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Introduction

Sampled-data systems with periodic sampling have been extensively studied in the literature [START_REF] Chen | Optimal sampled-data control systems[END_REF][START_REF] Zhang | Stability of Networked Control Systems[END_REF] and this field is now very mature. Tools for designing robust controllers, which possibly optimize some performance criteria, are nowadays also well-established. In the case of asynchronous sampled-data system, however, these problems are still open. This is particularly important in the context of Networked Control Systems [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF] where the presence of a network or, more generally the use of a shared resource, can corrupt the constancy of the sampling-period, making it time-varying, and the overall control system asynchronous. Several approaches to deal with stability analysis and/or control synthesis have been developed until now: discrete-time approaches [START_REF] Suh | Stability and stabilization of nonuniform sampling systems[END_REF][START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF], inputdelay approaches [START_REF] Mikheev | Asymptotic analysis of digital control systems[END_REF][START_REF] Teel | A note on inputto-state stability of sampled-data nonlinear systems[END_REF][START_REF] Fridman | Robust sampled-data stabilization of linear systems: An input delay approach[END_REF][START_REF] Fridman | A refined input delay approach to sampled-data control[END_REF][START_REF] Liu | Wirtinger's inequality and Lyapunov-based sampled-data stabilization[END_REF], robust analysis techniques [START_REF] Kao | On stability of systems with aperiodic sampling devices[END_REF], impulsive systems formulation [START_REF] Sun | H ∞ control and filtering with sampled measurements[END_REF] Email addresses: aseuret@laas.fr (Alexandre Seuret), briatc@bsse.ethz.ch,corentin@briat.info (Corentin Briat).

URL: http://www.briat.info (Corentin Briat). 1 This work has been funded by the ANR under Grant LIM-ICOS ANR-12-BS03-005 [START_REF] Naghshtabrizi | Exponential stability of impulsive systems with application to uncertain sampled-data systems[END_REF][START_REF] Briat | A looped-functional approach for robust stability analysis of linear impulsive systems[END_REF], and the use of looped-functionals either considering directly the sampled-data system formulation [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF] or the impulsive system formulation [START_REF] Briat | A looped-functional approach for robust stability analysis of linear impulsive systems[END_REF]. The problem addressed in this paper pertains on the robust stability analysis of uncertain and asynchronous sampled-data systems with input delay. A simpler instance of this problem has been studied in [START_REF] Liu | Wirtinger's inequality and Lyapunov-based sampled-data stabilization[END_REF] where only synchronous sampled-data systems are considered. The contribution of this paper is therefore twofold. The first one lies in the development of new stability conditions for linear impulsive systems with delays acting on the discrete-time part of the system. These stability conditions are obtained using a tailored looped-functional together with a new integral inequality introduced in [START_REF] Seuret | Wirtinger-based integral inequality: Application to time-delay systems[END_REF] in the context of time delay systems. The main differences with previous works on the topic, such as [START_REF] Briat | A looped-functional approach for robust stability analysis of linear impulsive systems[END_REF] [START_REF] Seuret | Wirtinger-based integral inequality: Application to time-delay systems[END_REF], lie in 1) the use of a more advanced functional allowing us to cope with systems with time-varying matrices and; 2) the use of a new integral inequality that notably reduces the conservatism of the approach over the use of Jensen's inequality. By then relying on the equivalent reformulation of a sampleddata system into an impulsive system, the obtained stability conditions are applied to our specific problem, that is, the analysis of uncertain and asynchronous sampled-data systems with incremental delays. It is no-tably emphasized that the current approach improves over the method of [START_REF] Liu | Wirtinger's inequality and Lyapunov-based sampled-data stabilization[END_REF] in the case of synchronous samplings while being also able to deal with asynchrony. Examples are given for illustration.

Notations: For symmetric matrices A, B, A -B ≺ 0 means that A -B negative definite. The sets of symmetric and symmetric positive definite matrices of dimension n are denoted by S n and S n + respectively. The set of whole numbers is denoted by N. Given a square matrix A, we define Sym[A] = A + A . For some vectors α, β, the notation col{α, β} denotes the vector obtained by stacking α and β on the top of each others. Finally the notation 0 m×n denotes the m × n zero-matrix.

