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Abstract

While OLAP has a key role in supporting effective exploration of multidimensional

cubes, the huge number of aggregations and selections that can be operated on

data may make the user experience disorientating. To address this issue, in the

paper we propose a recommendation approach stemming from collaborative filter-

ing. We claim that the whole sequence of queries belonging to an OLAP session is

valuable because it gives the user a compound and synergic view of data; for this

reason, our goal is not to recommend single OLAP queries but OLAP sessions. Like

other collaborative approaches, ours features three phases: (i) search the log for

sessions that bear some similarity with the one currently being issued by the user;

(ii) extract the most relevant subsessions; and (iii) adapt the top-ranked subsession

to the current user’s session. However, it is the first that treats sessions as first-class

citizens, using new techniques for comparing sessions, finding meaningful recom-

mendation candidates, and adapting them to the current session. After describing

our approach, we discuss the results of a large set of effectiveness and efficiency tests

based on different measures of recommendation quality.
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1 Introduction

OLAP is the main paradigm for accessing multidimensional data in data warehouses.

To obtain high querying expressiveness despite a small query formulation effort, OLAP

provides a set of operations (such as drill-down and slice-and-dice) that transform one

multidimensional query into another, so that OLAP queries are normally formulated in

the form of sequences called OLAP sessions [1,2]. During an OLAP session the user

analyzes the results of a query and, depending on the specific data she sees, applies one

operation to determine a new query that will give her a better understanding of a business

phenomenon. The resulting query sequences are strongly related to the user’s skills, to

the analyzed phenomenon, to the current data, and to the OLAP tool adopted.

While it is universally recognized that OLAP tools have a key role in supporting flex-

ible and effective exploration of multidimensional cubes in data warehouses, it is also

commonly agreed that the huge number of possible aggregations and selections that can

be operated on data may make the user experience disorientating. Different approaches

were taken in the literature to address this issue; in particular, in the area of personaliza-

tion, both preference-based (e.g., [3,4]) and recommendation techniques (e.g., [5,6]) were

specifically devised for OLAP systems.
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In this paper we are specifically interested in recommendations. The original claim un-

derlying our approach is that an OLAP session issued by a user is not just a casual

path aimed at leading her to a single, valuable query (the one at the end of the session).

Indeed, as stated in [7] with reference to clickstream analysis, path data contain informa-

tion about a user’s goals, knowledge, and interests. Undoubtedly, in the case of OLAP

interactions, sessions are first-class citizens: the whole sequence of queries belonging to a

session is valuable in itself, because (i) it gives the user a compound and synergic view

of a phenomenon; (ii) it carries more information than a single query or set of queries by

modeling the user’s behavior after seeing the result of the former query; and (iii) several

sessions may share the same query but still have quite different analyses goals. For this

reasons, like done in [8] for recommending sets of pages to users of a Web site, we pro-

pose an approach whose goal is not to recommend single OLAP queries, but rather OLAP

sessions. Some existing approaches recognize that sessions carry much more information

about users’ behavior than queries and recommend OLAP queries based on an analysis of

past sessions (e.g., [2]); still, like all the other previous work on OLAP recommendation,

they are focused on suggesting only single queries to users. In this sense our approach is

highly innovative in the OLAP field, and therefore it requires brand new techniques.

Consistently with collaborative filtering approaches, our goal in deciding which sessions

to recommend is to reuse knowledge acquired by other users during previous sessions. So

let scur be the current user session for which we have to give a recommendation, and L

be the session log. The approach we propose features three phases: alignment (search L

for sessions that are similar to scur and optimally align each of them with scur), ranking

(extract from the selected sessions the common subsessions and rate them according

not only to their degree of similarity with scur, but also to how frequent they are in

L), and fitting (adapt the top-ranked subsession r to scur and recommend the resulting

session r′). To assess session similarity we readapt the alignment-based similarity function
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specifically devised for OLAP sessions in [1]. Note that OLAP users are normally grouped

into profiles (e.g., CEO, marketing analyst, department manager); in this case, the session

log can easily be partitioned by profiles so that each user can get recommendations based

on sessions performed by users that share her background and expertise.

The qualifying properties of the recommendations we aim to give are relevance: this is

obtained by ranking the log subsessions according to their frequencies so as to identify

dense area of analysis that could be interesting for users; foresight: this is achieved by

allowing even a subsession that is “far” from the alignment point with the current session

(i.e., intuitively, far in the future) to be recommended; novelty: thanks to the fitting phase,

the recommendation we give may not be part of the log; and suitability: during the fitting

phase, the top-ranked subsession found in the log is adapted to the current session.

The paper outline is as follows. After discussing the related literature in Section 2, in

Section 3 we introduce a formalization for multidimensional schemata, OLAP queries,

and sessions. In Section 4 we present our approach to recommendation and describe its

phases, while in Section 5 we discuss the results of experimental tests. Finally, Section 6

draws the conclusions.

2 Related Work

Recommender systems [9] are now well established as an information filtering technology

and used in a wide range of domains. They are traditionally categorized as either content-

based (suggestions are based on the user’s past actions only), collaborative (suggestions

are based on similarities between users), or hybrid combinations.

A comprehensive survey of collaborative recommender systems evaluation is presented

in [10]. Recommender systems are mostly evaluated with accuracy-based measures [11],
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typically predictive accuracy like MAE, or classification accuracy like precision and recall.

Accuracy alone fails to capture the usefulness of recommendations, so other objective met-

rics related to suitability are being developed. For instance, coverage [10,12] is the degree

to which recommendations cover the set of available items and the degree to which rec-

ommendations can be generated to all users. Novelty directly measures non-obviousness,

often by referring to a fixed list of obvious recommendations, while serendipity measures

how far novel recommendations may positively surprise users, for instance by reporting

the rate of useful novel recommendations.

Recently recommender systems started to gain interest in the database community, with

approaches ranging from content-based [13] to collaborative [14] query recommendation,

especially to cope with the problem of interactively analyzing database instances [15,16].

