries as follows:
〈q1, q5〉, 〈q2, q6〉, 〈q3, q8〉 and deleting q4 and q7. Thus, it is σedit(s, s

′) = 1− 2
5 =

0.60. �

6 In the formula, the three rows of the min argument deal with deletions, insertions, and
substitutions, respectively.

Similarity Measures for OLAP Sessions 15

5.4. Subsequence-Based Session Similarity

An n-gram is a substring of size n of a given string (Brown et al., 1992). A
popular string similarity function based on n-grams is the Dice coefficient, an
extension of the Jaccard index defined as twice the number of shared n-grams
over the total number of n-grams in the two strings.

In the OLAP context, the concept of “shared” n-grams becomes that of
“similar” n-grams. Two n-grams r and r′ are similar if their queries are pairwise
similar, i.e., if their similarity is above threshold θ. To ensure symmetry while
being consistent with the original definition, in our two-level extension similarity
is defined as follows.

Definition 5.10 (Subsequence-Based Similarity of OLAP Sessions). Let
s and s′ be two OLAP sessions on schema M, and n ≥ 1. Given a matching
threshold θ, the subsequence-based similarity between s and s′ is

σsub(s, s
′) =

2×min{|SNgramθ(s, s
′)|, |SNgramθ(s

′, s)|}
|Ngram(s)|+ |Ngram(s′)|

where Ngram(s) is the set of n-grams of s and SNgramθ(s, s
′) ⊆ Ngram(s) is

the set of n-grams of s that have a similar n-gram in s′:

SNgramθ(s, s
′) = {r ∈ Ngram(s)|∃r′ ∈ Ngram(s′), σque(ri, r

′
i) ≥ θ ∀i = 1, . . . , n}

The complexity of this function is that of finding the n-grams of the two
sessions, which is O(v) (where v is the length of the longest one), plus that of
computing the sets SNgramθ(s, s

′), which is O((v − n)2).

Example 5.4. Applying the above definition to Example 5.1, with n=1, we

obtain σsub(s, s
′) = 2×min{1,2}

1+2 = 0.67. �

5.5. Log-Based Session Similarity

In the tf-idf approach, the similarity between two sets of tokens (in information
retrieval applications, tokens are lemmas and sets of tokens are documents) de-
pends on both the frequency of each token in the sets and its frequency in a
corpus. In our context, this approach can be adopted if the OLAP sessions to
be compared are taken from a log, to penalize the non-distinctive queries (i.e.,
those that are more frequent in the log) when assessing similarity.

To propose an extension of the tf-idf method we start by applying the defi-
nition of soft tf-idf given by Moreau et al. (2008):

Simsoft(s, s
′) =

∑
si∈Closeθ(s,s′)

T (si, s) · T (s′ji , s
′) · σque(si, s′ji)

16 J. Aligon et al

where θ is a threshold,

Closeθ(s, s
′) = {si ∈ s|∃s′j ∈ s′, σque(si, s′j) > θ},

T (si, s) =
tfidf(si, s)√∑
sk
tfidf(sk, s)2

,

tfidf(si, s) = tf(si, s) · idf(si, s) =
nsi,s
|s|
· log |L|
|{s ∈ L|si ∈ s}|

,

s′ji = argmaxs′j∈s′{σque(si, s
′
j)},

nsi,s is the number of times si appears in s, and L is the set of OLAP sessions
in the log. Intuitively, Closeθ(s, s

′) is the set of queries in sessions s that have
some similarity to a query in session s′; tfidf(si, s) is directly proportional to
the frequency of query si in session s and inversely proportional to the frequency
of si in the log L (tfidf(si, s) = 0 when all session in L include si); T (si, s) is a
normalized form of tfidf(si, s); s

′
ji

is the query in s′ that is most similar to si.
This definition cannot be immediately used in our case for the following

reasons:

1. It uses the “crisp” definition of tf-idf in the definition of T whereas in our case,
given that it is unlikely to find the same query twice in an OLAP log, a “soft”
version (i.e., one based on query similarity) should be used instead.

2. The soft tf-idf is not symmetric, which is not desirable for a similarity function.

3. There may be more than one query s′ji in s′ that maximizes σque with si,
which may not be relevant in the context of named entity matching (Moreau
et al., 2008), but is definitely relevant in the OLAP context.

4. As pointed out by Moreau et al. (2008), there is a problem with counting that
makes the similarity not normalized.

To cope with the first issue, we inject the similarity σque in the definition of
tf-idf. By replacing equality with similarity, a two-level tf-idf can be computed
as:

tfidf2(si, s) =
|Closeθ(si, s)|∑

sk∈Q |Closeθ(sk, s)|
· log |L|
|{s ∈ L|Closeθ(si, s) 6= ∅}|

where Q is the set of all queries in L and Closeθ(si, s) is the set of queries of s
that are similar to si.