Problem formulation

Let us consider linear systems of the form

ẋ(t) = A 0 x(t) + B 0 u(t), t ≥ 0, x(0) = x 0 , (1) 
where x, x 0 ∈ R n0 and u ∈ R m are the state of the system, the initial condition and the control input, respectively. The matrices A 0 and B 0 are not necessarily perfectly known but may be uncertain and/or time-varying.

The control input u obeys the following equation

u(t) = Kx(t k-d ), t ∈ [t k , t k+1 ), k ∈ N, (2) 
where K ∈ R m×n0 is a controller gain and the sequence {t k } k∈N is the sequence of sampling instants. This sequence is assumed to be strictly increasing and does not admit any accumulation point, that is, we have that t k → ∞ as k → ∞. We also make the additional assumption that the difference T k := t k+1 -t k belongs, for all k ∈ N, to the interval [T min , T max ] where T min ≤ T max . The incremental delay d ∈ N is assumed to be constant and known. The closed-loop system obtained from the interconnection of (1) and ( 2) is given, for all k in N, by

ẋ(t) = A 0 x(t) + B 0 Kx(t k-d ), t ∈ [t k , t k+1 ), x(θ) = x 0 , θ ≤ 0. (3) 
In the above model, the initial condition has been adapted in order to guarantee existence and uniqueness of solutions. Note that any other extension of the initial condition could have been done since stability of linear systems does not depend on initial conditions. When the sampling is periodic, i.e. T k ≡ T , k ∈ N, and the matrices A 0 and B 0 are known and constant, the system (3) can be easily analyzed using the Lyapunov-Krasovskii theorem or by augmenting the state vector; see e.g. [START_REF] Hetel | Equivalence between the Lyapunov-Krasovskii functionals approach for discrete delay systems and that of the stability conditions for switched systems[END_REF]. The case of aperiodic sampling and uncertain matrices is, however, more difficult since discrete-time methods do not extend smoothly to this kind of systems, mainly due to the presence of exponential terms of the form e A0T in the LMI conditions; see the extensive discussions in [START_REF] Briat | A looped-functional approach for robust stability analysis of linear impulsive systems[END_REF]. Several approaches have been developed to overcome these difficulties. The input-delay approach first introduced in [START_REF] Teel | A note on inputto-state stability of sampled-data nonlinear systems[END_REF] for nonlinear systems consists of rewriting the sampled state x(t k-d ) as a delayed term of the form x(t -τ d (t)) with sawtooth delay τ d (t). The original sampled-data system is, in this case, transformed into a time-delay system. In this respect, the paper [START_REF] Fridman | Robust sampled-data stabilization of linear systems: An input delay approach[END_REF] addresses the analysis of such systems using Lyapunov-Krasovskii functionals.

Most of these previous approaches consider the particular case where the incremental delay d is equal to 0. When a computational delay indeed affects the computation of the control law, the analysis turns out to be more complex.

A distinct approach from the delay-based ones relies on the equivalent formulation of sampled-data systems as impulsive systems [START_REF] Sun | H ∞ control and filtering with sampled measurements[END_REF]. Recently, hybrid techniques based on Lyapunov functionals have been developed to these systems [START_REF] Naghshtabrizi | Exponential stability of impulsive systems with application to uncertain sampled-data systems[END_REF][START_REF] Goebel | Hybrid dynamical systems[END_REF], yielding a second breath to this formulation. A linear impulsive system is defined by

ẏ(t) = Ay(t), t = t k , y(t + k ) = Jy(t k ), t = t k , (4) 
for some state y and with matrices A, J ∈ R n×n . The sequence {t k } k∈N is assumed to be the same as for the sampled-data system (3). Above, the notation

y(t + k ) is the right-limit of y(s) at s = t k , i.e. y(t + k ) := lim s↓t k y(s).
In this framework, the system (3) can represented as (4) with y(t) := col{x(t), x(t k ) , . . . , x(t k-d) },

A = A 0 B 0 K 0 dn 0 ×n 0 0 dn 0 , J := [In 0 0 n 0 ×n 0 (d-1) ] 0n 0 I dn 0 0 dn 0 ×n 0 , (5) where 
K := [0 . . . 0 K].
The interest of this formulation lies in the fact that the delayed sampled term is embedded in the state of the impulsive system and there is basically no distinction between the fact that we have one or more past terms in the control law. Indeed if the control law is affected by several delays, i.e. u(t) = d i=0 K i x(t k-i ), the resulting impulsive model can be simply rewritten by considering

