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a b s t r a c t

A statistical methodology for detecting pits interactions based on a two-dimensional spectral analysis is
presented. This method can be used as a tool for the exploratory analysis of spatial point patterns and can
be advanced as an alternative of classical methods based on distance. One of the major advantages of the
spectral analysis approach over the use of classical methods is its ability to reveal more details about the
spatial structure like the scale for which pits corrosion can be considered as independent. Furthermore,
directional components of pattern can be investigated.

The method is validated in a first time using numerical simulations on random, regular and aggregated
structures. The density of pits, used in the numerical simulations, corresponds to that assessed from a
corroded aluminium sheet. In a second time, this method is applied to verify the independence of the cor-
rosion pits observed on the aforementioned aluminium sheet before applying the Gumbel theory to
determine the maximum pit depth. Indeed, the property of independence is a prerequisite of the Gumbel
theory which is one of the most frequently used in the field of safety and reliability.

1. Introduction

Pitting corrosion is one of the most prevalent forms of localized
corrosion. This stochastic physical phenomenon can be analyzed
using probabilistic models and statistical approaches in order to
predict the maximum pit depth value from measurements col-
lected on smaller analyzed surfaces s. The extreme values theory
is one of the most used for this aim [1]. However, its theoretical
conditions for a rigorous application are rarely respected or not
easy to check, notably homogeneity and independence. The homo-
geneity states that the probability distribution of the random var-
iable representing the depth is the same for all pits, while the
independence supposes that there is no interaction between ran-
dom variables, meaning that the evolution of a pit doesn’t influ-
ence that of the others.

The independence quantification of pits seems to be a ques-
tionable assumption with respect to the extreme value theory
because of the complexity of the corrosion phenomenon. Indeed,
several methods were developed to characterize existing interac-

tions among pits based on spatial point process. Lopez De La
Cruz et al. [2] applied the inter-event distances estimator meth-
od, Budiansky et al. [3] and Cawley et al. [4] analyse pits inter-
action by using the Ripley’s method. Namely, all of these
methods are based on distance measure and offer a statistical
treatment allowing to distinguish between different types of spa-
tial data: the aggregated, the regular and the random spatial
structures.

In this paper, an alternative method based on a two-dimen-
sional spectral analysis is presented in order to investigate the
structure of a spatial point pattern. Since the seminal work of
Bartlett [5], the spectral analysis has been developed with the ad-
vent of powerful computers, and it was more widely used in par-
ticular in the domains of plant ecology and of forest management
[6,7]. This method provides a detailed description of a structure
and has the advantage to detect the presence of directional
components.

In Section 2, a theoretical background is presented. The three
common types of spatial data are reminded, then classical methods
(quadrat counts and Ripley’s method) are presented, and at last,
the spectral analysis is detailed. The relevancy of this method is
showed using numerical simulations which is presented in Sec-
tion 3. Afterwards, the experimental procedures are detailed with
a discussion about the different results in Section 4. Finally, a con-
clusion is presented in Section 5.
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2. Theoretical background

2.1. Types of spatial data

Generally, three types of spatial structures can be distin-
guished: random, regular and aggregated. An example of these
structures will be presented later.

A random spatial structure is known as the complete spatial
randomness (CSR). It serves as the null hypothesis and asserts that:

(a) The number of events k (points) belonging to a region A with
area |A| follows a Poisson distribution with mean k|A|, where k rep-
resents the density which is the mean number of points per unit
area. The probability of having k points into the region A is

PkðAÞ ¼ expð�k j A jÞ ðk j A j Þ
k

k!
k 2 N ð1Þ

(b) Given N events within A, the locations of these events are
independent and uniformly distributed over A.

The stochastic process which generates the CSR structures is the
homogeneous Poisson point process denoted by HPP. The main
properties of this process are stationarity and isotropy. A point pro-
cess X ¼ fxign

i¼1ðxi 2 R2; i ¼ 1; . . . ;nÞ is stationary if the translated
process Xz ¼ fxi þ zgn

i¼1 has the same distribution for all z 2 R2. A
process is isotropic if its distribution is invariant with respect to
rotations. A process which possesses these properties is said
motion-invariant [8]. The HPP is an example of such processes.