Symmetry can be achieved by modifying the definition of similarity to work
on pairs of queries, each relating a query in one session with one of its closest
queries in the other session. This set of pairs is defined by:

Rθ(s, s
′) = {〈si, s′k〉|si ∈ s, s′k ∈ Closestθ(si, s′))}∪

{〈sl, s′j〉|s′j ∈ s′, sl ∈ Closestθ(s′j , s)}

where Closestθ(si, s) is the set of queries of s that have maximum similarity
with si. Note that a query in a session appears more than once in Rθ(s, s

′) if
there is more than one query in the other session with maximum similarity. This
solves the third issue.

Finally, to cope with the fourth issue, the similarity is computed as the cosine
of the two vectors obtained by taking the tfidf2 of all the first (respectively,
second) queries of the pairs.

Similarity Measures for OLAP Sessions 17

Definition 5.11 (Log-Based Similarity of OLAP Sessions). Let s and s′

be two OLAP sessions on schema M. The log-based similarity between s and s′

is

σlog(s, s
′) =

∑
〈si,s′j〉∈Rθ(s,s′)

T2(si, s, s
′)× T2(s′j , s

′, s)× σque(si, s′j)

where

T2(si, s, s
′) =

tfidf2(si, s)√∑
〈si,s′j〉∈Rθ(s,s′) tfidf2(si, s)2 +

∑
Closestθ(si,s′)=∅ tfidf2(si, s)2

T2(s′j , s
′, s) =

tfidf2(s′j , s
′)√∑

〈si,s′j〉∈Rθ(s,s′) tfidf2(s′j , s
′)2 +

∑
Closestθ(s′j ,s)=∅

tfidf2(s′j , s
′)2

The complexity of this function should obviously be expressed not only in
terms of the sessions to be compared but also in terms of the size of the log;
it turns out that the complexity of computing Rθ(s, s

′) is O(v2), while that for
computing all the tfidf2 terms it is O(v× |Q|) where v the length of the longest
session in the log.

Note that, as any cosine similarity, σlog can be easily turned into the angle
distance arcos(σlog), which is a metric (Bustos and Skopal, 2011).

Example 5.5. With reference to Example 5.1, we focus on computing the log-
based similarity between s and s′. The set of query pairs used in the computation
of σlog(s, s

′) is R0.7(s, s′) = {〈q1, q5〉, 〈q2, q5〉, 〈q3, q5〉, 〈q2, q4〉, 〈q2, q6〉, 〈q2, q8〉};
the two components of the tfidf2 weights for each of these queries are as follows:

tf2(q1, s) =0.333 , idf2(q1, s) =0.176

tf2(q2, s) =0.333 , idf2(q2, s) =0.176

tf2(q3, s) =0.333 , idf2(q3, s) =0.000

tf2(q4, s
′) =0.117, idf2(q4, s

′) =0.176

tf2(q5, s
′) =0.235, idf2(q5, s

′) =0.176

tf2(q6, s
′) =0.235, idf2(q6, s

′) =0.176

tf2(q8, s
′) =0.235, idf2(q8, s

′) =0.000

Note that, though q3 and q8 are similar (same group-by set, same selection
predicate, and nearly the same set of measures) and should positively contribute
to the similarity of s and s′, they do not actually enter in the computation of
σlog(s, s

′). Indeed, queries similar to q3 and q8 can be found in each session of the
log, making their idf weight 0. By applying Definition 5.11 we get σlog(s, s

′) =
0.479, while σlog(s, s

′′) = σlog(s
′, s′′) = 0. �

5.6. Alignment-Based Session Similarity

As emerged in Section 3.1, a comparison of OLAP sessions should support sub-
sequence alignment, keep query ordering into account, and allow gaps in the
matching subsequences. The Smith-Waterman algorithm mentioned in Section

18 J. Aligon et al

3.1 has all these features. It relies on a distinction between matching elements
(whose similarity is positive) and mismatching elements (whose similarity is neg-
ative), and is based on a matrix whose cells show the score for aligning two se-
quences starting from a specific couple of elements. Each score is the result of a
trade-off between the cost for introducing a gap in the matching subsequences
and the cost for including a mismatching pair of elements.

Unfortunately, none of the implementations available in the literature can be
directly applied here for different reasons:

– The algorithm was originally aimed at molecular comparison, so sequence ele-
ments were taken from a set that is known a priori (the set of all amino acids).
This allows matching and mismatching pairs to be enumerated and a similar-
ity score to be assigned in advance to each possible couple of elements. In the
OLAP context matching elements are queries, and the domain of the possible
OLAP queries is huge (requirement]2); besides, the similarity between two
queries is always positive, so separating matching and mismatching queries
requires the adoption of a threshold.