K := [K 0 K 1 . . . K d ].
Of course the dimension of the impulsive system grows linearly according to the size of the delay d. Stated as such, there seems to be no striking difference between a standard discrete-time approach and an impulsive approach, and we may question the benefits of using the latter over the former. The main difference actually lies in the class of tools that will be used, i.e. looped-functionals, that will allow us to express a discrete-time stability condition in terms of continuoustime data A and J in a convex way, facilitating then the analysis of aperiodic sampled-data systems in the uncertain and time-varying case. The looped-functional based approach relies on the characterization of the trajectories of system (4) in a lifted domain [START_REF] Yamamoto | New approach to sampled-data control systems -a function space method[END_REF][START_REF] Briat | A looped-functional approach for robust stability analysis of linear impulsive systems[END_REF]. Therefore, we view the entire state-trajectory as a sequence of functions

χ k (τ ) := y(t k + τ ) with χ k (0) = lim s↓t k y(s). (6) 
Looped-functionals then consider this definition of state for assessing stability in a novel manner. Notably, the positivity requirement of the functional can be shown to be relaxed.

3 Stability analysis of linear impulsive systems

Main Result

We have the following result:

Theorem 3.1 The impulsive system (4) with

T k := t k+1 -t k ∈ [T min , T max ], k ∈ N, is asymptotically stable if there exist matrices P, Z ∈ S n + , Q, S, X ∈ S n , R, U ∈ R n×n and Y 1 , Y 2 ∈ R n×3n such that the LMIs Ψ(θ) ≺ 0 and Φ(θ) ≺ 0 (7)
hold for all θ ∈ {T min , T max } where

Ψ(θ) := F 0 (θ) + θ(F 2 + F 3 ), Φ(θ) :=     F 0 (θ) + θ(F 1 -F 3 ) θY 1 θY 2 -θZ 0 - θ 3 Z     , (8) 
with

M y = [I 0 0], M ζ = [I -J 0], M ν = [I J -2I], M -= [0 I 0], M + = [0 0 I], F 1 = -Sym[M + U JM -], F 3 = M -J XJM -and F 0 (θ) = F 00 (θ) -Sym[Y 1 M ζ + 3Y 2 M ν ], F 00 (θ) = θM y (A P + P A)M y -M ζ QM ζ -θM + SM + +M -(J P J -P )M --Sym[M ζ RM y ], F 2 = Sym[M y A QM ζ + M y A RM y + M ζ RAM y +M + SM y ] + M y U JM -+ M y A ZAM y .
(9) When the above conditions are satisfied, then we have that J e A θ P e Aθ J -P ≺ 0 holds for all θ ∈ [T min , T max ] and, therefore, the quadratic form V (y) = y P y is a Lyapunov function for the aperiodic impulsive system y(t k+1 ) = e AT k Jy(t k ) with T k ∈ [T min , T max ].

Proof : First we recall the Wirtinger-based integral inequality from [START_REF] Seuret | Wirtinger-based integral inequality: Application to time-delay systems[END_REF]. 

(u) Z ω(u)du ≥ 1 b -a Ω 1 ZΩ 1 + 3 b -a Ω 2 ZΩ 2 , ( 10 
)
where

Ω 1 = ω(b) -ω(a) and Ω 2 = ω(b) + ω(a) -2/(b - a) b a ω(u)du.
Following Theorem 2.4 from [START_REF] Briat | A looped-functional approach for robust stability analysis of linear impulsive systems[END_REF], let us consider the functional W k as

W k (τ, χ k , χ k-1 ) := τ Λ k + T k [V (χ k (τ )) + V(τ, χ k , T k )],
where

Λ k := V (χ k (0)) -V (χ k-1 (T k-1 )), V (y) = y P y and V such that T k V(τ, χ k , T k ) = (T k -τ )ζ k (τ ) [Qζ k (τ ) + 2Rχ k (τ )] + (T k -τ )τ ν k (τ ) [Sν k (τ ) + 2U Jχ k (0)] + (T k -τ )τ χ k (0) J XJχ k (0) + (T k -τ ) τ 0 χk (s) Z χk (s)ds, ( 11 
) where ζ k (τ ) = χ k (τ ) -χ k (0), χk (τ ) = Aχ k (τ ), ν(τ ) = 1 τ τ 0 χ k (s)ds, P, Z ∈ S n + , Q, S, X ∈ S n and U, R ∈ R n×n . It is important to point out that the matrices Q, R, S and U are indefinite. Since V(0, z, T k ) = V(T k , z, T k ) = 0 for all z ∈ C([0, T k ], R n )
and for all T k ∈ [T min , T max ], Theorem 2.4 from [START_REF] Briat | A looped-functional approach for robust stability analysis of linear impulsive systems[END_REF]) can be applied to get that

