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COLLISION OF ALMOST PARALLEL

VORTEX FILAMENTS

VALERIA BANICA, ERWAN FAOU, AND EVELYNE MIOT

Abstract. We investigate the occurrence of collisions in the evolution
of vortex filaments through a system introduced by Klein, Majda and
Damodaran [KMD95] and Zakharov [Z88, Z99]. We first establish rig-
orously the existence of a pair of almost parallel vortex filaments, with
opposite circulation, colliding at some point in finite time. The collision
mechanism is based on the one of the self-similar solutions of the model,
described in [BFM14]. In the second part of this paper we extend this
construction to the case of an arbitrary number of filaments, with poly-
gonial symmetry, that are perturbations of a configuration of parallel
vortex filaments forming a polygon, with or without its center, rotating
with constant angular velocity.

1. Introduction

We consider the system introduced by Klein, Majda and Damodaran
[KMD95] and Zakharov [Z88, Z99] to describe the evolution of N almost
parallel vortex filaments in a three-dimensional incompressible fluid. Ac-
cording to this model, the vortex filaments are curves parametrized by

(<e(Ψj(t, σ)),=m(Ψj(t, σ)), σ), σ ∈ R, 1 ≤ j ≤ N,

where Ψj : R×R→ C. The dynamics of the set of curves is governed by an
Hamiltonian system of one-dimensional Schrödinger equations with vortex
type interaction for the maps Ψj :

(1)


i∂tΨj + αjΓj∂

2
σΨj +

∑
k 6=j

Γk
Ψj −Ψk

|Ψj −Ψk|2
= 0, 1 ≤ j ≤ N,

Ψj(0, σ) = Ψj,0(σ).

Moreover, the filaments are parallel at infinity, which means that there exist
zj(t) ∈ C such that

(2) Ψj(t, σ)→ zj(t), as σ → ±∞.
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In (1), αj ∈ R+ denotes a parameter related to the core structure and
Γj ∈ R∗ the circulation of the jth filament. Throughout the paper, we will
assume that αj = 1 for all 1 ≤ j ≤ N .

Particular solutions of (1) - (2) are given by the collections of parallel
filaments, for which Ψj(t, σ) = Xj(t, σ) = (zj(t), σ), where (zj) is a solution
of the 2-D point vortex system

(3) iżj +
∑
k 6=j

Γk
zj − zk
|zj − zk|2

= 0, 1 ≤ j ≤ N.

The Cauchy theory for (1) with the condition (2), under the assumption
that the curves (Ψj(t, σ), σ) are perturbations of the lines (zj(t), σ), has
been studied by Klein, Majda and Damodaran [KMD95], by Kenig, Ponce
and Vega [KPV03] and more recently by Banica and Miot [BM12, BM13]
and Banica, Faou and Miot [BFM14]. In these works, the maximal time
of existence corresponds to the first occurence of a collision between two or
more filaments. We also refer to the results by Lions and Majda [LM00] on
global existence of weak, space-periodic solutions. The aim of the present
paper is to construct a solution to (1) with the condition (2) such that the
filaments exhibit a collision in finite time, in two particular situations that
are described below.

1.1. The anti-parallel pair of filaments. We will first consider pairs of
filaments, namely N = 2, with opposite circulations

Γ1 = −Γ2.

By rescaling in space and time, there is no restriction to rewrite system (1)
as

(4)


i∂tΨ1 + ∂2σΨ1 − 2

Ψ1 −Ψ2

|Ψ1 −Ψ2|2
= 0,

i∂tΨ2 − ∂2σΨ2 − 2
Ψ1 −Ψ2

|Ψ1 −Ψ2|2
= 0.

Reconnection - or collision -, that is existence of a point (t, σ) where the
filaments collide, occurs when Ψ1(t, σ)−Ψ2(t, σ) = 0. We note that we have
as a particular solution of (1) the so-called anti-parallel vortex filament pair
(X1, X2) with the parallel filaments Xj(t, σ) = (zj(t), σ) given by

z1(t) = −it+ 1, z2(t) = −it− 1.

Since Crow’s work [C70] in the seventies, examples of vortex filament re-
connection are searched as perturbations of the anti-parallel vortex filament
pair. Most of these results are numerical, and based on initial perturbations
in link with the unstable mode of the linearized equation. In this paper we
shall prove the existence of a perturbation of the anti-parallel vortex fila-
ment pair reconnecting in finite time through (4). The collision mechanism
will be based on the one of the self-similar solutions of (4), that we describe
next.
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We consider as in [Z88, Z99, MB02] an initial configuration of two fila-
ments satisfying the following symmetry:

Ψ1(0) = −Ψ2(0).

Since (−Ψ2,−Ψ1) is still a solution of (4) with same initial datum, this kind
of symmetry is conserved as long as the solution (Ψ1,Ψ2) to (4) exists:

Ψ1(t) = −Ψ2(t).

This yields Ψ1 − Ψ2 = 2<e(Ψ1) and so system (4) reduces to only one
equation:

(5) i∂tΨ1 + ∂2σΨ1 −
1

<e(Ψ1)
= 0.

Constructing filaments exhibiting a collision in finite time reduces to find-
ing solutions to the Schrödinger-like equation (5) vanishing in finite time at
some point, starting with non-vanishing initial data. This requires the non-
standard study of pointwise control of nonlinear solutions. This kind of issue
has been considered by Merle and Zaag [MZ97] for a model related to the
heat equation. However the approach developed in [MZ97] does not seem
to be tractable to our case. For more details see the discussion at the end
of §2 in [BFM14].

As suggested in [Z88, Z99, KMD95] a natural candidate for a solution of
(5) with collision in finite time should be self-similar, namely

Ψ1(t, σ) =
√
t u

(
σ√
t

)
,

with the asymptotics

(6) u(x) ∼ α|x|, |x| → +∞,

where α ∈ C. In view of (5), the equation for the profile u(x) is

(7) i(u− xu′) + 2u′′ − 2

<e(u)
= 0.

We rewrite equation (7) as

(8)

v′ =
1

2
ixv − x

<e(u)
u− xu′ = v.

We recall our result [BFM14, Theo. 3.1].

Theorem 1.1 ([BFM14]). There exists K > 1 such that the following holds.
Let α ∈ C with <e(α) > K and

E =

{
w ∈ C1(R), w(0) = w′(0) = 0, w even , ‖w‖L∞ + ‖|x|−1w′‖L∞ ≤

<e(α)

4

}
.
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There exists a unique v ∈ 1 + E such that the couple (u, v), with u defined
by

(9) u(x) = 1 + |x|

(
α+

∫ +∞

|x|

v(z)− 1

z2
dz

)
, ∀x 6= 0,

with
u(0) = 1,

is a solution of the system (8) satisfying the condition (6). Moreover,

(10) <e((u(x))) > 0, ∀x ∈ R.
Finally, u is a Lipschitz function on R with u′ ∈ C(R \ {0}).

In view of the regularity assumption on u, we infer that Theorem 1.1
provides (Ψ1,Ψ2) satisfying the equation (4) in a strong sense on R∗+ × R∗
and in mild sense on R∗+ × R. Since

(Ψ1 −Ψ2)(t, σ) = 2
√
t (<e u)

(
σ√
t

)
,

the property (10) implies that for t > 0 no collision occurs. Moreover,
the condition u(0) = 1 implies that |Ψ1(t, 0) − Ψ2(t, 0)| = 2

√
t. Therefore

collision occurs at time t = 0 and at position σ = 0.
Unfortunately, the self-similar solutions constructed in Theorem 1.1 do

not enter the setting of the model (1) - (2). Indeed, given the asymptotics
(6), the two filaments parametrized by Ψ1 and Ψ2 are not parallel at infinity.
Still, having at one’s disposal such configurations with a precise description
of their behavior will enable us to construct colliding solutions of (1) that
are parallel at infinity. Our main results are the following.

