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Abstract Petri nets are a simple formalism for modeling concurrent computa-
tion. They are also an interesting tool for modeling and analysing biochemical
reaction systems, bridging the gap between purely qualitative and quantita-
tive models. Biological networks can indeed be complex, large, and with many
unknown kinetic parameters, which makes the development of quantitative
models difficult. In this paper, we focus on the Petri net representation of
biochemical reactions and on two structural properties of Petri nets, siphons
and traps, that bring us information about the persistence of some molecular
species, independently of the kinetics. We first study the theoretical time com-
plexity of minimal siphon decision problems in general Petri nets, and present
three new complexity results: first, we show that the existence of a siphon of a
given cardinality is NP-complete; second, we prove that deciding the Siphon-
Trap property is co-NP-complete; third, we prove that deciding the existence
of a minimal siphon containing a given set of places, deciding the existence
of a siphon of a given cardinality and deciding the Siphon-Trap property can
be done in linear time in Petri nets of bounded tree-width. Then, we present
a Boolean model of siphons and traps, and two methods for enumerating all
minimal siphons and traps of a Petri net, by using a SAT solver and a Con-
straint Logic Program (CLP) respectively. On a benchmark of 345 Petri nets
of hundreds of places and transitions, extracted from biological models from
the BioModels repository, as well as on a benchmark composed of 80 Petri nets
from the Petriweb database of industrial processes, we show that both the SAT
and CLP methods are overall faster by one or two orders of magnitude com-
pared to the state-of-the-art algorithm from the Petri net community, and are
in fact able to solve all the enumeration problems of our practical benchmarks.

? This paper is an extended version of a paper presented at CP 2012 [37].
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We investigate why these programs perform so well in practice, and provide
some elements of explanation related to our theoretical complexity results.

Keywords Petri nets · Siphons · Traps · Systems Biology · SAT · Constraint
Logic Programming

1 Introduction

Petri nets were introduced in the 60’s as a simple formalism for describing and
analyzing information processing systems that are characterized as being con-
current, asynchronous, non-deterministic and possibly distributed [40]. The
use of Petri nets for representing biochemical reaction systems, by mapping
molecular species to places and reactions to transitions, was introduced quite
late in [41], together with some Petri net concepts and tools for the analy-
sis of metabolic networks. In particular, the traditional Petri net concepts of
place-invariants (P-invariants) and transition-invariants (T-invariants) have
important interpretations in biochemical networks: P-invariants express struc-
tural conservation laws between molecular species, which correspond to linear
invariants and possible variable eliminations in systems of ordinary differen-
tial equations, while T-invariants revealed to be equivalent to the notion of
extremal fluxes in metabolic networks [49], one of the main tools for analyz-
ing and optimizing metabolic networks [30,15,47]. Constraint logic programs
have been proposed to compute P-invariants and T-invariants in [44] and [38]
respectively. Constraint programming methods have also been applied success-
fully to many other biology related problems. For instance by Devloo et al.
to discover efficiently the steady-state of large gene regulation networks [16].
Fanchon and al. use constraints to infer ranges of parameter values from obser-
vations [20] and for analysing discrete genetic regulatory networks [8]. Bock-
mayr and Courtois [3] use Hybrid Concurrent Constraint to model a variety of
biological phenomena, such as reaching thresholds, kinetics, gene interaction
or biological pathways. In [30], Larhlimi and Bockmayr take advantage of the
implicit representation that constraints bring, to describe the elementary flux
cone of some metabolic pathways. Backofen et al. pioneered in [1] the use of
constraints and symmetry breaking for predicting the structure of proteins,
etc.

In this paper, we consider the Petri net concepts of siphons and traps. A
siphon is a set of places that, once unmarked, remains unmarked. A trap is a
set of places that, once marked, can never loose all its tokens. Thus, siphons
and traps have opposed effects on the token distribution in a Petri net. These
structural properties provide sufficient conditions for reachability (whether the
system can produce a given protein or reach a given state from a given initial
state) and liveness (deadlock freedom from a given initial state) properties in
ordinary Petri nets. It is proved that in order for a net to have all its transitions
live, it is necessary that each siphon remains marked. Otherwise (i.e., once a
siphon is empty), transitions having their input places in a siphon cannot be
live. One way to keep each siphon marked is to have a marked trap inside it.
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In fact, this condition is necessary and sufficient for a free-choice net to be
live [40],

We first study the theoretical time complexity of siphon extraction prob-
lems in general Petri nets. It has been shown in [46] and [48] that the problems
of existence of a minimal siphon of a given cardinality (k-MinimalSiphon),
or containing a given place (Q-MinimalSiphon), are NP-complete, and re-
cently in [39] that the siphon-trap property (stp) is in co-NP. Here we provide
new theoretical complexity results. First we show the NP-completeness of the
existence problem of a siphon of a given cardinality (k-Siphon) and thus the
NP-hardness of MinimalCardinalitySiphon. Second, we prove that decid-
ing the siphon-trap property is in fact co-NP-complete. Third, we prove that
deciding the existence of a minimal siphon containing a given set of places,
deciding the existence of a siphon of a given cardinality and deciding the
Siphon-Trap property are of linear time complexity in Petri nets with bounded
tree-width. These latter results follow from Courcelle’s theorem.

Then we consider a simple Boolean model for defining siphons and traps,
and two methods for enumerating the set of all minimal siphons and traps
of a Petri net. The first method iterates the resolution of the Boolean model
executed with a SAT solver, while the second proceeds by backtracking with
a Constraint Logic Program over Booleans (CLP(B)).

We compare this Boolean constraint solving approach to the state-of-the-
art algorithms from the Petri net community described in [11] for computing
minimal sets of siphons and traps, which have already been shown to out-
perform Mixed Integer Linear Programs previously proposed in [35,9]. On a
benchmark composed of 345 curated biological models of hundreds of species
and reactions each, from the BioModels 1 repository [32], and of 80 Petri nets
from the Petriweb 2 [22] database of industrial processes, we show that the
SAT solver MiniSAT and CLP(B) solver GNU-Prolog are both faster by one
or two orders of magnitude than the dedicated algorithms, and can in fact
enumerate all solutions for all the intances of those benchmarks in a seconds.
Finally, we question ourselves why these programs perform so well in practice,
and provide some elements of explanation related to our theoretical complexity
results.

2 Preliminaries on Petri Nets

2.1 Petri Nets

Definition 1 A Petri net graph N is a weighted bipartite directed graph
N = (P, T,W ), where P is a non-empty finite set of vertices called places,
T is a non-empty finite set of vertices called transitions, P ∩ T = ∅, and
W : (P × T ) ∪ (T × P )→ N is a weight function attached to the arcs.