Ẇk = T k d dτ [V (χ k (τ )) + V(τ, χ k , T k )] + Λ k = ξ k (τ ) [F 00 (T k ) + τ F 1 + (T k -τ )F 2 +(T k -2τ )F 3 ] ξ k (τ ) - τ 0 χk (s) Z χk (s)ds, (12) 
where F 00 (T k ), F 2 and F 3 are given in (9) and

ξ k (τ ) := col{χ k (τ ), χ k-1 (T k-1 ), ν k (τ )}. Noting that χ k (0) = Jχ k-1 (T k-1 ), Lemma 3.2 yields the inequality - τ 0 χk (s) Z χk (s)ds ≤ -(1/τ )ξ k (τ ) M ζ ZM ζ + 3M ν ZM ν ξ k (τ ).
Following [START_REF] Briat | Convergence and equivalence results for the Jensen's inequality -application to time-delay and sampled-data systems[END_REF], both computational tractability and accuracy are improved by turned the RHS into an affine expression of τ . This can be performed by using the bounds discussed in the same paper to get Combining the previous statements all together, we can state that the system (4) with T -periodic impulses is asymptotically stable if Ẇk is negative definite over τ ∈ [0, T ]. A sufficient condition of asymptotic stability is then that the parameter-dependent LMI

-(1/τ )ξ k (τ ) M ζ ZM ζ + 3M ν ZM ν ξ k (τ ) ≤ -ξ k (τ ) (Sym[Y 1 M ζ + 3Y 2 M ν ] -τ (Y 1 Z -1 Y 1 -3Y 2 Z -1 Y 2 ) ξ k (τ ).
F 0 (T ) + τ F1 + (T -τ )F 2 + (T -2τ )F 3 ≺ 0, ( 13 
)
holds for all τ ∈ [0, T ] where

F1 = F 1 + Y 1 Z -1 Y 1 + 3Y 2 Z -1 Y 2 .
Since this LMI is affine in τ (hence convex), to check its negative definiteness over the entire interval [0, T k ], it is necessary and sufficient to check it at the vertices of the set, that is only over the finite set τ ∈ {0, T k }. A Schur complement on the quadratic terms

T k Y 1 Z -1 Y 1 and 3T k Y 2 Z -1 Y 2 finally yields Φ(T k ) ≺ 0 and Ψ(T k ) ≺ 0. Since Ψ(T k ) ≺ 0 and Φ(T k ) ≺ 0 are affine in T k ∈ [T min , T max ],
we can apply the same arguments as above to show that we just need to check them at the values in the finite set {T min , T max }.

Finally, if the LMI condition ( 7) are satisfied for all θ ∈ [T min , T max ], this implies that Ẇ < 0, which, according to Theorem 4.2 from [START_REF] Briat | A looped-functional approach for robust stability analysis of linear impulsive systems[END_REF], ensures the asymptotic stability of the system (4). ♦

An example on impulsive systems

Example 1 [START_REF] Briat | A looped-functional approach for robust stability analysis of linear impulsive systems[END_REF] Let us consider the system (4) with matrices

A = -1 0.1 0 1.2 , J = 1.2 0 0 0.5 . ( 14 
)
Note that, the continuous-time dynamics of the first state is stable while the second is unstable. Conversely, the matrix J has a stable eigenvalue for the second state and an unstable one for the first state. It is hence expected that the range of admissible inter-impulse distances is a connected interval excluding 0 and +∞. An eigenvalue analysis gives the admissible range [0.1824, 0.5776] of inter-impulse periods. Table 1 presents the results. It is sowed that the Theorem 3.1 precises the condition from [START_REF] Briat | A looped-functional approach for robust stability analysis of linear impulsive systems[END_REF]. The improvements for the periodic and the aperiodic cases are due to the use of the integral inequality Lemma 3.2.