This problem is particularly important in a data warehousing context, where one promi-

nent use of such systems is to analyze the warehouse instance with OLAP queries as a

basis for decision support. In a data warehouse context, the peculiarities of the multidi-

mensional schema and queries can be leveraged. In [5], operators are proposed to analyze

a query answer by automatically navigating to more detailed or less detailed aggregation

levels, in order to detect surprising values to recommend. In [2], the log is represented

as two Markov models: one that describes the transitions between query patterns (where

a pattern is a simplified query expression) and one that describes transitions between

selection predicates. These two models are used to construct the most probable query

that follows the current query.

More recently, [4] proposes a content-based recommendation approach that synthesizes

a recommendation by enriching the current query answer with elements extracted from

a user’s profile. [6] introduces a generic framework for query recommendation, where a

distance measure between sessions is used to compare log sessions with the current session,

and the set of final queries belonging to the closest log sessions are recommended and
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ranked according to their distance with the final query of the current session. [17] proposes

to recommend a graph of former queries, based on the application of the operators of [5]

on the query log, to detect surprising values regarding the current query answer. In [18],

queries are recommended using a probabilistic model of former sessions, inspired by [2],

where a similarity tailored for OLAP queries is used to group queries.

The existing approaches for query recommendation in data warehouses are summarized

in Table 1 where, for each approach, we indicate (1) the category of the recommender

system: content-based, collaborative filtering, or hybrid; (2) the source of information, i.e.,

whether the approach is log-driven, answer-driven, or both; (3) whether the approach is

session-based and, if so, whether sequential aspects are considered or not; (4) the query

model used, i.e., whether the approach leverages query expressions or query answers; (5)

the technique used to process the input, i.e., whether the approach is similarity-based,

preference-based, or stochastic; (6) the form (query or tuples) of the recommendation; (7)

whether the recommendation is taken from a log, from the database instance, or from the

current query; (8) the technique used to output the recommendation, i.e., if it is simply

selected from the source or if it is synthesized from it; and finally (9) the metrics used

for assessing the quality of recommendations: accuracy, coverage, novelty, foresight.

The first lesson learned from this literature review is that sessions are rarely treated as

first-class citizens. Sequential aspects are seldom taken into account, and no approach

ever considered recommending a sequence of queries. Approaches taking sessions into ac-

count only use them as input, to construct a model subsequently used for recommending.

In addition, the stochastic approaches that consider sessions use a first order Markov

Model, and therefore base their predictions only on the user’s current query. Recommen-

dation can be too much prescriptive (only one query) or too little prescriptive (a graph of

queries). Besides, recommendations are rarely synthesized queries, but more often queries

chosen among past queries stored in some query log or tuples retrieved from the database
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Table 1

Query recommendation approaches in data warehouses

Ref. Cat. Input Output Quality

Source Session? Model Tech. Form Source Tech. metrics

[5] CB ans. not seq. ans. stoch. tuples instance sel. acc.

[2] CF log seq. expr. stoch. query curr. synth. -

[6] H log seq. ans. sim. query log sel. acc.

[4] CB ans. no ans. pref. query curr. synth. -

[17] H log/ans. not seq. ans. stoch. query log sel. acc.

[18] CF log seq. expr. stoch. query log sel. acc., cov.

Our approach CF log seq expr. sim. session log/curr. synth. acc., cov., nov., fore.

instance. Many of the techniques proposed rely on query answers, which may result in

a poor scalability compared to techniques using only query expressions, as reported in

[14] in the case of databases. Finally, none of the former approaches assesses the system

quality beyond accuracy and coverage. The approach we propose in this article overcomes

these limitations. Sessions are treated as first-class citizen all along the process, query ex-

pressions are leveraged with a similarity tailored for OLAP sessions, the recommendation

is synthesized from the log and the current session, and the quality of the recommender

system is assessed using suitability metrics.

3 Preliminaries

In this section we define the multidimensional model we will use to formalize our approach

and introduce a working example.

Definition 3.1 (Multidimensional Schema) A (multidimensional) schema is a cou-

ple M = 〈Hier,Meas〉 where:
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City 

State 

Region 

AllCities 

Race 

RaceGroup 

MRN 

AllRaces 

Year 

AllYears 

Sex 

AllSexes 

Occ 

AllOccs 
RESIDENCE RACE 

TIME 

SEX OCCUPATION 

City,Year,Sex 

City,Year,AllSexes City,AllYears,Sex State,Year,Sex 

Region,Year,Sex State,Year,AllSexes State,AllYears,Sex 

AllCities,Year,Sex Region,Year,AllSexes Region,AllYears,Sex 

City,AllYears,AllSexes 

State,AllYears,AllSexes 

AllCities,AllYears,Sex AllCities,Year,AllSexes 
Region,AllYears,AllSexes 

AllCities,AllYears,AllSexes 

Fig. 1. Roll-up orders for the five hierarchies in the CENSUS schema

• Hier is a finite set of hierarchies; each hierarchy hi ∈ Hier is associated to a set of

levels and a roll-up partial order �hi of this set of levels;

• Meas is a finite set of measures, i.e., numerical attributes.

Example 3.1 IPUMS is a public database storing census microdata for social and eco-

nomic research [19]. Its CENSUS multidimensional schema has five hierarchies, namely

RESIDENCE, TIME, SEX, RACE, and OCCUPATION, and several measures. It is City �RESIDENCE

State (the complete roll-up orders are shown in Figure 1). While the experimental tests in

Section 5 will be carried out on the complete CENSUS schema, as a working example we

will use a simplified schema featuring only the RESIDENCE, TIME, and SEX hierarchies.

To characterize the workload we consider a basic form of OLAP query centered on a single

schema and characterized by a group-by, that defines a possible way to aggregate data,

and a selection expressed by a conjunctive predicate. To be independent of the details

related to logical design of multidimensional schemata and to query plans, we express

queries using an abstract syntax.