Theorem 1.2. There exists K0 ≥ K > 1 such that the following holds. Let
α > K0. Let

H(t, σ) =
√
tu

(
σ√
t

)
,

where u is given in Theorem 1.1 for this value of α. Then there exists
t0 ∈ (0, 1), depending on α, and there exists a solution Ψ1 : (0, t0]× R→ C
to the equation (5), which has the form

(11) Ψ1(t, σ) = −it+ r(t, σ) +
H(t, σ)

1 + ψ(α|σ|)
,

where ψ(τ) = τϕ(τ), with ϕ : R+ → [0, 1] a smooth, cut-off function satis-
fying ϕ = 0 on [0, 1] and ϕ = 1 on [2,+∞), and where r ∈ C([0, t0], H

1(R))
satisfies ‖r(t)‖L∞ <

√
t/4 as t→ 0. Moreover, we have

(12) <e (Ψ1(t, σ)) ≥


1

4
(
√
t+ α|σ|) if α|σ| ≤ 1

2
,

1

32
if α|σ| ≥ 1

2
.
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In particular,

<e(Ψ1(t, σ)) > 0, ∀(t, σ) ∈ (0, t0]× R, <e(Ψ1(0, 0)) = 0,

and for all t ∈ (0, t0]

Ψ1(t, σ)→ −it+ 1, as σ → ±∞.

Remark 1.3. For a given α and cut-off function ψ, the map Ψ1 constructed
in Theorem 1.2 is the unique mild solution of (5) of the form (11) in the
functional space considered for the perturbation r(t, σ) (see (24), (25))), that
is

Ψ1(t, σ) = −it+ 1 + eit∂
2
σ

(
α|σ|

1 + ψ(α|σ|)
− 1

)

− i
∫ t

0
ei(t−s)∂

2
σ

(
1

<e(Ψ1(s, σ))
− 1

)
ds.

Note that
α|σ|

1 + ψ(α|σ|)
− 1 =

H(0, σ)

1 + ψ(α|σ|)
− 1 ∈ L2(R),

and that, in view of the estimates established in Lemmas 4.2 and 4.3,

1

<e(Ψ1)
− 1 ∈ L1((0, t0), L

2(R)).

Corollary 1.4. With the notations of the previous theorem, the filaments
(Ψ1,Ψ2) with Ψ2 = −Ψ1 are solutions to (4), satisfying the parallelism
condition at infinity (2), and colliding at time t = 0 at position σ = 0.

Note that at the collision time t = 0 we have Ψ(0, σ) = α|σ|/(1+ψ(α|σ|)).
By varying the function ψ we obtain a whole family of collision scenarios for
two filaments, with the commun specificity that a corner is formed for each
filament at σ = 0. A similar behavior occurs in the setting of the binormal
flow equation, which governs the evolution of a single vortex filament. More
precisely, Banica and Vega displayed in [BV15] a wide class of solutions
generating a corner in finite time through the binormal flow equation, based
on the description of the self-similar solutions provided by Gutiérrez, Rivas
and Vega in [GRV03].

1.2. The case of several filaments with polygonial symmetry. Our
next purpose is to extend the example of collision built for the pair of fila-
ments to the case of an arbitrary number N + 1 of filaments associated with
the functions Ψ0(t, σ), Ψj(t, σ), 1 ≤ j ≤ N satisfying (1) with

Γj = Γ, ∀ j, 1 ≤ j ≤ N, and Γ0 ∈ R.

Without loss of generality we will assume that Γ = 1. Setting

ω =
(N − 1)

2
+ Γ0,
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we note that a particular solution of (1) is given by the collection of parallel
filaments Xj(t, σ) = (zj(t), σ) with polygonial symmetry, obtained from the
solution of the 2-D point vortex system forming a regular rotating polygon,
with or without its center, with angular velocity ω:

(13) zj(t) = ei(j−1)
2π
N eiωtz1(0), 1 ≤ j ≤ N, z0(t) = 0.

We focus on collections of filaments with the same symmetry as above,
namely

(14) Ψj(t, σ) = ei(j−1)
2π
N Ψ1(t, σ), ∀1 ≤ j ≤ N, Ψ0(t, σ) = 0, ∀σ ∈ R.

This symmetry assumption is preserved in time. The system (1) is then
written as a single equation

(15) i∂tΨ1 + ∂2σΨ1 + ω
Ψ1

|Ψ1|2
= 0.

In the present case, reconnection of all filaments at the same place corre-
sponds to a zero of Ψ1.

As for the pair of filaments, we first investigate the existence of a self-
similar solution of (15)

Ψ1(t, σ) =
√
t u

(
σ√
t

)
,

with the asymptotic behavior

(16) u(x) ∼ α|x|, |x| → +∞.

The equation for the profile u(x) now is

(17) i(u− xu′) + 2u′′ + 2ω
u

|u|2
= 0

which we decouple as

(18)

v′ =
1

2
ixv + ωx

u

|u|2
u− xu′ = v.

We will establish the analogous result of Theorem 1.1.

Theorem 1.5. There exists K̃ > 1, depending on ω, such that the following
holds. Let α ∈ C with <e(α) > K̃ and such that|α| ≤ <e(α)2. Let

E =

{
w ∈ C1(R), w(0) = w′(0) = 0, w even , ‖w‖L∞ + ‖|x|−1w′‖L∞ ≤

<e(α)

4

}
.

There exists a unique v ∈ 1 + E such that the couple (u, v), with u defined
by

(19) u(x) = 1 + |x|

(
α+

∫ +∞

|x|

v(z)− 1

z2
dz

)
, ∀x 6= 0,
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with
u(0) = 1,

is a solution of the system (18) satisfying the condition (16). Moreover,

(20) |u(x)| ≥ 1, ∀x ∈ R,
and u is an even, Lipschitz function on R with u′ ∈ C(R \ {0}).

Our next aim is to establish the existence of a solution Ψ1 to (15), satis-
fying (2), such that Ψ1(0, 0) = 0. As for the anti-parallel pair of filaments,
this will be performed by perturbing an exact parallel solution of (1) by the
self-similar solution given by Theorem 1.5 after renormalization at infinity.
More precisely, in view of (14), we will look for a solution having the form

(21) Ψj(t, σ) = zj(t)Φ(t, σ), 0 ≤ j ≤ N,
where (zj) is the configuration given by (13), and where the perturbation Φ
satisfies

Φ(t, σ)→ 1 as σ → ±∞ and Φ(0, 0) = 0.

This ensures that the filaments are parallel at infinity and that they have
the polygonial symmetry. Here, we consider a multiplicative perturbation of
the exact parallel solution Xj(t, σ) = (zj(t), σ), while for anti-parallel pairs

we dealt with an additive perturbation. Note also that, setting z1(0) = ρeiθ,
we have

Ψ1(t, σ) = ρeiθ+iωtΦ(t, σ).

The dynamics of symmetric configurations of vortex filaments has been
studied by Banica and Miot [BM12] through the analysis of the equation for
the perturbation Φ

(22) i∂tΦ + ∂2σΦ + ω
Φ

|Φ|2
(1− |Φ|2) = 0.

Collisions have been dispayed in [BM12] for the configurations yielded by
the stationary polygon solution of the 2-D point vortex system (13). In par-
ticular, ω = 0 implies that such stationary configuration corresponds to the
vertices of a regular polygon and its center with the non-trivial circulation
Γ0 = −N−1

2 . The case ω 6= 0, namely the non-stationary rotating polygon
solution of the 2-D point vortex system (13), with or without its center,
was out of reach in [BM12]. In the present paper, we are able to display
collisions also in these cases.

