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QUOTIENTS AND HOPF IMAGES OF A SMASH COPRODUCT

JULIEN BICHON

Abstract. We describe the Hopf algebra quotients and Hopf images of the smash coproduct
of a group algebra by the algebra of functions on a finite group.

1. Introduction

The smash coproduct, associated to an action of a finite group on a discrete group, is one of
the most well-known constructions to produce non-commutative and non-cocommutative Hopf
algebras. The aim of this paper is to provide a description of the Hopf algebra quotients of such
a smash coproduct.

Let us first recall the construction. Let H y Γ be a finite group H acting by automorphisms
on a discrete group Γ. Then the smash coproduct Hopf algebra k[Γ]⋊kH (k denotes an arbitrary
field) is k[Γ] ⊗ kH as an algebra, where k[Γ] denotes the (convolution) group algebra of Γ and
kH is the algebra of k-valued functions of H, and the comultiplication is given by

∆(r#δh) =
∑

l∈H

r#δl ⊗ l−1.r#δl−1h =
∑

l∈H

r#δl−1 ⊗ l.r#δlh

for r ∈ Γ, h ∈ H (we denote by r#δh the element r ⊗ δh of k[Γ] ⋊ kH). The Hopf algebra
k[Γ]⋊ kH fits into an exact sequence of Hopf algebras (see [2])

k → kH → k[Γ]⋊ kH → k[Γ] → k

Now if L is Hopf algebra quotient of k[Γ]⋊ kH , some standard arguments show that L fits into
an exact sequence

k → kG → L → k[Γ] → k

where G ⊂ H is a subgroup and Γ is a quotient of Γ. Moreover, this exact sequence is cleft, so
the general theory of cleft extensions (see [2, 1, 13]) ensures that L is isomorphic to a general
bismash product kGτ#σk[Γ], involving complicated cohomological data, that are known to be
difficult to deal with in general (see [12] for an illustration of a situation where it is better to
forget about the whole structure of the bismash product).

Instead of a bismash product, we propose to use the notion of quotient datum to describe
the quotients of k[Γ] ⋊ kH : a quotient datum is a triple (G,N,Φ) where G is a subgroup of
H, N ⊳ Γ is a normal and G-stable subgroup of Γ, and Φ : N → (kG)× is a group morphism
satisfying some simple conditions. To a quotient datum (G,N,Φ) we associate a Hopf algebra
k[Γ/N ] ⋊Φ kG, which is a quotient of k[Γ] ⋊ kH , and show conversely that any Hopf algebra
quotient of k[Γ]⋊ kH is isomorphic to k[Γ/N ]⋊Φ kG for some quotient datum (G,N,Φ).

It seems that the notion is simple enough to allow concrete description of the quotients of
k[Γ] ⋊ kH , at least of course when the normal subgroup structure of Γ is not too complicated,
and we examine some examples to illustrate this.

The original motivation for this work came from the following problem.
First recall [6] that for a Hopf algebra representation π : A → End(V ) on a vector space

V , there exists a unique Hopf algebra L, called the Hopf image of π, that produces a minimal
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When A = k[Γ] is a group algebra, then L = k[Γ/Ker(π)], and hence the problem of computing
the Hopf image amounts to computing the kernel of the group representation, which of course
can be quite difficult. Techniques for computing Hopf images for several classes of Hopf algebras
were developed in [6].

Now recall [8, 4] that to a complex Hadamard matrix H ∈ MN (C) is associated a repre-
sentation πH : As(N) → MN (C) of Wang’s quantum permutation algebra As(N) [21] (the
universal cosemisimple Hopf algebra coacting on the diagonal algebra kN when k has character-
istic zero [9]), whose Hopf image is thought of as representing the quantum symmetry group of
the Hadamard matrix or of the corresponding subfactor (see [11]). It is in general very difficult
to compute the Hopf image of πH . The case H = FM ⊗Q FN of the tensor product of Fourier
matrices deformed by a matrix of coefficients Q ([10]) was studied in [7], and a factorization of
πH through a certain smash coproduct C[Γ]⋊CZM was found there, which was shown to be the
Hopf image under a genericity assumption on Q. However the general case remained unclear,
and after analysing the situation, it became clear that it was in fact not more difficult to try to
describe all the possible quotients of the crossed coproduct and only after that, try to identify
the Hopf image. From these considerations we get a method to compute the Hopf image of a
smash coproduct in general, described in Section 4, that enables us to make more precise some
of the results of [7] in special situations. In particular we show that if M = 2 and N is prime,
or N = 2 and M is prime, the genericity assumption in [7] can be weakened to the assumption
that one of the coefficients of the parameter matrix Q is not a root of unity.

The paper is organized as follows. In Section 2 we define quotient data and describe the
Hopf algebra quotients of the smash coproduct of a group algebra by the algebra of functions
on a finite group in terms of Hopf algebras associated to quotient data. In Section 3 we discuss
some examples. In Section 4, after having recalled the basic notions around Hopf images, we
provide a general method, based on the previous considerations, to compute Hopf images for
smash coproducts. The final Section 5 is devoted to examples of computations of Hopf images,
providing in particular cases refinements of some results of [7].

Notations and conventions. We work over an arbitrary field k. We assume that the
reader is familiar with the basic theory of Hopf algebras, see [15] for example. If A is a Hopf
algebra, as usual, ∆, ε and S stand respectively for the comultiplication, counit and antipode
of A. If Γ is a group, we denote by k[Γ] the (convolution) group algebra having its group-like
elements identified with the elements of Γ, and if H is a finite group, we denote by kH the Hopf
algebra of functions on H, i.e. kH = k[H]∗ as Hopf algebras, see e.g. Chapter 1 in [15].

Acknowledgements. This paper is a continuation of a long collaboration with Teodor
Banica on the topics of Section 5. I would like to thank him for many interesting discussions.

2. Quotient data

Let H y Γ be a finite group H acting by automorphisms on a discrete group Γ. Recall that
the smash coproduct Hopf algebra is k[Γ]⋊kH = k[Γ]⊗kH as an algebra, with comultiplication,
counit and antipode given by

∆(r#δh) =
∑

l∈H

r#δl ⊗ l−1.r#δl−1h =
∑

l∈H

r#δl−1 ⊗ l.r#δlh

ε(r#δh) = δh,1, S(r#δh) = h−1.r−1#δh−1

for r ∈ Γ, h ∈ H.
The precise definition of a quotient datum for H y Γ is as follows.
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Definition 2.1. Let H y Γ as above. A quotient datum for H y Γ is a triple (G,N,Φ) where

(1) G ⊂ H is a subgroup.

(2) N ⊳ Γ is a normal and G-stable subgroup of Γ.
(3) Φ : N → (kG)× is a group morphism such that

Φ(r)(lh) = Φ(l−1.r)(h)Φ(r)(l), Φ(r) = Φ(srs−1)

for any r ∈ N , s ∈ Γ, h, l ∈ G.

We denote by QD(H y Γ) the set of quotient data for H y Γ.

Example 2.2. If G ⊂ H is a subgroup, N ⊳ Γ is a normal and G-stable subgroup of Γ and

Φ : N → Ĝ = Hom(G, k×) is a group morphism such that Φ(r) = Φ(srs−1) and Φ(h.r) = Φ(r)
for any r ∈ N , s ∈ Γ, h ∈ G, then (G,N,Φ) ∈ QD(H y Γ).