Definition 3.2 (OLAP Query) A query fragment on schema M = 〈Hier, Meas〉 is

either (i) a level l ∈ hi (hi ∈ Hier), or (ii) a Boolean clause of type l = value, or (iii) a

measure m ∈Meas. A query on schema M is a set of fragments q such that:

(1) q includes at least one level for each hierarchy hi ∈ Hier; this set of levels defines

the group-by of q;
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City,Year,Sex 

City,Year,AllSexes City,AllYears,Sex State,Year,Sex 

State,Year,AllSexes City,AllYears,AllSexes 

State,AllYears,AllSexes 

Region,AllYears,AllSexes 

Sel. Predicate	

 Measures	

 Group-by	



s1	

 State=TN	

 AvgCostGas, 
SumIncTot 

s2	

 Region=MA	

 AvgPerWt, 
AvgCostGas 

s3	

 Region=ENC	

 AvgPerWt 

Fig. 2. A log for our working example

(2) the conjunction of all Boolean clauses in q defines the selection predicate of q;

(3) q includes at least one measure; the set of measures q∩Meas is the one whose values

are returned by q.

An OLAP session is an ordered sequence of correlated queries formulated by a user on

a schema; each query in a session is typically derived from the previous one by applying

an OLAP operator (such as roll-up, drill-down, and slice-and-dice).

Definition 3.3 (OLAP Session) An OLAP session is a sequence s = 〈q1, q2, . . .〉 of

queries on schema M. A log L is a set of sessions.

Given a session s, we will denote with length(s) the number of queries in s, with s[w]

(1 ≤ w ≤ length(s)) the w-th query of s, and with s[v, w] (1 ≤ v ≤ w ≤ length(s))

the subsession of s spanning from its v-th query to the w-th one. The last query of s,

s[length(s)], is briefly denoted with s[.], so s[v, .] is the subsession of s spanning from its

v-th query to the end.

Example 3.2 An example of query on the CENSUS schema is q = {State,Year,AllSexes,

State = TN,AvgCostGas, SumIncTot}. All examples will be based on a log that consists of 3

sessions, s1, s2, and s3, each including 6 queries. For simplicity, predicates and measures

are not changed during each session, while group-by’s are changed as shown in Figure 2

with reference to a portion of the multidimensional lattice of the CENSUS schema.
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4 Our Approach

Let scur be the current OLAP session and L be a log of past sessions. As sketched in

Figure 3, our approach to compute a recommendation for scur based on L includes three

consecutive phases, described in detail in the following subsections:

(1) Alignment, described in Section 4.1, that selects from L a set of sessions that are

similar to scur by finding an optimal alignment between each of them and scur. For

each session l in this set, its future is defined as the subsession of l following the

query that has been aligned with the last query of scur (i.e., with the last query

currently issued by the user). The set of futures obtained in this way constitutes the

set F of candidate recommendations for scur.

(2) Ranking, detailed in Section 4.2, that chooses a base recommendation r as a subses-

sion of a candidate recommendation in F by considering both its similarity with scur

and its frequency in L.

(3) Fitting, described in Section 4.3, that adapts r to scur by looking for relevant patterns

in the query fragments of scur and r and using them to make changes to the queries

in r, so as to deliver a recommendation r′.

Noticeably, the user has a possibility of influencing the recommendation by acting on a

parameter called minimum foresight, denoted Φ, used in the ranking phase to select the

base recommendation. With this threshold, the user indicates how distant from the cur-

rent query the recommended session should be: higher values result in recommendations

being farer from, and less strictly related to, the current session. Automatically adjusting

this value based on the history of the user interactions with the system is beyond the

scope of this work and is left as future work.
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2. Ranking	
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r	



r'	


3. Fitting	



Fig. 3. The three recommendation phases

4.1 Alignment

The goal of this phase is to identify in the log L a set F of candidate recommendations

for the current session scur. To do so, first we try to find an alignment between scur and

each session l in L. The alignment algorithm we adopt is an adaptation of the one that

was proposed in [1] to effectively capture the similarities between OLAP sessions; in turn,

that algorithm is based on the Smith-Waterman algorithm [20], whose goal is to efficiently

find the best alignment between subsequences of two given sequences by ignoring their

non-matching parts.

The Smith-Waterman algorithm is a dynamic programming algorithm that computes the

optimal alignment between two sequences s and s′ based on a score matrix. In position

(v, w), this matrix reports a score that expresses how well s and s′ match when they

are aligned ending in elements s[v] and s′[w]; each score is recursively calculated by
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progressively adding the similarities between all pairs of matching elements in the two

sequences (the similarity between two elements can also be negative, to express that they

do not match). Intuitively, the algorithm seeks an optimal trade-off between the cost

for introducing a gap in the matching subsequences and the cost for including a poorly

matching pair of elements. In the extension proposed in [1] for OLAP sessions, sequence

elements correspond to queries. A query similarity function, σque ∈ [0..1], is defined as a

combination of three components: one related to group-by’s (based on how distant the

two group-by’s are in the multidimensional lattice), one to selection predicates (based on

the distance of the levels on which predicates are formulated), and one to measure sets

(their Jaccard index). A similarity threshold is then used to distinguish matches from

mismatches. Besides, a time-discounting function is introduced to promote alignments

based on recent queries, and a variable gap penalty is used to discourage discontinuous

alignments. The output of the alignment algorithm when applied to two sessions s and

s′ is their best alignment a, defined by two matching subsessions s[vstart, vend] (denoted

s(a)) and s′[wstart, wend] (denoted s′(a)). If an alignment between s and s′ is found we say

that s and s′ are similar, denoted s ∼ s′, and their similarity (computed as explained in

[1]), is denoted with σses(a) ∈]0..1]. Otherwise it is s 6∼ s′.

