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MODULI SPACE OF MEROMORPHIC

DIFFERENTIALS WITH MARKED HORIZONTAL

SEPARATRICES

CORENTIN BOISSY

Abstract. We study framed translation surfaces corresponding
to meromorphic differentials on compact Riemann surfaces, for
which a horizontal separatrix is marked for each pole or zero. Such
geometric structures naturally appear when studying flat geometry
surfaces “near” the Deligne-Mumford boundary.

We provide an explicit formula for the number of connected com-
ponents of the corresponding strata, and give a simple topological
invariant that distinguish them.

1. Introduction

A nonzero holomorphic one-form (Abelian differential) on a compact
Riemann surface naturally defines a flat metric with conical singulari-
ties on this surface. Geometry and dynamics on such flat surfaces, in
relation to geometry and dynamics on the corresponding moduli space
of Abelian differentials is a very rich topic and has been widely studied
in the last 30 years. It is related to interval exchange transformations,
billards in polygons, Teichmüller dynamics.

A non-compact translation surface corresponds to a one-form on a
non-compact Riemann surface. The dynamics and geometry on some
special cases of non-compact translation surfaces have been studied
more recently.

In [3], we have investigated the case of translation surfaces that come
from meromorphic differentials defined on compact Riemann surfaces.
In this case, we obtain non-compact translation surfaces with infinite
area. Such structures naturally appear when studying compactifica-
tions of strata of the moduli space of Abelian differentials. For in-
stance, Eskin, Kontsevich and Zorich [4], based on results of Rafi [9],
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2 CORENTIN BOISSY

showed that when a sequence of Abelian differentials (Xi, ωi) converges
to a boundary point in the Deligne-Mumford compactification, then
subsets (Yi,j, ωi,j) corresponding to thick components of the Xi, after
suitable rescaling converge to meromorphic differentials (see [4], The-
orem 10). Similar results were independently proved by Grushevsky
and Krichever [5], by Koch and Hubbard [6] and by Smillie. See also
[1].

In this paper, a meromorphic differential on a compact Riemann sur-
face will be called translation surface with poles, or simply translation
surface when there is no confusion with the usual (compact) translation
surfaces.

This work was suggested to the author by Smillie, as a step in a
project of constructing a geometric compactification of the strata of
the moduli space of Abelian differentials by using only flat geometry.
A (compact) translation surface “near” the boundary, should be seen as
a collection of translation surfaces with poles, glued together suitably
after cutting out a neighborhood of a collection of singularities (in-
cluding all the poles, in order to obtain in the end compact translation
surface). However, the gluing operation requires some extra combinato-
rial data, that can be expressed in terms of a “frame” on the translation
surfaces with poles.

As in [2], a framed translation surface is a translation surface with a
choice, for each singularity of a horizontal separatrix (see Section 3 for
a precise definition). When the singularity is a conical singularity (i.e.,
a zero of the corresponding one-form), it corresponds to a horizontal
separatrix. When the singularity corresponds to a non-simple pole,
it corresponds to an equivalence class of horizontal geodesics going to
infinity for the flat metric. A singularity of degree n ∈ Z will have |n+1|
possible choices of horizontal separatrices. Such framed translation
surface will be also called translation surface with marked horizontal
separatrices.

The number of connected components of the moduli space of framed
(compact) translation surfaces was computed by the author in [2]. In
this paper, we answer the same question for the moduli space of framed
translation surfaces with poles.

The first theorem deals with the case of nonhyperelliptic connected
components in genus at least 1.

Theorem 1.1. Let g ≥ 1. Let H be a stratum of the moduli space of
genus g meromorphic differentials, and C ⊂ H be a nonhyperelliptic
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connected component. Let Chor be the moduli space of translation sur-
faces in C with marked horizontal separatrices. We assume that the set
of poles does not consists of a pair of simple poles. We have:

• If there exists a simple pole, or if there are only even degree
singularities, then Chor is connected.

• Otherwise, Chor has two connected components that are distin-
guished by an invariant easily computable in terms of the flat
structure.

When the set of poles consists of a pair of simple poles, we have the
following result.

• If there are only even degree zeroes, then Chor is connected.
• Otherwise, Chor has two connected components that are distin-

guished by an invariant easily computable in terms of the flat
structure.

The topological invariant that distinguishes the connected compo-
nents Chor will be defined in Section 5.1. It is a variation of the classical
Arf invariant for moduli space of Abelian differentials.

The case of hyperelliptic connected components is easy and studied
in Section 5.3. In this case, there are more connected components for
Chor due to the extra symmetry of the surfaces.

The genus zero case is particular: there might be many more com-
ponents, as described in the following theorem.

Theorem 1.2. Let H = H(n1, . . . nr) be stratum of genus zero trans-
lation surfaces. Let Hhor be the moduli space of translation surfaces in
H with marked horizontal separatrices. Let

N =
∏

i,j

gcd
(

{nk}k/∈{i,j} ∪ {ni + 1, nj + 1}
)

• If there exists i ∈ {1, . . . , r} such that ni = −1, then Hhor is
connected.

• If all ni are different from −1 and if there are at most two odd
degree singularities, then there are N connected components of
Hhor that are distinguished by an invariant easily computable in
terms of the flat structure.

• Otherwise, there are 2N connected components of Hhor that are
distinguished by an invariant easily computable in terms of the
flat structure.

The topological invariant that distinguish the connected components
Hhor will be defined in Section 6. The idea is to look at indices of the
Gauss map modulo relevant integers for a certain collection of paths.
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Structure of the paper. The paper is organized as follow:

• Section 2 is devoted to generalities and background about trans-
lation surfaces with poles. The classification theorem of the con-
nected components of moduli space of meromorphic differentials
by the author is recalled, and few important statements about
the structure of these connected components. We end with the
proof of a preliminary result about the existence, in each con-
nected component, of a surface with a pole of prescribed degree
and zero residue.

• Section 3 gives the precise definition of the moduli space of
framed meromorphic differentials, and reduces the problem to
the computation of the index of a subgroup H of a product of
cyclic groups.

• Section 4 describes paths in the underlying stratum that pro-
duces some particular elements in H that will be ultimately
proven to the generators of H . One key step there is to show
that these elements exist for each connected component of each
stratum.

• Section 5 defines first a topological invariant for the positive
genus case, then proves Theorem 1.1.

• Section 6 defines a topological invariant for the zero genus case,
then proves Theorem 1.2.

Acknowledgements. I thank John Smillie for motivating the work on
this paper and interesting discussions. This work is partially supported
by the ANR Project "GeoDym".

2. Preliminaries

2.1. Holomorphic one-forms and flat structures. Let X be a Rie-
mann surface and let ω be a holomorphic one-form. For each z0 ∈ X
such that ω(z0) 6= 0, integrating ω in a neighborhood of z0 gives local
coordinates whose corresponding transition functions are translations,
and therefore X inherits a flat metric, on X\Σ, where Σ is the set of
zeroes of ω.

In a neighborhood of an element of Σ, such metric admits a conical
singularity of angle (k + 1)2π, where k is the order of the correspond-
ing zero of ω. Indeed, a zero of order k is given locally, in suitable
coordinates by ω = (k + 1)zkdz. This form is precisely the pre-image
of the constant form dz by the ramified covering z → zk+1. In terms
of flat metric, it means that the flat metric defined locally by a zero of
order k appear as a connected covering of order k + 1 over a flat disk,
ramified at zero.



MARKED HORIZONTAL SEPARATRICES 5

When X is compact, the pair (X,ω), seen as a smooth surface with
such translation atlas and conical singularities, is usually called a trans-
lation surface.

If ω is a meromorphic differential on a compact Riemann surface X,
we can consider the translation atlas defined by ω on X = X\Σ′, where
Σ′ is the set of poles of ω. We obtain a translation surface with infinite
area. We will call such surface translation surface with poles, or simply
translation surface.

Convention 2.1. When speaking of a translation surface with poles
S = (X,ω): the surface S equipped with the flat metric is noncompact;
the underlying Riemann surface X is a punctured surface and ω is a
holomorphic one-form on X; the corresponding closed Riemann surface
is denoted by X, and ω extends to a meromorphic differential on X
whose set of poles is precisely X\X.

As in the case of Abelian differentials, a saddle connection is a ge-
odesic segment that joins two conical singularities (or a conical singu-
larity to itself) with no conical singularities on its interior.

We fix some terminology, that we will use during this paper.

• The order, or degree of a zero of ω is defined as usual. The cone
angle at a zero of degree n is 2π(n+ 1).

• The order of a pole of ω is defined as usual. It is a positive
integer.

• A singularity of (X,ω) is a zero or a pole of ω. By convention,
the degree of the singularity P will correspond to its order if P
is a zero, or the opposite of its order if P is a pole. For instance,
a pole of order 2 corresponds to a singularity of degree -2. We
denote by deg(P ) ∈ Z the degree of P .

With the above convention, we recall that it is well known that
∑r

i=1 ni = 2g − 2, where {n1, . . . , nr} is the set (with multiplicities) of
degree of singularities of (X,ω).

2.2. Local model for poles. The neighborhood of a pole in X of
order one is an infinite cylinder with one end. Indeed, up to rescaling,
the pole is given in local coordinates by ω = 1

z
dz. Writing z = ez

′

, we
have ω = dz′, and z′ is in an infinite cylinder.

Now we describe the flat metric in a neighborhood of a pole in X of
order k ≥ 2 (see also [10, 3]). First, consider the meromorphic 1-form
on C∪{∞} defined on C by ω = zkdz. Changing coordinates w = 1/z,
we see that this form has a pole P of order k + 2 at ∞, with zero
residue. In terms of translation structure, a neighborhood of the pole
is obtained by taking an infinite cone of angle (k + 1)2π and removing
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a compact neighborhood of the conical singularity. Since the residue is
the only local invariant for a pole of order k, this gives a local model
for a pole with zero residue.