– For the same reason mentioned above, in all previous implementations the cost
for introducing a gap could be assigned in advance to each possible couple of
elements. Conversely, in our case it must be determined at runtime based on
the two specific sessions being compared (requirement]8).

– In all previous implementations all matchings were considered to be equally
important, while in OLAP sessions a matching between recent queries should
be given more relevance (requirement]6).

To address all these issues, we propose an extension of the Smith-Waterman
algorithm that relies on the matrix defined below. The value in position (i, j) of
this matrix is a score that expresses how “well” two sessions s and s′ match when
they are aligned ending in queries si and s′j . Intuitively, each score is recursively
calculated by progressively adding the similarities between all pairs of matching
queries in the two sessions. Threshold θ is used to distinguish matches from
mismatches; a time-discounting function ρ(i, j) is used to promote alignments
based on recent queries; finally, a gap penalty δ is used to discourage discontinuous
alignments.

Definition 5.12 (OLAP Session Alignment Matrix). Let s and s′ be two
OLAP sessions on schemaM, of lengths v and v′ respectively. Given a matching
threshold θ, the (OLAP session) alignment matrix for s and s′ is a (v+1)×(v′+1)
matrix A of reals recursively defined as follows:

A(i, j) =

0, when i = 0 or j = 0

max

0;

A(i− 1, j − 1) + (σque(si, s
′
j)− θ) · ρ(v − i, v′ − j);

max1≤k<i{A(k, j)− δ · (i− k)};
max1≤k<j{A(i, k)− δ · (j − k)}

 , else

where δ is the average similarity between all couples of queries in s and s′ whose
similarity is above θ:

δ = avg(i,j):σque(si,s′j)≥θ{σque(si, s
′
j)} ,

Similarity Measures for OLAP Sessions 19

Fig. 3. The time-discounting function ρ(i, j) with ρmin = 0.66 and slope = 4

ρ is a two-dimensional logistic sigmoid function:

ρ(i, j) = 1− 1− ρmin
1 + eslope−i−j

,

ρmin is the minimal value assumed by ρ (i.e., the maximum time discount), and
slope rules the position where the slope is steepest (Figure 3).

Some observations on the above definition:

– The use of the term σque(si, s
′
j)−θ implies that query pairs whose similarity is

above (below) θ are considered as matches (mismatches). Although a “sharp”
threshold is used, the score of a matching pair and the cost of a mismatching
pair turn out to be proportional to the distance of that pair similarity from θ.

– The definition given of the gap penalty δ is such that it guarantees a gap
penalty to be payed if it enables a good match (i.e. a match higher than
the average). Note that a penalty only related to the threshold could lead to
underestimating or overestimating the impact of a gap on the overall similarity.

– The time-discounting function ρ leads match and mismatch scores to decay
when moving backwards along the two sessions; it is maximum and equal to
1 for the ending queries of the two sessions.

The optimal alignment between s and s′ is determined by the highest value
in A, A, that we call alignment score. The positions i and j such that A(i, j) = A
mark the end of the matching subsequences of s and s′.

The alignment score is not really a similarity value, since it is not limited in
the interval [0..1]. This creates problems when comparing sessions with difference
length. Then we define OLAP session similarity by normalizing the alignment
score:

Definition 5.13 (Alignment-Based Similarity of OLAP Sessions). Let s
and s′ be two OLAP sessions on schemaM, of lengths v and v′ respectively (with
v ≤ v′), and let A be the alignment score for s and s′. The alignment-based sim-

20 J. Aligon et al

Table 4. Threshold-filtered and discounted query similarities, (σque(si, s
′
j)−θ) ·ρ(v−i, v′−j),

for Example 5.6
q4 q5 q6 q7 q8

q1 -0.004 0.171 0.120 -0.071 0.160
q2 0.013 0.208 0.151 -0.053 0.186
q3 -0.032 0.126 0.053 -0.082 0.132

Table 5. OLAP session alignment matrix for Example 5.6
q4 q5 q6 q7 q8

q1 0.000 0.171 0.120 0.000 0.160
q2 0.013 0.208 0.322 0.191 0.186
q3 0.000 0.139 0.261 0.241 0.323

ilarity between s and s′ is

σali(s, s
′) =

A

(1− θ)
∑v
k=1 ρ(k, k)

where the normalizing factor is the alignment score for two identical sessions of
length v.

Like for edit-based similarity, the complexity of this function is known to be
O(v ·v′) where v and v′ are the lengths of the two sessions (Li and Durbin, 2010).