For our alignment phase we use a variant, denoted SWcand, that promotes alignments

between the end of scur and the beginning of each log session l, so as to favor log sessions

capable of providing a “long” candidate recommendation. This is achieved by modify-

ing the two-dimensional logistic sigmoid function originally used as a time-discounting

function as defined below and shown in Figure 4:

ρcand(v, w) = 1− 1− ρmin
1 + e

−20
|l| w+ 5

|scur |
v+ 10
|scur |

,

where v is a position in scur, w is a position in l, and ρmin is the minimal value desired

for ρcand (i.e., the minimal weight given to query alignments considered as irrelevant).
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Fig. 4. The sigmoid function used for SWcand (|scur| = 10, |l| = 15, ρmin = 0)

Algorithm 1 Alignment
Input scur: the current session, L: the log

Output F : set of candidate recommendations

1: F ← ∅ . Initialize F

2: for each l ∈ L do

3: a← SWcand(scur, l) . Try to align l with scur

4: v ← position in l of l(a)[.]

5: if l ∼ scur and s
(a)
cur[.] = scur[.] and l[v + 1, .] 6= ∅ then . An alignment is found ending in scur[.]

6: f ← l[v + 1, .] . Find the candidate recommendation

7: F ← F ∪ {f}

8: return F

The constants have been experimentally tuned in order to answer to the specific desired

behavior: −20
|l| defines the proportion of queries in l whose alignment with the last queries

of scur has to be favored; 5
|scur| defines the proportion of queries in scur whose alignment

with the first queries of s has to be favored; 10
|scur| defines a minimal weight to consider

between the first queries of scur and l.

The pseudocode for the whole alignment process is given in Algorithm 1. For each log

session l such that l ∼ scur (line 2), its future is determined as the subsession f = l[v+1, .]

(line 6) where v is the position of the last query aligned (line 4). If the last query aligned

in scur is scur[.], i.e., the last query in scur, and l has a non-empty future f (line 5), then

f is added to the set F of candidate recommendations (line 7).
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City,Year,AllSexes City,AllYears,Sex State,Year,Sex 

State,Year,AllSexes City,AllYears,AllSexes 

State,AllYears,AllSexes 

Region,AllYears,AllSexes 

Sel. Predicate	

 Measures	

 Group-by	



scur	

 Region=Mountain	

 AvgPerWt, 
SumIncTot 

s1[1,3]	

 State=TN	

 AvgCostGas, 
SumIncTot 

s2[1,3]	

 Region=MA	

 AvgPerWt, 
AvgCostGas 

s3[2,3]	

 Region=ENC	

 AvgPerWt 

s1[4,6]	

 State=TN	

 AvgCostGas, 
SumIncTot 

s2[4,6]	

 Region=MA	

 AvgPerWt, 
AvgCostGas 

s3[4,6]	

 Region=ENC	

 AvgPerWt 

r	

 Region=MA	

 AvgPerWt, 
AvgCostGas 

r'	

 Region=Mountain	

 SumIncTot, 
AvgPerWt 

Fig. 5. A current session, its aligned log subsessions, its candidate recommendations, its base

recommendation, and its recommendation

Example 4.1 With reference to the log of Example 3.2, sketched in Figure 2, let the

current session scur be the one whose group-by’s, selection predicate, and measure set are

shown in Figure 5. An alignment is found between scur and each session in the log. In

particular, scur is aligned with log subsessions s1[1, 3] (with similarity 0.15), s2[1, 3] (sim-

ilarity 0.21), and s3[2, 3] (similarity 0.29); in the last case, similarity is higher (though

the matching subsession is shorter) because the component of query similarity related

to measure sets is higher. So, in this example the set of candidate recommendations is

F = {s1[4, 6], s2[4, 6], s3[4, 6]}, obtained by considering the futures of the aligned log sub-

sessions.

4.2 Ranking

The goal of this phase is to examine F to determine the most suitable base recommen-

dation r, which will then be refined in the fitting phase. Consistently with collaborative

filtering approaches, we identify the densest areas in F so as to define r as the most

relevant subsession in F . More precisely, this phase requires first to compute pairwise

alignments between all sessions in F , and to use those alignments to assign a relevance
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Algorithm 2 Ranking
Input scur: the current session, F : set of candidate recommendations, Φ: minimum foresight

Output r: base recommendation

Variables: Aij : sets of alignments

1: for each fi ∈ F, q ∈ fi do . Initialize query scores

2: q.relevance← 0

3: maxRelevance← 0

4: for each fi ∈ F do

5: for each fj ∈ F, j > i do

6: Aij ← SWrank(fi, fj) . Compute pairwise alignments...

7: for each a ∈ Aij do . ...and update query scores

8: for each q ∈ f (a)i do

9: q.relevance← q.relevance+ σses(a)

10: for each q ∈ f (a)j do

11: q.relevance← q.relevance+ σses(a)

12: for each j 6= i, a ∈ Aij do

13: avgRelevance←

∑
q∈f

(a)
i

q.relevance

length(f
(a)
i

)
. Compute score for f

(a)
i

14: b← SWrank(f
(a)
i , scur) . Align f

(a)
i with scur to compute foresight

15: if avgRelevance > maxRelevance and (1− σque(f
(a)
i [.], scur[.])) · (1− σses(b)) ≥ Φ then

16: maxRelevance← avgRelevance

17: r ← f
(a)
i

18: return r . Return the subsession with the highest score

score to each query q ∈ fi, for each fi ∈ F . Then, a relevance score is computed for

each subsession that has been successfully aligned in each fi by averaging the scores of

its queries. Finally, r is chosen as the subsession with the highest relevance among those

that meet the minimum foresight constraint Φ set by the user. Note that the ranking

methods normally used in collaborative filtering approaches can hardly be adapted to

the context of databases [14], and even less in our context because (i) we work with two

different levels of aggregation: queries and sessions; and (ii) we compare objects (queries

in our case) in terms of similarity and not of identity.

The pseudocode for this phase is sketched in Algorithm 2. The for loop starting at line 4

aims at finding, for each candidate recommendation fi, its subsession yielding the highest

relevance score. This is done by first computing the pairwise alignments between fi and
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all the other sessions in F making use of a different version of the alignment algorithm.