In the context of pitting corrosion, if the null hypothesis is re-
jected, this means that the independence assumption is violated.
So, the alternative hypothesis is privileged and it is assumed that
the process which generates pitting corrosion is either regular or
clustered. The first process supposes that every pit is located at
least at for a distance denoted later by d and the second is charac-
terized by the existence of many sites of clustered pits. Both of
these processes violate the hypothesis of independence.

2.2. Classical methods

2.2.1. Ripley’s method
Among the methods based on distance, the Ripley’s method can

characterize the spatial structure of a point pattern. This last meth-
od aims to assess the probability to observe a number of points
belonging to a circle of radius r. Under the hypothesis of homoge-
neity, the local density in every circle is equal to the total density of
the studied region X. The Ripley’s function measures the fluctua-
tions by drawing circles of increasing radius r. It is defined as:

KðrÞ ¼ EðNnðrÞÞ
k

ð2Þ

where Nn(r) is the random variable corresponding to the number of
events into the circle of radius r and E(.) is the operator of
expectation.

Therefore, for a CSR structure, we have K(r) = pr2, for an aggre-
gated structure K(r) > pr2 and for a regular structure K(r) < pr2. In
practice the function K(r) is unknown. However, a naive estimator
of this function can be obtained by:

bK ðrÞ ¼ 1
k̂

1
N

XN

i¼1

XN

j¼1
j–i

1ðdij 6 rÞ ð3Þ

where k̂ ¼ N
jXj is the estimator of the density, N the total number of

points, jXj the area of the studied region, dij the distance between
events i and j and 1(dij 6 r) is the indicator function defined as:

1ðdij 6 rÞ ¼
1 if dij 6 r

0 otherwise

�
ð4Þ

This estimator (3) is biased because of the edge effects. These effects
arise because the theoretical distributions for most spatial point
statistics assume an unbounded area. Thus, corrections are required
because the points near to the edges have fewer neighbours. As an
example, Ripley [9] proposed the following correction:

bK ðrÞ ¼ 1
k̂

1
N

XN

i¼1

XN

j¼1
j–i

1ðdij 6 rÞ
wij

ð5Þ

where wij is the proportion of the circumference of the circle cen-
tred at event i of radius dij which is contained within A.

In practice, the upper and the lower confidence bounds (confi-
dence envelopes) are calculated using Monte-Carlo simulations.
Namely, several CSR structures are generated for which the Rip-
ley’s functions are calculated for the various values of r. For a given
risk a and a radius r, the upper confidence bound corresponds to
the 1� a

2 quantile and the lower confidence bound to the a
2 quantile.

A CSR structure is concluded from the observed pattern if the
estimator bK ðrÞ remains inside the envelope, an aggregated struc-
ture if bK ðrÞ falls above the upper confidence bound and a regular
structure if bK ðrÞ falls below the lower confidence bound.

The main problem of the Ripley’s method is the bias related to
the edge effects and to the increasing of distance r. Thus, correc-
tions must be taken into account.

2.2.2. Quadrat counts method
This method supposes that the studied region X is a rectangle

(or a square). It consists in subdividing the studied region X, con-
taining ntotal points, into m cells with the same area (quadrats).
The number ni of points belonging to the cell i (i = 1,. . .,m) is then
counted. So, under CSR hypothesis, the expected value of ni for
i = 1,. . .,m is given by:

�n ¼ ntotal

m
ð6Þ

Therefore, the variable D defined as:

D ¼
Xm

i¼1

ðni � �nÞ2
�n

ð7Þ

follows the Chi-square distribution with m�1 degrees of freedom.
The main problem encountered in this method is the choice of

the size of quadrat. Namely, a CSR hypothesis can be rejected or ac-
cepted for two different choices of m. In order to reduce the draw-
backs of this method, Lopez De La Cruz et al. [10] coupled it with
the non homogeneous Poisson process.