Example 5.6. Again we focus on comparing s and s′ of Example 5.1. Table
4 reports the results obtained by filtering query similarities with θ = 0.7 and
applying the time-discounting function ρ as shown in Definition 5.12. Note that
a negative value represents a mismatch, and a positive one a match. Table 5
shows the OLAP session alignment matrix for s and s′; the cells in bold denote
alignments between two queries (e.g., q1 is aligned with q5), those in italics refer
to gaps. Alignments on recent queries are favored, so q3 is aligned with q8. Query
q4 is not involved in the alignment due to the low similarity it has with the other
queries in s. In q7, a gap penalty is paid to gain the good match between q3

and q8. The overall similarity between s and s′ is 0.323 (the highest value in the
matrix). After normalization, we obtain σali(s, s

′)=0.387. �

The properties of the proposed similarity function can be evaluated in terms
of the distance function it induces using the standard transformation σali =
1/(1 + Distali). As stated by Bustos and Skopal (2011) for the original Smith-
Waterman approach, Distali is not a metric because, while it is non-negative and
symmetrical, it is not reflexive and it does not satisfy the triangular inequality as
shown in Example 5.7. In particular, the triangular inequality cannot be satisfied
because this approach is based on a local alignment.

Example 5.7. Let s = 〈q1, q2〉, s′ = 〈q1, q2, q3, q4〉, and s′′ = 〈q3, q4〉 be three
sequences, where σque(qi, qj) = 0 if i 6= j. It is

Distali(s, s
′′) =∞ , Distali(s, s

′) = Distali(s
′, s′′) = 0

which obviously contradicts the triangle inequality axiom. Besides, s′ has zero
distance from both s and s′′ though s 6= s′ 6= s′′. �

Similarity Measures for OLAP Sessions 21

Table 6. Consensus and matching factors for OLAP query comparison user tests
Consensus σAJD σque

φscore φrank SM RM SM RM
Test 1 70% 94% 70% 94% 70% 94%
Test 2 56% 70% 56% 56% 56% 70%
Test 3 41% 64% 34% 57% 41% 64%
Test 4 73% 93% 49% 93% 59% 93%

6. Validation and Comparison

This section discusses the outcomes of the tests we run to answer three main
questions: Do the proposed solutions properly capture the idea of similarity as
perceived by the users? Do they adequately express the similarity criteria proposed
in Section 2? What are their discriminant capabilities? While the first question
will be answered in Subsection 6.1, the remaining two questions will be discussed
in Subsection 6.2.

6.1. User Tests

As stated in Section 3.2, we submitted a questionnaire to 41 persons with dif-
ferent OLAP skills. The results have been used in the first stages of this work
to understand how OLAP session similarity is perceived by users, and they will
be used here to verify if the proposed methods capture the users’ perception of
similarity. To enable a better interpretation of the results, for each questionnaire
test we show the consensus φ, i.e., the degree of agreement among raters, defined
as the percentage of users who gave the majority judgement.

The first four tests of the questionnaire were focused on OLAP query com-
parison. In each test the users were asked to rate the similarity between a given
query qc and three other queries {q1, q2, q3} in both absolute (using four scores:
low, fair, good, and high) and relative terms (i.e., by ranking queries in order of
similarity). All queries were focused on the complete CENSUS schema (including
5 hierarchies and 6 measures); they were basic OLAP queries as of Definition
5.1 and were presented in a graphical way. We used the results obtained in two
ways: (i) to compare σque with function σAJD mentioned in Section 3.2 in terms
of compliance with the users’ judgments; and (ii) to set the weights of the three
components of our query similarity function σque.

As to (i), we defined two matching factors as follows:

– The score matching factor SM for σ is the percentage of times the score given
by a user is the same returned by σ. To compute it, we first discretized the
values returned by σ in ranges corresponding to low, fair, good, and high.

– The rank matching factor RM for σ is the percentage of cases in which the
rankings σ provides match with those given by users (e.g., qc was judged to
be more similar to qi than to qj , and σ(qc, qi) > σ(qc, qj)).

As to (ii), we tuned the weights through an optimization process whose goal
function was the maximization of the correspondence with the questionnaire
results. To avoid overfitting we used a ten folds cross-validation approach. The
ranges for the weights were chosen consistently with requirement]4 in Section 2:
α ∈ [0.2, 0.5], β ∈ [0.35, 0.75], γ ∈ [0.05, 0.45]. The function to be optimized was
the average value of RM for σque in Tests 1 to 4, that measures the percentage

22 J. Aligon et al

Fig. 4. Questionnaire matching for σque as a function of weights α and β

of cases in which the rankings provided by σque match with those given by users.
Figure 4 shows the average RM as a function of α and β (γ is set so that they
sum up to 1). The optimal weights turned out to be α = 0.35, β = 0.5, and
γ = 0.15 (β > α, consistently with requirement]4); noticeably, RM smoothly
decreases for increasing distances from these optimal values, which proves that
the setting is robust.