In this version, called SWrank, no time-discounting function is used (as we do not need

to favor alignments in particular positions), and every possible alignment is returned; so,

differently from SWcand, the result of SWrank(fi, fj) is not only the best alignment but

a set of alignments Aij between fi and fj. For each alignment a ∈ Aij, in lines 7-11 we

increase the scores of all aligned queries in fi and fj by the similarity σses(a). Eventually,

the queries with the highest scores will be marking the densest areas in F , i.e., those

that have been traversed the most by the sessions in F . Then, in lines from 12 to 17,

the query scores are used to compute a score for each subsession of fi corresponding to

an alignment found with another session in F . In particular, for subsession f
(a)
i aligned

in a, its relevance score is computed as the average score of its queries. To check that

the constraint on Φ is met, the foresight of f
(a)
i is estimated in line 15 as the distance

between its last query and the last query of the current session, weighted on the distance

between the whole f
(a)
i and scur.

Example 4.2 With reference to our working example, the subsession in F yielding the

highest score (0.32) is s2[4, 6], which becomes the base recommendation r (see Figure 5).

4.3 Fitting

The goal of this phase is to adapt the base recommendation r to the current session

scurr, i.e., to move r closer to scurr while preserving its intrinsic logic. This is achieved by

characterizing (i) the differences between scur and its aligned counterpart in the log session

l from which r is extracted and (ii) the user’s behavior during scur. These characterizations

adapt the technique of [21], that is itself inspired by label ranking, a form of classification

that has been shown to be effectively handled by association rules. In [21] we proposed

to modify a query using association rules extracted from a query log. Our fitting phase
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therefore consists of extracting association rules from scur and l. Two types of rules,

called Type-1 rules and Type-2 rules respectively, are extracted and used to transform

r as sketched in Algorithm 3. Type-2 rules are those introduced in [21] and have been

proved successful in a similar context, while Type-1 rules are novel and ensure that the

final recommendation remains focused on the fragments frequently used in the current

session. The main difference between the two types is the sessions they are computed

from, which impacts the form of the rules.

A Type-1 rule aims at establishing a correlation between a query fragment x (either a

measure, a group-by level, or a selection predicate) used in l and a query fragment y of

the same type used in scur, so that r can be transformed by substituting all occurrences

of x with y. These rules take the form x→ y and are extracted from couples formed by a

query qi of scur and q′j, the query of l aligned with qi (line 1 of Algorithm 3). For instance,

session l may be characterized by a recurrent selection predicate Year = 2013 and be

focused on measure AvgCostGas, while session scur may be characterized by Year = 2011

and measure AvgPerWt; in this case, two rules (Year = 2013) → (Year = 2011) and

AvgCostGas→ AvgPerWt will be extracted aimed at making the base recommendation r

more similar to the current session by focusing r on 2011 and AvgPerWt rather than on

2013 and AvgCostGas.

Type-2 rules aim at finding query fragments used frequently together in scur (line 2), and

have the form X → y with X a set of fragments of scur and y a fragment of scur. For

instance, rule {AvgCostGas, (Year = 2011)} → Region captures the fact that the trends

of measure AvgCostGas for 2011 are mainly analyzed in scur on a region-by-region basis.

If in r the same measure for 2011 is analyzed by State instead, this rule can be used

to adapt r by changing query group-by’s from State to Region. Noticeably, letting both

types of rules potentially work with all query fragments ensures that the full range of

transformations between OLAP sessions are covered.
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Rules of both types are ranked according to the geometric mean of the following fig-

ures, which have been experimentally selected: (i) the support of the rule; (ii) the con-

fidence of the rule; (iii) the average position in scur where the head fragment y appears

(to favor recent fragments); (iv) the support of the head fragment y in scur (to favor

frequent fragments). Note that, for Type-1 rules, support is given by supp(x → y) =

|{(qi,q′j) s.t. qi∈scur,q′j∈l,x∈q
′
j ,y∈qi}|

|scur| , while for Type-2 rules it is supp(X → y) = |{qi s.t. qi∈scur,X∪{y}⊆qi}|
|scur| .

The confidence of a rule B → H (where B and H are sets of fragments) is conf(B →

H) = supp(B∪H)
supp(B)

.

The rules extracted are used to change the fragments Fr shared by all the queries of

the base recommendation r (line 3 of Algorithm 3). This ensures that the fitting process

respects the intrinsic logic of r, without producing two identical queries in the recom-

mended session. First, Type-1 rules x → y are considered (lines 5 to 11), in descending

order (line 6), as follows. If fragment x exists in r and not in scur, then this fragment

is replaced by y in r. Every modified fragment is marked so as not to be adapted any

more (line 10). Then, Type-2 rules X → y are considered (line 12 to 22), in descending

order (line 13), only for changing the queries that include the rule body X (line 14), as

follows. If the rule head y is a selection predicate or a level and is not already present in

the query (line 15), then it replaces the corresponding fragment (i.e., the one belonging

to the same hierarchy) of the query (line 17). If y is a measure that is not already present

in r (line 19), then it is added to the measure set of the query (line 21). Like for Type-1

rules, once a fragment is modified, it is marked so it is not modified any more (line 21).

Note that, as an effect of the fitting phase, there is a possibility that the recommendation

produced, r′, includes some queries that are identical to queries that were part of scur

(i.e., queries that the user has already formulated during the current session). Such a

recommendation would be completely useless. So, in this case, we go back to the ranking

phase and take as a base recommendation the next most relevant subsession.
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Algorithm 3 Fitting
Input scur: the current session, r: the base recommendation, l: the log session from which r was extracted

Output r′ : the recommended session

1: T1 ← ExtractType1Rules(scur, l) . Extract rules

2: T2 ← ExtractType2Rules(scur)

3: Fr ←
⋂

q∈r q . Set of shared fragments in r

4: r′ ← r

5: while Fr 6= ∅ and T1 6= ∅ do . Apply Type 1 rules

6: (x→ y)← TopRank(T1)