See the end of the next section for an example of a quotient datum that is not of the type of
the previous example.

The proof of the following easy lemma, that we record for future use, is left to the reader.

Lemma 2.3. Let H y Γ as above and let (G,N,Φ) ∈ QD(H y Γ).

(1) For r, s ∈ Γ with rs ∈ N , we have sr ∈ N and Φ(rs) = Φ(sr).
(2) For h ∈ G and r ∈ N , we have Φ(r)(1) = 1 and Φ(h.r)(h) = Φ(r−1)(h−1).

We now associate a quotient Hopf algebra of k[Γ]⋊ kH to a quotient datum for H y Γ.

Proposition 2.4. Let H y Γ as above and let (G,N,Φ) ∈ QD(H y Γ). Choose a section

j : Γ/N → Γ of the canonical projection u : Γ → Γ/N , with ju(1) = 1. The following formulas

(u(r)#δh)(u(s)#δk) = u(rs)#δhδkΦ(ju(r)ju(s)ju(rs)
−1)

∆(u(r)#δh) =
∑

l∈G

(u(r)#δl−1)⊗ u(l.r)#δlhΦ(l.ju(r)ju(l.r)
−1)

S(u(r)#δh) = u(h−1.r−1)#Φ(ju(h−1.r−1)−1h−1.ju(r)−1)δh−1

together with the obvious unit and counit define a Hopf algebra structure on k[Γ/N ]⊗kG, which,
up to isomorphism, does not depend on the choice of j. We denote by k[Γ/N ]⋊Φk

G the resulting

Hopf algebra. Moreover the map

q : k[Γ]⋊ kH −→ k[Γ/N ]⋊Φ kG

r#δh 7−→ u(r)#Φ(rju(r)−1)δh|G

is a surjective Hopf algebra map.

Proof. The first thing to do is to check that the above multiplication, comultiplication and
antipode on k[Γ/N ] ⊗ kG are well-defined: this is easily done. The map q is clearly surjective,
so to check that the multiplication and comultiplication just defined on k[Γ/N ]⊗ kG are indeed
associative and co-associative, it is enough to check that they are preserved by q. For h, k ∈ H
and r, s ∈ Γ, we have

q(r#δh) · q(s#δk) = u(r)#δh|G
Φ(rju(r)−1) · u(s)#δk|GΦ(sju(s)

−1)

= u(rs)#(δhδk)|GΦ(rju(r)
−1)Φ(sju(s)−1)Φ(ju(r)ju(s)ju(rs)−1)

= u(rs)#(δhδk)|GΦ(sju(s)
−1)Φ(rju(s)ju(rs)−1)

= u(rs)#(δhδk)|GΦ(sju(s)
−1)Φ(ju(s)ju(rs)−1r)

= u(rs)#(δhδk)|GΦ(sju(rs)
−1r) = u(rs)#(δhδk)|GΦ(rsju(rs)

−1)

= q(r#δh · s#δk)

3



where we have used Lemma 2.3. Using Lemma 2.3 again , we have for r ∈ Γ and h ∈ G

(q ⊗ q)∆(r#δh) = q ⊗ q

(∑

l∈H

r#δl−1 ⊗ l.r#δlh

)

=
∑

l∈G

u(r)#δl−1Φ(rju(r)−1)⊗ u(l.r)#δlhΦ(l.rju(l.r)
−1)

=
∑

l∈G

Φ(rju(r)−1)(l−1)Φ(l.rju(l.r)−1)(lh)u(r)#δl−1 ⊗ u(l.r)#δlh

=
∑

l∈G

Φ(l.ju(r)l.r−1)(l)Φ(l.rju(l.r)−1)(lh)u(r)#δl−1 ⊗ u(l.r)#δlh

=
∑

l∈G

Φ(l.ju(r)l.r−1)(l)Φ(rl−1.ju(l.r)−1)(h)Φ(l.rju(l.r)−1)(l)u(r)#δl−1 ⊗ u(l.r)#δlh

=
∑

l∈G

Φ(l.ju(r)ju(l.r)−1)(l)Φ(rl−1.ju(l.r)−1)(h)u(r)#δl−1 ⊗ u(l.r)#δlh

while for h 6∈ G, we have (q ⊗ q)∆(r#δh) = 0. On the other hand, denoting again ∆ the new
coproduct, we have ∆q(r#δh) = 0 if h 6∈ G, and if h ∈ G

∆q(r#δh) = ∆(u(r)#δhΦ(rju(r)
−1)) = Φ(rju(r)−1)(h)∆(u(r)#δh)

= Φ(rju(r)−1)(h)
∑

l∈G

u(r)#δl−1 ⊗ u(l.r)#Φ(l.ju(r)ju(l.r)−1)δlh

=
∑

l∈G

Φ(rju(r)−1)(h)Φ(l.ju(r)ju(l.r)−1)(lh)u(r)#δl−1 ⊗ u(l.r)#δlh

=
∑

l∈G

Φ(rju(r)−1)(h)Φ(ju(r)l−1.ju(l.r)−1)(h)Φ(l.ju(r)ju(l.r)−1)(l)u(r)#δl−1 ⊗ u(l.r)#δlh

=
∑

l∈G

Φ(rl−1.ju(l.r)−1)(h)Φ(l.ju(r)ju(l.r)−1)(l)u(r)#δl−1 ⊗ u(l.r)#δlh

Hence (q ⊗ q)∆ = ∆q, and this shows that we indeed get a bialgebra k[Γ/N ] ⋊Φ,j k
G, with

the obvious unit and co-unit, and it is easily seen that S defined above is an antipode, so that
k[Γ/N ]⋊Φ,j k

G is a Hopf algebra, and q is a Hopf algebra map.
Now choose another section i with the same property. It is obvious that the following linear

map

f : k[Γ/N ]⋊Φ,j k
G −→ k[Γ/N ]⋊Φ,i k

G

u(r)#δh 7−→ u(r)#δhΦ(iu(r)
−1ju(r))

is bijective. Using Lemma 2.3, one checks that

u(rs)#Φ(ju(r)ju(s)iu(rs)−1)δhδk = f (u(r)#δh · u(s)#δk) = f(δh#u(r)) · f(δk#u(s))

∆f(u(r)#δh) =
∑

l∈G

Φ(ju(r)l−1.(iu(l.r)−1))(h)Φ(l.iu(r)iu(l.r)−1)(l)u(r)#δl−1 ⊗ u(l.r)δlh#u(r)

= (f ⊗ f)∆(u(r)#δh)

Hence f is a Hopf algebra isomorphism. �

We are now going to show that all the quotients of k[Γ] ⋊ kH have the above form. Before
this, recall that a sequence of Hopf algebra maps

k → B
i
→ A

p
→ L → k

is said to be exact [2] if the following conditions hold:

(1) i is injective, p is surjective and pi = ε1,
4



(2) ker p = Ai(B)+ = i(B)+A, where i(B)+ = i(B) ∩Ker(ε),
(3) i(B) = Acop = {a ∈ A : (id⊗p)∆(a) = a⊗ 1} = copA = {a ∈ A : (p⊗ id)∆(a) = 1⊗ a}.