The comparison results are reported in Table 6. For all the tests, σque matches
the users’ judgement at least like σAJD thanks to its fine-grained definition. In
particular, σque returns the same answers given by the majority of the users (i.e.
the highest possible values for SM and RM) in Tests 1, 2, and 3, while σAJD
returns the same answers only in Test 1. Note that σAJD falls short both when
there is high user consensus (Test 4) and when user consensus is low because
queries are very similar to each other (Tests 2 and 3). Overall, these results
confirm a strong correlation between the query similarity computed through
σque and the one perceived by users. Since σque is more sensitive than σAJD and
it shows better results, in the remaining tests we will focus on the former.

The second part of the questionnaire included five more tests focused on
OLAP session comparison. In each test, the users were asked to evaluate the
similarity of a given session sc against three candidate sessions {s1, s2, s3} in
absolute and relative terms. Sessions were graphically presented to users as se-
quences of queries, emphasizing the OLAP operator used to move from one query
to the next one. The results are summarized in Table 7 for the four functions
described in Section 5, by applying SM and RM to sequences rather than to
single queries. Note that the edit-based and the subsequence-based approaches,
that do not directly incorporate the σque score in their definitions, are not sen-
sitive enough to rank the sessions proposed in our tests. In fact, they return the
same similarity for most sessions involved in each test, so their RM cannot be
determined. This also penalizes SM , that is significantly low.

Conversely, both the log-based and the alignment-based approaches perform
very well and the scores returned are, in most cases, those of the majority of users

Similarity Measures for OLAP Sessions 23

Table 7. Consensus and matching factors for OLAP session comparison user tests
Consensus σedit σsub σlog σali

φscore φrank SM RM SM RM SM RM SM RM
Test 1 51% 75% 51% - 29% - 51% 75% 51% 71%
Test 2 43% 70% 33% - 9% - 39% 70% 43% 70%
Test 3 51% 64% 41% - 4% - 51% 46% 51% 46%
Test 4 36% 80% 19% - 26% - 35% 65% 35% 65%
Test 5 38% 78% 33% - 13% - 33% 70% 33% 70%

(i.e., SM = φscore and/or RM = φrank, that is the maximum attainable). The
errors always involve sequences that are quite similar, making the comparison
more subjective. Note that the absolute consensus is always much lower than
the relative one; this can be explained considering that scoring entails a 4-valued
choice, while ranking only requires choosing between two alternatives (sc is either
more similar to si than sj or not), thus making inter-user agreement more likely.
Some more detailed comments for single tests of log-based and alignment-based
approaches follow:

– In test 1, candidate sessions differ in the length of the match. s1 and s2 are
very similar to each other and determine a long match with sc, while s3 is
quite different from the others. While the log-based approach returns the same
results as the majority of users, the alignment-based approach returns an in-
verted ranking between s1 and s2, which is a minor issue due to their strong
similarity.

– In test 2, candidate sessions differ in the position of the match. The log-based
approach returns a score that is slightly different from the one of the majority
group since it does not give different relevance to matches of recent and old
queries.

– In test 3, all three candidate sessions are quite similar to each other and to sc,
leading to a difficult ranking operation for both functions.

– In test 4, each candidate session differs from the reference only for one of
the components of its queries (group-by set, predicates, and measures). Both
approaches agree with the users majority in indicating the session that differs
in their selection predicates as the less similar to the reference session. However,
both approaches return an inverted ranking between the sessions that differ in
their group-by sets and in their predicates, respectively. This is probably due
to the weight we use for measure similarity, γ = 0.15, that in this particular
case is not low enough to counterbalance the relevant difference on measure
sets.

– In test 5, session s1 is very similar to sc; s2 and s3 are similar to each other
and quite different from sc. Both approaches agree with the users majority
in indicating s1 as the most similar to sc, but they disagree in ranking the
other two sessions. This is actually not surprising in light of the low relative
consensus (φrank(s2, s3) = 61%).

6.2. Objective Tests

In this section we compare the four functions described in Section 5; for subsequence-
based similarity we use 3-grams (empirically tested for best results). All tests
were conducted on a 64-bits Intel Xeon quad-core 3GHz, with 8GB RAM, run-

24 J. Aligon et al

∧ ∨ + || ��

Fig. 5. The templates used to generate sessions. Overlapping circles represent identical queries,
near circles represent similar queries. For template ||, the queries are pairwise separated by one
atomic OLAP operation

ning Windows 7 pro SP1; the similarity threshold was tuned to θ = 0.8 to achieve
the best results.