Stability of delayed sampled-data systems

In the following, we will consider more specifically the case of sampled-data systems affected by an incremental delay d. Therefore, from now on, the matrices A and J are given by those in (5). We also denote by n the actual dimension of the state of the impulsive system representing the sampled-data system, that is n = n 0 (d + 1). An important difference with respect to Theorem 3.1, is that the particular structure of the matrices A and J are exploited in order to reduce the number of variables in the LMI conditions and lower the computational complexity of the approach.

Let us assume now that the sampled-data system (1) is uncertain and subject to time-varying uncertainties, i.e.

[A 0 B 0 ] ∈ Co([A 1 0 B 1 0 ], . . . , [A M 0 B M 0 ]), (15) 
where Co denotes the convex hull operator. Based on the impulsive system formulation, we are in position to provide the main result on the robust stability of aperiodic sampled-data systems:

Theorem 3.3 The uncertain aperiodic sampled-data system (3)-( 15) with n+2n0) such that the LMIs Ψ(θ, A j 0 , B j 0 , K) ≺ 0 and Φ(θ, A j 0 , B j 0 , K) ≺ 0 hold for all θ ∈ {T min T max } and all j = 1, . . . , M where for all matrices A 0 , B 0 , K of appropriate dimension,

T k ∈ [T min , T max ], k ∈ N, is asymp- totically stable if there exist matrices P ∈ S n + , Z ∈ S n0 + , Q, S, ∈ S n0 , X ∈ S n , R, Ũ ∈ R n0×n and Ỹ1 , Ỹ2 ∈ R n0×(
Ψ(θ, A 0 , B 0 , K) := G 0 (θ) + θ(G 2 + G 3 ) Φ(θ, A 0 , B 0 , K) :=     G 0 (θ) + θ(G 1 -G 3 ) θ Ỹ T 1 θ Ỹ 2 -θ Z 0 - θ 3 Z    G 0 (θ) = G 00 (θ) -Sym[ Ỹ 1 N ζ + 3 Ỹ 2 N ν ], G 00 (θ) = θN y (A P + P A)N y -N ζ QN ζ -θN + SN + +N -(J P J -P )N --Sym[N ζ RN y ], G 1 = -Sym[N + U N -], G 3 = N -J XJN -, G 2 = Sym[N y à QN ζ + N y à RN y + N ζ RAN y +N + SJN y + N y Ũ JN -] + N y à Z ÃN y , and à = [A 0 B K], N ζ = [I n0 -I n0 0 n0×n ], N ν = [I n0 I n0 0 n0×(n-n0) -2I n0 ], N y = [I n 0 n×2n0 ], N + = [0 n0×(n+n0) I n0 ], N -= [0 n×n0 I n 0 n×n0 ].
Proof : Due to space limitations, the proof is only sketched. When considering the uncertain sampleddata system (3)-( 15), the corresponding impulsive system (4)-( 5) has redundant information in its formulation. It is, indeed, possible to show that there exists a matrix W of appropriate dimensions such that

ξ k (τ ) = W [ρ k (τ ) X k x(t k-N ) υ k (τ )]
, where ρ k (τ ) and υ k (τ ) contain the first n 0 entries of χ k (τ ) and ν k (τ ), respectively. The vector X k is defined, as before, as

X k = col{x(t k ), . . . , x(t k-N +1 )}.
The proof then consists of applying first Finsler's lemma [START_REF] Skelton | A Unified Algebraic Approach to Linear Control Design[END_REF] and then reducing the number of variables by exploiting the particular structure of the matrices of the system. Noting finally that the matrices Ψ and Φ are convex in their second and third arguments allows us to extend the conditions to uncertain sampled-data systems with polytopic uncertainties.

♦

Remark 1 The conditions of Theorem 3.3 deals with aperiodic samplings. It is however possible to address the problem of periodic samplings by selecting T min = T max .

Remark 2 The numerical burden associated with the conditions of Theorem 3.3 increases exponentially with the value of the incremental delay d. In [START_REF] Seuret | Stability analysis of asynchronous sampled-data systems with discrete-time constant input delay[END_REF], a mixed continuous/discrete-time analysis is performed thanks to a Lyapunov-Krasovskii functional to deal with the discrete-time-delay system.

Examples on sampled-data systems

Example 2 [START_REF] Zhang | Stability of Networked Control Systems[END_REF]) Let us consider the sampled-data system (3) with matrices

A 0 = 0 1 0 -0.1 , B 0 = 0 -0.1
, K = 3.75, 11.5 .