Finally, it should be noticed that the methods mentioned previ-
ously can lead to contradictory results like pit pattern studied in
[2]. For this reason, Cox [11] recommended to analyse the struc-
tures by using various methods. According to this scope, spectral
analysis is then performed and applied to pitting corrosion.

2.2.3. Spectral analysis of spatial point processes
As mentioned previously, spectral analysis of spatial data can be

presented as an alternative to the classical methods based on dis-
tance. In order to perform this method, a mathematical back-
ground is proposed which is based on the work of Mugglestone
et al. [12]. Diggle’s notation and terminology are used here [13].

In order to distinguish between different spatial point patterns,
it is common to compare their first and second order properties.

2.2.3.1. First and second order properties. First order property: The
first order property called also the intensity function is defined
as the expected number of points per unit area which is given by:



kXðaÞ ¼ lim
jdaj!0

E½NXðdaÞ�
jdaj

� �
; a ¼ ða1; a2Þ 2 R2 ð8Þ

where da is the elementary surface containing the point a. NX(da)
represents the number of events generated by a spatial process X
in da and jdaj represents the area of da. In the case of stationary pro-
cess, the intensity function kX (a) is constant and denoted later by
kX.

Second order property: The second order property contains infor-
mation about the dependence between events in two regions. Dig-
gle defined it as:

kXXða; bÞ ¼ lim
jdaj;jdbj!0

E½NXðdaÞNXðdbÞ�
jdajjdbj

� �
; a–b; a; b 2 R2 ð9Þ

For theoretical description of second order property, the covariance
density function is more useful. For a; b;2 R2, it is defined as:

cXXða;bÞ¼ lim
jdaj;jdbj!0

E½fNXðdaÞ�kXðaÞjdajgfNXðdbÞ�kXðaÞjdbjg�
jdajjdbj

� �
; a–b

ð10Þ

which is equivalent to:

cXXða; bÞ ¼ kXXða; bÞ � kXðaÞkXðbÞ; a–b ð11Þ

The definition of the covariance density function in (9) is available
when a – b. The extension to the case a = b assumes that the pro-
cess is orderly which means that only one event can occupy a par-
ticular point in space [12]. This case is taken into account by Bartlett
[5] who has introduced the complete covariance density function:

jXXða; bÞ ¼ kXðaÞdða� bÞ þ cXXða; bÞ; a; b 2 R2 ð12Þ

where d is the two-dimensional Dirac function for which:Z
R2

f ðxÞdðx� x0Þdx ¼ f ðx0Þ ð13Þ

for all continuous function f. A full proof of the formula (12) is de-
tailed on [14].

2.2.3.2. Practice of spectral analysis.

(a) Definition and calculation of the periodogram.

The spectral density function of a stationary process is defined
as the Fourier Transform of the complete covariance density func-
tion jXX [12]:

fXXðw1;w2Þ ¼
Z

R2

Z
R2

jXXðc1; c2Þ expf�iðw1c1 þw2c2Þgdc1dc2

ð14Þ

More details about the expressions of jXX and cXX under the hypoth-
esis of stationarity are given on [13].

Let X ¼ ½0; Lx� � ½0; Ly� be a rectangular region containing N
events from a spatial process X. Let {(xj, yj), j = 1,. . .,N} be the loca-
tion of events. Because of the complexity of spectral density func-
tion, Bartlett [5] introduced an estimation named Periodogram
which is based on the discrete Fourier transform (DFT). Its expres-
sion is given by [12]:

f̂ XXðwp;wqÞ ¼ FXðp; qÞFXðp; qÞ ¼ fAxðp; qÞg2 þ fBxðp; qÞg2 ð15Þ

where:

FXðp; qÞ ¼
XN

j¼1

exp �2ip p
xj

Lx
þ q

yj

Ly

� �� �
¼ Axðp; qÞ þ iBxðp; qÞ; ðp; qÞ 2 Z2 ð16Þ

In order to simplify these expressions, it is common to rescale the
observed pattern to the unit area. Formula (16) becomes:

FXðp; qÞ ¼
XN

j¼1

exp �2ip px0j þ qy0j
� �� �

; x0j; y
0
j

� �
16l6N

2 ½0;1�2 ð17Þ

The main property of the periodogram is symmetry, which is ex-
pressed by:

f̂ XXðw�p;w�qÞ ¼ f̂ XXðwp;wqÞ ð18Þ

Thus, the periodogram values are calculated over both negative and
positive integers for one of the frequency, for example q, and posi-
tive integers only for the other frequency p. Mugglestone et al. [12]
propose the values p = 0,. . .,16 and q = �16,. . .,15 that cover a rea-
sonable range of frequency. Otherwise, the choices of p and q are
left to the user. In this work, we choose the range of values
p ¼ 0; . . . ;pmax and q ¼ �qmax; . . . ; qmax � 1 where pmax = qmax = 64.
The interest of using pmax and qmax values is to allow the exploration
of smaller scales patterns.

(b) Interpretation of the periodogram.

The values of the periodogram represent the relative contribu-
tion of every frequency w to the total spatial variance of the pro-
cess. For a CSR structure, there is no value which dominates the
periodogram. For a regular (respectively aggregated) structure,
we observe small (respectively high) values of the periodogram
for small values of w.

For a better interpretation of the periodogram, Renshaw et al.
[15,16] propose the use of the polar representation described by
the R-Spectrum which investigates the scales of the studied pat-
tern and the h-Spectrum which inspects the presence of directional
features.

(c) R-Spectrum and h-Spectrum.

The R-Spectrum denoted by f̂ RðrÞ is defined as:

f̂ RðrÞ ¼
1
nr

X
r0

X
h

f̂ Xðr0; hÞ; 1 6 r 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

max þ q2
max

q
ð19Þ

f̂ RðrÞ averages periodogram values for all the nr ordinates f̂ XXðr0; hÞ
for which r�1 < r0 6 r. In polar representation, f̂ XXðr0; hÞ corresponds
to f̂ XXðp; qÞ where the pair of values ðp; qÞ is defined as:

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
and h ¼ arctan

q
p

� �
where r0 represents the wave number and h the angle
(�90� < h < 90�).

For example, to calculate f̂ Rð6Þ, we take average of all the nr

periodogram values for which 5 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
6 6. The choice of a

step of r equal to 1 is recommended in practice [12].
Similarly, the h-Spectrum, denoted by f̂ HðhÞ, is constructed by

averaging periodogram values for which h � 5� < h0 6 h + 5�. Step
equal to 10� of h is usually used [12]:

f̂ HðhÞ ¼
1
nh

X
r

X
h0

f̂ Xðr; h0Þ; h ¼ �90�; . . . ;90� ð20Þ

Finally, it should be noticed that the ordinate at the origin f̂ XXð0;0Þ
is excluded from the averaging procedure due to its large value
equals to N2 which dominates the shape of the periodogram [12].

(d) Probability laws of R-Spectre and h-Spectre.

Under CSR hypothesis, the intensity function kX is constant. In
practice, it is replaced by the observed intensity N

jXj. In order to



simplify, the pattern is rescaled to the unit square. Mugglestone
et al. [12,17] assert that:

2f̂ XXðwp;wqÞ
N

� v2
2; ðwp;wqÞ–ð0; 0Þ ð21Þ

and

2ff̂ XXð0;0Þ � Ng
N

� v2
1 ð22Þ

where v2
n represents Chi-square distribution with n degrees of

freedom.
For the R-Spectrum, we obtain:

f̂ RðrÞ
N
� 1

2nr
v2

2nr
; 1 6 r 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

max þ q2
max

q
ð23Þ

with

E
f̂ RðrÞ

N

" #
¼ 1 ð24Þ

and for the h-Spectrum

f̂ HðhÞ
N
� 1

2nh
v2

nh
; h 2 ½�90�;90�� ð25Þ

with

E
f̂ HðhÞ

N

" #
¼ 1 ð26Þ

(e) Discriminating criterion of spatial structures.