Our benchmark includes a set of synthetic sessions over the CENSUS schema,
generated based on Definition 5.2 with our own log generator developed in Java.
A session is generated starting from an initial query and a final query, both
obtained by randomly choosing a group-by set, a selection predicate, and a subset
of measures. Intermediate queries are then generated by applying, one at a time in
a random order, the minimal atomic OLAP operations that transform the initial
query into the final one. The atomic OLAP operations considered are: change
level along one hierarchy in the group-by set, add or remove a clause from the
selection predicate, change the constant appearing in a selection clause, and add
or remove a measure.

To generate logs we considered the five templates depicted in Figure 5, that
model intuitive notions of what similar sessions might look like:

– In template ∧, the two sessions have similar starting queries then they diverge
to radically different queries.

– In template ∨, the two sessions have radically different starting queries then
they converge to similar ending queries.

– In template +, the two sessions converge to the same query then they diverge.

– In template ||, the second session is constructed by “shifting” all queries in the
first session by one OLAP operation.

– In template ��, the two sessions have the same queries in reverse order.

In light of the requirements expressed in Section 2, some of these templates
should yield higher similarities. In particular, we want template ∨ to yield higher
similarities than ∧ due to requirement]6. For requirement]7, we also expect ||
to yield higher similarities than ∨, ∧, and +. As to ��, requirement]5 imposes
that it yields low similarities.

The first test assesses the capabilities of the similarity functions. In this test,
for each template we generated a log as follows (see also Figure 6 for an example):

1. Generate a pair of sessions, s and s′, that respect the template.

2. Generate 5 more sessions s1, . . . s5 using s as a seed. The first and the last
query of si are obtained by applying three random atomic OLAP operations
to the first and the last query of s, respectively; then, the intermediate queries
of si are generated as described above.

3. Repeat the two previous steps 5 times.

Similarity Measures for OLAP Sessions 25

s s's
1

s
2

s
3

Fig. 6. The seed session s (in black), its mate s′ according to template ∧ (in dark gray), and
three random sessions (in light gray). The first and last queries of sessions are circled.

Table 8. Ratio τ for template-based OLAP session comparison objective tests
Log σedit σsub σlog σali
∧ 1.39 1.16 1.39 2.32
∨ 1.46 1.52 1.31 3.21
+ 1.44 1.23 1.32 2.15
|| 1.79 1.57 1.51 5.23
�� 1.08 1.57 1.42 0.78

average 1.40 1.35 1.35 2.51

This means generating overall 5 logs, each including 35 sessions. Then, for each
log and each similarity function, we computed the ratio τ of the average similarity
σt between the two sessions respecting the template and the average similarity σr
between each seed and the 5 sessions generated from it; the higher τ , the better
the function can distinguish a template from the background. Table 8 reports the
results. Noticeably, the alignment-based approach largely outperforms the others;
besides yielding an average τ that is almost twice that of the other approaches,
it meets the expectations as to template similarities. Template || is correctly
recognized as the one with highest similarity; ∨ clearly yields higher similarities
than ∧, while �� yields low similarities since it does not fulfill requirement]5 about
query ordering. The only other function that captures requirement]5 is σedit.
Noticeably, though all the other functions return an average ratio τ higher than
1, they are not sensitive enough to distinguish and rank the different templates.

The purpose of the second objective test is to discover how sensitive each
function is to the distance between the two sessions that form template ||; to this
end, the number of atomic OLAP operations that separate these two sessions is
varied from 1 to 5 (using the same log-generation algorithm explained for the
first test). Even in this test σali turns out to be more effective than the other
functions. Indeed, as shown in Table 9, the ratio τ for σali progressively decreases
for increasing distances, while for the other functions it is almost constant. This
is because σali is sensitive to the specific values of similarity between each couple
of queries, while for the other functions each couple of queries either match or
do not match.

The next test measures the time for computing each similarity function. For
this test we generated a log, randomly chose one session s, and compared all
prefixes of s with 10 other sessions randomly chosen from the log. Note that, for
log-based similarity, we disregard the time for building the frequency matrix used
in the computation of all the idf’s. We report the results for a minimum prefix of

26 J. Aligon et al

Table 9. Ratio τ for increasing distances in the || template
|| dist σedit σsub σlog σali

1 1.79 1.57 1.51 5.23
2 1.91 1.55 1.51 3.78
3 1.86 1.56 1.45 3.48
4 1.81 1.52 1.42 2.80
5 1.81 1.52 1.55 2.68

1 query and a maximum prefix of 13 queries. As expected, the subsequence-based
approach is the most efficient (from 0.4 ms to 3.6 ms for a single comparison),
followed by the alignment-based approach (from 1.1 ms to 7.1 ms) and by the
edit-based approach (from 1.3 ms to 8.3 ms). Log-based similarity is the less
efficient (from 30.4 to 75.1 ms).