An eigenvalue-based analysis shows that this sampleddata system is asymptotically stable for any constant sampling period smaller than T max = 1.7294, 0.7637, 0.4638 when d = 0, 1, 2, respectively. Periodic sampling case: When d = 0, [START_REF] Liu | Wirtinger's inequality and Lyapunov-based sampled-data stabilization[END_REF] show that stability of the sampled-data system is preserved for any constant sampling-period in the intervals (0, 1.39]. In [START_REF] Briat | A looped-functional approach for robust stability analysis of linear impulsive systems[END_REF], the interval (0, 1.7239] is found while Theorem 3.3 (with T min = T max = T ) yields (0, 1.7294] showing then exactness of the estimate for this example. When d = 1, 2, Theorem 4.1 returns 0.7637 and 0.4638, respectively. This example demonstrates that, even if the proposed method is conservative in general, the conservatism can be vanishingly small for some systems. Aperiodic sampling case: When d = 0, the conditions from [START_REF] Liu | Wirtinger's inequality and Lyapunov-based sampled-data stabilization[END_REF] preserves stability for any sampling in the intervals (0, 1.39], The approach considered in [START_REF] Naghshtabrizi | Exponential stability of impulsive systems with application to uncertain sampled-data systems[END_REF] and [START_REF] Fridman | A refined input delay approach to sampled-data control[END_REF] indicate that stability is preserved for any aperiodic sampling in the intervals (0; 1.113], and (0; 1.69], respectively. The looped-functional approaches discussed in [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF][START_REF] Briat | A looped-functional approach for robust stability analysis of linear impulsive systems[END_REF] yield the interval (0, 1.7239]. Theorem 3.3 delivers the interval (0, 1.7293].

The conditions yield tighter estimates of the interval. When d = 1, 2, Theorem 3.3 ensures stability for all samplings that belongs to [10 -3 , 0.73] and [10 -3 , 0.43], respectively, which, again, illustrates the efficiency of the proposed method. Example 3 [START_REF] Gu | Stability of time-delay systems[END_REF]) Let us consider the sampled-data system (3) with d = 0 and with matrices

A 0 = 0 1 -2 0.1 , B 0 = 0 1 , K = 1 0 ,
An eigenvalue-based analysis shows that this sampleddata system is asymptotically stable for any constant sampling period in the interval [0.2007, 2.020]. First, the stability conditions from [START_REF] Naghshtabrizi | Exponential stability of impulsive systems with application to uncertain sampled-data systems[END_REF], [START_REF] Fridman | A refined input delay approach to sampled-data control[END_REF] fail assessing stability. According to Table 2, the condition from Theorem 3.3 improves again the ones form the literature on this example.

Example 4 [START_REF] Liu | Wirtinger's inequality and Lyapunov-based sampled-data stabilization[END_REF]) Let us consider now the sampled-data system (3)

ẋ(t) = 0 1 g(t) 0 x(t) + 0 1 u(t) u(t) = -0.35 0 x(t k ) + 0.1 0 x(t k-3 ), ∀t ∈ [t k , t k+1 )
and where the function g is such that |g(t)| ≤ 0.1, for all t ≥ 0. Due to the time-varying nature of the function g, stability cannot be analyzed using the discrete-time stability result. For indication, a gridding approach combined with eigenvalue analysis (which is only valid in the timeinvariant case) yields that the maximal periodic sampling period for such system is 0.7996. The method of [START_REF] Liu | Wirtinger's inequality and Lyapunov-based sampled-data stabilization[END_REF] is not applicable for aperiodic samplings.

Results are presented in Table 3 and shows that Theorem 3.3 delivers less conservative results on this example.

Of course these improvement is obtained at the price of an additional complexity. Indeed the number of decision variables in [START_REF] Liu | Wirtinger's inequality and Lyapunov-based sampled-data stabilization[END_REF]) is 12n 2 + 6n while in our approach, we have 36n 2 + 5n.

Conclusion

A new looped-functional-based approach has been proposed for analyzing the stability of periodic and aperiodic uncertain sampled-data systems with incremental delays. The conditions have been obtained using Wirtinger's inequality along with a complexity reduction procedure. Several examples illustrate the efficiency of the approach over existing ones.

Lemma 3. 2

 2 Let ω : [a, b] → R n be a differentiable function over (a, b) having square integrable first order derivative. Then, for all Z ∈ S n + , we have b a ω