Under CSR hypothesis f̂ RðrÞ
N remains inside the confidence band

1
2nr

v2
2nr ;

a
2
;v2

2nr ;1�a
2

h i
where a is the risk of the test.

For small values of r, an aggregated structure is detected if f̂ RðrÞ
N is

above the upper confidence bound, whereas a regular structure is

detected if f̂ RðrÞ
N falls below the lower confidence bound.

The R-Spectrum reveals the layout of events within the studied
region, while h-Spectrum detects directional features. The process

is isotropic if f̂ HðhÞ
N remains inside the confidence bound

1
2nh

v2
2nh ;

a
2
;v2

2nh ;1�a
2

h i
.

3. Numerical simulations

In order to test the relevance of the spectral analysis method
and its capacity to distinguish between different patterns of spatial
data, three point processes referring to random (CSR), aggregated
and regular structures are simulated. Results are compared with
those given by Ripley’s method for which the confidence envelope
is calculated by Monte-Carlo method. It should be mentioned that
all of the numerical simulations and the calculus of the different
functions are implemented on Matlab software.

3.1. Density of simulated structures

The density in terms of number of events per unit area used for
simulations of the different structures was determined from a pit-
ting corrosion experiment performed on an aluminium sheet of
150 cm2 area. More details will be provided about this corrosion
experiment in part 4.

Fig. 1 shows this corroded sheet. The calculation of the total
number of pits contained within 5 squares of 4 cm2 was performed
visually and without any cleaning process. This calculation enables
to estimate a pit density equal to 12.4 pits per cm2. To reduce the

time calculation, 200 pits were simulated in an area of 16 cm2. It
should be noticed that the model consists in locating each pit with
the coordinates of its mass centre called centroid hereafter.

3.2. CSR structure

As said previously, the homogeneous Poisson process denoted
by HPP generates the CSR structures. A realization of this process
gives points distributed uniformly across the plane independently
of one another [8]. Fig. 2 shows an example of 200 points (events)
generated from HPP within the square [0,4] � [0,4]. This figure is
generated by simulating the HPP process via a function imple-
mented on Matlab software. The periodogram is illustrated by
Fig. 3 and the calculation of the R-Spectrum and h-Spectrum are
summarized in Fig. 4.

The periodogram of a CSR structure has the property that none
of its values dominates the others which is illustrated by Fig. 3. The
confidence interval shown in Fig. 4(L) confirms the presence of CSR
structure generated by the HPP since the R-Spectrum values fall
within the confidence envelope. Therefore, as mentioned previ-
ously, the HPP is isotropic. This property is highlighted in
Fig. 4(R) since the h-Spectrum remains inside the confidence
envelope.

Fig. 1. Aluminium sheet S of 150 cm2 area showing pitting corrosion with the
selected mask.

Fig. 2. Example of a realization of HPP.



So as to compare spectral analysis with methods based on dis-
tance, Ripley’s method is performed and the result is shown in
Fig. 5.

The envelopes of Ripley’s method in Fig. 5 are calculated via
Monte-Carlo simulation performed 200 times. The result confirms
the CSR structure already detected by spectral analysis.

3.3. Aggregated structure

Many stochastic models can generate cluster processes. In this
work, a Poisson Cluster Process is used. One form of this class of pro-
cesses is Modified Thomas cluster process denoted by MTCP [12]. It
consists in generating the centroid of clusters called ‘‘parents” from
an homogeneous Poisson process with intensity kp. Each ‘‘parent”
gives rise to a number of ‘‘offsprings” which the locations are inde-
pendently and identically distributed according to a bivariate prob-
ability distribution function denoted by h and their numbers follow
a Poisson distribution of mean l.

Fig. 3. Periodogram of HPP.

Fig. 4. 90% Confidence envelope of HPP. (L) R-Spectrum. (R) h-Spectrum.

Fig. 5. 90% Confidence envelope of Ripley’s method of HPP.