1 http://www.biomodels.net/
2 http://www.petriweb.org/
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Intuitively, the weight of a P×T arc represents the minimum number of tokens
(molecules) necessary to enable a transition and the weight on a T × P arc
represents the quantity produced. By abuse of notation, the weight is equal
to one if it is omitted. The weight of a P × T (resp. T × P ) arc equals zero if
there exist no arcs from place to transition (resp. from transition to place).

Definition 2 A marking for a Petri net graph is a mapping m : P → N which
assigns a number of tokens to each place. We say that a place p is marked if
m(p) > 0, otherwise it is said to be unmarked.

Definition 3 A Petri net is a 4-tuple (P, T,W,m0) where (P, T,W ) is a Petri
net graph and m0 is an initial marking.

Let N = (P, T,W ) be a Petri net graph.

Definition 4 The set of predecessors (resp. successors) of a transition t ∈ T is
the set of places •t = {p ∈ P |W (p, t) > 0} (resp. t• = {p ∈ P |W (t, p) > 0}).
Similarly, the set of predecessors (resp. successors) of a place p ∈ P is the set
of transitions •p = {t ∈ T |W (t, p) > 0} (resp. p• = {t ∈ T |W (p, t) > 0}).

The set of predecessors (resp. successors) •S (resp. S•) of a set of places
S is the union of sets of predecessors (resp. successors) of each place p ∈ S:
•S =

⋃
p∈S

•p (resp. S• =
⋃
p∈S p

•).
The set of predecessors (resp. successors) •Q (resp. Q•) of a set of transi-

tions Q is the union of sets of predecessors (resp. successors) of each transition
t ∈ Q: •Q =

⋃
t∈Q

•t (resp. Q• =
⋃
t∈Q t

•).

Definition 5 N is ordinary if for all p ∈ P and for all t ∈ T , W (p, t) ≤ 1 and
W (t, p) ≤ 1.

Definition 6 A transition t is enabled at marking m when ∀p ∈ •t : m(p) ≥
W (p, t).

For every two markings m,m′ : P → N and every transition t ∈ T , there

is a transition step m
t→ m′ if for all p ∈ P , m(p) ≥ W (p, t) and m′(p) =

m(p)−W (p, t) +W (t, p).

m
t→ m′ means that the transition t is enabled in m and its firing leads to

m′. An enabled transition may or may not fire if there are other transitions
enabled.

Example 1 The classical Petri net view of a reaction model is to associate bio-
chemical species to places and biochemical reactions to transitions. The well-
known system of Michaelis-Menten enzymatic reactions can be represented by
the Petri net depicted in Figure 1. It consists of three reactions that take place
in two discrete steps: the first involves the reversible formation of a complex
(AE) between the enzyme (E) and its substrate (A), and the second step in-
volves an irreversible transformation of the product (B) with release of the
enzyme.

A+ E � AE → B + E
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A B

E

AE

t1

t−1

t2

Fig. 1: Petri net associated to the example of Michaelis-Menten of Example 1,
displayed here with a marking enabling transition t1.

Definition 7 Given m and m′ two markings of N . A finite sequence of tran-
sitions σ = (t0 . . . tn) is a finite firing sequence of the Petri net if there exists

a sequence of markings m1, . . . ,mn for which m
t0→ m1

t1→ . . .
tn−1→ mn

tn→ m′.
This is denoted by m

σ→ m′.

Definition 8 A marking m′ is reachable from m if there exists a finite se-
quence σ such that m

σ→ m′.

Definition 9 Let N = (P, T,W,m0) be a Petri net.

– A transition t ∈ T is dead at marking m if it is not enabled in any marking
m′ reachable from m.

– A marking m is dead if there is no transition enabled in m.
– A Petri net is deadlock free (weakly live) if there is no reachable dead

markings.

2.2 Siphons and Traps

Let N = (P, T,W ) be a Petri net graph.

Definition 10 A trap is a non-empty set of places P ′ ⊆ P whose successors
are also predecessors: P ′• ⊆ •P ′.

A siphon is a non-empty set of places P ′ ⊆ P whose predecessors are also
successors: •P ′ ⊆ P ′•.

A siphon (resp. a trap) is proper if its predecessor set is strictly included
in its successor set: •P ′ ( P ′• (resp. P ′• ( •P ′).

A siphon (resp. a trap) is minimal if it does not contain any other siphon
(resp. trap).

It is worth remarking that a siphon in N is a trap in the dual Petri net
graph, obtained by reversing the direction of all arcs in N . Note also that since
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predecessors and successors of an union are the union of predecessors (resp.
successors), the union of two siphons (resp. traps) is a siphon (resp. a trap).

The Petri net of Example 1 has two minimal siphons, {A,AE} and {E,AE}.
{E,AE} is both a minimal siphon and a minimal trap since •{E,AE} =
{E,AE}• = {t1, t−1, t2}

Although siphons and traps are stable under union, it is worth noting that
minimal siphons do not form a generating set of all siphons. A siphon is called
a basis siphon if it cannot be represented as a union of other siphons [35]. Obvi-
ously, a minimal siphon is also a basis siphon, however, not all basis siphons are
minimal. For instance, in Example 1, the generating set of siphons is formed
by {A,AE}, {E,AE}, {A,AE,B} and {E,AE,B}, but only {A,AE} and
{E,AE} are minimal, the two others cannot be obtained by union of minimal
siphons.

The following propositions show that traps and siphons provide a structural
characterization of some particular dynamical properties on markings.

Proposition 1 [40] For every subset P ′ ⊆ P of places, P ′ is a trap if and
only if for any marking m ∈ NP with mp ≥ 1 for some place p ∈ P ′, and any

marking m′ ∈ NP such that m
σ→ m′ for some sequence σ of transitions, there

exists a place p′ ∈ P ′ such that m′p′ ≥ 1.

Proposition 2 [40] For every subset P ′ ⊆ P of places, P ′ is a siphon if and
only if for any marking m ∈ NP with mp = 0 for all p ∈ P ′, and any marking

m′ ∈ NP such that m
σ→ m′ for some sequence σ of transitions, we have

m′p′ = 0 for all p′ ∈ P ′.

2.3 Application to Deadlock Detection

One reason to consider minimal siphons is that they provide a sufficient con-
dition for the non-existence of deadlocks. A deadlock occurs in a marked Petri
net if no transition is enabled. It has been shown indeed that in a deadlocked
(and marked) Petri net, all unmarked places form a siphon [6]. The siphon-
based approach for deadlocks detection checks if the net contains a proper
siphon that can become unmarked by some firing sequence. In parrticular the
following stp property provides a sufficient condition for ordinary Petri nets
to be deadlock free.

Definition 11 Given a Petri net (P, T,W,m0), the siphon-trap property (STP)
holds when every siphon contains a marked trap.