Now, define UR = {z ∈ C||z| > R} equipped with the standard
flat metric. Let VR be the Riemann surface obtained after removing
from UR the π–neighborhood of the real half line R−, and identifying
by the translation z → z + ı2π the lines −ıπ + R− and ıπ + R−. The
surface VR is naturally equipped with a holomorphic one-form ω coming
from dz on VR. We claim that this one-form has a pole of order 2 at
infinity and residue -1. Indeed, start from the one-form on UR′ defined
by (1 + 1/z)dz and integrate it. Choosing the usual determination of
ln(z) on C\R−, one gets the map z → z + ln(z) from UR′\R− to C,
which extends to an injective holomorphic map f from UR′ to VR, if
R′ is large enough. Furthermore, the pullback of the form ω on VR

gives (1 + 1/z)dz. Then, the claim follows easily after the change of
coordinate w = 1/z

Let k ≥ 2. The pullback of the form (1+1/z)dz by the map z → zk−1

gives ((k− 1)zk−2 + (k− 1)/z)dz, i.e. we get at infinity a pole of order
k with residue −(k − 1). In terms of flat metric, a neighborhood of a
pole of order k and residue −(k − 1) is just the natural cyclic (k − 1)–
covering of VR. Then, suitable rotation and rescaling gives the local
model for a pole of order k with a nonzero residue.

2.3. Moduli space. If (X,ω) and (X ′, ω′) are such that there is a
biholomorphism f : X → X ′ with f ∗ω′ = ω, then f is an isometry for
the metrics defined by ω and ω′. Even more, for the local coordinates
defined by ω, ω′, the map f is in fact a translation.

As in the case of Abelian differentials, we consider the moduli space
of meromorphic differentials, where (X,ω) ∼ (X ′, ω′) if there is a bi-
holomorphism f : X → X ′ such that f ∗ω′ = ω. A stratum corresponds
to prescribed degree of zeroes and poles. We denote by H(nα1

1 , . . . , nαr
r )

the stratum that corresponds to meromorphic differentials with αi

singularities of degree ni. Such stratum is nonempty if and only if
∑r

i=1 αini = 2g − 2 for some integer g ≥ 0 and if there is not just one
simple pole.

We define the topology on this space in the following way: a small
neighborhood of S, with conical singularities Σ, is defined to be the
equivalence classes of surfaces S ′ for which there is a differentiable in-
jective map f : S\V (Σ) → S ′ such that V (Σ) is a (small) neighborhood
of Σ, Df is close the identity in the translation charts, and the com-
plement of the image of f is a union on disks. One can easily check
that this topology is Hausdorff.
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2.4. Connected components of the moduli space of meromor-

phic differentials. The connected components of the moduli space of
meromorphic differentials were classified by the author in [3]. Here we
recall this classification, and state some technical facts that appear in
the proof, and that are necessary for this paper. First, recall the well
known fact that any stratum of genus zero meromorphic differentials is
connected since it corresponds more or less to a moduli space of marked
points on the sphere.

Let γ be a simple closed curve parametrized by the arc length on a
translation surface that avoids the singularities. Then t → γ′(t) defines
a map from S1 to S1. We denote by Ind(γ) the index of this map.

Assume that the surface has genus one. Let (a, b) be a pair of closed
curves representing a symplectic basis of the homology of S, then we
define the rotation number of S as

rot(S) = gcd(Ind(a), Ind(b), n1, . . . nr, p1, . . . , ps)

where n1, . . . , nr are the order of zeroes of S and p1, . . . , ps are the order
of poles of S. We can show that it does not depend on the choice of
(a, b) and hence is an invariant of connected components. We have the
following result.

Theorem 2.2. Let H(n1, . . . , nr,−p1, . . . ,−ps), with ni > 0, pj > 0
and

∑

j pj > 1 be a stratum of genus one meromorphic differentials.

Let d be a positive divisor of N = gcd(n1, . . . , nr, p1, . . . , ps). There is a
unique connected component of H(n1, . . . , nr, p1, . . . , ps) with rotation
number d, except when r = s = 1 and d = N , in which case such
component does not exists.

A translation surface S = (X,ω) is hyperelliptic if the underlying
Riemann surface is hyperelliptic, i.e. there is an involution i such that
X/i is the Riemann sphere, and if ω satisfies i∗ω = −ω.

Assume that the translation surface S has only even degree singu-
larities S ∈ H(2n1, . . . , 2nr,−2p1, . . . ,−2ps). Let (ai, bi)i∈{1,...,g} be a
collection of simple closed curves representing a symplectic basis of the
homology of S. We define the spin structure of S as

g
∑

i=1

(ind(ai) + 1)(ind(bi) + 1) mod 2.

It is an invariant of connected components of the moduli space of
meromorphic differentials. When the surface S has only a pair of poles
that are simple, and with even degree zeroes, i.e. S is in the stratum
H(2n1, . . . , 2nr,−1,−1), it is also possible to define a “spin structure”
invariant by considering a surface in H(2n1, . . . , 2nr) obtained after
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cutting the ends of the two infinite cylinders, and gluing them together
(see [3]).

Note that an elementary computation shows that, when a surface of
genus one has only even degree singularities, then it has an even spin
structure if and only if its rotation number is odd.

In the next theorem, we say that the set of poles and zeroes is:

• of hyperelliptic type if the degree of zeroes are of the kind {2n}
or {n, n}, for some positive integer n, and if the degree of the
poles are of the kind {−2p} or {−p,−p}, for some positive
integer p.

• of even type if the degrees of zeroes are all even, and if the
degrees of the poles are either all even, or are {−1,−1}.

Theorem 2.3. Let H = H(n1, . . . , nr,−p1, . . . ,−ps), with ni, pj > 0
be a stratum of genus g ≥ 2 meromorphic differentials. We have the
following.

(1) If
∑

i pi is odd and greater than two, then H is nonempty and
connected.

(2) If
∑

i pi = 2 and g = 2, then:
• if the set of poles and zeroes is of hyperelliptic type, then

there are two connected components, one hyperelliptic, the
other not (in this case, these two components are also dis-
tinguished by the parity of the spin structure).

• otherwise, the stratum is connected.
(3) If

∑

i pi > 2 or if g > 2, then:
• if the set of poles and zeroes is of hyperelliptic type, there is

exactly one hyperelliptic connected component, and one or
two nonhyperelliptic components that are described below.
Otherwise, there is no hyperelliptic component.

• if the set of poles and zeroes is of even type, then H contains
exactly two nonhyperelliptic connected components that are
distinguished by the parity of the spin structure. Otherwise
H contains exactly one nonhyperelliptic component.

The proof of these theorems involve some constructions, introduced
first by Kontsevich and Zorich in [8]. These constructions are called
breaking up a zero and bubbling a handle. We do not give a precise
definition here since we will generalize them in Section 4.1, but we
summarize the important properties.

• Breaking up a zero is a local surgery in a neighborhood of a
singularity of order n ≥ 0 (the metric is unchanged outside
that neighborhood), that replaces that singularity by a pair of
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singularities of order n1, n2 ≥ 0, with n1+n2 = n. We can show
(see [3]) that each connected component of the moduli space of
meromorphic differentials can be obtained from a connected
component of a stratum of the form H(n,−p1, . . . ,−pr) (called
a minimal component) after successive use of that surgery. In
the case that either n, n1, n2 is zero, we just add a marked point
and the metric is unchanged.

• Bubbling a handle is a local surgery in a neighborhood of a
singularity of order n ≥ 0, that replaces that singularity by a
singularity of order n + 2. The genus of the surface increases
by one. We can show (see [3]) that each minimal connected
component can be obtained starting from a genus zero stratum,
by using this surgery repeatedly.

2.5. Poles with zero residues. The geometric constructions involved
in Section 4 often require the use of a pole with zero residue. Here we
give a necessary and sufficient condition for a connected component of
stratum to contain a surface with a pole of a given order with zero
residue.

The following lemma lists some well known cases where all poles
necessarily have non-zero residues.

Lemma 2.4. Let ω be a meromorphic one-form on a closed Riemann
surface S and P be a (non-simple) pole. Then, P has necessarily
nonzero residue in the following two cases.

• S = CP
1 and ω has exactly two poles and a zero.

• There exists exactly one other pole, which is simple.

Proof. For the first case: let p and q be the order of the poles. We
identify CP

1 with C ∪ {∞}, and can assume that P = 0, the other
pole is 1, and the zero of ω is at ∞. Then, up to a multiple constant,
ω = 1

zp
1

(1−z)q
dz, and we easily check that the residue at 0 is nonzero.

For the second case, the residue of a simple pole is nonzero and if P
is the only other pole, it has opposite residue since by Stokes theorem
the sum of residues of poles is zero. �

Proposition 2.5. Let C ⊂ H(n1, . . . , nr,−p1, . . . ,−ps), with ni, pj > 0
be a connected component of the moduli space of meromorphic differ-
entials. We assume that there exists p ∈ {p1, . . . , ps}, such that p > 1.
We assume that we are not in the case of the previous lemma. Then,
there exists in C a flat surface with a pole of order p with zero residue.

Proof. The case is trivial when there is only one pole. In this proof,
we will assume first that there are exactly two poles of order p and q,
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(by assumption, we must have p, q > 1). This leads to the study of
three cases, depending on the genus. Then, we will deal with the case
of when there are at least three poles.