Let us recall that in [BM12] it is proved that for all ω > 0, (22) admits a
unique global solution with finite and small energy, namely such that

E(Φ(t)) :=

∫
R
|∇Φ(t)|2 dx+ ω

∫
R

(
− ln |Φ(t)|2 + |Φ(t)|2 − 1)

)
dx ≤ η,

where η is an absolute constant. By Gagliardo-Nirenberg inequality, the
small energy assumption guarantees that supt∈R ‖|Φ(t)|−1‖L∞ < 1/2; hence
Φ does not vanish on R. Here, we will prove that for any ω ∈ R there exists
a finite energy solution of (22) that vanishes at (t, σ) = (0, 0):
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Theorem 1.6. Let ω ∈ R. There exists K̃0 ≥ K̃ > 1 such that the following
holds. Let α > K̃0. Let

H(t, σ) =
√
tu

(
σ√
t

)
,

where u is given in Theorem 1.5 for this value of α. Then there exists
t̃0 ∈ (0, 1), depending only on α and ω, such that for all ρ > 0 and θ ∈ R,
there exists a solution Ψ1 : (0, t0] × R → C to the equation (15), which has
the form

(23) Ψ1(t, σ) = ρeiθ+iωt
(
r(t, σ) +

H(t, σ)

1 + ψ(α|σ|)

)
,

where ψ(τ) = τϕ(τ), with ϕ : R+ → [0, 1] a smooth, cut-off function satis-
fying ϕ = 0 on [0, 1] and ϕ = 1 on [2,+∞), and where r ∈ C([0, t0], H

1(R))
satisfies ‖r(t)‖L∞ <

√
t/4 as t→ 0. Finally, we have

|Ψ1(t, σ)| ≥


ρ

4
(
√
t+ α|σ|) if α|σ| ≤ 1

2
,

ρ

32
if α|σ| ≥ 1

2
.

In particular,

|Ψ1(t, σ)| > 0, ∀(t, σ) ∈ (0, t0]× R, Ψ1(0, 0) = 0,

and for all t ∈ (0, t0]

Ψ1(t, σ)→ z1(t), as σ → ±∞.

Corollary 1.7. With the notations of the previous theorem, the filaments

(Ψj) with Ψj = ei(j−1)
2π
N Ψ1, ∀ 1 ≤ j ≤ N,Ψ0 = 0 are solutions to (1),

satisfying the parallelism condition at infinity (2), and colliding at time t = 0
at position σ = 0.

Remark 1.8. In view of the estimates for H established in Subsection §4.1
the perturbation Φ(t, σ) = r(t, σ) + H(t, σ)/(1 + ψ(α|σ|)) has finite (and
possibly large) energy for all t ∈ [0, t0].

The plan of this paper is the following. We devote next section to the
proof of Theorem 1.2 by a fixed point argument. In Section §3, we sketch the
proofs of Theorems 1.5 and 1.6, which are obtained as quite straightforward
extensions of Theorem 1.1 (that is, Theorem 3.1 in [BFM14]) and of Theorem
1.2 respectively. The last section gathers a collection of useful estimates that
are needed for the fixed point argument in §2.

Notation. Throughout the paper, C denotes a numerical constant that
can possibly change from a line to another.
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2. Proof of Theorem 1.2

2.1. The fixed point framework. Let K0 > K > 1, to be determined
later, and let α > K0. Let t0 ∈ (0, 1) to be determined later on in terms of
α. In all the following we denote by I the interval

I =

(
− 1

2α
,

1

2α

)
.

We define the space

(24) X =
{
r ∈ C([0, t0], H

1(R)) | ‖r‖X <∞
}
,

where
(25)

‖r‖X = sup
t∈(0,t0]

(‖r‖L∞((0,t),L2)

t3/4
+
‖∂σr‖L∞((0,t),L2)

tγ
+ 8
‖r‖L∞((0,t)×I)

t1/2

)
.

The parameter γ satisfies 0 < γ < 1/4.

We look for a solution

Ψ1(t, σ) = −it+ r(t, σ) +
H(t, σ)

1 + ψ(α|σ|)

to the equation (5). Hence we look for a solution r to the equation

(26) i∂tr + ∂2σr = a(r) + b,

where

(27)


a(r) =

1

<e(r) + <e(H)
1+ψ(α|σ|)

− 1− 1

1 + ψ(α|σ|)
1

<e(H)

b = −2∂σH∂σ

(
1

1 + ψ(α|σ|)

)
−H∂2σ

(
1

1 + ψ(α|σ|)

)
.

We choosed to gather in the expression of a(r) also two source terms, in
order to obtain a good control of a(r), both near the origin and at infinity.

In order to solve (26) we shall perform a fixed point argument in the
subspace B of X

(28) B = {r ∈ X | ‖r‖X ≤ 1}

for the operator A = Aa +Ab, where

Aa(r)(t, σ) = −i
∫ t

0
ei(t−s)∂

2
σa(r)(s, σ)ds, and

Ab(r)(t, σ) = −i
∫ t

0
ei(t−s)∂

2
σb(s, σ)ds.

(29)
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To obtain the contraction for our fixed point argument, we shall also need
to estimate

A(r1)−A(r2) = −i
∫ t

0
ei(t−s)∂

2
σ [a(r1)− a(r2)](s, σ)ds,

with

a(r1)− a(r2) =
<e(r1 − r2)(

<e(r1) + <e(H)
1+ψ(α|σ|)

)(
<e(r2) + <e(H)

1+ψ(α|σ|)

) .
Let us say a few words about the choice of the space X. By definition of

B, we have the pointwise estimate on I

(30) ‖r‖L∞([0,t]×I) <

√
t

4
, ∀t ∈ [0, t0],

while outside I we have by the Gagliardo-Nirenberg inequality

‖r(t)‖L∞(R\I) ≤
√

2‖r(t)‖L2‖∂σr‖L2 ≤
√

2t
3
4
+γ

0 .

Therefore if t0 is smaller than an absolute constant we have

(31) ‖r‖L∞([0,t0]×R) <
1

32
.

This will enable us (see (67)-(68)) to show that

|r(t, σ)| ≤ 1

2

(
<e(H(t, σ))

1 + ψ(α|σ|)

)
,

so r will be negligible with respect to <e(H(t,σ))
1+ψ(α|σ|) at the denominator in (27).

As a consequence we shall obtain in Lemma 2.2 precise estimates, as for
instance pointwise estimates on a(r).

We start with a lemma containing the estimate that will allow us to
perform the fixed point argument.

Lemma 2.1. We have the following control:∥∥∥∥∫ t

0
ei(t−s)∂

2
σF (s, σ)ds

∥∥∥∥
X

≤ C sup
t∈(0,t0]

(
‖F‖L1((0,t),L2(R))

t
3
4

+
‖∂σF‖

L
4
3 ((0,t),L1(I))

+ ‖∂σF‖L1((0,t),L2(R\I))

tγ

)

+ C sup
t∈(0,t0]

∫ t0 ‖F (s)‖L1(−1
α
, 1
α
)(t− s)

− 1
2 ds

t
1
2


+ C sup

t∈(0,t0]

(∫ t
0 (α

3
2 ‖F (s)‖L2(R) + α

1
2 ‖∂σF (s)‖L2(R))(t− s)

1
2 ds

t
1
2

)
.
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Proof. We recall first a few basics facts on the free Schrödinger evolution.
The mass is conserved,

(32) ‖eit∂2σf‖L2 = ‖f‖L2 ,

and the dispersion inequality

(33) ‖eit∂2σf‖L∞ ≤
C√
t
‖f‖L1 ,

is valid, together with inhomogeneous Strichartz estimate ([Y87]):

(34)

∥∥∥∥∫ t

0
ei(t−s)∂

2
σF (s)ds

∥∥∥∥
L∞((0,t0),L2)

≤ C‖F‖
L

4
3 ((0,t0),L1)

.

We denote by AF the Duhamel term to be estimated:

AF (t) =

∫ t

0
ei(t−s)∂

2
σF (s, σ)ds.