Theorem 1 ([7]) An ordinary Petri net in which the STP holds is deadlock
free.
Proof. We just have to show that STP is preserved by transition firing and
that a dead marking does not satisfy STP. The preservation follows from the
fact that a marked trap remains marked after the firing of a transition. If a
marking m is dead, then the set S = {p ∈ P | m(p) = 0} is such that S• = T
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since every transition should have an empty predecessor. Then •S ⊆ S•, and
moreover S is non-empty since T is non-empty. Therefore S is a siphon and
does not contain a marked trap. ut

The relevance of siphons and traps for other liveness properties in systems
biology are reported in [23].

2.4 Application to Systems Biology

One example of the relevance of traps and siphons in biology was given in [49]
for the analysis of the production and accumulation of starch in potato tubers
during growth, while starch is consumed after the tubers are deposited after the
harvest. This can be seen by a purely structural analysis of the Petri net graph
of the metabolic network, since starch and several of its precursors form traps
in the reaction net during growth, while starch and possible intermediates
of degradation form siphons after the harvest. A simplified version of this
Petri net is depicted in Figure 2, where G1 stands for glucose-1-phosphate,
Gu is UDP-glucose, S is the starch, I stands for intermediary species and
P1 and P2 represent external metabolites [45]. In this network, either the
branch producing starch (t3 and t4) or the branch consuming it (t5 and t6) is
operative, as it is shown in Figure 3 and Figure 4 respectively. This is realized
by a switching mechanism in the gene regulatory network with synthesis of
the corresponding enzymes. Two Petri nets are thus derived from this model:
one Petri net where t5 and t6 are removed (in this Petri net, t3 and t4 are said
to be operative) and one Petri net where t3 and t4 are removed.

It can be easily observed that the set {Gu, S} is a trap when t3 and t4 are
operative: once a token arrives in S, no transition can be fired and the token
remains there independently of the evolution of the system. Dually, {S, I} is a
siphon when t5 and t6 are operative: once the last token is consumed from S
and I, no transition can generate a new token in these places, so they remain
empty.

Another interesting example of use of the concept of siphons and traps, also
from [49], deals with the analysis of the role of the triosephosphate isomerase
(TPI) in Trypanosoma brucei metabolism. Earlier, Helfert et al. [24] supposed
that glycolysis could proceed without TPI, but unexpected evidence that all
system fluxes (Pyruvate, Glycerol) decrease was found which lead the authors
to build a kinetic model for explaining that phenomenon. However, a purely
structural explanation for the necessary presence of TPI in glycolysis and
glycerol production was provided in [49] simply by showing the existence of
siphons and traps in the model.
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G1P1 P2

Gu

S

I

t1 t2

t3

t4t5

t6

Fig. 2: Petri net graph modeling the growth metabolism of the potato
plant [49].

G1P1 P2

Gu

S

t1 t2

t3

t4

Fig. 3: Petri net graph modeling the growth metabolism of the potato plant [49]
with the branch producing starch operative.

3 Theoretical Complexity of Siphon and Trap Properties

3.1 Preliminaries on SAT, FO and MSO

We shall prove some NP-completeness results using the following characteri-
zation of Boolean satisfiability. For a finite set of variables V = {x1, . . . xm},
let ¬V = {¬x1, . . . ,¬xm} denotes the set of negative literals constructed upon
V . For a Boolean formula in conjunctive normal form φ = c1 ∧ · · · ∧ cn over
V , we have for all 1 ≤ i ≤ n, ci = `i,1 ∨ · · · ∨ `i,ni , and for all 1 ≤ j ≤ ni,
`i,j ∈ V ∪ ¬V . Let us write Cφ = {i ∈ N | 1 ≤ i ≤ n} and Lφ = {(i, j) ∈ N2 |
1 ≤ i ≤ n, 1 ≤ j ≤ ni}.

Lemma 1 A Boolean formula φ in conjunctive normal form is satisfiable if
and only if there exists a subset X ⊆ Lφ such that

– for all 1 ≤ i ≤ n, there exists 1 ≤ j ≤ ni such that (i, j) ∈ X,
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G1P1 P2

S

I

t1 t2

t5

t6

Fig. 4: Petri net graph modeling the growth metabolism of the potato plant [49]
with the branch consuming starch operative.

– for all (i, j), (i′, j′) ∈ X, `i′,j′ 6= ¬`i,j.

Proof. If µ : V → {0, 1} satisfies φ, we pose for all x ∈ V , µ(¬x) = 1 − µ(x)
and then it suffices to observe that X = {(i, j) ∈ L | µ(`i,j) = 1} satisfies the
conditions of the lemma. Conversely, given a subset X ⊆ Lφ satisfying these
conditions, we pose µ : V → {0, 1} such that for all x ∈ V , µ(x) = 1 if there
exists (i, j) ∈ X such that `i,j = x and 0 otherwise. Then, we observe that µ
satisfies φ. ut

We say that φ is satisfied by X if X is a subset of Lφ satisfying the conditions
of Lemma 1.

We shall also use the language of first-order logic (FO) to express proper-
ties over finite set and graph structures assumed to be fixed. For each finite
set S, we assume a unary predicate S(x), also written x ∈ S by abuse of nota-
tion, which tests membership. Non-emptyness, S 6= ∅, is expressed by the FO
formula ∃x(x ∈ S), and set inclusion, S ⊆ S′, by ∀x(x ∈ S → x ∈ S′). Simi-
larly for each Petri net graph, we assume two unary (set) predicates, place(x)
and transition(x), which distinguish between places and transitions, and a bi-
nary predicate, edge(x, y), which tests incidence. This leads to the following
characterization of siphons and traps:

Definition 12 The siphon and trap properties can be defined in FO by the
following schemas of formulae:

Siphon(S) : S 6= ∅ ∧ ∀p ∈ S place(p)
∧ ∀t(∃p ∈ S edge(t, p)→ ∃p ∈ S edge(p, t))

Trap(S) : S 6= ∅ ∧ ∀p ∈ S place(p)
∧ ∀t(∃p ∈ S edge(p, t)→ ∃p ∈ S edge(t, p))

We shall also provide a series of linear time complexity results by showing that
some problems can be expressed in monadic second-order logic (MSO) over
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finite graph structures, in order to use Courcelle’s theorem. MSO extends FO
by the addition of second-order quantifiers over predicates, also noted ∃ and
∀, with the restriction to apply to unary predicates only, i.e. sets. An example
of MSO formula is given in the proof of Theorem 4 in the next section.

Definition 13 ([42]) A tree decomposition of a non-oriented graph G =
(V,E) is a pair (X,T ) where T = (I, A) is a tree and X = (Xi)i∈I is a
family of subsets of V such that

–
⋃
i∈I Xi = V ,

– for all {v, v′} ∈ E, there exists i ∈ I such that {v, v′} ⊆ Xi,
– for all i, j, k ∈ I, if j lies on the path from i to k in T , then Xi ∩Xk ⊆ Xj .

The tree-width of a tree decomposition is maxi∈I |Xi|−1. The tree-width tw(G)
of G is the minimum tree-width taken over all possible tree decompositions of
G.