We close this section with a final remark related to efficiency. OLAP sessions
are inherently interactive; to understand to what extent our approach can real-
istically be adopted to compare sessions at user-time, we made two tests using
the same protocol adopted for the test above:

– We measured how many comparisons can be made for each similarity function
during 100 ms, which is usually considered to be the maximum interactive
response time (Khoussainova et al., 2010). The number of comparisons ranges
from 109 for subsequence-based similarity to 3 for log-based similarity, with
alignment-based and edit-based similarity scoring 32 and 31 comparisons, re-
spectively.

– We measured how many comparisons can be made during the average time it
takes to evaluate a query. To this end we randomly chose a session in the log
and computed the average execution time for its queries, expressed in MDX;
we used real data extracted from the IPUMS database (Minnesota Population
Center, 2008), corresponding to about 500,000 facts stored on Oracle 11g. The
average query execution time turned out to be 553.46 ms, which corresponds
to 607 comparisons for subsequence-based similarity, 177 and 175 comparisons
for alignment-based and edit-based similarity respectively, and 18 comparisons
for log-based similarity.

7. Discussion

In this paper we investigated different approaches for defining a similarity func-
tion to compare OLAP sessions, based on the requirements deduced from a user
study conducted with practitioners and researchers. We considered and com-
pared two functions for OLAP query similarity and four functions for OLAP
session similarity; in particular, the latter were obtained by extending popular
approaches for string comparison.

Overall, the experimental results we obtained show that the alignment-based
approach (an extension of the Smith-Waterman algorithm, coupled with a three-
component query similarity function) is the one that best matches the users’
judgements. It is also the one that clearly gives best results on a synthetic
benchmark in terms of sensitivity and capability of correctly ranking different
templates of session similarity. Finally, from the point of view of efficiency, the
time required for comparing two sessions is perfectly compatible with complex
applications.

Similarity Measures for OLAP Sessions 27

The results presented in this paper are propaedeutic to a broader research in
the area of OLAP personalization. In particular, the next step will be to use the
alignment-based approach to set up a method for recommending OLAP queries
based on the similarity between the session a user is currently involved in, and
the sessions that were issued in the past by the same or other users. We will
pay a particular attention in mixing intensional and extensional information, as
suggested in (Chatzopoulou et al., 2011), in order to support OLAP exploratory
analysis. This will have a major impact on improving OLAP-based interactions
from both points of view of efficiency (by reducing the query formulation effort)
and effectiveness (by suggesting popular/successful trends of analysis).

References

Abiteboul, S., Hull, R. and Vianu, V. (1995), Foundations of Databases, Addison-Wesley.
Agrawal, R., Rantzau, R. and Terzi, E. (2006), Context-sensitive ranking, in ‘Proceedings ACM

SIGMOD International Conference on Management of Data’, Chicago, IL, pp. 383–394.
Akbarnejad, J., Chatzopoulou, G., Eirinaki, M., Koshy, S., Mittal, S., On, D., Polyzotis, N.

and Varman, J. S. V. (2010), ‘SQL QueRIE recommendations’, PVLDB 3(2), 1597–1600.
Aligon, J., Golfarelli, M., Marcel, P., Rizzi, S. and Turricchia, E. (2011), Mining preferences

from OLAP query logs for proactive personalization, in ‘Proceedings ADBIS’, Vienna,
Austria, pp. 84–97.

Aouiche, K., Jouve, P.-E. and Darmont, J. (2006), Clustering-based materialized view selection
in data warehouses, in ‘Proceedings ADBIS’, Thessaloniki, Greece, pp. 81–95.

Baikousi, E., Rogkakos, G. and Vassiliadis, P. (2011), Similarity measures for multidimensional
data, in ‘Proceedings ICDE’, Hannover, Germany, pp. 171–182.

Brown, P. F., Pietra, V. J. D., de Souza, P. V., Lai, J. C. and Mercer, R. L. (1992), ‘Class-based
n-gram models of natural language’, Computational Linguistics 18(4), 467–479.

Bustos, B. and Skopal, T. (2011), Non-metric similarity search problems in very large collec-
tions, in ‘Proceedings ICDE’, Hannover, Germany, pp. 1362–1365.

Chatzopoulou, G., Eirinaki, M., Koshy, S., Mittal, S., Polyzotis, N. and Varman, J. S. V.
(2011), ‘The QueRIE system for personalized query recommendations’, IEEE Data Eng.
Bull. 34(2), 55–60.