By the mass conservation (32) we obtain for t ∈ (0, t0]

‖AF (t)‖L2 ≤ C‖F‖L1((0,t),L2).(35)

For the estimate of the gradient we use the conservation of mass (32) and
the Strichartz estimate (34):

‖∂σAF (t)‖L2 =

∥∥∥∥∫ t

0
ei(t−s)∂

2
σ∂σF (s) ds

∥∥∥∥
L2

≤ C ‖∂σF‖
L

4
3 ((0,t),L1(I))

+ C ‖∂σF‖L1((0,t),L2(R\I)) .
(36)

Here we used ∂σF = (∂σF )1I + (∂σF )1R\I .
Finally we turn to the pointwise estimates near the origin, that are more

delicate. We set
χ(σ) = (1− ϕ)(2α|σ|),

where ϕ is the cut-off function defined in Theorem 1.2. In particular, χ is
valued between 0 and 1, values 1 on I and vanishes outside (−1/α, 1/α).
Since

‖AF (t)‖L∞(I) ≤
∥∥∥∥∫ t

0
χ[ei(t−s)∂

2
σF (s)] ds

∥∥∥∥
L∞

,

we shall use the following commutator formula between a localization and
a free Schrödinger evolution. For all s, t ∈ R

χei(t−s)∂
2
σf = ei(t−s)∂

2
σ [χf ]−i

∫ t

s
ei(t−τ)∂

2
σ

[
∂2σχ e

i(τ−s)∂2σf + 2∂σχ ∂σe
i(τ−s)∂2σf

]
dτ.

Using this with s fixed and f(σ) = F (s, σ), we get

‖AF (t)‖L∞(I) ≤ C
∥∥∥∥∫ t

0
ei(t−s)∂

2
σ [χF ](s) ds

∥∥∥∥
L∞

+ C

∫ t

0

∥∥∥∥∫ t

s
ei(t−τ)∂

2
σ

[
∂2σχ e

i(τ−s)∂2σF (s) + 2∂σχ ∂σ(ei(τ−s)∂
2
σF (s))

]
dτ

∥∥∥∥
L∞

ds.
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Now we use the dispersion inequality (33) to obtain

‖AF (t)‖L∞(I) ≤ C
∫ t

0

1√
t− s

‖F (s)‖L1(−1/α,1/α) ds

+ C

∫ t

0

∫ t

s

1√
t− τ

(∥∥∥∂2σχ ei(τ−s)∂2σF (s)
∥∥∥
L1

+
∥∥∥∂σχ ∂σ(ei(τ−s)∂

2
σF (s))

∥∥∥
L1

)
dτ ds.

Finally, by Cauchy-Schwarz inequality, we have

‖AF (t)‖L∞(I) ≤ C
∫ t

0

1√
t− s

‖F (s)‖L1(−1/α,1/α) ds

+ C

∫ t

0

√
t− s

(
α

3
2 ‖F (s)‖L2 + α

1
2 ‖∂σF (s)‖L2

)
ds

(37)

as
‖∂pσχ‖L2 ≤ Cαp−1/2‖∂pσϕ‖L2 .

Gathering (35), (36) and (37) we obtain the lemma. �

Next we gather in the following lemma several estimates that will allow
us to end the fixed point argument.

Lemma 2.2. Let r ∈ B and 0 ≤ s ≤ t0.
• The following pointwise estimates hold:

(38) |a(r)(s, σ)| ≤ 1 + C
|r(s, σ)|

(
√
s+ α|σ|)2

if σ ∈ I,

(39) |a(r)(s, σ)| ≤ C
(

α

1 + ψ(α|σ|)
+ |r(s, σ)|

)
if σ ∈ R \ I.

• For a(r) the following norm estimates hold:

(40) ‖a(r)(s)‖L2(R) ≤ C(α
1
2 + α−

1
2 s−

1
4 ),

(41) ‖a(r)(s)‖L1(−1
α
, 1
α
) ≤ Cα

− 1
2 ,

(42) ‖∂σa(r)(s)‖L2(R\I) ≤ C(sγ + α
1
2 ),

(43) ‖∂σa(r)(s)‖L2(I) ≤ C(sγ−1 + α
1
2 s−

3
4 ),

(44) ‖∂σa(r)(s)‖L1(I) ≤ C(α−
1
2 sγ−

3
4 + s−

1
2 ).

• For b the following estimates hold:

(45) ‖b(s)‖L2(R) ≤ Cα
3
2 ,

(46) ‖b(s)‖L1(−1
α
, 1
α
) = 0,

(47) ‖∂σb(s)‖L2(R\I) ≤ C(α
5
2 + α

3
2 s−

1
2 ),

(48) ‖∂σb(s)‖L2(I) = 0,
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(49) ‖∂σb(s)‖L1(I) = 0,

• For r1, r2 ∈ B the following estimates hold:

(50) ‖a(r1)(s)− a(r2)(s)‖L2(R) ≤ C‖r1 − r2‖X(α−
1
2 s−

1
4 + s

3
4 ),

(51) ‖a(r1)(s)− a(r2)(s)‖L1(−1
α
, 1
α
) ≤ C‖r1 − r2‖Xα

− 1
2 ,

(52) ‖∂σ[a(r1)− a(r2)](s)‖L2(R\I) ≤ C‖r1 − r2‖X(sγ + α
1
2 s

3
8
+ γ

2 ),

(53) ‖∂σ[a(r1)− a(r2)](s)‖L2(I) ≤ C‖r1 − r2‖X(sγ−1 + αs−
3
4 ),

(54) ‖∂σ[a(r1)− a(r2)](s)‖L1(I) ≤ C‖r1 − r2‖X (α−
1
2 sγ−

3
4 + s−

1
2 ).

We postpone the technical proof of this lemma to the last section.

2.2. Proof of Theorem 1.2 completed. We can now show that the op-
erators Aa and Ab are contractions on the subset B of X.

• Stability. Let r ∈ B. We apply Lemma 2.1 to F = a(r) and we use
(40), (41), (42), (43) and (44) to obtain

‖Aa(r)‖X ≤ C sup
t∈(0,t0]

(
α

1
2 t+ α−

1
2 t

3
4

t
3
4

+
α−

1
2 tγ + t

1
4 + tγ+1 + α

1
2 t

tγ

)

+ C sup
t∈(0,t0]

(
α−

1
2 t

1
2 + α2t

3
2 + αt

5
4 + α

1
2 tγ+

1
2 + αt

3
4

t
1
2

)
.

(55)

In order to estimate Ab in X we apply Lemma 2.1 to F = b. Then the
estimates (45), (46), (47), (48) and (49) for b yield

‖Ab(r)‖X ≤ C sup
t∈(0,t0]

(
α

3
2 t

t
3
4

+
α

5
2 t+ α

3
2 t

1
2

tγ
+
α3t

3
2 + α2t

t
1
2

)
.

Hence we obtain an estimate of the form

‖A(r)‖X ≤ C

(
α−

1
2 +

13∑
k=1

αrktpk0

)
,

where rk ≥ 0 and pk > 0. We choose first K0 such that Cα−
1
2 ≤ 1/14. Then

we choose t0 sufficiently small such that C
∑

k α
rktpk0 ≤ 13/14. We conclude

that ‖A(r)‖X ≤ 1.
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•Contraction. Again, in order to control A(r1)−A(r2) we use Lemma
2.1 with the choice F = a(r1) − a(r2). Therefore, combining with the esti-
mates (50), (51), (52), (53) and (54) we obtain

‖A(r1)−A(r2)‖X

≤ C‖r1 − r2‖X sup
t∈(0,t0]

(
α−

1
2 t

3
4 + t

7
4

t
3
4

+
α−

1
2 tγ + t

1
4 + tγ+1 + α

1
2 t

11
8
+ γ

2

tγ

)

+ C‖r1 − r2‖X sup
t∈(0,t0]

(
α−

1
2 t

1
2 + αt

5
4 + α

3
2 t

9
4 + α

1
2 tγ+

1
2 + α

3
2 t

3
4 + αt

15
8
+ γ

2

t
1
2

)

≤ C

(
α−

1
2 +

9∑
k=1

αr
′
kt
p′k
0

)
‖r1 − r2‖X

where r′k ≥ 0 and p′k > 0. Therefore we obtain

‖A(r1)−A(r2)‖X ≤
1

2
‖r1 − r2‖X

provided that again α > K0 with K0 sufficiently large, and t0 is sufficiently
small with respect to α.