The tree-width of an ordinary Petri net graph N = (P, T,W ) follows that
definition given for graphs, by reading the Petri net as the non-oriented graph
G = (P ∪ T,E) where E = {{p, t} ⊆ P ∪ T |W (p, t) > 0 or W (t, p) > 0}.

Example 2 Let us consider the Petri net graph depicted in Figure 5. The non-
oriented graph associate to this Petri net is depicted in Figure 6. Two possible
tree decompositions of this non-oriented graph are shown in Figure 7. In both
decompositions, each graph edge connects two vertices which belong to the
same tree node. Graph vertices are adjacent only when the corresponding sub-
trees intersect. In the first tree decomposition (Figure 7 on the left), each tree
node contains at most four vertices, hence the width of this decomposition is
three. In the second tree (Figure 7 on the right), each tree node contains at
most three vertices, hence the width of this decomposition is two, which is the
optimal tree-width over all possible tree decompositions. Hence, the tree-width
of the Petri net graph depicted in Figure 5 equals two.

A B

C

D

E

F

G

t1 t2 t3

t4 t5

Fig. 5: Example of a Petri net with its associated non-oriented graph depicted
in Figure 6 and two tree decompositions given in Figure 7.

Courcelle’s theorem states that every graph property definable in MSO can
be decided in linear time on graphs of bounded tree-width.
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A B C

D EF

G

Fig. 6: Non-oriented graph associated to the Petri net of Figure5

B C D F

A B C E F D F G

A B B C D

C D F

D F G C E F

Fig. 7: Two possible tree decompositions of the graph shown in Figure 6

Theorem 2 (Courcelle [12]) For a given formula P in monadic second-
order logic on the structure of graphs and for a given positive integer k, there
exists a linear time algorithm that given a finite graph G of tree-width at most
k decides whether G satisfies P .

Given a tree-automaton constructed from the formula, and a tree con-
structed from the graph decomposition that minimizes the tree-width, decid-
ing if the automaton accepts the tree can be done in linear time. Courcelle’s
theorem shows the existence of such automata for MSO properties. However,
the automata can be of hyper-exponential sizes. This makes the linear algo-
rithm usually unusable in practice. There is some recent work in [13,28] on fly-
automata and game-theoretic methods, aiming at making this result practical
for certain properties of graphs with bounded clique-width. The applicability
of these new approaches to our problem is however beyond the scope of this
paper.

3.2 The Q-MinimalSiphon Problem

Definition 14 The problem FindMinimal is the following problem: “given
a Petri net graph N = (P, T,W ) and a subset of places Q ⊆ P , find a minimal
siphon S in N such that Q ⊆ S if there is any, or fail.”

Theorem 3 ([46]) The problem FindMinimal is polynomial.
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Definition 15 Q-MinimalSiphon is the following decision problem: “given
a Petri net graph N = (P, T,W ) and a subset of places Q ⊆ P , does there
exist a minimal siphon S in N such that Q ⊆ S?”.

Theorem 4 Q-MinimalSiphon is decidable in linear time for any class of
Petri net graphs with bounded tree-width.

Proof. By Definition 12, siphons and traps are expressible in FO, and thus
in MSO. We just have to verify that Q-MinimalSiphon can be expressed in
MSO as follows:

Q-MinimalSiphon : ∃S(Siphon(S) ∧Q ⊆ S
∧ ∀S′(Siphon(S′) ∧ S′ ⊆ S → S ⊆ S′))

The linear time complexity then follows from Courcelle’s theorem. ut

In the general case,Q-MinimalSiphon has been shown NP-complete in [48].
We find it useful here to provide a simpler proof of this result, by showing the
NP-hardness of the following equivalent problem.

Definition 16 For a given Petri net graph N = (P, T,W ) and Q ⊆ P , a
Q-hitting siphon is a siphon S ⊆ P of N such that for every siphon S′ ⊆ S of
N , Q ⊆ S′.

Definition 17 Q-HittingSiphon is the following decision problem: “given a
Petri net graph N = (P, T,W ) and a subset of places Q ⊆ P , does there exist
a Q-hitting siphon in N?”.

Proposition 3 Given a Petri net graph N = (P, T,W ) and a subset of places
Q ⊆ P , there exists a minimal siphon containing Q in N if and only if there
exists a Q-hitting siphon in N .
Proof. If S is a minimal siphon containing Q, then S is a Q-hitting siphon.
Conversely, if S is a Q-hitting siphon, then there exists a minimal siphon
S′ ⊆ S and since S is Q-hitting, then Q ⊆ S′. ut

Theorem 5 Q-MinimalSiphon is NP-complete.
Proof. Q-MinimalSiphon is in NP since FindMinimal is polynomial. We
just have to show that Q-HittingSiphon is NP-hard.

Let us assume a sat instance described by a set V of variables and a
Boolean formula φ over V in conjunctive normal form. Let N = (P, T,W ) be
the ordinary Petri net graph, depicted in Figure 8, where

– P = Lφ ∪ {q} and T = V ∪ ¬V ∪ Cφ where q /∈ Lφ ∪ T ,
– W satisfies

•(i, j) = {¬`i,j} (i, j)•= {i, `i,j} for all (i, j) ∈ Lφ
•q= Cφ q•= V ∪ ¬V
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q

x ¬x y ¬y z ¬z

x

(1, 1)

¬y

(1, 2)

z

(1, n1)

1

(2, 1)

¬x

(2, 2) (2, n2)

2

. . .

. . .

.

..
.
..

(n, 1) (n, 2)

¬x

(n, nn)

n

Fig. 8: Petri net used in the reduction of sat to Q-HittingSiphon in Theo-
rem 5. In this Petri net, a siphon S contains the place q on top of the figure if
and only if S contains at least one literal occurrence per clause. Moreover, S
is {q}-hitting if and only if S does not contain a pair of contradictory literals.

Lemma 2 φ is satisfiable if and only if there exists a {q}-hitting siphon in
N , i.e., a subset S ⊆ P such that S 6= ∅ and •S ⊆ S• and for all S′ ⊆ S, if
S′ 6= ∅ and •S′ ⊆ S′•, then q ∈ S′.
Proof. Suppose that φ is satisfied by X ⊆ Lφ. We verify that X ∪ {q} is a
{q}-hitting siphon. Indeed, •X ⊆ V ∪ ¬V = q• and, by hypotheses on X,
•q = Cφ ⊆ X•, therefore •(X ∪ {q}) ⊆ (X ∪ {q})•. For any S′ ⊆ S such that
S′ 6= ∅ and •S′ ⊆ S′•, suppose that q /∈ S′, then since S′ 6= ∅, there exists
(i, j) ∈ S′ and •(i, j) = {¬`i,j} ⊆ S′•, therefore there exists (i′, j′) ∈ S′ such
that ¬`i,j ∈ (i′, j′)•, therefore `i′,j′ = ¬`i,j , which contradicts that S′ ⊆ X;
thus, q ∈ S′. That proves that X ∪ {q} is a {q}-hitting siphon.