7: if x ∈ Fr and x 6∈ q ∀q ∈ scur then

8: for i = 1 to length(r′) do

9: r′[i]← r′[i] \ {x} ∪ {y}

10: Fr ← Fr \ {x}

11: T1 ← T1 \ {x→ y}

12: while Fr 6= ∅ and T2 6= ∅ do . Apply Type-2 rules

13: (X → y)← TopRank(T2)

14: if X ⊆ Fr then

15: if y is a group-by level or a selection predicate and ∃z ∈ Fr corresponding to y then

16: for i = 1 to length(r′) do

17: r′[i]← r′[i] \ {z} ∪ {y}

18: Fr ← Fr \ {z}

19: else if y 6∈ q ∀q ∈ r′ then

20: for i = 1 to length(r′) do

21: r′[i]← r′[i] ∪ {y}

22: T2 ← T2 \ {X → y}

23: return r′

Example 4.3 In our working example, the only applicable rules are the Type-1 rules

AvgCostGas→ SumIncTot and (Region = MA)→ (Region = Mountain), which transform

r into r′ by changing its measure set and its selection predicate as shown in Figure 5.

5 Experimental Results

This section describes the results of the experimental tests we performed. After explaining

the measures we use to assess the quality of a recommendation, we describe the techniques
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we used to generate session logs for the experiments. Then, we report and discuss the

test results from both the effectiveness and efficiency points of view.

5.1 Assessing the Quality of Recommendations

Consistently with the literature on recommender systems (see Section 2), we assess the

accuracy and coverage of our recommender system first, and then use more elaborated

measures to assess the suitability of recommendations.

Accuracy is measured by extending the classical precision and recall measures to take

session similarity into account. Let L be a log and S be a set of current sessions for

which recommendations are to be computed. Given session s ∈ S, let fs be its actual

future (i.e., the sequence of queries the users would have formulated after s[.] if she had

not been given any recommendation) and rs be the future recommended by our system.

Recommendation rs is considered to be correct when rs ∼ fs, i.e., when it is similar to

the actual future of s.

Let FS = {fs ; s ∈ S} and RS = {rs ; s ∈ S}. The set of true positives is then defined

by

TP = {rs ∈ RS ; rs ∼ fs}

i.e., the set of recommended futures similar to their actual counterparts. The set of false

positives is FP = RS \ TP and the set of false negatives is FN = {fs ∈ FS ; fs 6∼ rs}.

Then, recall is |TP |
|TP |+|FN | and precision is |TP |

|TP |+|FP | = |TP |
|RS| .

The global accuracy is measured using the F-measure [22]:

F = 2
Precision ·Recall
Precision+Recall

while the coverage is |RS||S| .
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To assess the suitability of a recommendation rs for a current session s we adopt two more

measures. Foresight, measured like in Section 4.2, indicates how “far” from the current

query of s the last query of rs is, weighted by the distance between the two sessions:

Foresight(s) = (1− σque(s[.], rs[.])) · (1− σses(a))

(where a is the best alignment between s and rs, and σses = 0 if no alignment can be

found). Novelty indicates how distant rs is from the sessions in the log:

Novelty(s) = minl∈L(1− σses(a′))

(where a′ is the best alignment between l and rs).

5.2 Log Generation

The benchmark we adopted for our tests is based on a set of synthetic logs over the CEN-

SUS schema. The sessions in each log were generated using CubeLoad, a Java application

specifically aimed at generating realistic workloads [23]. Workload realism is achieved in

CubeLoad in different ways:

• OLAP users are normally grouped into profiles with different skills and involved in

business analyses with different features. Often, a profile has one or more segregation

predicates, i.e., it can only view a specific slice of the cube data. Both differentiated

profiles and specific segregation attributes are modeled and tunable.

• When a user logs to the OLAP front-end, she is typically shown a page where some

predefined “seed” queries are linked. Sometimes seed queries include a prompt, meaning

that the front-end asks the user to select one value out of the domain of a level. Both

seed queries and prompts are managed and tunable.

• After executing one seed query, the user starts applying a sequence of OLAP operations
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Fig. 6. Session templates (seed queries in green, surprising queries in red) in CubeLoad [23]

that progressively transform a query into another so as to build an analysis session. In

CubeLoad, each session starts with a random seed query then it evolves by applying

at each step one atomic OLAP operation to the previous query.

• Features such as the number of seed queries available, the maximum size and complexity

of reports returned by seed queries (in terms of dimensionality, size, and number of

measures), and the average length of sessions may significantly depend on the typical

ICT skills and business understanding for the users of each profile —besides on the

quality of the OLAP front-end. All these parameters are fully tunable for each single

profile.

• Some recurrent types of user analyses are normally found in OLAP workloads. To

cope with this, session evolution in CubeLoad is driven by four predefined templates

(see Figure 6): slice-all, where the value of a selection predicate is iteratively changed,

slice-and-drill, where sequences of slicing and drill-down operations are executed on

hierarchies, explorative, where sessions quickly move towards one in a small set of

“interesting” queries and then evolve randomly, and goal-oriented, where each session

slowly converges to one final query chosen from a set of randomly generated ones. These

four templates are uniformly distributed in CubeLoad workloads, and are completely

independent of the parameters described above (number of profiles, session length,

etc.).
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5.3 Effectiveness Tests

This section presents the results of the seven groups of tests we conducted to assess

the accuracy and coverage of our recommender system, as well as the suitability of the

generated recommendations. All tests were conducted on a 64-bits Intel Core i7 quad-core

3.4GHz, with 8GB RAM, running Windows 7 pro SP1.

A set of tests on a log L generated by CubeLoad is executed by iteratively (i) picking one

session s ∈ L; (ii) taking subsession s[1, 4] as the current session and subsession fs = s[5, .]

as its actual future (except for the third group of tests, where the position of the current

query is varied); (iii) finding a recommendation rs for s[1, 4] using the remaining sessions,

L \ {s}, as the log sessions. As explained in Section 5.1, rs is considered to be correct

when rs ∼ fs, non correct otherwise.