3. Proof of Theorems 1.5 and 1.6

3.1. Sketch of proof of Theorem 1.5. In this paragraph, we briefly
sketch the arguments for the proof of Theorem 1.5, which follows the lines
of the proof of Theorem 1.1, given in [BFM14, Theo. 3.1].

Let us recall that the strategy to obtain a unique solution (u, v) to (18),
as given in the statement of Theorem 1.5, relies on finding a fixed point
w = v − 1 in the space E for the operator

P (w)(x) = e
ix2

4 − 1 + e
ix2

4 ω

∫ x

0

ye−
iy2

4

u(w)(y)
dy, x ∈ R,

with u(w) dictated by the second equation of (18) together with the condi-
tion at infinity (16):

u(w)(x) = 1 + |x|

(
α+

∫ +∞

|x|

w(z)

z2
dz

)
, for x ∈ R.

The difference between Theorems 1.5 and 1.1 is that the nonlinearity is
given by 1/u = u/|u|2 instead of 1/<e(u). It turns out that the estimates
of the proof of [BFM14, Theo. 3.1] may be adapted in a straightforward
way, essentially because |u| ≥ <e(u). More precisely, given the inequalities
recalled in Lemma 4.1 we have on the one hand for any w ∈ E

|u(w)(x)| ≥ <e(u(w)(x)) ≥ 1 +
<e(α)|x|

2
,

and on the other hand
|u(w)′(x)| ≤ 2|α|,
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whence ∣∣∣∣∣ u(w)
′
(x)

u(w)(x)2

∣∣∣∣∣ ≤ C|α|
<e(α)2

.

This imposes the additional condition |α| ≤ <e(α)2 in order to close the
fixed point argument.

3.2. Proof of Theorem 1.6. We look for a solution

Ψ1(t, σ) = ρeiθ+iωt
(
r(t, σ) +

H(t, σ)

(1 + ψ(α|σ|)

)
to the equation (15). Hence we look for a solution r to the equation

i∂tr + ∂2σr = ωã(r) + b,

where
ã(r) = − 1

r + H
1+ψ(α|σ|)

+ r +
H

1 + ψ(α|σ|)
+

1

(1 + ψ(α|σ|))H

b = −2∂σH∂σ

(
1

1 + ψ(α|σ|)

)
−H∂2σ

(
1

1 + ψ(α|σ|)

)
.

Note that we get the same source term b as in (27). In particular, in order to
transpose the proof of Theorem 1.2, we only have to establish the analogs of
estimates (38) to (44) for ã, and the estimates (50) to (54) for ã(r2)− ã(r1).

More precisely, let t̃0 ∈ (0, 1) to be determined later and let X and B
denote the corresponding spaces defined as in (24), (25) and (28).

Lemma 3.1. Let r ∈ B and 0 ≤ s ≤ t̃0.
• For ã(r), the following pointwise estimates hold:

(56) |ã(r)(s, σ)| ≤ C
(

1 +
|r(s, σ)|

(
√
s+ α|σ|)2

)
if σ ∈ I,

(57)

|ã(r)(s, σ)| ≤ C
(

α2

(1 + ψ(α|σ|))2
+

α

1 + ψ(α|σ|)
+ |r(s, σ)|

)
if σ ∈ R \ I.

• The following norm estimates hold:

(58) ‖ã(r)(s)‖L2(R) ≤ C(α
3
2 + α−

1
2 s−

1
4 ).

Moreover, the estimates (41) to (44) hold true for ã(r).

• Let r1 ∈ B, r2 ∈ B. The estimates (50) to (54) hold true for ã(r1) −
ã(r2).

Therefore, we have the same estimates for ã(r) and ã(r1) − ã(r2) except
for (57) and for the exponent of α in the first term in the right-hand side of
(58).
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The technical proof of Lemma 3.1 is provided in the last section.

We can now complete the proof of Theorem 1.6. In view of Lemma 3.1,
the only difference with the proof of Theorem 1.2 appears when estimating
‖Aã(r)‖X , where

Aã(r)(t, σ) = −iω
∫ t

0
ei(t−s)∂

2
σ ã(r)(s, σ)ds.

More precisely, there are only two terms involving the norm ‖ã(r)‖L2 in
Lemma 2.1 with F = ã(r). Hence only two terms are changed in the estimate
(55), which turns into:

‖Aã(r)‖X ≤ C|ω| sup
t∈(0,t̃0]

(
α

3
2 t+ α−

1
2 t

3
4

t
3
4

+
α−

1
2 tγ + t

1
4 + tγ+1 + α

1
2 t

tγ

)

+ C|ω| sup
t∈(0,t̃0]

(
α−

1
2 t

1
2 + α3t

3
2 + αt

5
4 + α

1
2 tγ+

1
2 + αt

3
4

t
1
2

)
.

With the same arguments as in the proof of Theorem 1.2, we conclude that

‖Aã(r) +Ab(r)‖X < 1

and stability holds provided α > K̃0 with K̃0 sufficiently large, and t̃0 is
sufficiently small with respect to α.

4. Some useful estimates and the proofs of Lemmas 2.2 and 3.1

We first recall and collect a few estimates for the profile H, which are
borrowed from [BFM14].

4.1. Estimates on H. The following Lemma is directly derived from the
estimates (19) to (21) in [BFM14].

Lemma 4.1. Let α ∈ C such that <e(α) > 0. Let

E =

{
w ∈ C1(R), w(0) = w′(0) = 0, w even , ‖w‖L∞ + ‖|x|−1w′‖L∞ ≤

<e(α)

4

}
.

Let w ∈ E. We have

(59) sup
x∈R+

|w(x)|
x
≤ ‖w‖L∞ +

1

2
‖|x|−1w′‖∞

and

(60)

∫ +∞

0

|w|
z2

dz ≤ ‖w‖L∞ +
1

2
‖|x|−1w′‖∞.

Defining

u(x) = 1 + α|x|+ |x|
∫ +∞

|x|

w

z2
dz, x ∈ R,
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the following estimates hold:

|u(x)− 1− α|x|| ≤ min

(
‖w‖L∞ , |x|

∫ +∞

0

|w|
z2

dz

)
≤ min (1, |x|) <e(α)

4
,

|u(x)| ≤ 1 + |x|
(
|α|+

∫ +∞

0

|w|
z2

dz

)
,

and therefore

|u(x)| ≤ 1 +
5|α||x|

4
.

Moreover,

(61) |u(x)| ≥ <e(u(x)) ≥ 1 +
3<e(α)|x|

4
≥ 1

2
(1 + <e(α)|x|).

Finally, we have u ∈ C2(R∗) and for all x ∈ R∗

(62) |u′(x)| ≤ |α|+

∣∣∣∣∣
∫ +∞

|x|

w

z2
dz

∣∣∣∣∣+
|w(x)|
|x|

≤ 2|α|,

and

(63) |u′′(x)| = |w
′(x)|
|x|

≤ |α|
4
.

We infer immediately the following estimates for H

Lemma 4.2. Let α > 0 and u as in Lemma 4.1. Let s ∈ (0, 1). Setting

H(s, σ) =
√
su

(
σ√
s

)
, σ ∈ R,

we have

(64) |H(s, σ)−
√
s− α|σ|| ≤ α

4
min(

√
s, |σ|)

and in particular

(65) |H(s, σ)| ≤ C(
√
s+ α|σ|).