We first need a couple of lemmas.

Lemma 2.5. Let H y Γ as above and let (G,N,Φ) ∈ QD(H y Γ). Then the Hopf algebra

k[Γ/N ]⋊Φ kG fits into an exact sequence of Hopf algebras

k → kG
i
→ k[Γ/N ]⋊Φ kG

p
→ k[Γ/N ] → k

where i(f) = 1#f and p = id⊗ ε.

Proof. This is a direct easy verification. �

The next lemma is a generalization of Lemma 4.5 in [7].

Lemma 2.6. Let H y Γ as above and let (G,N,Φ) ∈ QD(H y Γ). Let π : k[Γ/N ]⋊Φ kG → L
be a surjective Hopf algebra map, such that π|kG is injective, and such that for r ∈ Γ and f ∈ kG,
we have:

π(u(r)#1) = π(1⊗ f) =⇒ u(r) = 1

where u : Γ → Γ/N is the canonical surjection. Then π is an isomorphism.

Proof. The proof, that we include for the sake of completeness, is essentially the same as the
one of Lemma 4.5 in [7]. We start with the previous exact sequence

k → kG
i
→ k[Γ/N ]⋊Φ kG

p
→ k[Γ/N ] → k

and put A = k[Γ/N ]⋊Φk
G. Since πi is injective and the Hopf subalgebra πi(kG) is central in L,

we can form the quotient Hopf algebra L = L/(πi(kH ))+L, and we get another exact sequence:

k → kG
πi
−→ L

q
→ L → k

This sequence is indeed exact, e.g. by centrality (see [2, 18]). So we get the following commu-
tative diagram with exact rows, with the Hopf algebra map on the right surjective:

k −−−−→ kG
i

−−−−→ A
p

−−−−→ k[Γ/N ] −−−−→ k
∥∥∥

yπ

y

k −−−−→ kG
πi

−−−−→ L
q

−−−−→ L −−−−→ k

Since a quotient of a group algebra is still a group algebra, we get a commutative diagram with
exact rows as follows:

k −−−−→ kH
i

−−−−→ A
p

−−−−→ k[Γ/N ] −−−−→ k
∥∥∥

yπ

y

k −−−−→ kH
πi

−−−−→ L
q′

−−−−→ k[Γ/N ] −−−−→ k

Here the vertical Hopf algebra map on the right is induced by a surjective group morphism
v : Γ/N → Γ/N , u(r) 7→ u(r). By the short five lemma (see e.g. [13], or [3]) we just have to
show that v is injective.

For r ∈ Γ, put:

u(r)A = {a ∈ A | p(a(1))⊗ a(2) = u(r)⊗ a}

u(r)L = {l ∈ L | q′(l(1))⊗ l(2) = u(r)⊗ l}

The commutativity of the right square ensures that π(u(r)A) ⊂ u(r)L.

Now let r ∈ Γ be such that vu(r) = 1. We have q′π(u(r)#1) = vp(u(r)#1) = vu(r) = u(r) =
1, hence π(u(r) ⊗ 1) ∈ 1L = πi(kH) (exactness of the sequence), so π(u(r) ⊗ 1) = π(1 ⊗ f) for
some f ∈ kH . We conclude by our assumption that u(r) = 1. �
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The following result is the last step towards the determination of the quotients of a smash
coproduct, and certainly the most useful in concrete situations.

Proposition 2.7. Let π : k[Γ]⋊ kH → L be a surjective Hopf algebra map with π|kH injective.

Then there exists (H,N,Φ) ∈ QD(H y Γ) such that L is isomorphic with k[Γ/N ]⋊Φ kH . More

precisely, the subgroup N is defined by

N = {r ∈ Γ | ∃f ∈ (kH)× with π(r#1) = π(1#f)}

and for r ∈ N , Φ(r) is the unique f ∈ (kH)× such that π(r#1) = π(1#f).

Proof. It is immediate that N defined above is a normal subgroup of Γ. The above map
Φ : N → (kH)× is defined thanks to the injectivity assumption on π|kH , and it is immediate

that Φ is a group morphism with Φ(r) = Φ(srs−1) for r ∈ N , s ∈ Γ. Let us check that N is
H-stable. So let r ∈ N . We have

∆π(r#1) =
∑

l∈H

π(r#δl)⊗ π(l−1.r#1) =
∑

l∈H

π(1#δl)π(r#1)⊗ π(l−1.r#1)

=
∑

l∈H

π(1#δlΦ(r))⊗ π(l−1.r#1) =
∑

l∈H

Φ(r)(l)π(1#δl)⊗ π(l−1.r#1)

On the other hand we have

∆π(1#Φ(r)) = ∆π(
∑

h∈H

Φ(r)(h)1#δh) =
∑

h,l∈H

Φ(r)(h)π(1#δl)⊗ π(1#δl−1h)

It then follows from the injectivity of π|kH that for any l ∈ H we have

Φ(r)(l)π(l−1.r#1) =
∑

h∈H

Φ(r)(h)π(1#δl−1h) =
∑

h∈H

Φ(r)(lh)π(1#δh)

= π

(
1#

∑

h∈H

Φ(r)(lh)δh

)

It follows that l−1.r ∈ N and that Φ(r)(lh) = Φ(l−1 · r)(h)Φ(r)(l) for any h ∈ H. Therefore
(H,N,Φ) ∈ QD(H y Γ).

Let us choose a a section j : Γ/N → Γ of the canonical projection u : Γ → Γ/N with ju(1) = 1,
and form the Hopf algebra k[Γ/N ]⋊Φk

H as in Proposition 2.4. Let q : k[Γ]⋊kH → k[Γ/N ]⋊Φk
H

be as in Proposition 2.4, and let π̃ : k[Γ/N ]⋊Φk
H → L be defined by π̃(u(r)#δh) = π(ju(r)#δh).

We have

π̃q(r#δh) = π̃(u(r)#δhΦ(rju(r)
−1)) = π(ju(r)#δhΦ(rju(r)

−1))

= π(1#Φ(rju(r)−1))π(ju(r)#δh) = π(rju(r)−1)#1)π(ju(r)#δh)

= π(r#δh)

and hence π̃q = π. Since π and q are surjective Hopf algebra maps, this proves that π̃ is a
surjective Hopf algebra map. We wish to use the previous lemma. It is clear that π̃|kH is

injective since π|kH is. Let r ∈ Γ be such that π̃(u(r)#1) = π̃(1#f) for f ∈ kH . Then we

have π(ju(r)#1) = π(1#f), and necessarily f ∈ (kH)× (otherwise there would exist f ′ 6= 0
with f ′f = 0 and then 0 = π(1#f ′f) = π(1#f ′)π(r#1), which would give π(1#f ′) = 0 since
π(u(r)#1) is invertible). Hence we have ju(r) ∈ N and 1 = uju(r) = u(r): we conclude by the
lemma that π̃ is injective. �

We arrive at the general description of Hopf algebra quotients of smash coproduct.