Conversely, suppose that S is a {q}-hitting siphon. We verify that φ is
satisfied by X = S ∩ Lφ. Indeed, for all 1 ≤ i ≤ n, i ∈ •q, then i ∈ X•,
therefore there exists 1 ≤ j ≤ ni such that (i, j) ∈ X. Suppose that there exist
(i, j), (i′, j′) ∈ X such that `i′,j′ = ¬`i,j , then S′ = {(i, j), (i′, j′)} would be
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such that S′ 6= ∅ and •S′ ⊆ S′•, despite q /∈ S′. Therefore, for all (i, j), (i′, j′) ∈
X, `i′,j′ 6= ¬`i,j . Thus, φ is satisfiable. ut

The theorem is then an immediate consequence of the lemma. ut

3.3 The k-Siphon Problem

Definition 18 The problem k-Siphon is the following decision problem: “given
a Petri net graph N = (P, T,W ) and a positive integer k, does there exist a
siphon S in N of cardinality k?”.

The linear time complexity immediately follows from Courcelle’s theorem.

Theorem 6 k-Siphon is decidable in linear time with respect to the size of
the Petri net for any class of Petri net graphs with a bounded tree-width.

Proof. Given a Petri net graph N = (P, T,W ) and a positive integer k, there
exists a siphon S in N of cardinality k if and only if ∃S(Siphon(S)∧cardk(S))
is satisfied, where the formula cardk(S)

cardk(S) : ∃x1 . . . xk

 ∧
1≤i<j≤k

xi 6= xj ∧ ∀x

x ∈ S → ∨
1≤i≤k

x = xi


checks that the cardinality of S is k. ut

We prove the NP-completeness of k-Siphon by polynomial reduction from
the set covering problem, one of Karp’s original NP-complete problems [26].
Let us recall that the problem k-SetCovering is the following decision prob-
lem: “given a finite set U (the universe), a subset S of P(U) and an integer
k, does there exist a subset S ⊆ S of cardinality k such that U =

⋃
S?”.

Theorem 7 k-Siphon is NP-complete.

Proof. k-Siphon is in NP since checking that a given set of places is a siphon
of cardinality k is polynomial. NP-hardness comes by polynomial reduction
from k-SetCovering: given a finite set U (the universe), a subset S of P(U)
and an integer k, let N = (P, T,W ) be the ordinary Petri net graph such that
P = S, T = U and for all t ∈ T , t• = P and •t = {S ∈ S | t ∈ S}. Then for
every subset S ⊆ P , S is a siphon if and only if U =

⋃
S. ut

This shows that the optimization problem MinimalCardinalitySiphon
is NP-hard.

14



3.4 The stp Problem

Definition 19 The Siphon-Trap Property stp is the following decision prob-
lem: “given a marked Petri net N = (P, T,W,m0), does every siphon in N
include a trap that contains a marked place?”.

Theorem 8 stp is decidable in linear time for any class of Petri nets with
bounded tree-width.

Proof. Here again, it suffices to remark that stp is expressible in MSO, with a
unary predicate marked(p) for distinguishing marked places, and the following
MSO formula:

stp : ∀S(Siphon(S)→ ∃T (Trap(T ) ∧ T ⊆ S ∧ ∃p(marked(p) ∧ p ∈ T )))

The linear time complexity immediately follows from Courcelle’s theorem. ut

In the general case, stp has been shown to be in co-NP in [39], by reducing
¬stp to sat. Indeed, ¬stp expresses the existence of a siphon S such that
every trap included in S does not intersect M . The encoding in sat focuses
on the maximal trap included in S (the union of all the traps included in S),
which is computed by removing iteratively places in S that cannot belong to
a trap.

In fact, we can prove

Theorem 9 stp is co-NP-complete.
Proof. Since stp is in co-NP [39], it suffices to show that ¬stp is NP-hard.

Let us assume a sat instance described with a set V of variables and a
Boolean formula φ over V in conjunctive normal form. Let N = (P, T,W,m0)
be the ordinary Petri net, depicted in Figure 9, where

– P = Lφ ∪{0}×V and T = V ∪¬V ∪Cφ ∪{t} where t /∈ P ∪V ∪¬V ∪Cφ,
– W satisfies

•(i, j) = Cφ ∪ {`i,j} (i, j)•= {i, t} for all (i, j) ∈ Lφ
•(0, x) = {t} (0, x)•= {x,¬x} for all x ∈ V

– m0 = 1{0}×V .

Note that the set {0} × V is introduced in places to ensure that P ∩ T = ∅.

Lemma 3 φ is satisfiable if and only if (N, {0}×V ) satisfies ¬stp, i.e., there
exists a subset S ⊆ P such that S 6= ∅ and •S ⊆ S• and for all T ⊆ S, if
T 6= ∅ and T • ⊆ •T , then T ∩ {0} × V = ∅.
Proof. Suppose that φ is satisfied by a set X ⊆ Lφ. We verify that X∪{0}×V
is a siphon and that it does not contain any trap intersecting {0}×V . Indeed,
by hypotheses on X, Cφ ⊆ X•, and •(X ∪ {0} × V ) ⊆ Cφ ∪ V ∪ ¬V ∪ {t} ⊆
(X ∪ {0} × V )•. For any T ⊆ X ∪ {0} × V such that T 6= ∅ and T • ⊆ •T ,
suppose that there exists x ∈ T ∩ {0} × V , then {x,¬x} ⊆ T •, therefore
{x,¬x} ⊆ •T and there exist (i, j), (i′, j′) ∈ T ∩ X such that `i′,j′ = ¬`i,j ,
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(0, x) (0, y) (0, z)

t

x ¬x y ¬y z ¬z

1 x(1, 1) ¬y(1, 2) . . .

. . .

z(1, n1)

2 (2, 1) ¬x(2, 2) (2, n2)

(n, 1) (n, 2) ¬x(n, nn)n

...
...

Fig. 9: Petri net used in Theorem 9 for the reduction of sat to stp. In this
Petri net set of places S is a siphon if and only if (1) S contains at least one
literal occurrence per clause and (2) S contains all the places (0, x) such that
the variable x occurs in these literal occurrences; moreover, a marked place
(0, x) belongs to a trap included in S if and only if S contains the pair of
contradictory literal occurrences x and ¬x.

that would contradict the hypotheses on X. Therefore (N, {0} × V ) satisfies
¬stp.