Case 1: two poles, genus zero: Since we are not in the case of the
previous lemma, there are necessarily at least two zeroes. We start
from (CP1, zp−2dz), (CP1, zq−2dz), then break the zero P of the first
one (resp. Q of the second one) into a pair of zeroes P1, P2 of order
p1, p2 ≥ 0 (resp. Q1, Q2 of order q1, q2 ≥ 0), so that there is a vertical
saddle connexion γ1 (resp. γ2) of length ε joining the two singularities.
We obtain two surfaces S1 and S2. Then, cut the γi, and paste the left
part of each one to the right part of the other one (see Figure 1). We
obtain a flat surface in H(−p,−q, p1 + q1 + 1, p2 + q2 + 1). Choosing
suitably pi, qi, we can obtain any stratum with two zeroes. Examples
in the other strata are obtained from these examples by breaking up
zeros. Since each stratum in genus zero is connected, the case is proven.

a

•
P2

b

×

P1

b

•
Q2

a

×

Q1

S1 S2

Figure 1. Surface of genus zero with two poles and no residue.

Case 2: two poles, genus one: We first build suitable surface in any
component of the stratum H(−p,−q, p+ q) of genus one surfaces. We
start from S0 = (CP1, zp−2dz) and S2 as previously. The surface S0 has
a zero P of order p− 2, and the surface S2 has a pair of zeroes Q1, Q2

of orders q1, q2 with q1 + q2 = q − 2.
Consider a metric segment [P2, P3] on S0, with P on its middle, and

such that one of the angular sectors at P defined by this segment has
angle π (see Case a- of Figure 2). Similarly, we consider a segment
[Q2, Q3] on S2, with Q1 on its middle and the same condition on the
angular sector at Q1. We remark that such segment exists, since Q1, Q2

are obtained after breaking up a singularity, and in this case, there is by
construction (see [8]) a segment joining Q1 to Q2 that we can assume to
be arbitrarily small. We can assume that the two segments are vertical,
isometric, and with opposite orientation. Then, cutting the surfaces
along these segments, and gluing them accordingly to Figure 2, one
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a

•
P2

b

c

•

P3

P

b

c

•
Q2

a

•

Q3

Q1

S0

S2

a)

a

•
P1

b

•

P2

b

c
•
Q1

a

c
•

Q2

S1

S2

b)

Figure 2. Surfaces in H(−p,−q, p + q).

gets a surface S in H(−p,−q, p+ q). We must check that all connected
components of this stratum are obtained. We first consider a basis for
the homology of S: consider the saddle connection γb corresponding to
b, joining the unique conical singularity to itself. At the singularity, it
defines a sector of angle 2π(1+ q2 +1+ (p− 2)) + π = (2p+2q2 +1)π.
We take a smooth path ηb homotopic to γb that avoids the singularity.
It has index p + q2 (or p + q − (p + q2)). Similarly, we have a smooth
path ηc, homotopic to the saddle connection corresponding to the seg-
ment c with index p, and ηb, ηc define a symplectic basis of S. So the
rotation number of the surface is gcd(q2, p, q), with q2 that can be any
integer in {0, . . . , q − 2}. If q > p, we can clearly obtain any divisor
of gcd(−p,−q, p + q), so we obtain any connected component. When
p = q, one cannot obtain in this way the component with rotation
number p− 1. But since the rotation number must divide p, we are in
the case p = q = 2. In this case, we glue two Euclidean planes as in
Figure 2, b). Here, paths ηa and ηc define a symplectic basis of S, and
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we see that the rotation number is 1, since the index of ηa is 1. Finally,
once obtained any connected component of H(−p,−q, p+ q), breaking
up the zero in a suitable way gives any component of any stratum of
genus one with two non-simple poles.

Case 3: two poles, higher genus: Here, suitably bubbling handles
from genus one surfaces leads to any minimal connected component in
higher genus, and breaking up the zero leads to any connected compo-
nent of the moduli space of meromorphic differentials.

Case 4: at least three poles:

a
•
P2

b
•

P1lq
•

a
•

lq

lr
•

b

•
lr

Sq Sp Sr

Figure 3. Surface in H(−p,−q,−r, p + q + r − 2).

We first build a genus zero surface with three poles of order p, q, r re-
spectively. We assume p, q, r > 1. We start from three spheres Sp, Sq, Sr

with exactly one pole of order p, q, r respectively and one zero (of order
p − 2, q − 2, r − 2 respectively). Consider on Sq an infinite horizontal
segment lq joining the zero to the pole Q (lq is chosen so that it identi-
fies by a translation map to the half-line ]−∞, 0[), then consider the
infinite horizontal band of width 1 with bottom side lq. Cut this band,
and glue together by translation the two horizontal sides. One obtains
a surface, still denoted Sq with a small vertical boundary component
of length 1, and the pole Q has now a nonzero residue. We do the
same for Sr, but starting from an half-line lr that identifies to ]0,∞[.
Then, on Sp, we cut along a small vertical segment of length 1, that
is attached to a singularity. Then, as in Figure 3, we glue by transla-
tion the vertical boundary component of Sq to the corresponding one
of Sp, and the vertical boundary component of Sr to the corresponding
one of Sp. This defines a (closed) flat sphere with a pole P of zero
residue, two poles Q,R of nonzero residue, and a single singularity of
positive degree. The case when Q or R are simple poles is easy and
left to the reader. Note also that we can easily add other poles (with
zero residues) by a similar construction as in Figure 3 by adding pieces
analogous to Sp. However, it is not possible to add simple poles with
this construction. For this, we start from an infinite line joining, say
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Q to the singularity of positive degree, and consider the band of width
ε << 1. Then, glue the small vertical boundary component to an infi-
nite cylinder, and iterate this construction until we have the required
collection of simple poles. Note that this does not change the residue
of P .

Now, suitably bubbling handles and breaking up zeroes, we obtain
any connected component with at least three poles, and this does not
change the residue of P . �

3. Moduli spaces of framed meromorphic differentials

As in [2], a frame on a translation surface S is a map FS from a finite
alphabet A to a discrete combinatorial data of S.

For a suitable collection of frames on translation surfaces in a stratum
H(nα1

1 , . . . , nαr
r ), we define the corresponding moduli space of framed

surfaces by identifying (S, FS) and (S ′, FS′) if there is a translation
mapping from S to S ′ that is consistent with the frames.

We are interested in two cases. The first case is when the alphabet A
admits a partition ⊔r

i=1Ai with |Ai| = αi and the collection of frames
we consider are all possible one-to-one maps FS from A to the set of
singularities of S such that, for all i, for all a ∈ Ai, FS(a) is a singularity
of S of degree ni. We obtain the moduli space of translation surface
with named singularities Hsing(nα1

1 , . . . , nαr
r ).

The following proposition will be useful.

Proposition 3.1. The connected components of Hsing(nα1

1 , . . . , nαr
r )

are in one-to-one correspondance with the connected components of
H(nα1

1 , . . . , nαr
r ).

Proof. This is clearly the case for genus zero stratum. Otherwise, we
use the fact that each connected component of Hsing(nα1

1 , . . . , nαr
r ) is

adjacent to the minimal stratum obtained by coalescing all singularities
of positive degree. Then the proof is similar to the proof of Proposi-
tion 7.2 of [3]. See also the connected sum construction of this paper
in Section 4.1. �

Now we define a more specific combinatorial datum for a singularity.

Definition 3.2. Let P be a singularity of S which is not a simple pole.
An horizontal separatrix for P is an equivalence class of (horizontal)
geodesics γ :]a, b[→ S, satisfying γ′ = 1, limt→a γ(t) = P with the
following conditions:

• if deg(P ) > 0: a = 0 and γ1 ∼ γ2 if they coincide on a subin-
terval of the form ]0, ε[.
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• if deg(P ) < −1: a = −∞, and γ1 ∼ γ2 if the distance for the
euclidean metric between γ1(t) and γ2(t) is bounded as t tends
to −∞.

Definition 3.3. For a singularity P , we denote by hP the number of
possible choices of horizontal separatrices. Note that we clearly have
hP = | deg(P ) + 1|.

Now we define the second moduli space of framed meromorphic dif-
ferentials. It corresponds choosing a horizontal separatrix for each sin-
gularity. More precisely, we still assume that A admits a partition
⊔r
i=1Ai with |Ai| = αi and the collection of frames we consider are all

possible maps F̃S such that:

• if ni 6= −1 then for all a ∈ Ai, F̃S(a) is a horizontal separatrix
for a singularity of degree ni.

• if ni = −1 then for all a ∈ Ai, F̃S(a) is a singularity of degree
−1.

• if a 6= b, then the singularity corresponding to F̃S(a) is different
from the singularity corresponding to F̃S(b).

We obtain the moduli space of translation surfaces with marked hori-
zontal separatrices Hhor(nα1

1 , . . . , nαr
r ).

Denote by πh : Hhor(nα1

1 , . . . , nαr
r ) → Hsing(nα1

1 , . . . , nαr
r ) and πs :

Hsing(nα1

1 , . . . , nαr
r ) → H(nα1

1 , . . . , nαr
r ) the coverings obtained by for-

getting the frames.
Let C be a connected component of H(nα1

1 , . . . , nαr
r ). From Proposi-

tion 3.1, Csing = π−1
s (C) is connected. We want to compute the number

of connected components of Chor = (πh)
−1Csing ⊂ Hhor(nα1

1 , . . . , nαr
r ).

We choose Shor
b a base element of Chor and Ssing

b = πh(S
hor
b ) the corre-

sponding flat surface (with marked singularities). For each singularity

P of Ssing
b which is not a simple pole, the set of horizontal separatrices,

once an arbitrary one is fixed, is identified to the cyclic group Z/hPZ

in the following way:

(1) if P is a conical singularity, we go from a separatrix to the
next one by considering a small counterclockwise arc around
the singularity. Hence, the identification it is just given by the
cyclic (counterclockwise) order around P .