Moreover,

(66) |H(s, σ)| ≥ <e(H(s, σ)) ≥ 1

2
(
√
s+ α|σ|).

Finally,

|∂σH(s, σ)| ≤ 2α and |∂2σH(s, σ)| ≤ α

4
s−1/2, for s 6= 0 and σ 6= 0.

Lemma 4.3. Under the same assumptions as in Lemmata 4.1 and 4.2 we
have, setting I = (−1/2α, 1/2α)

(67)
|H(s, σ)|

1 + ψ(α|σ|)
≥ <e(H(s, σ))

1 + ψ(α|σ|)
≥ 1

2
(
√
s+ α|σ|) if σ ∈ I,
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and

(68)
|H(s, σ)|

1 + ψ(α|σ|)
≥ <e(H(s, σ))

1 + ψ(α|σ|)
≥ 1

3
if σ ∈ R \ I.

Let r ∈ X, where X is defined in (24)-(25), and assume that ‖r‖X ≤ 1.
We have
(69)∣∣∣∣r(s, σ)) +

H(s, σ)

1 + ψ(α|σ|)

∣∣∣∣ ≥ <e(r(s, σ))+
<e(H(s, σ))

1 + ψ(α|σ|)
≥ 1

4
(
√
s+α|σ|) if σ ∈ I,

and
(70)∣∣∣∣r(s, σ)) +

H(s, σ)

1 + ψ(α|σ|)

∣∣∣∣ ≥ <e(r(s, σ)) +
<e(H(s, σ))

1 + ψ(α|σ|)
≥ 1

32
if σ ∈ R \ I.

Proof of Lemma 4.3. We immediately infer (67) from (66) since ψ(α|σ|) = 0
for σ ∈ I. Moreover, we have using (66) and the fact that ψ(α|σ|) ≤ α|σ|

<e(H(s, σ))

1 + ψ(α|σ|)
≥ 1

2

( √
s+ α|σ|

1 + ψ(α|σ|)

)
≥ 1

2

(
α|σ|

1 + α|σ|

)
.

Since x/(1 + x) ≥ 2/3 for any x ≥ 2 we obtain (68). Next, by (30) we have
for σ ∈ I

<e(r(s, σ)) +
<e(H(s, σ))

1 + ψ(α|σ|)
≥ 1

2
(
√
s+ α|σ|)− ‖r(s)‖L∞(I) ≥

1

4
(
√
s+ α|σ|)

and (69) follows.
Finally, using (31), we obtain for σ ∈ R \ I

<e(r(s, σ)) +
<e(H(s, σ))

1 + ψ(α|σ|)
≥ 1

3
− 1

32
≥ 1

32
,

which yields (70).
�

4.2. Estimates on a(r). Now we establish the pointwise estimates for

a(r) =
1

<e(r) + <e(H)
1+ψ(α|σ|)

− 1− 1

1 + ψ(α|σ|)
1

<e(H)
.

For simplicity we shall write a instead of a(r). For σ ∈ I we have ψ(α|σ|) =
0, hence

a =
1

<e(r +H)
− 1

<e(H)
− 1 =

−<e(r)

<e(r +H)<e(H)
− 1,

so (38) follows from (67) and (69).
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For σ ∈ R \ I we have using (68) and (70)

|a(s, σ)| ≤ 1

1 + ψ(α|σ|)
1

<e(H)
+

∣∣∣∣∣∣ 1

<e
(
r + H

1+ψ(α|σ|)

) − 1

∣∣∣∣∣∣
≤ C

(1 + ψ(α|σ|))2
+

|1 + ψ(α|σ|)−<e(H)|

(1 + ψ(α|σ|))<e
(
r + H

1+ψ(α|σ|)

) +
|<e(r(s, σ))|

<e
(
r + H

1+ψ(α|σ|)

) .

(71)

Next, we have by (64)

|1+ψ(α|σ|)−<e(H)| ≤ |1+α|σ|−H|+|ψ(α|σ|)−α|σ|| ≤ C(α
√
s+1) ≤ Cα,

as α ≥ 1. Hence by (70) and (4.2) we obtain

|a(s, σ)| ≤ C

(1 + ψ(α|σ|))2
+

Cα

1 + ψ(α|σ|)
+ C|<e(r(s, σ))|

≤ Cα

1 + ψ(α|σ|)
+ C|<e(r(s, σ))|,

which is (39).
We use now the pointwise estimates (38) and (39) to get L2 estimates:

‖a(s)‖L2 ≤ ‖a(s)‖L2(I) + ‖a(s)‖L2(R\I)

≤ ‖1‖L2(I) + ‖r(s)‖L∞(I)

∥∥∥∥ 1

(
√
s+ α|σ|)2

∥∥∥∥
L2(I)

+ C

∥∥∥∥ α

(1 + ψ(α|σ|))

∥∥∥∥
L2(R\I)

+ ‖r(s)‖L2(R\I).

Since

(72)

∥∥∥∥ 1

(
√
s+ α|σ|)p

∥∥∥∥
L2

= Cα−
1
2 s

1
4
− p

2 , p ∈ N∗,

(73)

∥∥∥∥ 1

(
√
s+ α|σ|)p

∥∥∥∥
L1

= Cα−1s−
p
2
+ 1

2 , p > 1,

and

(74)

∥∥∥∥ 1

(1 + ψ(α|σ|))p

∥∥∥∥
L2

= Cα−
1
2 , p ∈ N∗.

we obtain
‖a(s)‖L2 ≤ C(α−

1
2 + α−

1
2 s−

1
4 + α

1
2 + s

3
4 ),

and (40) follows.
We now estimate the L1 norm near zero. We have from the pointwise

estimate (38) and the Cauchy-Schwarz inequality
(75)

‖a(s)‖L1(I) ≤ ‖1‖L1(I) + C‖r(s)‖L2

∥∥∥∥ 1

(
√
s+ α|σ|)2

∥∥∥∥
L2(I)

≤ α−1 + Cα−
1
2 .
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Next, for 1/2 ≤ α|σ| ≤ 1 we have ψ(α|σ|) = 0, hence (4.2) yields

|a(s, σ)| ≤ 1

<e(H)
+

1 + |<e(r)|
<e (r +H)

+
|<e(H)|
<e (r + H)

therefore using (31), (68), (70) and (65) we get

|a(s, σ)| ≤ C.

It follows that

‖a(s)‖L1(1/2≤α|σ|≤1) ≤ Cα−1,

so together with (75) we obtain (41).

We finally turn to the estimate of the gradient. We compute

∂σa(s, σ) = −
∂σ<e(r) + ∂σ

(
<e(H)

1+ψ(α|σ|)

)
(
<e(r) + <e(H)

1+ψ(α|σ|)

)2 +
1

<e(H)

αsgn(σ)ψ′(α|σ|)
(1 + ψ(α|σ|))2

+
∂σ<e(H)

(<e(H))2(1 + ψ(α|σ|))
.

For σ ∈ R \ I we use (68), (70), and the fact that |∂σH(s, σ)| ≤ 2α to
obtain

(76) |∂σa(s, σ)| ≤ C|∂σr|+ C

∣∣∣∣∂σ ( <e(H)

1 + ψ(α|σ|)

)∣∣∣∣+
Cα

1 + ψ(α|σ|)
.

Now, we claim that for all σ ∈ R∗,

(77)

∣∣∣∣∂σ ( H

1 + ψ(α|σ|)

)∣∣∣∣ ≤ Cα

1 + ψ(α|σ|)
.