The aim of the first group of tests we carried was to tune our approach, i.e., to determine

a good trade-off between accuracy and coverage. To this end we recall from Section

4.2 that the base recommendation is chosen, among the candidate recommendations, as

the one with the highest relevance score; this suggests to check how often selecting a

subsession with low relevance leads to a wrong recommendation. So in this tests we gave

a recommendation only if the base recommendation had relevance higher than a minimum

relevance threshold, otherwise we gave no recommendation. The results in Figure 7 show

how the accuracy and coverage change when the minimum relevance increases, on a log

of 200 sessions. When the minimum relevance is 0 no filtering of base recommendations

is made, so coverage is about 90%. Expectedly, precision increases with the minimum

relevance, while coverage —and therefore recall— decrease quite rapidly, meaning that

base recommendations often have low relevance. However, the curve for precision clearly

shows that our approach is well capable of delivering good recommendations even out
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Fig. 7. Accuracy vs. coverage trade-off in function of the base recommendation minimum rele-

vance

of base recommendations with low relevance. These facts are well summarized by the F-

measure curve, showing that the best overall performance is achieved when the minimum

relevance is 0. Therefore, no minimum relevance threshold was posed for all the following

tests.

The focus of the second group of tests was to observe how the approach performs on logs

with different characteristics. To this purpose, we tuned CubeLoad parameters to create

two series of logs: the first one with different densities, the second one with different session

lengths. Note that a clustered log is meant as one with dense groups of similar sessions

(specifically, each session is similar to about 30 other sessions on average), whereas in a

sparse log all sessions tend to be dissimilar from each other (each session is similar to

about 15 other sessions on average). The minimum foresight Φ was set to 0. As shown in

Figure 8 (top left), the coverage increases as sessions get more clustered, while precision

is not significantly affected; this behavior is consistent with that of collaborative filtering

approaches, where the capability of giving a recommendation depends on the quantity

of data that matches the user’s query. Also, Figure 8 (top right) shows that it is hard

to give good recommendations when log sessions are short; indeed, the shorter the log
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Fig. 8. Effectiveness vs. log and session features

sessions, the less likely for the recommendation to be similar to the (even shorter) actual

future —therefore, the lower the precision. As to the average foresight, in these tests it

is expectedly low because Φ = 0. Finally, the average novelty is relatively higher but still

it does not exceed 0.3, again as a consequence of having set Φ = 0; the reason for this

relationship between novelty and Φ will be explained below (see comments to the fourth

group of tests).

The core question of the third group of tests was: which is the best time in the user’s

OLAP journey to give her a recommendation? In other words, we analyzed how the

recommendation effectiveness changes with the length of the current session on a log

with medium density and medium length of sessions (again with Φ = 0). The results

in Figure 8 (bottom) show that increasing the length of current sessions has a clear
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Fig. 9. Effectiveness vs. minimum foresight

positive effect on accuracy: this is compatible with the intuition that a longer past is

more explanatory of the user’s behavior and intentions, thus leading to the delivery of

better recommendations.

The fourth group of tests was aimed at measuring the effectiveness of the parameter Φ

set by the user to rule the minimum foresight of the base recommendation. The log used

for these tests is again the one with medium density and medium length of sessions,

and current sessions have length 4. Figure 9 enables a comparison of the accuracy and

suitability measures with the fitting phase of our approach switched on (plain lines) and

off (dashed lines); in this regard, some interesting observations can be made:

• The average foresight of the base recommendation (no fitting) is always higher than

the minimum foresight Φ, which confirms the correctness of the approach. However,

the average foresight of the final recommendation (with fitting) is slightly lower: in

fact, fitting inevitably reduces the foresight by applying modifications that move the

base recommendation closer to the current session.

• Fitting has a strong impact on the recommendation correctness. Not only precision is

improved by fitting when Φ = 0, which indeed is the motivation for the fitting phase,
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but the increase in precision caused by fitting with higher values of Φ is remarkable. The

reason is that, when Φ is high, the base recommendation tends to be very distant from

the current session, so it is probably not similar to the actual future; however, fitting is

quite effective in making the base recommendation compatible with the current session.

• The novelty of the base recommendation is always very low; this is expected, as the

base recommendation is just a portion of a log session, hence it will always have a

strong similarity with the session from which it was extracted. The novelty of the given

recommendation is much higher, indicating that the recommendation is actually some-

thing new with respect to what we have in the log. Interestingly, the novelty reaches

very high values when Φ is also high. This can be explained by considering that the

sessions in the log tend to be clustered into some high-density areas; to achieve a high

foresight for a current session taken from one of these clusters, base recommendations

are mostly chosen from a low-density inter-cluster areas of the log, so fitting transforms

them into something very different from the other log sessions.

The fifth group of tests investigates how the recommendation accuracy changes with

continued usage of the system. These tests were made on the same three logs used for the

second group of tests (a sparse one, a clustered one, and an intermediate one), and the

results were averaged. The sessions in each log were then randomly grouped in groups

of 20: at the first step, the 20 sessions in the first group were put in the log, and the

20 sessions in the second group were used as current sessions; at the second step, the 20

sessions in the second group were added to the log and the 20 sessions in the third group

were used as current sessions; and so on. As a result, the log size is increased by steps

of 20 in a way that simulates real usage of the system. Figure 10 shows the results. As

expected, recall and coverage increase quickly with the log size; precision is quite stable

and above 80% even when the log is very small.

The sixth group of tests is focused on the robustness of the approach in terms of stability
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Log	
  size 20 40 60 80 100 120
Prec 0.944 0.772 0.941 0.922 0.889 0.871
Rec 0.467 0.433 0.617 0.633 0.750 0.733
Cov 0.483 0.550 0.667 0.700 0.850 0.850

F-­‐meas 0.610 0.546 0.737 0.735 0.812 0.790Prec	
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Fig. 10. Effectiveness vs. log size
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Fig. 11. Inter-session similarity for increasing rank of candidate recommendations

of the recommendation. Figure 11 shows the similarity between the base recommendation

and the other candidate recommendations ordered according to their relevance (averaged

on groups of 20). The curve smoothly decreases, which means that the most relevant

subsessions, as ranked during the ranking phase, are all quite similar to each other. This

means that small variations in the current session or in the log features will not change

drastically the final recommendation returned.