(2) if P is an nonsimple pole, we go from a separatrix to the next
one by considering a large counterclockwise arc. In particular,
from the point of view of the pole P , it corresponds to the cyclic
clockwise order around P .
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The elements of fiber π−1
h (Ssing

b ), i.e. all the possible frames on the

surface Ssing
b are therefore identified with the group

Hor =
∏

P

Z/hPZ,

where the product is taken over all singularities of degree different
from −1.

We define Mon as the image of the monodromy group of the covering
πh, restricted to Chor. We can identify components with cosets of Mon
in Hor so the number of connected component of Chor is clearly the
index of the subgroup Mon of Hor.

Definition 3.4. Let Hor be the group defined above, and let P be
a singularity of the surface Shor

b . We denote by δP the element in
Hor which is 1 on the factor corresponding to P , and zero everywhere
else. If P is a simple pole, then δP = 0. It is an element of order
hP = |deg(P ) + 1|.

The goal of the next section is to prove the following two proposi-
tions, which give a collection of elements that are in Mon.

Proposition 3.5. Let Shor
b be a framed genus zero translation surface.

Let P,Q be a pair of singularities of Shor
b . We have

τP,Q := deg(Q)δP + deg(P )δQ ∈ Mon.

Note that τP,Q = (deg(P ) + deg(Q) + 1)(δP + δQ).

Proposition 3.6. Let Shor
b be a framed translation surface of genus g ≥

1, such that the underlying translation surface is not in a hyperelliptic
connected component, or in a stratum of the kind H(−1,−1, n1, . . . , nr),
with ni > 0.

(1) Let P,Q be a pair of singularities of Shor
b . We assume that

neither P nor Q is the only pole of Shor
b .We have

τP,Q := deg(Q)δP + deg(P )δQ ∈ Mon.

(2) Let P be a singularity of Shor
b . We have

σP := 2δP ∈ Mon.

If the underlying translation surface is in a nonhyperelliptic connected
component of a stratum of the kind H(−1,−1, n1, . . . , nr), with ni > 0,
then the previous statement is still true if we assume that neither P
nor Q are poles.
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4. Some elementary moves

4.1. Connected sums. Let S, S ′ be translation surfaces. Let N ∈ S,
be a singularity of degree n ≥ 0 and let N ′ ∈ S ′ be a singularity of
degree n′ = −2−n < 0. We assume that N ′ has zero residue. A pointed
neighborhood V \{N ′} of N ′ is isometric to the complement of a metric
disk centered in 0, in the cone defined by the form z−2−n′

dz = zndz.
Hence, after scaling (shrinking) appropriately the surface S ′ so that this
metric disk is isometric (as a translation surface) to a neighborhood U
of N , we can glue together S\U and S ′\V along their boundaries to get
a translation surface. This surgery is a flat version of the topological
connected sum of two surfaces. If n ≤ −2, n′ ≥ 0, the construction
is the same by reversing the roles of S, S ′. If n = −1, then n′ = −1,
we must assume that the two simple poles have opposite residues, we
obtain two half infinite cylinders with isometric waist curves. Cutting
and pasting along such waist curves gives the required surface.

We are interested in some particular cases for S ′, where it generalizes
the two surgeries introduced by Kontsevich and Zorich in [8], breaking
up a singularity and bubbling a handle.

If S ′ is a sphere with three singularities, i.e. S ′ ∈ H(−n− 2, n1, n2),
the above construction, when possible, replaces the singularity of degree
n by a pair of singularities of degree n1, n2 with n = n1 + n2.

• If n ≥ 0 and n1, n2 ≥ 0, the construction is always possible and
is precisely “breaking up a singularity” (see [8]).

• If n ≤ −1, the construction is always possible, and breaks up
the pole of degree n into a pair of singularities of degree n1 and
n2.

• If n ≥ 0 and either n1 or n2 is negative. Say n1 < 0 and n2 ≥ 0.
The above construction is not possible since, S ′ is a sphere with
two poles (of respective degree −n− 2 and n1) and a zero, and
in the case, the pole of degree −n − 2 would have zero residue
which would contradict Lemma 2.5.

If S ′ is a torus in H(−n−2, n+2). The surgery, adds a handle to the
surface S, and the singularity of degree n is replaced by a singularity
of degree n+ 2.

• For n ≥ 0, the construction is always possible, and if we choose
S ′ that contains a cylinder, this is precisely the surgery “bub-
bling a handle” (see [8]).

• For n = −3 or n = −1, H(−n − 2, n + 2) = H(−1, 1) = ∅, so
the construction does not make sense.
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• If n ≤ −4 or n = −2, the construction works well as soon as
the pole of degree n has zero residue.

Remark 4.1. When n′ < 0 and N ′ has nonzero residue, the above con-
struction is not possible since the boundary of a pointed neighborhood
of N ′ is never isometric to the boundary of a neighborhood of N . How-
ever, once a proper rescaling (shrinking) of the surface S ′ is done, it is
possible to perform a surgery on S that creates a geodesic boundary
component (“hole”) adjacent to the singularity N , so that the boundary
of a neighborhood of N becomes isometric to the boundary of a neigh-
borhood of N ′, making the construction doable, see Section 4.3. Note
that if S has no poles, then due to Stokes theorem, this necessarily
creates on S at least one other boundary component. This idea has
been continued in [1].

4.2. A realization of τP,Q, local case. Consider a translation surface
Shor with labeled horizontal separatrices. Let P and Q be two singular-
ities of degree p and q respectively. Assume that P,Q are obtained after
the surgery “breaking up a singularity” above, with either p, q ≥ 0, or
p+ q ≤ −2, in the zero residue case. By construction, the singularities
P,Q are on a metric disc whose boundary is a covering of Euclidean
circle. Cutting the surface along the circle and rotating the disc by an
angle θ, one gets a family of surfaces (Sθ). For θ = 2π(p+ q + 1), one
has Sθ = S. Keeping track of the marked horizontal separatrices, we
see at the end that the marked horizontal separatrices for P,Q have
changed by an angle 2π(p + q + 1), and the horizontal separatrices of
the other singularities have not changed.

Now assume that Shor
b is in the same connected component as a

translation surface Shor as above. Then, conjugating the above trans-
formation with a path joining Shor

b to Shor gives the element (p + q +
1)(δP + δQ) = qδP + pδQ = τP,Q in Mon.

4.3. A realization of τP,Q, nonlocal case. The above transformation
fails if p+ q ≥ 0 and either p or q is negative.

Here we describe a (non local) surgery that produces the same ef-
fect on the set of separatrices. We must first describe a way to do a
connected sum with a surface in H(p, q,−2 − p − q). The idea is to
make a “hole” (i.e. a geodesic boundary component) adjacent to the
singularity of degree p + q. The transformation is then obtained by
continuously rotating the hole by an angle 2π(p+ q + 1).

We start from a surface S0 in the stratum obtained by collapsing
P and Q. We assume that this is not a stratum of holomorphic dif-
ferentials. We can assume that S0 does not have any vertical saddle
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connection. Then, it is obtained by the infinite zippered rectangle con-
struction. We refer to [3], Section 3.3 for a precise construction, and
present on an example here (see Figure 4). Note that in this figure, the
parameters z1, . . . , z4 have positive real part and may take any value
satisfying this condition.

l1
•

z1• z2

◦
l2 l3

◦

z3
◦ z4

•
l4

l1
•

z2 ◦

z3

◦

l2 l3
◦

z4 • z1
•

l4

l

Figure 4. Infinite zippered rectangle representation of
a surface in H(−2,−2, 2, 2).

We choose a vertical separatrix l adjacent to a singularity of degree
p+ q (the dashed line in the above picture). Then, insert an horizontal
saddle connection as in Figure 5. This creates a hole on the surface
orthogonal to the direction l. This resulting surface, for a suitable
rescaling and a parameter h small enough, can be glued as in Section 4.1
to a flat sphere S1 in H(p, q,−2 − p − q), where the pole of degree
−2− p− q has residue −h.

Now, it is easy to see that rotating the segment h by an angle π, and
after a suitable cut and paste, one obtains the surface with a hole that
would be obtained from the separatrix l′ obtained after rotating l by π.

Repeating this operation until the separatrix l rotates by the angle
(p + q + 1)2π we get a continuous family S0,θ, that we glue as in Sec-
tion 4.1 to the surface rθ.S1. For θ = (p+q+1)2π, we have rθ.S1 = S1,
but the surface S0,θ is a priori different from S0,0. However, presented
with the infinite zippered rectangle construction, it has same combina-
torics with different parameters z1, . . . , z4. The set of such parameters
being connected, we continuously connect S0,θ to S0,0, keeping h un-
changed.

Hence, we get a closed path in the moduli space of meromorphic dif-
ferentials. The corresponding transformation on the marked horizontal
separatrix is τP,Q.
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l1
•

z1•h• z2

◦
l2 l3

◦

z3
◦ z4

•
l4

l1
•

z2 ◦

z3

◦

l2 l3
◦

z4 • z1
•

l4

Figure 5. Same surface as before, after creating a hole.

4.4. A realization of σP . As in Section 4.2, let P be a singularity
of degree n 6= ±1, obtained after bubbling a handle as above, i.e.
we started from a singularity P ′ of degree n − 2 (with zero residue if
n < 0), and attached a torus in H(−n, n). A metric circle C around P ′

is preserved by the construction. Now we cut S along C and rotate the
disc by an angle θ, one gets a family of surfaces (Sθ). For θ = 2π(|n−
2 + 1|), Sθ = S. Keeping track of the marked horizontal separatrices,
we see that the marked horizontal separatrix for P have changed by an
angle ±2π(n−1), hence ±4π, while all the other horizontal separatrices
are unchanged. Similarly, if Shor

b is in the same connected component
as a surface were the singularity P is obtained after the bubbling a
handle, one gets the element 2δP = σP of Hor.