Chatzopoulou, G., Eirinaki, M. and Polyzotis, N. (2009), Query recommendations for interac-
tive database exploration, in ‘Proceedings SSDBM’, New Orleans, LA, pp. 3–18.

Cohen, W. W., Ravikumar, P. D. and Fienberg, S. E. (2003), A comparison of string distance
metrics for name-matching tasks, in ‘Proceedings IJCAI-03 Workshop on Information In-
tegration on the Web’, Acapulco, Mexico, pp. 73–78.

Drosou, M. and Pitoura, E. (2011), ReDRIVE: result-driven database exploration through
recommendations, in ‘Proceedings CIKM’, Glasgow, United Kingdom, pp. 1547–1552.

Garcia-Molina, H., Ullman, J. D. and Widom, J. D. (2008), Database Systems: The Complete
Book, Second edition, Prentice Hall.

Ghosh, A., Parikh, J., Sengar, V. S. and Haritsa, J. R. (2002), Plan selection based on query
clustering, in ‘Proceedings VLDB’, Hong Kong, China, pp. 179–190.

Giacometti, A., Marcel, P. and Negre, E. (2009), Recommending multidimensional queries, in
‘Proceedings DaWaK’, Linz, Austria, pp. 453–466.

Golfarelli, M. (2003), Handling large workloads by profiling and clustering, in ‘Proceedings
DaWaK’, Prague, Czech Republic, pp. 212–223.

Golfarelli, M., Rizzi, S. and Biondi, P. (2011), ‘myOLAP: An approach to express and evaluate
OLAP preferences’, IEEE TKDE 23(7), 1050–1064.

Gupta, A., Harinarayan, V. and Quass, D. (1995), Aggregate-query processing in data ware-
housing environments, in ‘Proceedings VLDB’, Zurich, Switzerland, pp. 358–369.

Gupta, A. and Mumick, I. (1999), Materialized views: techniques, implementations, and ap-
plications, MIT Press.

Khoussainova, N., Kwon, Y., Balazinska, M. and Suciu, D. (2010), ‘SnipSuggest: Context-aware
autocompletion for SQL’, PVLDB 4(1), 22–33.

Khoussainova, N., Kwon, Y., Liao, W.-T., Balazinska, M., Gatterbauer, W. and Suciu, D.
(2011), Session-based browsing for more effective query reuse, in ‘Proceedings SSDBM’,
Portland, OR, pp. 583–585.

28 J. Aligon et al

Li, H. and Durbin, R. (2010), ‘Fast and accurate long-read alignment with Burrows-Wheeler
transform’, Bioinformatics 26(5), 589–595.

Minnesota Population Center (2008), ‘Integrated public use microdata series’,
http://www.ipums.org.

Monge, A. E. and Elkan, C. (1997), An efficient domain-independent algorithm for detecting
approximately duplicate database records, in ‘Proceedings Workshop on Research Issues
on Data Mining and Knowledge Discovery’.

Moreau, E., Yvon, F. and Cappé, O. (2008), Robust similarity measures for named entities
matching, in ‘Proceedings International Conference on Computational Linguistics’, Manch-
ester, UK, pp. 593–600.

Navarro, G. (2001), ‘A guided tour to approximate string matching’, ACM Comput. Surveys
33(1), 31–88.

Ögüdücü, S. G. (2010), Web Page Recommendation Models: Theory and Algorithms, Synthesis
Lectures on Data Management, Morgan & Claypool Publishers.

Ristad, E. S. and Yianilos, P. N. (1998), ‘Learning string-edit distance’, IEEE Trans. Pattern
Anal. Mach. Intell. 20(5), 522–532.

Sapia, C. (2000), PROMISE: Predicting query behavior to enable predictive caching strategies
for OLAP systems, in ‘Proceedings DaWaK’, London, UK, pp. 224–233.

Smith, T. and Waterman, M. (1981), ‘Identification of common molecular subsequences’, Jour-
nal of Molecular Biology 147, 195–197.

Stefanidis, K., Drosou, M. and Pitoura, E. (2009), ”You May Also Like” results in relational
databases, in ‘Proceedings International Workshop on Personalized Access, Profile Man-
agement and Context Awareness: Databases’, Lyon, France.

Wagner, R. and Fischer, M. (1974), ‘The string-to-string correction problem’, Journal ACM
21(1), 168–173.

Yang, X., Procopiuc, C. M. and Srivastava, D. (2009), Recommending join queries via query
log analysis, in ‘Proceedings ICDE’, Shanghai, China, pp. 964–975.

Yao, Q., An, A. and Huang, X. (2005), Finding and analyzing database user sessions, in
‘Proceedings DASFAA’, Beijing, China, pp. 851–862.