Indeed, since |∂σH(s, σ)| ≤ 2α, we have by (65)∣∣∣∣∂σ ( H

1 + ψ(α|σ|)

)∣∣∣∣ ≤ Cα

1 + ψ(α|σ|)
+

α|H|
(1 + ψ(α|σ|))2

≤ Cα

1 + ψ(α|σ|)
+

α
√
s+ α2|σ|

(1 + ψ(α|σ|))2

≤ Cα

1 + ψ(α|σ|)

(
1 +

√
s+ α|σ|

1 + ψ(α|σ|)

)(78)

and this gives the results for for s < 1, as the function x 7→ (1+x)/(1+ψ(x))
is bounded on R+.

Using (74) and the estimate ‖∂σr(t, σ)‖L2 ≤ tγ , we obtain (42).

For σ ∈ I we have ψ(α|σ|) = 0 so in view of (67) and (69) we get

(79) |∂σa(s, σ)| ≤ C |∂σr|+ α

(
√
s+ α|σ|)2

≤ C
(
|∂σr|
s

+
α

(
√
s+ α|σ|)2

)
.
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Therefore, using (72) we obtain (43). Estimate (44) follows from (72) and
(73) by using Cauchy-Schwarz inequality:

‖∂σa(s)‖L1(I) ≤ C‖∂σr‖L2

∥∥∥∥ 1

(
√
s+ α|σ|)2

∥∥∥∥
L2

+ C

∥∥∥∥ α

(
√
s+ α|σ|)2

∥∥∥∥
L1

.

4.3. Estimates on b. We recall the expression of

b(s, σ) = 2∂σH(s, σ)∂σ

(
1

1 + ψ(α|σ|)

)
+H(s, σ)∂2σ

(
1

1 + ψ(α|σ|)

)
.

We notice first that for |σ| ≤ 1/α we have ∂σψ(α|σ|) = 0 and therefore
b(s, σ) = 0, and (46), (48) and (49) follow.

When |ασ| > 2, we have ψ(α|σ|) = α|σ|. We thus obtain

|b(s, σ)| ≤ 2|∂σH(s, σ)| α

(1 + α|σ|)2
+ 2|H(s, σ)| α2

(1 + α|σ|)3
.

Using (65) and the fact that |∂σH(s, σ)| ≤ Cα, we obtain the bound

|b(s, σ)| ≤ C α2

(1 + ψ(α|σ|))2
.

On the other hand, when |ασ| ∈ [1/2, 2], we have

|b(s, σ)| ≤ C(α|∂σH(s, σ)|+ α2|H(s, σ)|) ≤ Cα2

using again (65). By integrating we obtain (45) in view of (74).

Using the same arguments, we have for |ασ| > 2

|∂σb(s, σ)| ≤C|∂2σH(s, σ)| α

(1 + α|σ|)2

+ C

(
|∂σH(s, σ)| α2

(1 + α|σ|)3
+ |H(s, σ)| α3

(1 + α|σ|)4

)
.

Since |∂2σH(s, σ)| ≤ Cαs−
1
2 , we obtain for |ασ| > 2, using again the bound

(65),

|∂σb(s, σ)| ≤ C α2s−
1
2

(1 + ψ(α|σ|))2
+ C

α3

(1 + ψ(α|σ|))3
.

On the other hand, when |ασ| ∈ [1/2, 2] we obtain

|∂σb(s, σ)| ≤ C
(
α|∂2σH(t, σ)|+ α2|∂σH(t, σ)|+ α3|H(t, σ)|

)
≤ C(α2s−

1
2 + α3).

We obtain the inequality (47) by combining the two latter estimates and
using (74).
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4.4. Estimates on a(r1) − a(r2). Now we turn to the estimate on c =
a(r1)− a(r2), given by

c =
<e(r2 − r1)(

<e(r1) + <e(H)
1+ψ(α|σ|)

)(
<e(r2) + <e(H)

1+ψ(α|σ|)

) .
In view of (67), (68), (69) and (70) we have for all (s, σ) ∈ [0, t0]× I

(80) |c(s, σ)| ≤ C |(r1 − r2)(s, σ)|
(
√
s+ α|σ|)2

,

and for (s, σ) ∈ [0, t0]× R \ I

(81) |c(s, σ)| ≤ C|(r1 − r2)(s, σ)|.

Therefore (81) and (73) imply

‖c(s)‖L2 ≤ C‖(r1 − r2)(s)‖L∞(I)

∥∥∥∥ 1

(
√
s+ α|σ|)2

∥∥∥∥
L2(I)

+ ‖(r1 − r2)(s)‖L2

≤ C‖(r1 − r2)(s)‖L∞(I)(α
− 1

2 s−
3
4 ) + ‖(r1 − r2)(s)‖L2

which yields (50). Also,

‖c(s)‖L1(− 1
α
, 1
α
) ≤ C‖(r1 − r2)(s)‖L2

(∥∥∥∥ 1

(
√
s+ α|σ|)2

∥∥∥∥
L2(I)

+ α−
1
2

)
≤ C‖(r1 − r2)(s)‖L2

(
α−

1
2 s−

3
4 + α−

1
2

)
,

so we have obtained (51).

We then express the derivative of c as

∂σc =
∂σ<e(r2 − r1)(

<e(r1) + <e(H)
1+ψ(α|σ|)

)(
<e(r2) + <e(H)

1+ψ(α|σ|)

)
−
<e(r2 − r1)

(
<e(∂σr1) + ∂σ

(
<e(H)

1+ψ(α|σ|)

))
(
<e(r1) + <e(H)

1+ψ(α|σ|)

)2 (
<e(r2) + <e(H)

1+ψ(α|σ|)

)
−
<e(r2 − r1)

(
<e(∂σr2) + ∂σ

(
<e(H)

1+ψ(α|σ|)

))
(
<e(r1) + <e(H)

1+ψ(α|σ|)

)(
<e(r2) + <e(H)

1+ψ(α|σ|)

)2 .
For (s, σ) ∈ [0, t0] × I we have using the bound (77) on the derivative of

H and using (69)

|∂σc(s, σ)| ≤ C |∂σ(r1 − r2)|
(
√
s+ α|σ|)2

+ C
(|∂σr1|+ |∂σr2|+ α)|r1 − r2|

(
√
s+ α|σ|)3

.

(82)
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From this inequality, we infer that

‖∂σc(s)‖L2(I) ≤ C
‖∂σ(r1 − r2)(s)‖L2

s

+ C
(‖∂σr1‖L2 + ‖∂σr2‖L2)‖(r1 − r2)(s)‖L∞(I) + α‖(r1 − r2)(s)‖L2

s
3
2

≤ C‖r1 − r2‖X(sγ−1 + αs−
3
4 ),

i.e. (53).
Using also (72) and (73),

‖∂σc(s)‖L1(I) ≤ C‖∂σ(r1 − r2)(s)‖L2

∥∥∥∥ 1

(
√
s+ α|σ|)2

∥∥∥∥
L2(I)

+ C(‖∂σr1‖L2 + ‖∂σr2‖L2)‖(r1 − r2)(s)‖L∞(I)

∥∥∥∥ 1

(
√
s+ α|σ|)3

∥∥∥∥
L2(I)

+ C‖(r1 − r2)(s)‖L∞(I)

∥∥∥∥ α

(
√
s+ α|σ|)3

∥∥∥∥
L1(I)

≤ C‖r1 − r2‖X(α−
1
2 sγ−

3
4 + s−

1
2 ),

which yields (54).

When (s, σ) ∈ [0, t0] × R \ I, we have using (70) and the bound (77) for
the derivative of H,

|∂σc(s, σ)| ≤ C|∂σ(r1 − r2)(s, σ)|

+ C

(
|∂σr1|+ |∂σ(r2)|+

α

1 + ψ(α|σ|)

)
|(r1 − r2)(s, σ)|.