Conversely, suppose that there exists a subset S ⊆ P such that S 6= ∅ and
•S ⊆ S• and for all T ⊆ S, if T 6= ∅ and T • ⊆ •T , then T ∩ {0} × V = ∅. We
verify that φ is satisfied byX = S∩Lφ. We haveX 6= ∅ because otherwise there
would exist (0, x) ∈ S∩{0}×V , then t ∈ •S, therefore t ∈ S• and there would
exist (i, j) ∈ S∩Lφ, which contradicts X = ∅. Thus, Cφ ⊆ •S ⊆ S• and for all
1 ≤ i ≤ n, i ∈ S• so there exists 1 ≤ j ≤ ni such that (i, j) ∈ X. Suppose that
there exist (i, j), (i′, j′) ∈ X such that `i′,j′ = ¬`i,j . Then, there exists (0, x) ∈
S ∩ {0} × V such that (0, x)• = {`i,j , `i′,j′}. Then T = {(0, x), (i, j), (i′, j′)}
will be such that T • = {`i,j , `i′,j′ , i, i′, t} ⊆ Cφ ∪ {`i,j , `i′,j′ , t} = •T , but
T ∩ {0} × V 6= ∅. Therefore, for all (i, j), (i′, j′) ∈ X, `i′,j′ 6= ¬`i,j . ut

16



The theorem is now an immediate consequence of the lemma. ut

4 Boolean Model for Minimal Siphons

The definition of siphons in FO given in Definition 12 directly leads to the
following Boolean Constraint Satisfaction Problem (CSP):

Definition 20 Given a Petri net graph N = (P, T,W ) , the CSP Siphon(N)
is the triple (V,D,C) where

– V = P , i.e. a variable is introduced for each place,
– D(p) = {0, 1} for all p ∈ V , i.e. the variables are Boolean,
–

∨
p∈S p = 1, i.e. a siphon is not empty,

– C = {(p = 1→
∨
p′∈•t p

′ = 1) | p ∈ P, t ∈ •p}.

Proposition 4 For every Petri net graph N = (P, T,W ), the CSP Siphon(N)
is satisfied by a valuation ν if and only if {p ∈ P | ν(p) = 1} is a siphon.
Proof. It suffices to check that for every non-empty set of places S, we have
∀p,∀t ∈ •p, p ∈ S →

∨
p′∈•t p

′ ∈ S if and only if •S ⊆ S•. ut

The encoding in a SAT solver is short and direct. For each transition t in
the set of predecessors of a place p, a clause C is added to the satisfiability
problem. C is formed by a negated boolean variable associated to p or-ed with
boolean variables in the set of predecessors of t. To avoid the trivial case of
the empty siphon, one clause is added.

The set of all minimal siphons (w.r.t. set inclusion) can be enumerated
in the set inclusion order, by restarting search each time a siphon S is found,
with the additional constraint

∨
p∈S p = 0, for disallowing any superset of that

siphon.
For enumerating siphons in set inclusion order, we compared two tech-

niques: one by labeling an auxiliary cardinality variable in increasing order
([36]), one by labeling directly the Boolean variables with increasing value
selection (to test first the absence, then the presence of a place in the candi-
date solution). The second technique has revealed to be much more efficient.
The correctness of this technique comes from the fact that if a solution S′

is found after a solution S, then the two paths in the search tree leading to
these solutions have a least common ancestor node: this node corresponds to
the labeling of a place p. By construction, p belongs to S′ and not to S, thus
S′ 6⊆ S.

We shall also consider a variant of the above CSP where the constraints p =
1 →

∨
p′∈•t p

′ = 1 are decomposed by introducing an intermediary Boolean
variable for each transition. For every Petri net graph N = (P, T,W ), the CSP
Siphon’(N) = (V,D,C) is defined as follows.

– V = P∪T , i.e. one variable is introduced for each place and each transition,
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– D(x) = {0, 1} for all x ∈ V ,
–

∨
p∈S p = 1, i.e. a siphon is not empty,

– C = {(p = 1→ t = 1) | p ∈ P, t ∈ •p} ∪ {(t = 0→ p = 0) | t ∈ T, p ∈ •t}.

It is immediate that if Siphon’(N) is satisfied by a valuation ν, then Siphon(N)
is satisfied by ν|P , and conversely that if Siphon(N) is satisfied by ν, then ν
can be extended to a valuation satisfying Siphon’(N).

This variant Siphon’(N) enjoys the following property.

Proposition 5 For every Petri net graph N = (P, T,W ), the CSP Siphon’(N)
has the same tree-width as N .
Proof. It suffices to notice that the primal graph of Siphon’(N) is isomorphic
to the bipartite graph induced by N . ut

5 Implementations with SAT and CLP Solvers

This section describes two implementations of the above model with appropri-
ate search strategy, one using an iterated SAT procedure and the other based
on Constraint Logic Programming with Boolean constraints. The source code
of our implementation is available on the web3.

5.1 Iterative SAT Algorithm

The Boolean model can be directly interpreted using a SAT solver to check the
existence of a siphon or trap. However, the enumeration of all minimal siphons
requires a particular strategy for iterating the use of the SAT solver with new
constraints ensuring the enumeration of the set of all minimal siphons.

We use sat4j 4, an efficient library of SAT solvers in Java for both sat-
isfaction and optimization. It includes an implementation of the MiniSAT
algorithm and implements the value selection strategy mentioned above: for
each variable, the value 0 is tried before the value 1, for the enumeration of
all solutions.

Example 3 Let us consider the Petri net depicting the enzymatic reaction of
Example 1. In the first iteration, the problem amounts to solve the following
encoding of Horn-dual clauses: (¬A ∨ AE) ∧ (¬AE ∨ E ∨ A) ∧ (¬E ∨ AE) ∧
(¬E ∨AE)∧ (¬B ∨AE) The problem is satisfied with the values: E = B = 0
and A = AE = 1, which means that {A,AE} is a minimal siphon. In the
second iteration, the clause ¬A∨¬AE is added to ensure minimality, and the
problem is satisfied with A = B = 0 and E = AE = 1 meaning that {E,AE}
is also a minimal siphon. A new clause is added stating that either E or AE

3 http://lifeware.inria.fr/wiki/software/
4 http://www.sat4j.org/
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does not belong to the siphon and no more variable assignment can satisfy the
problem.

Therefore, this model contains two minimal siphons: {A,AE} and {E,AE}.
The enzyme E is a catalyst protein for the transformation of the substrate E in
a product B. Such a catalyst increases the rate of the reaction but is conserved
in the reaction.

5.2 Backtrack Replay CLP(B) Algorithm

The search for siphons can also be implemented with a Constraint Logic Pro-
gram with Boolean constraints (CLP(B)). We use GNU-Prolog 5 [17] for its
efficient low-level implementation of Boolean constraint propagators, indexi-
cals and search heuristics.

The enumeration strategy for enumerating all minimal siphons is indeed a
variation of the branch-and-bound algorithm, where the search is restarted to
find a non-superset siphon each time a new siphon is found. We have tried two
versions of the branch-and-bound algorithm: with restart from scratch and by
backtracking. In the branch-and-bound with restart method, it is essential
to choose a variable selection strategy which ensures diversity. Indeed, an
enumeration method with a fixed variable order accumulates failures by always
trying to enumerate the same sets first and these failures are only lately pruned
by the non-superset constraints. As a consequence, the developed search tree
gets more and more dense after each iteration since the previous forbidden sets
are repeatedly tried again. It is worth nboting that this phenomenon does not
exist in SAT solvers thanks to no-good recording. In CLP, random variable
order selection strategy provides a good diversity and performs much better
than any uniform heuristics.