Theorem 2.8. Let H y Γ be a finite group H acting by automorphisms on a discrete group

Γ, and let L be a Hopf algebra quotient of the smash coproduct k[Γ]⋊ kH . Then there exists a

quotient datum (G,N,Φ) ∈ QD(H y Γ) such that L is isomorphic to k[Γ/N ]⋊Φ kG.
6



Proof. Let π : k[Γ]⋊ kH → L be a surjective Hopf algebra map. Then π(kH) is a Hopf algebra
quotient of kH , and hence there exists a subgroup G ⊂ H such that π induces an isomorphism
π(kH) ≃ kG. Then there exists a factorization

k[Γ]⋊ kH
π //

&&MM
MM

MM
MM

MM
L

k[Γ]⋊ kG
π′

;;wwwwwwwwww

where π′
|kG

is injective, and we conclude by the previous proposition. �

3. Examples

In order to illustrate the results of the previous section, we now examine a series of examples.

3.1. First example. We assume in this subsection that char(k) 6= 2. Let

Γ = D∞ = Z2 ∗ Z2 = 〈g0, g1 | g20 = 1 = g21〉

with the Z2 = 〈h〉-action defined by h.g0 = g1 and h.g1 = g0. The Hopf ∗-algebra quotients of
C[Z2 ∗ Z2] ⋊ CZ2 have been determined in [5], where this Hopf algebra is denoted Ah(2). The
methods of the previous paragraph enables us to get without too much effort the description of
all the Hopf algebra quotients, over any field of characteristic 6= 2.

For m ≥ 1, let Nm = 〈(g0g1)
m〉 ≃ Z: this a normal and H-stable subgroup of Z2 ∗ Z2. We

get a family of quotients of k[Z2 ∗ Z2]⋊ kZ2 :

A(m) = k[(Z2 ∗ Z2)/Nm]⋊ kZ2 ≃ k[Dm]⋊ kZ2

of dimension 4m, with A(1) ≃ kZ2×Z2 , A(2) ≃ kD4 and A(m) non-commutative and non-
cocommutative if m ≥ 3.

Now let Φm : Nm = 〈(g0g1)
m〉 ≃ Z → Ẑ2 = 〈χ〉 be the unique group morphism with

Φm((g0g1)
m) = χ. We have Φm(h.(g0g1)

m) = Φm((g0g1)
−m) = χ−1 = χ, so (Z2, Nm,Φm) ∈

QD(Z2 y Z2 ∗ Z2). We get a family of quotients of k[Z2 ∗ Z2]⋊ kZ2 :

B(m) = k[(Z2 ∗ Z2)/Nm]⋊Φm kZ2

of dimension 4m, with B(1) ≃ kZ4 , and B(m) non-commutative and non-cocommutative if
m ≥ 2. The Hopf algebras A(m) and B(m) were studied by Masuoka in [14], Nikshych [16],
Suzuki [19], Vainerman [20], and probably others.

Proposition 3.1. The non trivial Hopf algebra quotients of k[Z2 ∗ Z2]⋊ kZ2 are:

(1) k[Dm], m ≥ 1, k[D∞],
(2) A(m) = k[(Z2 ∗ Z2)/Nm]⋊ kZ2 ≃ k[Dm]⋊ kZ2 , m ≥ 1,
(3) B(m) = k[(Z2 ∗ Z2)/Nm]⋊Φm kZ2 , m ≥ 1.

Proof. Let π : k[Z2 ∗Z2]⋊ kZ2 → L be a surjective Hopf algebra map with dim(L) > 1. If π|kZ2
is not injective, then it is trivial, and L is quotient of k[Z2 ∗ Z2], and hence is isomorphic to
k[Dm] for some m ≥ 1 or m = ∞. Now assume that π|kZ2 is injective. It is not difficult to check

that the non-trivial Z2-stable normal subgroups of Z2 ∗ Z2 are precisely the Nm = 〈(g0g1)
m〉,

m ≥ 1. Let Φ : Nm → (kZ2))× be a group morphism such that (Z2, Nm,Φ) ∈ QD(Z2 y Z2∗Z2).
Let λ ∈ k∗ be such that Φ((g0g1)

m) = δ1 + λδh. We have

Φ((g0g1)
m) = Φ(g0(g0g1)

mg0) = Φ((g1g0)
m) = Φ((g0g1)

−m) = Φ((g0g1)
m)−1

Hence λ = λ−1, and either Φ si trivial or Φ = Φm as above. We conclude by Proposition 2.7. �

A rough version of the previous result is as follows.

Corollary 3.2. The only non-trivial infinite-dimensional quotient of k[Z2∗Z2]⋊kZ2 is k[Z2∗Z2].
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3.2. A first generalization of the previous example is given by

Γ = Z∗n
2 = 〈g0, g1, . . . , gn−1 | g20 = 1 = g21 = · · · g2n−1〉

with the Sn-action given by permutation of the generators. The Hopf algebra k[Z∗n
2 ] ⋊ kSn is

considered in [17], where the “easy” quotients are described. Using Theorem 2.8, we get that
a Hopf algebra quotient of k[Z∗n

2 ] ⋊ kSn is isomorphic to k[Z∗n
2 /N ] ⋊Φ kG where (G,N,Φ) ∈

QD(Sn y Z∗n
2 ). As pointed out in [17], there are many normal Sn-stable subgroups N ⊂ Z∗n

2 .

3.3. The main example. We now come to the examples that motivated this study. Let
M,N ≥ 2 and consider the group

ΓM,N =< g0, . . . , gM−1 | gN0 = . . . = gNM−1 = 1, [gi1 · · · giN , gj1 · · · gjN ] = 1 >

endowed with the cyclic action of ZM = 〈h〉 on the generators. If M = N = 2, we are in the
situation of the first example.

The Hopf algebra k[ΓM,N ]⋊kZM arose in [7] from certain representations of Wang’s quantum
permutation algebra. The following description of ΓM,N is given in [7].

Lemma 3.3. We have a group isomorphism

ΓM,N ≃ Z(M−1)(N−1) ⋊ ZN

More precisely, for 0 ≤ i ≤ M−1, 0 ≤ c ≤ N−1, put aic = gc−1
0 gig

−c
0 , and let T be the subgroup

of ΓM,N generated by the elements aic. Then T is a free abelian group of rank (M − 1)(N − 1),
with basis {aic, 1 ≤ i ≤ M − 1, 1 ≤ c ≤ N − 1}, and there is a split exact sequence

1 → T → ΓM,N → ZN → 1

where the group morphism on the right ΓM,N → ZN = 〈t〉 is defined by gi 7→ t. The ZN = 〈t〉-

action on T is given by t · aic = g0aicg
−1
0 = ai,c+1, while the ZM = 〈h〉-action on ΓM,N is given

by h · aic = ai+1,ca
−1
1,c , h · g0 = g0a10.

Proof. Let T be the kernel of the above group morphism ΓM,N → ZN = 〈t〉. It is clear that T
is generated by the elements of type gi1 · · · giN , and hence is abelian. The elements aic belong
to T , and let T0 be the subgroup generated by these elements. Using the relations

giajcg
−1
i = aj,c+1, g−1

i ajcgi = aj,c−1

we see that T0 is normal in ΓM,N . The elements ai0 = g−1
0 gi belong to T0, and hence we have

[ΓN,M : T0] ≤ N . But then N = [ΓN,M : T ] ≤ [ΓN,M : T0] ≤ N , and thus T0 = T . That T is
generated by {aic, 1 ≤ i ≤ M − 1, 1 ≤ c ≤ M − 1} follows from the identities

a0c = 1, for any c, and

N−1∏

c=0

aic = 1 for any i

and to prove that T is indeed free one considers a certain representation of ΓM,N , see [7], or the
examples in the last section. The last assertion about the actions is immediate. �

Our main result on the Hopf algebra quotients of k[ΓM,N ]⋊kZM is the following generalization
of Corollary 3.2.