(83)

Hence we obtain

‖∂σc(s)‖L2(R\I) ≤ C‖∂σ(r1 − r2)(s)‖L2

+ C
(
‖∂σr1‖L2 + ‖∂σ(r2)‖L2 +

∥∥∥∥ α

1 + ψ(α|σ|)

∥∥∥∥
L2(R\I)

)
‖(r1 − r2)(s)‖L∞ .

We use (31) and (74) together with the Sobolev embedding H1(R) ⊂ L∞(R)
to get

‖∂σc(s)‖L2(R\I) ≤ C‖∂σ(r1−r2)(s)‖L2+C‖(r1−r2)(s)‖
1
2

L2‖∂σ(r1−r2)(s)‖
1
2

L2(sγ+α
1
2 ),

and hence (52) follows.

4.5. Proof of Lemma 3.1.

• Estimates for ã(r). We recall that

ã(r) = − 1

r + H
1+ψ(α|σ|)

+ r +
H

1 + ψ(α|σ|)
+

1

(1 + ψ(α|σ|))H
.
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For σ ∈ I we have ψ(α|σ|) = 0, so

ã(r) = − 1

r +H
+

1

H
+ r +H =

r

(r +H)H
+ r +H,

hence applying (67), (69) and (65) we get (56).

For σ ∈ R \ I we have

ã(r) =
1

(1 + ψ(α|σ|))H
− 1

r + H
1+ψ(α|σ|)

+
H

1 + ψ(α|σ|)
+ r

=
1

(1 + ψ(α|σ|))H
+

rH

(1 + ψ(α|σ|))(r + H
1+ψ(α|σ|)))

+
1

r + H
1+ψ(α|σ|)

(
|H|2

(1 + ψ(α|σ|))2
− 1

)
+ r,

therefore by (68), (70) and (65),

|ã(r)(s, σ)| ≤ C

(1 + ψ(α|σ|))2
+ C
|r(s, σ)(

√
s+ α|σ|)

1 + ψ(α|σ|)

+ C

∣∣∣∣ |H(s, σ)|2

(1 + ψ(α|σ|))2
− 1

∣∣∣∣+ |r(s, σ)|

≤ C

(1 + ψ(α|σ|))2
+ C|r(s, σ)|+ C

∣∣∣∣ |H(s, σ)|2

(1 + ψ(α|σ|))2
− 1

∣∣∣∣ ,
(84)

where we have used the fact that x 7→ (1 +x)/(1 +ψ(x)) is bounded on R+.
We now claim that
(85)∣∣∣∣ |H(s, σ)|2

(1 + ψ(α|σ|))2
− 1

∣∣∣∣ ≤ C ( α2

(1 + ψ(α|σ|))2
+

α

1 + ψ(α|σ|)

)
, ∀σ ∈ R \ I,

from which (57) follows. In order to prove (85), we recall that by (64),

H(s, σ) = α|σ|+R(s, α), |R(s, σ)| ≤
√
s(1 + α) ≤ 2α.

Therefore∣∣∣∣ |H(s, σ)|2

(1 + ψ(α|σ|))2
− 1

∣∣∣∣ ≤ C

(1 + ψ(α|σ|))2
(
|(α|σ|)2 − ψ(α|σ|)2|+ α2 + 1 + ψ(α|σ|) + α2|σ|

)
.

Since ψ(α|σ|) ≤ α|σ| and (α|σ|)2 − ψ(α|σ|)2 = 1α|σ|≤2|(α|σ|)2 − ψ(α|σ|)2|
we infer that∣∣∣∣ |H(s, σ)|2

(1 + ψ(α|σ|))2
− 1

∣∣∣∣ ≤ C

(1 + ψ(α|σ|))2
(α2 + α2σ)

≤ C
(

α2

(1 + ψ(α|σ|))2
+

α

1 + ψ(α|σ|)
α|σ|

1 + ψ(α|σ|)

)
≤ C

(
α2

(1 + ψ(α|σ|))2
+

α

1 + ψ(α|σ|)

)
, ∀σ ∈ R \ I,
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where we have used the fact that x 7→ x/(1 + ψ(x)) is bounded on R+.

Using the pointwise estimates (56) and (57), we establish the estimate
(58) exactly as (40). Moreover, we show that (75) holds true for ã(r) since
on the set I, ã(r)(s) satisfies the same pointwise estimate as a(r)(s), while
for 1/2 ≤ α|σ| ≤ 1 we have σ ∈ R \ I, hence we obtain by (84) and (31)

|ã(r)(s, σ)| ≤ C + C

∣∣∣∣ |H(s, σ)|2

(1 + ψ(α|σ|))2
− 1

∣∣∣∣ ≤ C.
We next estimate the derivatives. We have

∂σã(r) =
∂σr + ∂σ

(
H

1+ψ(α|σ|)

)
(
r + H

1+ψ(α|σ|)

)2 − 1

H

αsgn(σ)ψ′(α|σ|)
(1 + ψ(α|σ|))2

− ∂σH

H
2
(1 + ψ(α|σ|))

+ ∂σr +
∂σH

1 + ψ(α|σ|)
−Hαsgn(σ)ψ′(α|σ|)

(1 + ψ(α|σ|))2
.

Let σ ∈ R \ I. By (68), (70) and the inequality |∂σH(s, σ)| ≤ 2α, we get

|∂σã(r)(s, σ)| ≤ C|∂σr|+ C

∣∣∣∣∂σ ( H

1 + ψ(α|σ|)

)∣∣∣∣+
Cα

1 + ψ(α|σ|)
+

α|H|
(1 + ψ(α|σ|))2

≤ C|∂σr|+ C

∣∣∣∣∂σ ( H

1 + ψ(α|σ|)

)∣∣∣∣+
Cα

1 + ψ(α|σ|)

≤ C|∂σr|+ +
Cα

1 + ψ(α|σ|)
,

where we have used (77) in the last inequality. So we obtain (42).

For σ ∈ I we have ψ(α|σ|) = 0. Byy (67) and (69), we infer that

|∂σã(r)(s, σ)| ≤ C |∂σr|+ α

(
√
s+ α|σ|)2

≤ C
(
|∂σr|
s

+
α

(
√
s+ α|σ|)2

)
,

which is the pointwise estimate (79) for ∂σa(r). Hence we obtain (43) and
(44).

• Estimates for ã(r1)− ã(r2). We have

c̃ = ã(r1)− ã(r2) =
r1 − r2(

r1 + H
1+ψ(α|σ|)

)(
r2 + H

1+ψ(α|σ|)

) + r1 − r2.

In view of (67), (68), (69) and (70) we have for all (s, σ) ∈ [0, t0]× I

|c̃(s, σ)| ≤ C
(
|(r1 − r2)(s, σ)|
(
√
s+ α|σ|)2

+ |(r1 − r2)(s, σ)

)
| ≤ C| |(r1 − r2)(s, σ)|

(
√
s+ α|σ|)2

,

which yields the same pointwise estimate as (80) for c, and for (s, σ) ∈
[0, t0]× R \ I

|c̃(s, σ)| ≤ C|(r1 − r2)(s, σ)|,
which yields the same estimate as (81). Hence we immediately obtain (50)
and (51).
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Next, we compute the derivative of c̃,

∂σ c̃ =
∂σ(r1 − r2)(

r1 + H
1+ψ(α|σ|)

)(
r2 + H

1+ψ(α|σ|)

) − (r1 − r2)
(
∂σr1 + ∂σ

(
H

1+ψ(α|σ|)

))
(
r1 + H

1+ψ(α|σ|)

)2 (
r2 + H

1+ψ(α|σ|)

)
−

(r1 − r2)
(
∂σr2 + ∂σ

(
H

1+ψ(α|σ|)

))
(
r1 + H

1+ψ(α|σ|)

)(
r2 + H

1+ψ(α|σ|)

)2 + ∂σ(r1 − r2).

Therefore we infer that c̃ satisfies the estimates (82) and (83), which leads
to (52), (53) and (54).
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