However, branch-and-bound by backtracking gives better performance when
care is taken for posting the non-superset constraint only once, since reposting
it at each backtrack step proved to be inefficient. We have implemented a
backtrack replay strategy, i.e. a customized branch and bound procedure where
the search is performed as follows:

1. each time a siphon is found, the path leading to this solution is memorized,
2. then the search is fully backtracked to the root in order to add to the model

the new non-superset constraint,
3. and then the memorized path is rolled back and replayed to continue the

search at the point it was stopped.

Rolling back the memorized path is conceptually equivalent to adding a
lexicographic constraint that imposes to be greater than the last siphon found.
However the performance of this constraint is not as good as an explicit roll-
back, because of lack of propagation.

The backtracking procedure can use any variable selection strategy, regard-
less of the diversity, since it ensures by construction that the already explored

5 http://www.gprolog.org/
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Fig. 10: Search tree developed with the backtrack replay strategy for enumer-
ating the 64 minimal siphons of the model 239 of BioModels which contains 51
species and 72 reactions. The branches ending with a cross are solutions. It is
remarkable that very few backtracks are necessary to enumerate all solutions
using the backtrack replay strategy.

sets will not be explored again. In our experiments, the most-constrained vari-
able selection strategy is the one that provided the best performance and is
therefore the one that was selected.

Figure 10 (generated with CLPGUI 6 [19]) depicts the search tree that is
developed for enumerating the 64 minimal siphons of a biological model of
51 species and 72 reactions. Each sub-tree immediately connected to the root
corresponds to the replay of the path with a minimality constraint added. The
small number of backtrack points shows the remarkable efficiency of the back-
track replay strategy combined with a simple Boolean constraint propagator.

6 Evaluation

In the literature, many algorithms have been proposed to compute minimal
siphons and traps of Petri nets. Since a siphon in a Petri net N is a trap of
the dual net N ′, it is enough to focus on siphons, the traps are obtained by
duality. Some algorithms are based on linear programming [35,9], Horn clause
satisfaction [27,33] or algebraic approaches [31]. More recent state-of-the-art
methods are presented in [10,11] and show the better performance of the ded-
icated algorithm of [11]. This algorithm uses a recursive problem partitioning
procedure to reduce the original search problem to multiple simpler search
sub-problems. Each sub-problem has specific additional place constraints with
respect to the original problem. This algorithm can be applied to enumer-
ate minimal siphons, place-minimal siphons, or even siphons that are minimal
with respect to a given subset of places. In this section we compare our results
to that dedicated algorithm.

6 http://contraintes.inria.fr/∼fages/CLPGUI
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6.1 BioModels Benchmark

The BioModels [32] database is a repository of peer-reviewed, published, com-
putational models of biological processes. These models are written in the
Systems Biology Markup Language (SBML) exchange format and are mainly
composed of reaction rules, with or without kinetics, and events. This resource
allows biologists to store, search and retrieve models referenced in publications.

We consider the curated part of the repository BioModels version February
2013. Among these 404 curated models, 59 models do not hold any reaction
(but events only), we thus consider the 345 reaction models from which a Petri
net graph can be extracted from the structure of the reactions.

In addition, we consider the following complex biochemical models:

– a model of E2F/Rb signaling from [4] which contains 408 molecular species
and 534 reactions, and will be shown to contain 74 minimal siphons,

– Kohn’s map of the mammalian cell cycle control [29,5], which contains 509
species and 775 reactions, and will be shown to contain 80 minimal siphons.

6.2 Petriweb Benchmark

The database Petriweb 7 [22] is an attempt to make available a significant body
of Petri nets examples in a public repository. They are written in the Petri Net
Markup Language (PNML), an emerging standard format supported by many
tools PetriWeb supports a restricted form of PNML, including flat, uncoloured
nets, plus limited support for hierarchy The repository can be browsed with a
web browser, and individual nets can be retrieved and uploaded in PNML.

The repository contains 80 Petri nets given with some interesting proper-
ties. The properties are defined by the repository administrator. The properties
are intended to be checked automatically by external analysis tools.

6.3 Computational Results and Comparisons

In this section we compare the SAT method, using the MiniSAT solver im-
plementation included in the SAT4J library, the CLP method, using GNU-
Prolog, both described in Section 5, and the state-of-the-art dedicated algo-
rithm of [11].

Table 1 presents the CPU times in milliseconds for enumerating the sets
of all minimal siphons of the Petri nets in our benchmark in Petriweb and
BioModels (except Model 175 as explained below). The CPU times have been
obtained on a PC with an intel Core processor 2.20 GHz and 8 GB of memory.
For each benchmark, we provide the total number of models, the minimal,
maximal and average numbers of siphons, and the total computation time in
milliseconds for enumerating all of them.

7 http://www.petriweb.org/
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Benchmark # # siphons siphons size total time (ms)
model min-max (avg.) min-max (avg.) dedicated MiniSAT GNU

algorithm Prolog
BioModels 345 0-64 (4.21) 1-413 (3.10) 19734 611 195
Petriweb 80 0-11 (2.85) 0-7 (2.03) 2325 156 6

Table 1: Computation time in milliseconds on the BioModels and Petriweb
benchmarks.

Quite surprisingly, on all these practical instances, both MiniSAT and
GNU-Prolog solve the minimal siphon enumeration problem, in less than
one millisecond in average, with a slightly better average performance for
the CLP(B) program over the SAT solver. Furthermore, MiniSAT and GNU-
Prolog outperform the dedicated algorithm by one or two orders of magnitude.

However, one particular model, number 175 in BioModels, has very high
computation time and was excluded from Table 1. Table 2 presents the perfor-
mance figures obtained on this model and on three other hardest instances for
which we also provide the number of places and transitions. Even if the model
is quite large, e.g. for Kohn’s map of the cell cycle control with 509 species and
775 reactions, the computation time for enumerating its 81 minimal siphons
is astonishingly short: one millisecond only. On these hard instances, the SAT
solver is faster than the CLP(B) program by one or two orders of magnitude,
and is the only algorithm to solve the problem for model 175, in 137 seconds.

model # # # dedicated MiniSAT GNU
siphons places transitions algorithm Prolog

Kohn’s map 81 509 775 28 1 221
BIOMD000000175 3042 118 194 ∞ 137000 ∞
BIOMD000000205 32 194 313 21 1 34
BIOMD000000239 64 51 72 2980 1 22

Table 2: Computation time in milliseconds on the hardest instances of bio-
chemical networks.