4.5. Existence of the elementary moves. The goal of this section
is to prove Proposition 3.5 and Proposition 3.6. We first give general
facts.

In order to prove these two propositions, we would like to check that
the transformation given in Sections 4.2, 4.3 and 4.4 can be realized.
Unfortunately, this is true only for “most” cases as we will see. Hence,
when it is not the case, we need to produce the maps τP,Q or σP by
other means.

Denote by H = H(p, q, n1, . . . , nr) the ambient stratum. There are
two reasons for which τP,Q cannot be obtained in this way. First, a
“stratum” reason: the construction given in Sections 4.2 and 4.3 start-
ing from a surface in H0 = H(p + q, n1, . . . , nr) cannot be realized,
for instance because one cannot fulfill the condition on the residue, or
because the stratum H0 is empty. The other reason is a “connected
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component” reason: the above constructions starting from H0 are pos-
sible, but we never fall into the suitable connected component of H.

We first review the cases when these transformations can be realized
in the stratum. The transformation τP,Q given in Sections 4.2 and 4.3
can be realized, for a surface in H if and only if H0 is nonempty and
one of the following condition is satisfied.

• if p and q are positive.
• if p + q ≥ 0 and p < 0 and the stratum H(p + q, n1, . . . , nr) is

not a stratum of holomorphic differentials, i.e. p+ q, n1 . . . , nr

are not all positive (the case q < 0 is symmetric).
• if p + q < −1, and if we can find a surface in the stratum
H(p + q, n1, . . . , nr) with the singularity of degree p + q with
zero residue.

Note that when p+ q = −1, τP,Q is trivial, so there is nothing to prove.
Also, if p+ q 6= −1, we see that H0 is necessarily nonempty (of course,
we assume that H is nonempty).

Similarly, the transformation given in Section 4.4 that realizes σP can
be performed in the stratum if and only if all the following conditions
are satisfied:

• p /∈ {−1, 0, 1}.
• The stratum obtained by replacing p to p−2 is nonempty and, if
p < 0 it is possible to find there a flat surface with a singularity
of degree p− 2 with zero residue.

Proof of Proposition 3.5. We define the element ρ =
∑

P δP , where the
sum is taken on all singularities that are not simple poles. Observe
that rotating the surface by 2π and keeping track of the horizontal
separatrices gives the element ρ which is therefore in Mon.
The case with three singularities is special. Here H = H(p, q, r), we
have (r+1)δR = 0 and since g = 0 we also have, r+1 = −1−p− q, so

(r + 1)ρ = −(r + 1)(δP + δQ) = (p+ q + 1)(δP + δQ) = τP,Q ∈ Mon

In the general case, the stratum is connected, so the conditions above
are sufficient. According to Proposition 2.5, τP,Q is directly given by
the constructions except in the following cases:

• p + q ≥ 0 and p < 0 and the stratum H(p + q, n1, . . . , nr) is a
stratum of holomorphic differentials. This case does not appear
since p+ q +

∑

i ni = −2.
• p + q < −1, the stratum has four singularities, and a pole

which is neither P nor Q. It means that we cannot find on the
base stratum a singularity of degree p + q with zero residue.
Denote respectively by R,N the two other singularities, and
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respectively by r, n their degree. Without loss of generality, we
can assume that r < 0. We have n + r = −2 − (p + q) ≥ 0 so
τR,N ∈ Mon. As before, the element ρ = δP + δQ + δR + δN
is in Mon. Then, the condition p + q + r + n = −2 implies
τR,N − (n+ r + 1)ρ = −τP,Q, so τP,Q ∈ Mon.

• p+q < −1, and the stratum is of the form H(p, q, r1, . . . , rk,−1)
with k ≥ 1 and r1, . . . , rk > 0. Denote by S the simple pole, and
by R1, . . . , Rk the singularities of degree respectively r1, . . . , rk.
If p, q 6= −1 then τP,S, τQ,S ∈ Mon and τP,Q = −qτP,S−pτQ,S. If
p = q = −1, τP,Q is trivial, so there is nothing to do. If p = −1
and q 6= −1, we see that τP,Q = −δQ = −ρ −

∑

k τS,Rk
∈ Mon

since all the τS,Rk
are in Mon.

�

Before proving Proposition 3.6, we state the following lemma.

Lemma 4.2. Assume that p 6= q and that τP,Q is realized by the con-
structions above. Then the ambient surface S is not in a hyperelliptic
component.

Proof. In the local case, it is easy to see that if S = S0 ⊕ S1 is in the
hyperelliptic component, then the hyperelliptic involution induces an
involution on S0 and S1. But S1 ∈ H(−p− q − 2, p, q), which is not a
hyperelliptic component.

In the nonlocal case, we see that the length of saddle connection
corresponding to the small hole is unique (no other saddle connection
has the same length), so the saddle connection is globally preserved.
Hence if S is in a hyperelliptic connected component, it also induces
an involution on the two pieces of surfaces, which is not possible. �

Proof of Proposition 3.6. The case of strata of the form H(−1,−1, n1, . . . , nr),
with ni > 0 will follow the same steps as the general case, with some
simplification. In the proof, we will refer to this case as the Two Simple
Poles case.

We assume first that the genus is at least 2. We first look at the
element τP,Q. Denote by H(p, q, n1, . . . , nr) the ambient stratum. As
before, the cases where the transformation realizing τP,Q is not directly
possible in the stratum are the following:

• p + q ≥ 0 and p < 0 and the stratum H(p + q, n1, . . . , nr) is a
stratum of holomorphic differentials. Since we suppose that P
is not the only pole, this case does not appear.

• p+q < −1, and the stratum is of the form H(p, q, r1, . . . , rk,−1)
with ri > 0. This case does not append in the Two Simple Poles
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case. Otherwise we construct τP,Q as in the proof of the previous
proposition.

Hence we can assume that we can break singularity of order p + q
from a surface in H(p + q, n1, . . . , nr) into a pair on singularities of
order p and q. Observe that breaking up a singularity preserves the
parity of the spin structure when it is well defined. From Lemma 4.2,
if p 6= q, we are not in the hyperelliptic connected component. When
p = q, and the stratum contains a hyperelliptic connected component,
the case is easy. Finally, τP,Q ∈ Mon in each case.

Now we look at the element σP . Denote by H = H(p, n1, . . . , nr)
the ambient stratum with deg(P ) = p /∈ {−1, 0, 1}. We only need to
find in each nonhyperelliptic component of H a surface obtained after
bubbling a handle on a surface S0 in H′ = H(p − 2, n1, . . . , nr), with
the condition that, if p < 0, the residue of the pole of degree p − 2 is
zero. Since the genus is at least two, the only case when we cannot find
S0 is when n1 = −1 and ni > 0 for all i ≥ 2. In this case, σP = 2τP,N1

.
So, from now on, we can assume that the construction is possible. For
a surface S0 in H′ and a surface S1 ∈ H(−p, p), denote by S0 ⊕ S1 the
surface in H obtained after bubbling on S0 the handle S1. Observe
also that if S0 ⊕ S1 is in a hyperelliptic connected component, then
necessarily S0 and S1 are in hyperelliptic connected components.

Assume that p is odd, then the stratum H has only one nonhyper-
elliptic connected component. If S = S0 ⊕ S1, the surface S1 is in
H(−p, p), which does not contain a hyperelliptic component. Hence S
is never in a hyperelliptic component.

Assume that p is even and positive. If p ≥ 6, S1 ∈ H(−m,m)
which has a nonhyperelliptic component of even and odd spin struc-
ture. Hence, for any choice of S0, we can obtain nonhyperelliptic com-
ponents with even and odd spin structure. If p = 4, S1 ∈ H(−4, 4)
which has two component: a nonhyperelliptic one, with has even spin
structure (the rotation number is one), and the hyperelliptic one, with
odd spin structure (the rotation number is two). If there exists in H′

a nonhyperelliptic component, we use it and we obtain S in the re-
quired components of H. Otherwise, H′ = H(2,−2) or H(2,−1,−1),
so H = H(4,−2) or H = H(4,−1,−1), which has only one nonhyper-
elliptic component. If p = 2 then H′ = H(0, n1, . . . , nr) is a stratum
with no hyperelliptic connected component, hence S cannot be in a
hyperelliptic component, and the parity of its spin structure is given
by that of S0, which can be odd or even.

The case p even and negative is analogous and left to the reader.
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Now we assume that the genus is one. In the Two Simple Pole case,
the stratum is either H(−1,−1, 2) or H(−1,−1, 1, 1), is connected, and
the case is easy.
As before, the cases when the stratum cannot be obtained after break-
ing up a singularity of degree p + q into a pair of singularities of de-
gree p, q are easy. Now, we look at connected components. Let Cd be
the connected component of H(p, q, n1, . . . , nr) corresponding to the
rotation number d (recall that by definition, d is a positive number
that divides p, q, n1, . . . , nr). Then, clearly, starting from a surface
in H(p + q, n1, . . . , nr) with the same rotation number d, and break-
ing up the zero of degree p + q into singularities of degree p, q gives
the required surface. This is possible as soon as the component in
H(p + q, n1, . . . , nr) with rotation number d exists. Hence the only
problem is when H(p + q, n1, . . . , nr) = H(−n, n) and d = n. In this
case, H(p, q, n1, . . . , nr) is of the form H(kn, (1 − k)n,−n) (for some
k > 1) or H(kn,−(1 + k)n, n) (for some k > 0). We postpone the
study of these cases to the end of the proof.