Theorem 3.4. Let f : k[ΓM,N ] ⋊ kZM → A be surjective Hopf algebra map with A infinite-

dimensional and non-cocommutative. Assume that one of the following conditions holds.

(1) N = 2 and M is prime.

(2) M = 2 and N is prime.

Then f is an isomorphism.

In other words, the only non-trivial infinite-dimensional quotients of k[ΓM,N ]⋊kZM are group
algebras.

To prove Theorem 3.4, we will need a couple of lemmas.
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Lemma 3.5. Assume that N is a prime number and that V ⊂ Z(M−1)(N−1) ⋊ ZN is a normal

subgroup. If V 6⊂ Z(M−1)(N−1), then the quotient group (Z(M−1)(N−1) ⋊ ZN)/V is finite and

abelian.

Proof. First note that it is clear from the definition of ΓM,N that an abelian quotient is finite,

hence we just have to show that (Z(M−1)(N−1) ⋊ ZN )/V is abelian. There exists, by the as-

sumption, a ∈ Z(M−1)(N−1) and 1 ≤ k ≤ N − 1 such that atk ∈ V . Working in the quotient
group, the assumption that N is prime enables us to assume that k = 1, and hence at ∈ V .
Hence the quotient group (Z(M−1)(N−1)⋊ZN )/V is generated by the image of the abelian group

Z(M−1)(N−1), and is abelian. �

Lemma 3.6. Let p be a prime number and let f : Qp−1 → Qp−1 be a Q-linear map whose

matrix in the canonical basis is



0 0 · · · 0 0 −1
1 0 · · · 0 0 −1
0 1 · · · 0 0 −1
...

...
...

...
...

...

0 0 · · · 1 0 −1
0 0 · · · 0 1 −1




or




−1 −1 · · · −1 −1 −1
1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
...

...
...

...

0 0 · · · 1 0 0
0 0 0 · · · 1 0




Then for any non-zero u ∈ Qp−1, the elements u, f(u), . . . , fp−2(u) ∈ Qp−1 are Q-linearly

independent.

Proof. As usual we view Qp−1 as a Q[X]-module by letting X.v = f(v), for any v ∈ Qp−1 The
first matrix is the companion matrix of the cyclotomic polynomial

P (X) = 1 +X + · · ·+Xp−2 +Xp−1 ∈ Q[X]

and hence P (X) is the characteristic polynomial of f , as well as its minimal polynomial since
P is irreducible in Q[X]. Then since P is irreducible, it is the only invariant factor of f and the
structure theory of modules of a principal ideal domain then gives that, as a Q[X]-module, one
has Qp−1 ≃ Q[X]/(P ) and Qp−1 is a simple Q[X]-module. In particular any non zero u ∈ Qp−1

generates Qp−1 as a Q[X]-module. Hence since theQ-subspace generated by u, f(u), . . . , fp−2(u)
is also a Q[X]-submodule, we have that these elements generate Qp−1 and hence also are linearly
independent. The proof for the second matrix is the same as soon as we know that the minimal
polynomial of f is P , which is easily seen, using that fp = 1 and that 1 is not an eigenvalue of
f , so that the minimal polynomial of f divides the irreducible polynomial P . �

Proof of Theorem 3.4. Let π : k[ΓM,N ] ⋊ kZM → A be surjective Hopf algebra map, with A
infinite-dimensional. Then, by Theorem 2.8, π induces an isomorphism

k[ΓM,N/V ]⋊Φ kG ≃ A

for (G,V,Φ) ∈ QD(ZM y ΓM,N ). Since M is prime, either G is trivial or G = ZM , and hence
G = ZM since A is assumed to be non-cocommutative. We get

k[ΓM,N/V ]⋊Φ kZM ≃ A

Then Lemma 3.5 gives V ⊂ Z(M−1)(N−1), since N is prime and A is infinite-dimensional.
Moreover V is ZN -stable (since normal) and ZM -stable. The ZN and ZM actions are, in additive
notation, implemented by the matrices of Lemma 3.6, and hence it follows that if V 6= 0, then
V contains a free abelian subgroup of rank N − 1 and a free abelian subgroup of rank M − 1.
The quotient of finite rank free abelian group by a subgroup of the same rank is finite, hence if
M = 2 or N = 2, we have that if V 6= 0, then A is finite-dimensional, a contradiction. Hence
V = 0 and we are done. �
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3.4. A quotient datum that is not of the type of Example 2.2. We assume that
char(k) 6= 3, we put M = 3 = N and consider the crossed coproduct of the previous sub-
section

k[Γ3,3]⋊ kZ3 ≃ k[Z4 ⋊Z3]⋊ kZ3

We retain the previous notation (see Lemma 3.3):

• Z4 is seen as the free multiplicative abelian group on 4 variables a11, a12, a21, a22.
• The first Z3 = 〈t〉-action is given by

t.a11 = a12, t.a12 = a−1
11 a

−1
12 , t.a21 = a22, t.a22 = a−1

21 a
−1
22

• The second Z3 = 〈h〉-action is given by

h · a11 = a−1
11 a21, h · a12 = a−1

12 a22, h · a21 = a−1
11 , h · a22 = a−1

12 , h · t = ta−1
11 a

−1
12

For m ≥ 2, let Nm = 〈am11, a
m
12, a

m
21, a

m
22〉 ⊂ Z4. The group Nm is free abelian of rank 4, hence

for α, β ∈ k×, there exists a unique group morphism

Φ : Nm −→ (kZ3)×

am11, a
m
12 7−→ δ1 + αδh + αβδh2

am21, a
m
22 7−→ δ1 + β−1δh + αδh2

It is a tedious but straightforward verification to check that for α3 = 1 = β3, then (Z3, Nm,Φ) ∈
QD(Z3 y Z4 ⋊ Z3) (in fact any Φ such that (Z3, Nm,Φ) ∈ QD(Z3 y Z4 ⋊ Z3) has the above

form). However Φ has values into Ẑ3 only when α = β. This therefore furnishes the announced
example.

4. Hopf image of a smash coproduct

In this section we show how to describe the Hopf image of a representation of a smash
coproduct as above.

4.1. Hopf images. We begin by recalling the basic facts on Hopf images [5].
Let A be Hopf algebra, let R be an algebra and let ρ : A → R be an algebra map.
A factorization of ρ is a triple (L, q, ϕ) where L is a Hopf algebra, q : A → L is a surjective

Hopf algebra map and ϕ : L → A is an algebra map, with the decomposition ρ = ϕq. The
category of factorizations of ρ is defined in the obvious manner and the Hopf image of ρ is
defined to be the final object in this category (hence we can also say that this is a minimal
factorization), which is easily shown to exist (see [5]).

