High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose-Einstein condensates - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Numerical Analysis Année : 2017

High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose-Einstein condensates

Résumé

This article deals with the numerical integration in time of nonlinear Schrödinger equations. The main application is the numerical simulation of rotating Bose-Einstein condensates. The authors perform a change of unknown so that the rotation term disappears and they obtain as a result a nonautonomous nonlinear Schrödinger equation. They consider exponential integrators such as exponential Runge–Kutta methods and Lawson methods. They provide an analysis of the order of convergence and some preservation properties of these methods in a simplified setting and they supplement their results with numerical experiments with realistic physical parameters. Moreover, they compare these methods with the classical split-step methods applied to the same problem.
Fichier principal
Vignette du fichier
high_order_nls_hal.pdf (2.48 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01170888 , version 1 (02-07-2015)
hal-01170888 , version 2 (30-01-2017)

Identifiants

Citer

Christophe Besse, Guillaume Dujardin, Ingrid Lacroix-Violet. High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose-Einstein condensates. SIAM Journal on Numerical Analysis, 2017, 55 (3), pp.1387-1411. ⟨10.1137/15M1029047⟩. ⟨hal-01170888v2⟩
3104 Consultations
634 Téléchargements

Altmetric

Partager

More