Model 175 represents a quantitative model that relates the EGF and HRG
stimulations of the ErbB receptors to the activation of ERK and AKt in MCF-7
breast cancer cells [2]. This is the first model to take into account both the ERK
and AKt pathways, four ErbB receptors, and their simultaneous activation
by two ligands. Previous models of ErbB (e.g. the model developed in [43])
were limited to a single ErbB receptor because of combinatorial complexity.
As a result, the ErbB signaling network is highly connected and indeed the
underlying Petri net contains the highest number of arcs, and of organizations
as remarked in [18,25], of the BioModels repository.
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6.4 Clause Density Analysis

The enumeration of the set of all minimal siphons is a problem of enumeration
of all the solutions of an NP-complete problem, so the question is: why are
the CSP-based algorithms for enumerating siphons so efficient on the existing
benchmarks, even on large graphs from systems biology?

One possible explanation could be obtained by considering the well-known
phase transition phenomenon in 3-SAT. The probability that a random 3-SAT
problem is satisfiable has been shown to undergo a sharp phase transition as
the ratio of the number of clauses over the number of variables crosses the
critical value of about 4.26 [34,14], going from satisfiability to unsatisfiability
with probability one, when the number of variables grows to infinity. It is in
this region of the density that the SAT instances are difficult to decide, while
before and after that density the instances are usually easy.

This density of SAT instances associated to the enumeration of all minimal
siphons, grows during enumeration since clauses are added for each solution
found. We can thus check whether the initial density of the 3-SAT instances
associated to BioModels instances are greater than the critical value of 4.26.
If the initial density is above the critical value, it will remain above, and the
instances are thus easy because there will be a small number of solutions. On
the other hand, if the initial density is below the threshold value of 4.26, the
computation time may be long because the threshold value were the 3-SAT
hardest instances are may be traversed, and the clauses may be satisfiable with
an exponential number of solutions.

The density of a SAT instance is:

density =
#clauses

#variables

Considering our problem of enumerating minimal siphons of a general Petri

net PN = (P, T,W ) on our | P | Boolean variable, initially we have
∑
t∈T
| t• |

clauses plus one clause of non-empty siphon:

density =

∑
t∈T
| t• | +1

| P |

To transform a general SAT instance to a 3-SAT instance, we add µ clauses
and µ variables:

density3-SAT =

∑
t∈T
| t• | +1 + µ

| P | +µ

where

µ =
∑
t∈T

max(0, | •t | −2)
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Fig. 11: Distribution of the initial density of the initial 3-SAT problems con-
sidered to enumerate all minimal siphons of the Petri net from the BioModels
benchmark.

The initial density distribution of all BioModels instances are illustrated
in the histogram of Figure 11.

This histogram shows that the initial density is in fact below the critical
value for the majority of models. The initial 3-SAT density of our hardest
model number 175 equals 2.39. Since the density grows during enumeration
by adding the clauses for minimality, the possibility to traverse the critical
region of density exists. Density considerations thus do not suffice to explain
why we are so efficient in enumerating all the solutions of an NP-complete
problem in large classes of practical Petri nets.

6.5 Tree-Width Analysis

There is also a rich literature about the polynomial-time complexity of CSPs
when the constraint hypergraph is bounded relatively to a variety of graph
measures, including cutwidth and tree-width [21]. Since we have shown that
both Q-MinimalSiphon and k-Siphon are expressible as CSPs, the existence
of a polynomial algorithm for deciding these properties for Petri net graphs of
bounded tree-width follows by Prop. 5. However, since these problems are also
expressible in Monadic Second Order (MSO) logic, they are in fact of linear
time complexity in this case, as shown by Theorems 4 and 6.

It is thus interesting to measure the tree-widths of the Petri nets of our
benchmark. QuickBB 8 is a program for computing the tree-width of a graph.
When given enough time, this algorithm yields the exact tree-width of the

8 http://graphmod.ics.uci.edu/group/quickbb/
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Fig. 12: Variation of the computed tree-widths as a function of size (places and
transitions) of the Petri nets associated to BioModels. The computed exact
tree-widths are depicted by red circles. When not known, the computed upper
bounds are depicted by blue bars.

graph. When stopped before termination, it yields an upper bound of the
tree-width.

We have applied QuickBB on the 432 curated models of our BioModels
benchmark. For 31 models, the exact tree-width could not be computed in a
time-out of one hour, but the tree-width was bounded by 23. For the remaining
342 models, the exact tree-width was computed and was always less than 10
as shown in Figure 12. The tree-width of our three hardest instances are given
in Table 3, and have been determined to be less than 10 and 15. These tree-
width values are relatively small values for graphs of hundreds of species and
reactions.

model # # tree-width
places transitions

BIOMD000000175 118 194 ≤ 15
BIOMD000000205 194 313 ≤ 10
BIOMD000000239 51 72 ≤ 10

Table 3: Tree-width of the hardest instances of BioModels database.

The BioModels benchmark thus seems to indicate that biochemical reac-
tion networks have a bounded tree-width less than ten. This is in agreement
with the idea that even very large biochemical processes are not fully intercon-
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nected as in a grid, but composed through interface molecular species. These
considerations suggest that biochemical networks are of bounded tree-width,
in which case Theorems 4, 6 and 8 show that the minimal siphon decision
problems are indeed tractable, and in fact of linear time theoretical complex-
ity.

7 Conclusion

Siphons and traps in Petri nets are meaningful pools of places that display a
specific behaviour in the Petri net dynamics, and that guarantee some per-
sistence properties in the simulation of a system of biochemical reactions,
independently of the kinetics.

We have described a Boolean model for the problem of enumerating all min-
imal siphons in a Petri net and have compared two Boolean methods to the
state-of-the-art algorithm from the Petri net community [11]. On the bench-
mark of 345 biological models from the curated part of the BioModels reposi-
tory, the Boolean method for enumerating all minimal siphons using MiniSAT
is very efficient. It also scales very well in the size of the net. The CLP(B)
program also solves all but one instances of the benchmark, with a better
performance than MiniSAT in average, but does not scale-up as well on the
largest size Petri nets, such as for instance on Kohn’s map with 509 species and
775 reactions. The MiniSAT solver and the CLP(B) program both outperform
the dedicated algorithms of the Petri net wommunity by one or two orders of
magnitude and solve instances out of reach of these other algorithms.

The efficiency of the MiniSAT and CLP(B) methods for enumerating all
solutions of an NP-complete problem for all, including large, instances of our
practical benchmarks was quite surprising and lead us to study the theoretical
complexity of these problems. Besides the proofs of NP-completeness of the
existence of a siphon of a given cardinality, and of co-NP-completeness of the
siphon-trap property, we have shown that these decision problems are tractable
in Petri nets of bounded tree-width. Then we have shown that the BioModels
benchmark of large biochemical networks have indeed a relatively small tree-
widths.

These various results militate for the analysis of biochemical networks with
Petri net concepts and Constraint Programming tools.
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