In other words, the Hopf image of ρ is a factorization (Aρ, p, ρ̃) having the following property:
if (L, q, ϕ) is another factorization of ρ, there exists a unique Hopf algebra map f : L −→ Aρ

such that fq = p and ρ̃f = ϕ.

A
ρ //

p   @
@@

@@
@@

@

q

��

R

Aρ

ρ̃

>>~~~~~~~~

L

f

OO�
�
�

ϕ

KK

The algebra map ρ : A → R is said to be inner faithful if (A, idA, ρ) is the Hopf image of ρ: this
is equivalent to saying that Ker(ρ) does not contain any non-zero Hopf ideal, see [5].

Computing a Hopf image is in general a difficult problem. The following cases are well
understood, at least from the theoretical viewpoint.

(1) If A = k[Γ] is a group algebra, then the Hopf image of ρ is k[Γ/N ] where N = Ker(ρ|Γ),
and the representation is inner faithful if and only if N = {1}.
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(2) If A = kH , with H a finite group, R = kn and the algebra map ρ is given by

kH −→ kn

f 7−→ (f(h1), . . . , f(hn))

for h1, . . . , hn ∈ H, then the Hopf image of ρ is k〈h1,...,hn〉 and ρ is inner faithful if and
only if H = 〈h1, . . . , hn〉, see [5]. Note that by the semisimplicity and commutativity
of kH , this example enables one to describe the Hopf image for any representation
kH → Mn(k).

4.2. Hopf images and smash coproducts. As before, let H y Γ be a finite group H acting
by automorphisms on a discrete group Γ, and let R be an algebra. Our aim is to describe the
Hopf image of an algebra map ρ : k[Γ] ⋊ kH → R, therefore unifying the descriptions given at
the end of the previous subsection. In fact, to simplify the set-up, we will always assume that
ρ|kH is inner faithful (otherwise, we can factorize ρ by an algebra map ρ′ : k[Γ] ⋊ kH

′
→ R

with H ′ a subgroup of H and ρ′
|kH′ inner faithful, thanks to the last item in the previous

subsection). If (H,N,Φ) ∈ QD(H y Γ), then we simply denote (N,Φ) the corresponding
element of QD(H y Γ).

Proposition 4.1. Let H y Γ as above and let ρ : k[Γ]⋊ kH → R be an algebra map such that

ρ|kH is inner faithful. Let

E(ρ) = {(H,N,Φ) = (N,Φ) ∈ QD(H y Γ) | ∀r ∈ N, ρ(r#1) = ρ(1#Φ(r))}

For any (N,Φ) ∈ E(ρ), there exists a factorization

k[Γ]⋊ kH
ρ //

q ''OO
OO

OO
OO

OO
OO

R

k[Γ/N ]⋊Φ kH
ρ̃

99sssssssssss

where if j : Γ/N → Γ is a section of the canonical projection u : Γ → Γ/N with ju(1) = 1,
q(r#δh) = u(r)#δhΦ(rju(r)

−1) and ρ̃(u(r)#δh) = ρ(ju(r)#δh).
Endow E(ρ) with the partial order defined by (N,Φ) ≤ (M,Ψ) ⇐⇒ N ⊂ M and Ψ|N = Φ.

Then E(ρ) admits a maximal element. For any maximal element (N,Φ) ∈ E(ρ), the above

factorization is universal and k[Γ/N ]⋊Φ kH is isomorphic to the Hopf image of ρ.

Proof. Let (N,Φ) ∈ E(ρ). The Hopf algebra map q is defined in Proposition 2.4. We have

ρ̃q(r#δh) = ρ(ju(r)#δhΦ(rju(r)
−1)) = ρ(1#Φ(rju(r)−1))ρ(ju(r)#δh)

= ρ(rju(r)−1#1)ρ(ju(r)#δh) = ρ(r#δh)

Hence ρ̃q = ρ and ρ̃ is an algebra map, and we have our factorization. It immediate that E(ρ) is
non empty, that ≤ defined above is indeed a partial order on E(ρ), and it is an easy verification
to check that E(ρ), endowed with this partial order, is inductively ordered. By Zorn’s Lemma
we can pick a maximal element (N,Φ) in E(ρ). Let us show that the previous factorization
realizes the Hopf image of ρ. So let (L, p, ρ) be the universal factorization of ρ: the universal
property of the Hopf image yields a Hopf algebra map π : k[Γ/N ] ⋊Φ kH → L such that the
following diagram and all its subdiagrams commute.

k[Γ]⋊ kH
ρ //

p

((PP
PP

PP
PP

PP
PP

PP

q

$$

R)

L

ρ

88qqqqqqqqqqqqq

k[Γ/N ]⋊Φ kH

π

OO�
�

�

ρ̃

EE
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By construction π is surjective, and π|kH is injective since p is (by the inner faithfulness of ρ|kH ).
Let

M = {r ∈ Γ | ∃f ∈ kH with π(u(r)#1) = π(1#f)}

and

M ′ = {r ∈ Γ | ∃f ∈ kH with p(r#1) = p(1#f)}

For r ∈ M , we have

p(r#1) = πq(r#1) = π(u(r)#Φ(rju(r)−1)) = π(1#Φ(rju(r)−1)f) = p(1#Φ(1#rju(r)−1)f)

for some f ∈ kH , hence r ∈ M ′. For r ∈ M ′, we have

π(u(r)#1) = πq(r#Φ(ju(r)r−1)) = p(1#Φ(ju(r)r−1)f) = π(1#Φ(ju(r)r−1)f)

for some f ∈ kH , and r ∈ M . Hence M = M ′. We know, by Proposition 2.7, that M is an
H-stable normal subgroup of Γ and that there exists Ψ : M → C(H)× such that (M,Ψ) ∈
QD(H y Γ) and p(r#1) = p(1#Ψ(r)) for r ∈ M . For r ∈ M , we have

ρ(r#1) = ρp(r#1) = ρp(1#Ψ(r)) = ρ(1#Ψ(r))

and hence (M,Ψ) ∈ E(ρ). It is clear from the first description of M that N ⊂ M . For r ∈ N ,
we have

p(r#1) = πq(r#1) = p(1#Φ(r)) = p(1#Ψ(r))

hence (N,Φ) ≤ (M,Ψ), and we have N = M by maximality of (N,Φ). It then follows from
Lemma 2.6 that π is injective, and hence is an isomorphism. �

Remark 4.2. It is in fact possible to avoid the use of Zorn’s Lemma in the previous proof,
using the existence of the Hopf image. We found the use of Zorn’s Lemma more convenient to
formulate the proof. A drawback is that the description is not very explicit (but this would not
be more explicit without Zorn’s Lemma).

We now present two situations where the Hopf image has a more explicit description.

Corollary 4.3. Let H y Γ as above and let ρ : k[Γ] ⋊ kH → R be a representation such that

ρ|kH is inner faithful. Consider the H-stable normal subgroup of Γ

N = {r ∈ Γ | ∀h ∈ H, ∃f ∈ (kH)× with ρ(h · r#1) = ρ(1#f)}

and assume that there exists Φ : N → (kH)× such that (N,Φ) ∈ E(ρ). Then the Hopf image of

ρ is isomorphic with k[Γ/N ]⋊Φ kH .