If h is symmetric, then the process is isotropic [12]. The function
h is usually taken as a bivariate Gaussian distribution function for
which the locations of the ‘‘offsprings” are centred on the ‘‘parent”
with a standard deviation equals to r:

hðx; yÞ ¼ 1
2pr2 exp � x2 þ y2

2r2

� �
ð27Þ

where (x,y) are the coordinates of the ‘‘offsprings” relatively to the
parents.

Only ‘‘offsprings” are retained in the final number and the num-
ber of events generated by MTCP is random. Then, in order to ob-
tain a density of points close to the estimated one which is equal
to 12.4 pits per unit area, we choose kp = 50, l = 4 and r = 0.04
leading to a final number of points equal to 204.

Figs. 6–8 show respectively the realization, the periodogram
and the spectrums of the generated MTCP.

The periodogram of an aggregated structure is characterized by
high values for small values of frequencies as illustrated in Fig. 7.
About the R-Spectrum presented in Fig. 8(L), it is expected to ob-
serve high values, which fall above the upper confidence bound,
for small values of r. The figure highlights this phenomenon and

Fig. 6. Example of a realization of MTCP.

Fig. 7. Periodogram of MTCP.

Fig. 8. 90% Confidence envelope of MTCP. (L) R-Spectrum. (R) h-Spectrum.



we remark that the R-Spectrum reveals an aggregated structure for
all the values r 6 26 before falling inside the confidence envelopes.
This scale corresponds to 4/26 = 0.154 cm. Finally, the MTCP is iso-
tropic. This property was not observed in Fig. 8(R) since the h-Spec-
trum does not fall inside the confidence band. Schabenberger et al.
[14] point out this problem and propose, in order to interpret cor-
rectly the h-Spectrum, it is necessary to calculate the ratio f̂ hðhÞ

f̂ Hð�hÞ

which, under isotropy, follows the Fisher’s distribution. This calcu-
lation is not presented here, since our main purpose in this work is
to analyse spatial structure regardless of its orientation.

As mentioned previously, Ripley’s method is performed and its
result is shown in Fig. 9.

For aggregated structure, it is expected that Ripley’s function
falls above the upper confidence. As shown in Fig. 9, the aggregated
structure is revealed (particularly for small distances) which con-
firms the result of spectral analysis. However, this method depends
on the number of Monte-Carlo simulations. Thus, a small number
of simulations can lead to false interpretations.

3.4. Regular structure

One of the methods to generate regular structure is to simulate
simple sequential spatial inhibition denoted by SSI [18] for which
each new point is generated uniformly and independently of all

the previous points. News points are rejected as long as they lie
closer than a fixed distance d from existing points. The procedure
ends when no further points can be added in the studied region
[13]. Fig. 10 shows 200 points generated under this process with
d = 0.22 cm. It should be noticed that this process is isotropic.

As expected, the generated points are regularly distributed
within the square [0,4] � [0,4]. The periodogram of this structure
is shown in Fig. 11 and the spectrums are presented in Fig. 12.

For regular structures, the periodogram gives small values for
small frequencies. That is clearly observed for the simulated pat-
tern in Fig. 11. The R-Spectrum in Fig. 12(L) is under the lower con-
fidence bound for small values of r which characterizes the regular
structures. Furthermore, a peak is observed at r = 18. This value is
close to the expected number 4/d. Finally, the h-Spectrum remains
inside the confidence envelope which confirms the isotropy of the
generated structure. This regularity was detected via Ripley’s
method which is illustrated in Fig. 13 where it can be observed that
the first non null value of Ripley’s function occurs just beyond
0.22 cm which corresponds to the minimum permitted inter-event
distance d.

More examples of application of the h-Spectrum are presented
in the references [12,15]. The relevance of spectral analysis has
been proved by using numerical simulations and the interpreta-
tions are consistent with the simulated structures. In addition to

Fig. 9. 90% Confidence envelope of Ripley’s method of MTCP.

Fig. 10. Example of a SSI realization.

Fig. 11. Periodogram of SSI.



distinguish between different types of patterns, spectral analysis
can reveal more details not detected by classical methods. Further-
more, the orientation of patterns can be investigated.