Now we look for the element σP . It is enough to find a surface
obtained after bubbling a handle. It is possible except in the following
cases:

a) the stratum is of the kind H(p, q, n), with deg(P ) = p, and
p, q < 0.

b) the stratum is of the kind H(±n, k1n, . . . , krn) and deg(P ) =
±n and we are in the connected component corresponding to
rotation number n. Indeed, the rotation number of a surface
S = S0 ⊕ S1, with S1 ∈ H(−n, n), is the same as the one of S1,
which can be any divisor of m, except n.

We define as in the proof of Proposition 3.5 the element ρ =
∑

P δP ,
which is always an element of Mon.
We look at Case a). The stratum is H(p, q, r), with deg(P ) = p, and
p, q < 0. Denote by Q,R the other singularities. First observe that
σR ∈ Mon. Also, we have σR + σP + σQ = 2ρ ∈ Mon so σP ∈ Mon if
and only if σQ ∈ Mon. Assume that τP,R ∈ Mon, then:

(r+p−1)ρ−τP,R+σR = (p−1)δP+(−q−1)δQ+(r+1)δR = −σP ∈ Mon.

Now assume that τP,R /∈ Mon. From the above study, this implies that
p = (−1 + k)q and r = −kq, for some k > 1, but then, τQ,R ∈ Mon, so
σQ ∈ Mon by the same computation as previously. Hence, σP ∈ Mon.

Now we look at Case b). The stratum is H(±n, k1n, . . . , krn), and
deg(P ) = ±n. In this case, as before, we produce σP as a combination
of “τ ” elements. If there is a singularity Q of degree − deg(P ), then
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observe that τP,Q ∈ Mon, hence σP = (1 − deg(P ))τP,Q ∈ Mon. If
there are least two other singularities P ′, P ′′ of degree deg(P ), then we
have τP,P ′ + τP,P ′′ − τP ′,P ′′ = σP ∈ Mon. So we can assume that there
are at most two singularities of degree deg(P ) and no singularities of
degree − deg(P ).

If there are two singularities P, P ′ of degree deg(P ). Observe that
τP,Q ∈ Mon for each Q 6= P . Indeed from the previous study, this is
false only in H(n, n,−2n) and in H(−n,−n, 2n). But in these cases,
the connected component with rotation number n is precisely the hy-
perelliptic connected component. Also, we have σQ ∈ Mon. This
implies

∑

Q 6=P,P ′

(2τP,Q − deg(P )σQ) = 2

(

∑

Q 6=P,P ′

deg(Q)

)

σP

= −4pδP = 4δP = 2σP ∈ Mon.

Hence if deg(P ) is even, σP ∈ Mon. If deg(P ) is odd, we have

σP = ρ+ τP,P ′ +
∑

Q 6=P,P ′

(

τP,Q −
deg(P ) + 1

2
σQ

)

∈ Mon.

If P is the only singularity of degree deg(P ), we have

σP =
∑

Q 6=P

(2τP,Q − deg(P )σQ) ∈ Mon.

Now, we come back to a stratum of the kind H(kn, (1 − k)n,−n)
(for some k > 1), and we look at the component of rotation number n.
We want to produce τP,Q, where deg(P ) = kn and deg(Q) = (1− k)n.
Note if k = 2 we are in the hyperelliptic connected component of
H(2n,−n,−n). Denote by R the other singularity. We have

(1) if n is even, σP = 2δP ∈ Mon, hence δP ∈ Mon. Similarly,
δQ ∈ Mon, so τP,Q ∈ Mon.

(2) if n is odd τP,Q = nρ− n+1
2
σR ∈ Mon.

The case with a stratum of the kind H(kn,−(1 + k)n, n) is similar.
This concludes the proof. �

5. Positive genus

5.1. A topological invariant. Here, we describe a topological invari-
ant for connected components of Hhor, in the following cases:

• there are no simple poles, and there are singularities of odd
degree.
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• there are exactly two poles that are simple, and some odd sin-
gularities of positive degree.

We first assume that there are no simple poles. The invariant is in-
spired by the well known parity of spin structure for translation surfaces
with even degree singularities ([8]). See also [2].

For a smooth closed curve γ in S that does not pass through any
singularity, define ind(γ) to be the index of the Gauss map defined by
γ′. Choose (αi, βi)i∈{1,...,g} a collection of smooth simple closed curves
representing a sympletic basis for the homology of S, and define

φ(α, β) =

g
∑

i=1

(ind(αi) + 1)(ind(βi) + 1) mod 2.

When S has no odd degree singularities, φ(α, β) does not depend on
the choices of (α, β) and is the parity of the spin structure of S (see
[3, 8]).

When there are odd degree singularities, φ(α, β) clearly depends on
the choice of (α, β): indeed, if we continuously deform an element αi

or βi until we “cross an odd singularity”, its index changes by a odd
value.

Now we choose once for all an ordered pairing of the set of odd
degree singularities, i.e. we denote by (P−

1 , P+
1 ), . . . , (P−

s , P+
s ) these

singularities. For a simple curve γ joining P−
j to P+

j , we define ind(γ)
to be the index (mod 2) of the Gauss map defined by a simple smooth
path γ̃, whose image is in a small neighborhood of the image of γ, and
such that:

• γ̃ is tangent in its starting point to the fixed horizontal separa-
trix of P−

j

• γ̃ is tangent in its ending point to the fixed horizontal separatrix
of P+

j , rotated by π.

Since P+
j , P−

j are both of odd degree, their corresponding conical angles
are an even multiple of 2π, and hence ind(γ) does not depend on the
choice of γ̃.

Now, for a fixed choice of (αi, βi)i, let γ1, . . . , γs be a collection of
simple curves, with no pairwise intersection, with γj joining P−

j to P+
j ,

and each γj do not intersect the (αi, βi)i. Then, we define

Sp(α, β, γ) = φ(α, β) +
∑

j

ind(γj) mod 2.

It is obvious that Sp(α, β, γ) can take two values, for different choices
of horizontal separatrices. We will prove that Sp(α, β, γ) does not
depend on the choice of α, β, γ (only on the choice of the oriented
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pairing of the odd degree singularities). Hence, Sp defines a topological
invariant for the connected components of Hhor.

Lemma 5.1. Sp(α, β, γ) does not depend on the choice of γ.

Proof. Let γ, γ′ be two collections of simple curves as above. Up to
making a small perturbation of γ and γ′, we can assume that the num-
ber of intersection points of any two curves in this collection is finite.
The surface D = S\∪i (αi∪βi) is a topological disc with g−1 holes. By
definition γ1 and γ′

1 have the same end points. If they do not intersect
in their interior, then ind(γ1) = ind(γ′

1) + k, where k is the number
of odd singularity of a component of D\(γ1 ∪ γ′

1). In this case, the
number of intersection points (mod 2) between γ′

1 and the (γj)j 6=1 is k.
If γ1 and γ′

1 have N > 0 intersection points we find γ′′
1 with the same

endpoints as γ1, such that γ1 and γ′′
1 have no interior intersection point

and such that γ′′
1 and γ′

1 have N ′ < N intersection point and we iterate
the procedure.

In particular replacing γ1 by γ′
1 preserves the value:

∑

i

ind(γi) +N(γ) mod 2.

where N(γ) is the number of self intersection of the family γ.
Hence, successively replacing γi by γ′

i, we obtain:
∑

i

ind(γi) =
∑

i

ind(γ′
i) mod 2.

�

Lemma 5.2. Sp(α, β, γ) = Sp(α, β) does not depend on the choice of
the symplectic basis α, β.

Proof. Let (α, β, γ) and (α′, β ′, γ′) be two families of curves as above.
We first show that, there exists α′′, β ′′ homotopic to α, β, that do not
intersect γ′ and such that:

Sp(α, β, γ) = Sp(α′′, β ′′, γ′).

By the previous lemma, we can choose γ so that it does not intersect
γ′. Let γ′

1 ∈ γ′, and we assume that it intersects α, β. Consider the last
intersection point, i.e. x0 = γ′

1(t0), and α, β do not intersect (γ′
1(t))t>t0 .

We assume for instance that the intersection is with α1.
Now, we push α1 until it crosses the endpoint P+

1 . So, ind(α1) is
replaced by ind(α1)± deg(P+

1 ). But now, α1 intersects γ1. For ε small
enough, the ε-boundary of α1∪β1, once removed α1, β1 is a topological
annulus, hence, we can modify γ1 in that neighborhood to avoid α1 (see
Figure 6). This replaces ind(γ1) by ind(γ1)+ ind(β1)+1. In particular
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P+

1P−

1

α1

β1

γ′

1

γ1

α1

β1

γ′

1

γ1

Figure 6. Decreasing the number of intersection points.

Sp(α, β, γ) is not changed by this procedure, and the new family (α, β)
has one intersection point less with γ′.

Iterating the process, we eventually obtain α′′, β ′′ that do not inter-
sect γ′.

Now, we consider the canonical continuous map φ : S → S, where
S is the surface obtained by collapsing each curve γ′

i to a single point.
The map φ induces an homeomorphism from S\γ′ to its image.

For a simple closed curve c = φ(c) in X, that does not pass through
the image of a singularity, we define ind(c) = ind(c). The map θ(c) =
ind(c)+1 mod 2 defines a quadratic form on H1(S,Z/2Z) (see [7, 8]).
Hence its Arf invariant is
∑

i

(ind(α′′
i )+1)(ind(β ′′

i )+1) =
∑

i

(ind(α′
i)+1)(ind(β ′

i)+1) mod 2.