Finally, we compared our approach with the one proposed in [6] (slightly modified to

recommend sessions instead of ordered sets of queries), using a log of 200 sessions with
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minimum relevance 0 and minimum foresight 0. The approach of [6] is clearly outper-

formed in terms of accuracy, with a precision of 0.52 (against 0.94) and a recall of 0.52

(against 0.87). This is explained by the fact that this approach always computes a recom-

mendation (coverage 1 against 0.92) that is chosen from the log (novelty 0 against 0.18,

foresight 0.18 against 0.05).

5.4 Efficiency Tests

Computing effective recommendations is useless if they are not returned in a time frame

compatible with OLAP interactions. Figure 12 shows the execution times for our system

considering logs with different features. Execution times are split according to the three

phases: alignment, ranking, and fitting. Overall, execution times rarely exceed 50 msec.,

which is perfectly compatible with a human-computer interaction.

Before analyzing in more details the system behavior, we briefly discuss the computational

complexity of the three phases. Algorithm 1 looks for the best Smith-Waterman align-

ment between the current session and those in the log, thus its computational complexity

is O(|L| × v2) where v is the average length of the log sessions [1]. Algorithm 2 ranks

the candidate sessions computing an all-against-all Smith-Waterman alignment, thus its

computational complexity is O(|F |2 × v2) where F is the set of candidate recommenda-

tions. Finally, Algorithm 3 applies fitting to the base recommendation; its computational

complexity is mainly ruled by Type-2 rules extraction, requiring to extract all rules, even

infrequent ones, which has an exponential complexity (see e.g., [24]). The time taken

remains acceptable though, since the average number of fragments f that are common to

all the queries of a base recommendation is low. Type-1 rules extraction is polynomial,

due to the nature of the rules extracted. However, Type-1 rules extraction takes as input

the set of fragments of both the current session and the log session, whose size can be
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Lod	
  density Alignment Ranking Fitting AVG
sparse 12.86 12.60 19.56 17.7 0.0
medium 12.65 16.87 20.38 19.4 0.0
clustered 12.79 26.85 28.38 28.7 0.0

Extremly	
  dense
199 14.71 1.22
199 18.35 1.30
199 28.23 1.67

Log	
  size Alignment Ranking Fitting AVG
50 6.98 4.54 31.44 4.4 0.2
100 8.88 7.21 25.80 8.9 0.1
150 10.86 10.65 21.27 13.3 0.1
200 12.65 16.87 20.38 19.4 0.0

49 6.465 1.156
99 11.255 1.375
149 14.591 1.259
199 18.35 1.30
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Fig. 12. Efficiency vs. log features (all times in msec.; unless otherwise stated, all logs have size

200; labels report the average number of candidate sessions)

greater than f , especially in the presence of small logs, where the similarity between the

log session and the current session is likely to be low. Clearly, the execution time of each

phase depends on the one hand on the cost of the basic operation carried out (i.e., align-

ment for Algorithms 1 and 2), on the other hand on the number of times such operation

is executed. In the light of this premise, the following considerations hold:

• The costs for alignment and ranking increase with the log size |L| and the average

session length |v|, which jointly determine the number of alignments found with the

current session.

• Though fitting works on a single session, its cost is predominant due to the high com-

putational complexity of rule extraction. Unexpectedly, the execution time of fitting
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increases as the log size decreases; this is due to the fact that the extraction of Type-1

rules is computationally more expensive when the current session is less similar to the

log session, which is more likely in the case of smaller logs.

• As to the two remaining phases, as suggested by the complexity estimates reported

above, the predominance of either alignment or ranking depends on the relationship

between |F |2 and |L|: the cost of ranking tends to become higher than that of alignment

for large and clustered logs, that determine several candidate recommendations thus

making |F |2 > |L|.

As to the comparison with [6], the tests show that our approach is slightly worse in terms

of efficiency (50 msec. against 17.8 msec.) due to the extra costs paid for the fitting phase;

however, as discussed in Section 5.3, the higher effectiveness largely compensates for this

lower efficiency.

6 Conclusions

In this paper we have proposed a collaborative filtering approach to recommendation of

OLAP sessions that reuses knowledge acquired by other users during previous sessions.

Like other collaborative approaches, ours follows a three-phases process, but it is the first

that treats sessions as first-class citizens, using brand new techniques for comparing ses-

sions, finding meaningful recommendation candidates, and adapting them to the current

session. We have extensively evaluated it by discussing its efficiency and its effectiveness

from different points of view. Though our approach ensures that the returned recommen-

dations have several desirable properties (such as novelty, relevance, and foresight), we

plan to further improve it under different aspects:

• We have observed that large logs and longer log sessions are necessary to obtain a good
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coverage (see Figures 8 and 10). To cope with this well known cold-start problem,

extending our approach with non collaborative recommendations (like, e.g., [5]) is a

promising research direction.

• As shown in Figure 11, several candidate recommendations with high relevance can

normally be found. Though we have chosen to recommend only the top-1 session, the

approach can be easily reworked to recommend a top-k set of sessions. In this case, the

approach effectiveness could benefit from query result diversification [25].

• The user should be enabled to easily understand in which direction a recommendation

will guide her through multidimensional data. Since we are recommending sessions

rather than single queries, and sessions are complex objects, a visualization problem

arises. Solving this problem requires to (i) understand the set of features that describe

an OLAP session direction at best, and to (ii) find a good visualization metaphor.

• Our approach has been tested with synthetic, yet realistic workloads. However, given

real OLAP logs, characterizing user sessions and analyzing sessions and queries to

filter out the irrelevant ones (e.g., those showing an erratic behavior due to a trial-

and-error user approach), remain open problems, that should be solved to better adapt

our approach to different kinds of users. We are currently working to collect real, user-

annotated logs, as well as user feedback on our recommender system.
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