4. Application to experimental data and discussion

In this section we will discuss about the relevancy of CSR
hypothesis as criterion to collect data. As previously presented,
maximum pit depth is one the main design criterion in pitting cor-
rosion and Gumbel’s method is the most used to estimate its value
for an objective area S. The method consists in subdividing an ana-
lyzed area to N cells with the same size s and to extract the max-
imum pit depths on each cell. These N values are used to
estimate the maximum pit depth for a return period T correspond-
ing to the objective area S. For a rigorous application of this meth-
od, the main theoretical assumptions are independence and
homogeneity as explained previously. However, another condition
difficult to satisfy and usually neglected is that every cell must con-
tain the same number of pits. For this reason, an optimal choice of
the size of cells is of prime importance. Many authors have dis-
cussed about this problem but no definitive method was proposed
to determine this choice. Shibata [1] recommends that s should be
chosen so as to contain plural number of pits, and notice that ex-

treme value distribution could not be applicable below a critical
size of s.

Melshers [19] evokes the problems of ‘‘sampling representa-
tiveness” and notice that inhomogeneity of pit depths arises when
metastable pitting is observed. He concludes that to collect data,
large blocs are required for deeper depths to capture a sufficient
number of extreme pits whereas small blocs when pits are small
and numerous. A criterion to collect data was proposed by [20],
consisting to choose samples for which the probability of metasta-
ble pitting occurrence not exceed 10%.

A CSR hypothesis of pits on a studied area assumes that there
are no interactions between pits. Thus, the CSR structures can be
considered as a model where the independence condition in terms
of pit depths is satisfied. Therefore, it can be viewed as a relevant
criterion to collect data since it is in agreement with independence
hypothesis required in extreme value methods. Furthermore, when
the analysed area is subdivided, same number of pits is expected in
each cell because these pits are regularly distributed and the den-
sity in terms of number of pits per unit area is constant for each
scale (subdivision). This property is made clear by simulating
two patterns of 400 cm2 where about 5000 pits coordinates are
generated under CSR and MTCP process for which the parameters
are chosen as kp = 550, l = 10 and r = 0.6 in order to have a final
number of points close to 5000. These structures are subdivided
into several cells which the numbers vary from 10 to 400. After-
wards, we test if a difference exists between the numbers of pits
falling in each cell via the Chi-square test. The result of this simu-
lation is shown in Fig. 14.

For all the subdivisions taken in this simulation, the CSR struc-
ture in Fig. 14(L), allows getting cells with the same number of pits
(at given risk a). Whereas, with aggregated structure shown in
Fig. 14(R), it is more difficult to get uniform subdivision in terms
of number of pits. This remark leads to suppose that CSR structure
as criterion to collect data is appropriate in order to respect the
conditions of Gumbel’s method. Testing the accuracy of this crite-
rion and its effect in the estimation of the maximum pit depth
based on numerical simulations will be presented in a next paper.

The CSR hypothesis was tested on the data collected from the 5
squares of 4 cm2 related to the corroded aluminium sheet pre-
sented in Fig. 1. This experiment consists in immersing during
10 h, an aluminium sheet of area S equals to 150 cm2 and thickness
of 0.8 mm in a corrosive solution under ambient temperature and
without agitation. The sheet was annealed during one hour at
300 �C, and the composition of the corrosive solution is: 0.5 g of
NaCl, 4 g of FeSO4, 25 cm3 of H2SO4, 200 cm3 of H2O.

Fig. 12. 90% Confidence envelope of SSI. (L) R-Spectrum. (R) h-Spectrum.

Fig. 13. 90% Confidence interval of Ripley’s method of SSI.



Fig. 15 shows the shape of three pits extracted from the alumin-
ium sheet as like as their depths.