Hence Sp(α′, β ′, γ′) = Sp(α′′, β ′′, γ′) = Sp(α, β, γ). �

When the stratum is of the form H(−1,−1, n1, . . . , nr), with positive
integers n1, . . . , nr, we define the invariant after first cutting the two
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infinite cylinder, and gluing them together to make a finite cylinder,
on a surface in the stratum H(n1, . . . , nr).

Remark 5.3. The invariant Sp obtained depends on the choice of the
pairing {(P−

1 , P+
1 ), (P−

2 , P+
2 ), . . . , (P−

s , P+
s )} of the odd degree singu-

larities. We can ask how Sp(S) changes when we replace the pairing
by another one. It is enough to study the case when we interchange
P−
1 with P+

1 and when we interchange P−
1 with P−

2 .

(1) For the first case (P−
1 with P+

1 ). Sp(S) is clearly replaced by
Sp(S) + 1.

(2) For the second case, we replace again Sp(S) by Sp(S) + 1 . In-
deed, consider as before two nonintersecting curves γ1, γ2 joining
P−
1 to P+

1 and P−
2 to P+

2 respectively. Then, deform them un-
til γ1, γ2 are tangent on a unique intersection point. Then, we
obtain a new pair γ′

1, γ
′
2 joining P−

1 to P+
2 and P−

2 to P+
1 such

that Ind(γ1) + Ind(γ2) = Ind(γ′
1) + Ind(γ′

2). But γ′
1, γ

′
2 inter-

sect (transversally) on one point. From the proof of Lemma 5.2,
modifying γ′

1, γ
′
2 so that they don’t intersect will change the in-

variant by adding 1.

In particular, the invariant Sp can be seen as a function from the set
of pairings of odd degree singularities to Z/2Z, satisfying the above
conditions.

5.2. Proof of Theorem 1.1. We assume first that there are only
even degree singularities (or even degree zeroes, and a pair of simple
poles.) We also assume that the underlying connected component is
not a hyperelliptic one.

Let P be a singularity of the base surface Sp. From Proposition 3.6,
the element σP = 2δP is in Mon. Since the singularity has even degree,
δP ∈ Mon. Hence, Mon = Hor.

Now we assume that there are odd degree singularities. First observe
that if there is a simple pole P (except the case of two simple poles
and no other poles), then for any Q 6= P , τP,Q = δQ ∈ Mon. Hence
Mon = Hor.

So, we can assume that there are no simple poles. As before, for each
singularity P of even degree, we use σP to see that δP ∈ Mon. Now,
fix a frame, and consider P1, . . . , P2r the singularities of odd degree.
Then, for i from 1 to 2r − 1 successively, we use σPi

and τPi,Pi+1
to

obtain an element of the form δPi
+ kiδPi+1 ∈ Mon. For, P2r, we can

only get half of possible horizontal separatrices, by using σP2r
. Hence,

we see that Mon is a subgroup of Hor of index at most 2. Observe
that if there is only one pole Q, for a given singularity P , the element
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σQ,P is not necessarily possible. Hence, we first fix the separatrix of Q
by using ρ =

∑

R δR, the element in Mon that corresponds to rotating
the surface by 2π, and continue as above.

The case with two simple poles is similar and left to the reader.

5.3. Hyperelliptic connected component. From [3], a hyperellip-
tic connected component of the moduli space of meromorphic differen-
tials is a necessarily a component of a strata of the following kind:

• H(n, n, p, p)
• H(2n, p, p)
• H(n, n, 2p)
• H(2n, 2p)

for some, n > 0 and p < 0.
Let Chyp be a hyperelliptic connected component of the moduli space

of translation surface with poles. Let Chor
hyp be the set of framed trans-

lation surface whose underlying surface are in Chyp. We assume that
there are two (marked) zeroes N1, N2 of the same degree. Denote by i
the hyperelliptic involution. Since i(N1) = N2, the image by i of the
marked horizontal separatrix l1 of N1 is a horizontal separatrix i(l1) of
N2. The angle between the marked horizontal separatrix l2 of N2 and
i(L1) is an odd multiple of π and is between π and (2n + 1)π and is
invariant by continuous deformations. Hence, it is an invariant Φzeroes

of connected components, which can clearly get n+1 values. Similarly,
if there are two poles of the same degree, there is an analogous invari-
ant Φpoles for the horizontal separatrices associated to the pair of poles,
with |p+ 1| values.

We have the following lemma:

Lemma 5.4. Let Chor
hyp be a hyperelliptic connected component with

framed horizontal separatrices. Let Shor
b ∈ Chor

hyp. Let P ∈ Shor
b be a

(marked) singularity.

• If there exists another singularity P ′ of the same degree, then
τP,P ′ ∈ Mon.

• Otherwise, σP ∈ Mon.

Proof. The proof is easy and left to the reader. �

This lemma, associated to the definition of the invariant gives the
following theorem.

Theorem 5.5. Let Chor
hyp be a hyperelliptic connected component with

marked horizontal separatrices.
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• If Chor
hyp ⊂ H(n, n, p, p), for some n > 0 and p < −1, then Chor

hyp

has (n + 1)|p + 1| connected components distinguished by the
maps Φzeroes and Φpoles.

• If Chor
hyp ⊂ H(n, n, 2p), for some n > 0 and p < 0, or Chor

hyp ⊂

H(n, n,−1,−1) then Chor
hyp has (n+1) connected components dis-

tinguished by the map Φzeroes.
• If Chor

hyp ⊂ H(2n, p, p), for some n > 0 and p < −1, then Chor
hyp has

|p+ 1| connected components distinguished by the maps Φpoles.
• If Chor

hyp ⊂ H(2n, 2p) for some n > 0 and p < −1 or Chor
hyp ⊂

H(2n,−1,−1), then Chor
hyp is connected.

Proof. The proof is easy and left to the reader. �

6. Zero genus

Let H = H(n1, . . . nr) be a stratum of genus zero translation sur-
faces. In this section, we count the number of connected components
of Hhor(n1, . . . , nr) and define a topological invariant distinguishing
these connected components.

We assume that there are no simple poles. Then, for i 6= j, we denote
by Nij the (positive) integer:

Nij = gcd
(

{nk}k/∈{i,j} ∪ {ni + 1, nj + 1}
)

.

Let S ∈ Hhor(n1, . . . , nr), and denote P1, . . . , Pr the (marked) sin-
gularities of degree n1, . . . , nr respectively. For any i < j, let γij be a
path joining Pi to Pj according to the marked horizontal separatrices
(as in Section 5.1). Then ind(γij) is an integer and ind(γij) mod Nij

does not depend on the choice of γij (only on the choice of marked
directions).

Now we define Φ(S) as:

Φ(S) = (ind(γij))i<j ∈
∏

i<j

Z/NijZ.

The map Φ is clearly a locally constant map, and hence, an invariant
of connected components of Hhor(n1, . . . , nr). Note that Φ depends im-
plicitly on the choice of the ordering of the singularities. Note that the
map Sp is also well defined if there are some odd degree singularities.

Theorem 6.1. Let H = H(n1, . . . nr) be stratum of genus zero trans-
lation surfaces.

• If there exists i0 ∈ {1, . . . , r} such that ni0 = −1, then Hhor is
connected.
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• If all ni are different from −1 and if there are at most two
odd degree singularities, then there are N =

∏

i<j Nij connected

components of Hhor, and two elements S1 and S2 of Hhor are
in the same connected component if and only if Φ(S1) = Φ(S2).

• Otherwise, there are 2N connected components of Hhor, and two
elements S1 and S2 of Hhor are in the same connected compo-
nent if and only if Φ(S1) = Φ(S2) and Sp(S1) = Sp(S2).

Note that the first part is obvious, since τPi0
,Q = δQ is in Mon. So,

from now, we assume that there are no simple poles.

Lemma 6.2. One has the following:

• If there are at most two odd degree singularities, the map Φ is
surjective.

• Otherwise, the map Φ× Sp is surjective.

Proof. Let i0 ∈ {1, . . . , r}. When we replace the marked horizontal
separatrix li0 corresponding to Pi0 by the one obtained by rotating li0
by 2π counterclockwise, it adds to Φ(S) the element ηi0 whose value is

• −1 in the factor Z/Ni0jZ for each j > i0.
• 1 in the factor Z/Nji0Z for each j < i0.
• 0 in the other factors.

Since the integers {Nij}i<j are pairwise relatively prime, the element ηi0
generates

∏

j 6=i0
Z/Ni0jZ. In particular, η1, . . . , ηr generates the group

∏

i<j Z/NijZ. So the map Φ is surjective.

When there are at least three odd degree singularities, N =
∏

i<j Nij

is odd. In particular, if choosing i so that ni is odd, and rotating li by
2π
∏

j 6=iNij does not change Φ(S), but changes Sp(S) by 1 =
∏

j 6=iNij

(mod 2), so the map Φ× Sp is surjective. �

Lemma 6.3. Let k ∈ {1, . . . , r}, for each i, j 6= k, with i 6= j the
following elements are in the group Mon.

• ni(ni + 1)δPk
,

• 2ninjδPk
.

Furthermore, the subgroup of Mon generated by these elements, seen
as a subgroup of Z/(nk+1)Z, is the subgroup generated by εk

∏

i 6=k Nki,
where εk = 2 if nk is odd and there are at least two other odd singular-
ities, and εk = 1 otherwise.

Proof. A direct computation shows that the element ni(ni + 1)δPk
is

given by (ni + 1)τPk,Pi
, and the element 2ninjδPk

is given by njτPk ,Pi
+

niτPk,Pj
− nkτPi,Pj

.
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The subgroup of Z/(nk+1)Z generated by these elements is < dk >,
where:

dk = gcd ({2ninj}i 6=j 6=k ∪ {ni(ni + 1)}i 6=k ∪ {nk + 1}) .