Only the R-Spectrum is calculated which is sufficient to accept
or reject the CSR hypothesis. Thus, the 5 squares are considered
as the analysed areas. They will be used to estimate the maximum
pit depths in S = 150 cm2. It is worth noting that pit depths have
been measured using an optical microscope with a 20 �magnifica-
tion. The depth is calculated as the height separating the levels cor-
responding to the top (neat image) and the bottom (blurred image)
of the pit. So, 248 pit depths are recorded which fall within the
mask selected initially.

Fig. 16 shows the result of the R-Spectrum. We note that this R-
Spectrum was performed for pmax = qmax = 16 because of the small-
est size of samples composed of the 5 squares (an average of
48 pits per squares).

Except some slight peaks beyond the confidence band, the pits
within the squares S1, S2, S4 and S5 are randomly distributed and
the CSR hypothesis cannot be rejected since the R-Spectrum re-

mains approximately inside the confidence bands. However, pits
within S3 are aggregated since for r = 1, the R-Spectrum falls above
the upper confidence band. This result may be explained by a high
density of pit corrosion in S3 due, for example, to the local variation
of the material composition in terms of density of inclusions lead-
ing to local variations of electrochemical conditions.

In order to apply Gumbel’s method, the 5 squares must be sub-
divided into several cells where the pits are independent. Referring
to the R-Spectrum in Fig. 16, we choose a subdivision for which the
pits are distributed under CSR. For example at r = 2, the 5 squares
verify this condition. This value of r corresponds to the scale 2/
2 = 1 cm, then a subdivision in 4 cells allows to respect the condi-
tions of Gumbel’s method. This result is shown in Fig. 17.

In order to estimate the maximum pit depth for the return per-
iod T = 150, the parameters of Gumbel’s distribution function were
estimated by using the linear regression method. So, this estima-
tion gives the value of 298 lm with the 95% confidence interval
[288 lm, 309 lm] which corresponds to the vertical line in Fig. 17.

Fig. 14. 90% Chi-square test to compare the number of pits per cell. (L) CSR structure, (R) aggregated structure.

Fig. 15. Example of the structures of three pits extracted from the aluminium sheet.



It should be emphasized that the proposed method gives statis-
tical information about the spatial structure related to a corrosion
process but not on its physical mechanism. It enables to detect
eventual existing interactions between corrosion pits but not ex-
plain how and why these interactions take place. The description
of these interactions is based only on the location of pits over the
studied area. So, the model is two-dimensional and neglect the
three-dimensional aspect of pitting corrosion. Such a simple two-
dimensional model has been already considered in corrosion stud-
ies by several authors [2–4,10]. So, the spatial arrangement of pit
structure leads to detect the presence of interactions between pits
(for aggregated or regular structure) or supposes that pits are inde-
pendent (for CSR structure). However, for a complete study of the
phenomenon, marked process appear more appropriate because it
take into account the characteristics of pits as depth, area or vol-
ume. In this case, the description is three-dimensional. This model
will be presented in a next paper.

5. Conclusion

It is shown in this paper that spectral analysis is a powerful
technique to distinguish between spatial data. The main advantage
of this method is that it reveals more details about the structures
without needing Monte-Carlo simulations compared with Ripley’s

method. The periodogram gives a general comprehension about
the structure but the calculation of the R-Spectrum and the h-Spec-
trum allow to extract more information particularly the scale for
which the pattern is aggregated and the privileged orientation of
pitting corrosion. The relevance of this method has been made
clear for all the studied cases for which different spatial structures
may be observed at different scales. Finally, we proposed that CSR
criterion allows looking at the theoretical conditions of Gumbel’s
method in the aim of a rigorous estimation of the maximum pit
depth.

More and more detection of pit interactions integrate pitting
corrosion analysis since it reveals hidden information in the pat-
tern. Nevertheless, the investigation of interactions via the statisti-
cal method presented in this paper does not allow to identify the
source or the parameters leading to these interactions. The objec-
tive is only to accept or reject the dependence between pits which
is useful when Gumbel’s method is applied, and model cannot help
us to understand the correlation between experimental conditions
and the spatial structure of pits; it is only a statistical post-treat-
ment in order to make clear the pit dependence or not at different
scales of the corroded structure.
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