Let p > 2 be a prime number that divides dk, α = νp(dk) its p-adic
valuation. By definition of dk, p

α divides nk +1, and for each i 6= k, pα

divides ni or ni+1. It cannot divides always ni since (nk+1)+
∑

i 6=k ni =
−1. Also, if there are two indices i 6= j, with i, j 6= k such that pα does
not divide ni and nj , then pα does not divide 2ninj, which contradicts
pα|dk. Hence there is exactly one index i 6= k such that pα does not
divide ni, hence, divides ni + 1. So, pα|Nki.

Conversely, let p > 2 be a prime number and α = νp(εk
∏

i 6=k Nki).

Since the {Nki}i are pairwise relatively prime, there is an index i0 such
that pα|Nki0. Hence, we easily see that pα divides dk.

We have proven that νp(dk) = νp(εk
∏

i 6=k Nki) for p > 2. Now, we
prove the same for the case p = 2. If nk is even, then both dk and
εk
∏

i 6=k Nki are odd.
If nk is odd, and if there are at least three odd singularities. Denote

by i0, j0 6= k the indices of two odd degree singularities different from
Pk. We see that the 2-adic valuation of dk is 1 by considering 2ni0nj0,
and the 2-adic valuation of εk

∏

i 6=k Nki is also 1 since εk = 2 and all
the Nki are odd.

If nk is odd and there are exactly two odd degree singularities Pk, Pi0

on the surface. Let α > 0 such that 2α|dk. Then 2α divides nk +1, and
ni(ni + 1) for each i 6= k. In particular, it divides (ni0 + 1) (since ni0

is odd), and for each i /∈ {k, i0}, it divides ni (since ni + 1 is odd). So,
2α|Nki0.

Conversely, let α > 0 such that 2α|
∏

i 6=k Nki. The integer Nki is

even if and only if i = i0. Hence, 2α|Nki0 and 2α divides each ni, for
i /∈ {k, i0}. So, it divides ninj , for each i, j 6= k with i 6= j. Finally,
2α|dk.

Hence, we have proven that dk = εk
∏

i 6=k Nki. �

Proof of Theorem 6.1. We first assume that there are at most two odd
degree singularities, so that for each i, εi = 1 in the above lemma. In
order to simplify notation, we set Nii = 1 for each i.

From Lemma 6.2, Mon has at most

N =

∏

i∈{1,...,r} |ni + 1|
∏

1≤i<j≤r Nij

.

elements. The theorem will follow if we prove that Mon has exactly
this number of elements.
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Since for each i, j, Nij |(ni+1), there is a canonical map Z/(ni + 1) →
Z/NijZ, so it induces a canonical map:

Ψ :

∏r
i=1 Z/(ni + 1)Z →

∏

i,j∈{1,...,r} Z/NijZ

(xi)i 7→ (xi mod Nij)i,j
.

Since {Nij}i,j are relatively prime, by the Chinese Remainder Lemma,
the kernel of Ψ is

∏

i uiZ/(ni + 1)Z, where ui =
∏

j 6=iNij and is a
subgroup of Mon by the previous lemma.

For a pair (i0, j0) of distinct indices, the image by Ψ of the element
−τPi0

,Pj0
is the element Ei0j0 +Ej0i0 , where Eij is the element which is

1 for the indices (i, j) and 0 everywhere else.
In particular, the image Φ(Mon) contains at least

∏

i<j Nij elements.
So Mon contains at least, so exactly

∏r
i=1 |ni + 1|
∏r

i=1 ui

∏

1≤i<j≤r

Nij =

∏r
i=1 |ni + 1|

∏

1≤i<j≤r Nij

elements.
Now we assume that there are at least three odd degree singularities.

In order to simplify the notation, we define, for i 6= 0 Ni0 = N0i = εi,
where, εi = 2 if ni is odd and εi = 1 otherwise. From Lemma 6.2, Mon
has at most

N ′ =
1

2

∏r
i=1 |ni + 1|

∏

1≤i<j≤r Nij

elements. We proceed as before, but replace the map Ψ by the map Ψ̃

Ψ̃ :

∏r
i=1 Z/(ni + 1)Z →

∏r
i=1

∏r
j=0Z/NijZ

(xi)i 7→ (xi mod Nij)(i,j)∈{1,...,r}×{0,...,r}
.

Since all Nij are odd and pairwise relatively prime, we see as before
that the kernel is

∏

i uiZ/(ni+1)Z, where ui =
∏r

j=0Nij = εi
∏

j 6=iNij,
and is a subgroup of Mon by the previous lemma.

If i0 or j0 is even, the image by Ψ̃ of the element τPi0
,Pj0

is the element
Ei0j0 +Ej0i0 . If both i0 or j0 are odd, we get Ei0j0 +Ej0i0 +Ei00+Ej00.

Then Ψ̃(ni0 + nj0)σi0j0 = −2(Ei0j0 +Ej0i0). Since Ni0j0 is odd, there is

a multiple of σi0j0 whose image by Ψ̃ is Ei0j0 +Ej0i0. Finally, we obtain

that the image by Ψ̃ of Mon contains at least 2n−1
∏

i<j Nij elements,
where n is the number of odd degree singularities, and therefore, Mon
has at least, so exactly N ′ elements. �
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7. Partially marked surfaces

Coming back to the initial motivation of this paper. It is natural to
study the moduli space of surfaces where only a subset of the singular-
ities have a marked horizontal separatrix.

Let g ≥ 1. Let H(nα1

1 , . . . , nαr
r ) be a stratum of the moduli space

of genus g meromorphic differentials, and let C ⊂ H(nα1

1 , . . . , nαr
r )

be a nonhyperelliptic connected component. Let {nβ1

1 , . . . , nβr
r } ⊂

{nα1

1 , . . . , nαr
r }, and let Cpart be the corresponding moduli space of par-

tially framed surfaces.
The following result follows easily from Theorem 1.1.

Corollary 7.1. Assume that there are non-marked odd degree singu-
larities, then Cpart is connected. Otherwise, Cpart has the same number
of connected components as Chor.

Assume now that the genus is zero, and denote by {P1, . . . , Pr} the
singularities, with {P1, . . . , Ps}, s < r the marked ones. Now we define
Φpart(S) as:

Φpart(S) = (ind(γij))1≤i<j≤s ∈
∏

1≤i<j≤s

Z/NijZ.

i.e. we restrict the map Φ to the marked singularities.
The following Theorem is an easy corollary of Theorem 6.1.

Corollary 7.2. Let H = H(n1, . . . nr) be stratum of genus zero trans-
lation surfaces, such that Hhor is not connected.

• If there are some non-marked odd degree singularities, or if there
are at most two odd degree singularities, then two elements S1

and S2 of Hpart are in the same connected component if and
only if Φpart(S1) = Φpart(S2).

• Otherwise, two elements S1 and S2 of Hhor are in the same
connected component if and only if Φpart(S1) = Φpart(S2) and
Sp(S1) = Sp(S2).

Appendix A. More about connected sums

We look back at the construction described in Section 4.1. Let S, S ′

be translation surfaces, and let N ∈ S, be a singularity of degree n ≥ 0
and let N ′ ∈ S ′ be a singularity of degree n′ = −2 − n < 0 with zero
residue.

First, we observe once fixed the scaling of S ′, the neighborhood U
of N and the pointed neighborhood V of N ′, there remains a combi-
natorial choice for gluing together S\U and S ′\V . There are exactly
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n + 1 choices. If S, S ′ are translation surfaces with marked horizon-
tal separatrices, we can fix this choice by imposing that the separatrix
corresponding to N coincides with the separatrix corresponding to N ′

(rotated by π). Once fixed this combinatorial choice, other choices
involved in the construction (scaling, U , V ) gives a connected set of
surfaces.

One would like to glue S and S ′ along several pairs (Ni, N
′
i) ∈ S×S ′.

We assume that for each i the singularity Ni has degree ni > 0, and the
singularity N ′

i has degree −2 − ni < 0 with zero residue. It is natural
to glue successively along (N1, N

′
1) then (N2, N

′
2) and so on. However,

after the first step, the singularities belong to the same surface. Self
gluing construction is made analogously, but in general it is not possible
any more to shrink one side to make space. However, in this case,
shrinking sufficiently S ′ at first solves this issue (since all singularities
N ′

i have negative degree). As before, there is a combinatorial choice for
each pair which is fixed if the initial surfaces are with marked horizontal
separatrices, and two gluings with the same combinatorial choices give
surfaces in the same connected component.

Computing the Sp invariant of the new surface is easy. It is enough
to consider simple gluings and self-gluings.

(1) For simple gluing, there are two cases: either the two singulari-
ties are even, or they are odd. In the first case, the Sp invariant
of the new surface is clearly the sum of the Sp invariant of the
two surfaces. In the second case, following Remark 5.3 we first
choose a suitable pairing of odd degree singularities: we con-
sider pairings of the form {(P−

1 , P+
1 )} ∪ P with P+

1 = N for S
and {(P ′−

1 , P ′+
1 )}∪P ′ with P ′−

1 = N ′. We consider the following
pairing for the new surface

{(P−
1 , P ′+

1 )} ∪ P ∪ P ′.

Then, we easily see that, with these pairings, the Sp invariant
of the new surface is the sum of the Sp invariant of S and S ′.

(2) For self gluing, the new surface has genus one more than the
initial surface. We easily see that the Sp invariant does not
change for any pairing when glued singularities are of even or-
der, and for a pairing containing (N,N ′) = (P−

1 , P+
1 ) when the

glued singularities have odd order.
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