Proof. For (M,Ψ) ∈ E(ρ), we have M ⊂ N . Hence if (N,Φ) ≤ (M,Ψ), then N = M and
Φ = Ψ. This shows that (N,Φ) is maximal, and the previous result finishes the proof. �

Corollary 4.4. Let H y Γ as above and let ρ : k[Γ] ⋊ kH → R be a representation such that

ρ|kH is faithful. Let

N0 = {r ∈ Γ | ∃f ∈ kH with ρ(r#1) = ρ(1#f)}

This is a normal subgroup of Γ, and the faithfulness assumption on ρ|kH yields a group morphism

Φ : N0 → (kH)× such that ρ(r#1) = ρ(1#Φ(r)) for any r ∈ N0. Now put

N = {r ∈ N0 | ∀h, k, l ∈ H, h.r ∈ N0 and Φ(k.r)(lh) = Φ((l−1h).r)(h)Φ(k.r)(l)}

Then N a normal and H-stable subgroup of Γ, (N,Φ) ∈ E(ρ) and the Hopf image of ρ is

isomorphic with k[Γ/N ]⋊Φ kH .

Proof. It is a direct verification to check that N is a normal and H-stable subgroup of Γ, that
(N,Φ) ∈ QD(H y Γ) and hence that (N,Φ) ∈ E(ρ). For (M,Ψ) ∈ E(ρ), we have M ⊂ N .
Hence if (N,Φ) ≤ (M,Ψ), then N = M and Φ = Ψ. This shows that (N,Φ) is maximal, and
Proposition 4.1 finishes the proof. �
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5. Examples

We illustrate the results of the previous section using the examples of Section 3. We assume
that k has characteristic zero here.

5.1. Construction of the representations. Let M,N ≥ 2. As in [7], we fix a matrix
Q = (Qic) =∈ MMN (k×) with Q0c = 1 = Qi0 for any i, c (the indices are taken modulo M , N ,

respectively). To Q we associate the matrix θ = (θic) ∈ MMN (k×) defined by θic =
Qi−1,cQi,c−1

QicQi−1,c−1
.

We have
N−1∏

c=0

θic = 1 =
M−1∏

j=0

θjd, 0 ≤ i ≤ M − 1, 0 ≤ d ≤ N − 1

We denote by ǫ0, . . . , ǫN−1 the canonical basis of kN . We consider the Hopf algebra k[ΓM,N ]⋊

kZM of Subsection 3.3 and we will be interested in the representation

ρQ : k[ΓM,N ]⋊ kZM −→ End(kN )

defined as follows: for 0 ≤ i ≤ M − 1, we have

ρQ(gi#1)(ǫc) = θicǫc−1

and for f ∈ kZM , we have

ρQ(1#f) = f(h)id, where ZM = 〈h〉

The representation ρQ is a constituent of the representation πQ in [7], to which we will restrict
here (note however that inner faithfulness of ρQ implies inner faithfulness of πQ).

It is clear that ρQ
|kZM

is inner faithful, so we can use the statements of the previous section.

Recall [7] that we say that p1, . . . , pm ∈ k× are root independent if for any r1, . . . , rm ∈ Z:

pr11 . . . prmm = 1 =⇒ r1 = . . . = rm = 0

It is shown in [7] that if the elements Qic, 1 ≤ i ≤ M − 1, 1 ≤ c ≤ N − 1 are root independent,
then the representation ρQ is inner faithful. Our main aim is to show that, at least in some
situations, the root independence assumption can be weakened, as follows.

Theorem 5.1. Assume that M = 2 and N is prime, or that M is prime and N = 2. If one

the elements Qic is not a root of unity, then the representation ρQ is inner faithful.

5.2. Preliminaries and notation. We now develop some preliminary material. We retain
the previous notation. For R = (Ric), 1 ≤ i ≤ M − 1, 1 ≤ c ≤ N − 1, Ric ∈ Z, put

Sjc = Rjc +
∑M−1

i=1 Ric,

α(R, 0) =




M−1∏

j=1

N−1∏

c=1

θ
Sj,c

j,c




and for 1 ≤ d ≤ N − 1,

α(R, d) =




M−1∏

j=1

θ
−Sj,−d

j,−d






M−1∏

j=1

N−1∏

c=1,c 6=−d

θ
Sj,c−d−Sj,−d

j,c




The following result is a direct verification.

Lemma 5.2. For any 0 ≤ d ≤ N − 1, the map

α(−, d) : Z(M−1)(N−1) −→ k×

R 7−→ α(R, d)

is a group morphism.
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There is moreover an action of ZM = 〈h〉 on Z(M−1)(N−1) given on the standard basis ǫic,
1 ≤ i ≤ M−1, 1 ≤ c ≤ N−1, by h ·ǫic = ǫi,c+1−ǫ1,c (the indices are taken modulo M , N). This
is in fact the same action as the one in Lemma 3.3, but written additively. For 0 ≤ l ≤ M − 1
and R = (Ric) ∈ Z(M−1)(N−1), we note l ·R = hl ·R.

Definition 5.3. For 0 ≤ l ≤ M − 1, the groups El
Q ⊂ Z(M−1)(N−1) and I lQ ⊂ (k×)N−1 are the

respective kernel and image of the group morphism

Z(M−1)(N−1) −→ (k×)N−1

R 7−→
(
α(l · R, 0)α(l ·R, d)−1

)
1≤d≤N−1

and we put EQ = ∩M−1
l=0 El

Q

Lemma 5.4. (1) If the elements Qic, 1 ≤ i ≤ M − 1, 1 ≤ c ≤ N − 1 are root independent,

then E0
Q = (0) = EQ.

(2) If one of the elements Qic is not a root of unity, then the group I0Q is infinite.

Proof. (1) One checks first that if the elements Qic, 1 ≤ i ≤ M − 1, 1 ≤ c ≤ N − 1 are root
independent, then so are the elements θic, 1 ≤ i ≤ M − 1, 1 ≤ c ≤ N − 1, and then the
verification that E0

Q = (0) is immediate using the root independence of those elements.

(2) Using the standard basis of the free abelian group Z(M−1)(N−1), we see that I0Q is the

subgroup of (k×)N−1 generated by the elements

(θicθ
−1
0c θ

−1
i,c+dθ0,c+d)1≤d≤N−1, 1 ≤ i ≤ M − 1, 1 ≤ c ≤ N − 1

Denote by µ∞ the group of roots of unity in k× and assume that I0Q is finite. Then for any
1 ≤ i ≤ M − 1 and 1 ≤ c, d ≤ N − 1 we have

θicθ
−1
0c θ

−1
i,c+dθ0,c+d ∈ µ∞

and in particular for any 1 ≤ c, d ≤ N − 1, we have

N−1∏

i=1

θicθ
−1
0c θ

−1
i,c+dθ0,c+d = θ−N

0,c θN0,c+d ∈ µ∞ ⇒ θ0,c+dθ
−1
0,c ∈ µ∞

Then we have for any 1 ≤ c ≤ N − 1

N−1∏

d=1

θ0,c+dθ
−1
0,c = θ−N

0,c ∈ µ∞ ⇒ θ0,c ∈ µ∞

From this we deduce easily that θic ∈ µ∞ for any i, c, and then that Qic ∈ µ∞ for any i, c as
well. �

5.3. We come back to the study of the representation ρQ. According to Proposition 4.1 and
Corollary 4.3, we need to study the group

NQ = {r ∈ ΓM,N | ∀y ∈ ZM , ∃f ∈ (kZM )× with ρQ(y · r#1) = f(h)1}

= {r ∈ ΓM,N | ∀y ∈ ZM , ∃λ ∈ k∗ with ρQ(y · r#1) = λ1}

Lemma 5.5. The subgroup NQ is the subgroup of T = 〈aic, 1 ≤ i ≤ M − 1, 1 ≤ c ≤ N − 1〉
formed by elements

a =

M−1∏

i=1

N−1∏

c=1

aRic

ic

for which we have R = (Ric) ∈ EQ. Moreover the Hopf image of ρQ is isomorphic to

k[T/U ⋊ ZN ]⋊Φ kZM

for some quotient datum (U,Φ), where U ⊂ NQ.
14



Proof. One sees easily that an element in NQ belongs to T , and we have ρQ(aic#1)(ǫd) =

θi,c+dθ
−1
0,c+dǫd. From this we see that for a as above, we have ρQ(a#1)(ǫd) = α(R, d)ǫd, and

hence NQ is indeed the announced subgroup. By Proposition 4.1, the Hopf image of ρQ is

isomorphic to k[ΓM,N/U ] ⋊Φ kZM for some subgroup U ⊂ NQ, with ΓM,N/U = T/U ⋊ ZN by
the first assertion. �

From this, choosing Q such that EQ = (0), we see that T is indeed free abelian on the
elements aic, 1 ≤ i ≤ M −1, 1 ≤ c ≤ N −1 (Lemma 3.3). In general we also see that the groups

EQ and NQ are isomorphic, and that Z(M−1)(N−1)/EQ ≃ T/NQ.
From this, we first recover Theorem 4.6 from [7] in the case of cyclic groups.

Corollary 5.6. If EQ = (0), then the representation ρQ is inner faithful.

Proof. If EQ is trivial, so is NQ, and the result follows from Lemma 5.5. �

Corollary 5.7. If I0Q is infinite, then the Hopf image of the representation ρQ is infinite-

dimensional.

Proof. Again the Hopf image of ρQ is isomorphic to k[T/U ⋊ ZN ] ⋊Φ kZM for some subgroup

U ⊂ NQ. We have I0Q ≃ Z(M−1)(N−1)/E0
Q, so [Z(M−1)(N−1) : EQ] = [T : NQ] is infinite, as well

as [T : U ], and we are done. �

We can also prove Theorem 5.1 now.

Proof of Theorem 5.1. The group I0Q is infinite by Lemma 5.4, hence by the previous corollary

the Hopf image of ρQ, isomorphic to k[ΓM,N/U ] ⋊Φ kZM , is infinite-dimensional. By Theorem

3.4, either U is trivial, and we are done, either k[ΓM,N/U ]⋊Φk
ZM is cocommutative. In this case

the ZM -action on ΓM,N/U is trivial, and since it permutes cyclically the generators, the quotient

group ΓM,N/U is finite cyclic, and k[ΓM,N/U ]⋊Φ kZM is finite-dimensional, a contradiction. �

5.4. Example at small indices. We end the paper with some precise results at small indices
M and N . We begin by the case M = 2 = N . We have then

Q =

(
1 1
1 q

)
and θ =

(
q−1 q
q q−1

)

for some q ∈ k∗, and we simply denote ρQ by ρq. We retain the notation of the beginning of
Section 3.

Proposition 5.8. Let Aq denote the Hopf image of ρq : k[Γ2,2]⋊ kZ2 → End(k2) ≃ M2(k), and
let m = o(q).

(1) If m = ∞, then Aq ≃ k[Γ2,2]⋊ kZ2 .

(2) If m 6∈ 2N, then Aq ≃ A(m).
(3) If m ∈ 2N and m 6∈ 4N, then Aq ≃ A(m2 ).
(4) If m ∈ 4N, then Aq ≃ B(m4 ).

In particular, we have dim(Aq) = 4o(q4).

Proof. (1) follows from Corollary 5.6. We assume now that q is a root of unity. We have, in
matrix form

ρq(a11#1) =

(
q−2 0
0 q2

)

Thus the subgroup NQ in Lemma 5.5 is formed by the elements {ak11, k ∈ Z, m|4k}.
(2) Assume that m 6∈ 2N. Then NQ = 〈am11〉. For Φ the trivial map, we easily see that

(NQ,Φ) ∈ E(ρq), and hence we have Aq ≃ A(m) by Corollary 4.3.

(3) Assume that m ∈ 2N and m 6∈ 4N. Then NQ = 〈a
m
2

11〉. For Φ the trivial map, we see that
(NQ,Φ) ∈ E(ρq), and hence we have Aq ≃ A(m2 ) by Corollary 4.3.
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(4) Assume that m ∈ 4N. Then NQ = 〈a
m
4

11〉. Consider, as in the beginning of Section 3,

Φm
4

: 〈(a11)
m
4 〉 ≃ Z → Ẑ2 = 〈χ〉, the unique group morphism with Φm(a

m
4

11) = χ (recall that

g0g1 = a11). It is immediate to check that (NQ,Φm
4
) ∈ E(ρq), and hence we have Aq ≃ B(m4 )

by Corollary 4.3.
The last assertion is immediate. �

As a last example, we consider the case M = 3, N = 2. We then have

Q =



1 1
1 p
1 q


 and θ =




q−1 q
p p−1

qp−1 pq−1




If p or q is not a root of unity, we know from Theorem 5.1 that ρQ is inner faithful. In the root
of unity case, we have the following particular result.

Proposition 5.9. Assume that p and q are roots of unity, and let m = o(p2) and n = o(q2).
Denote by AQ the Hopf image of ρQ.

(1) If GCD(m,n) = 1 = GCD(m, 3) = GCD(n, 3), then AQ is isomorphic to a smash

coproduct

k[(Zmn × Zmn)⋊ Z2]⋊ kZ3

(2) If p2 = q2 and GCD(m, 3) = 1, then AQ is isomorphic to a smash coproduct

k[(Zm × Zm)⋊ Z2]⋊ kZ3

(3) If p2 = q2 and 3|m, then AQ is isomorphic to a smash coproduct

k[(Zm × Zm
3
)⋊ Z2]⋊ kZ3

Proof. In matrix form, we have

ρq(a11#1) =

(
p−2 0
0 q2

)
, ρq(a21#1) =

(
p2 0
0 q4

)

Hence the group NQ consists of elements aα11a
β
21 for which we have

(p2)−α+β = (q2)α+2β , (p2)2α+β = (q2)α−β

(1) Our assumptions imply that NQ consists of elements aα11a
β
21 with α, β ∈ mnZ. Taking

Φ : NQ → kZ3 the trivial map, we see that (NQ,Φ) ∈ E(ρ), and we conclude by Corollary 4.3.

(2) Our assumptions imply that NQ consists of elements aα11a
β
21 with α, β ∈ mZ, and we

conclude as in the previous case.

(3) Here our assumption imply that NQ consists of elements aα11a
β
21 with

α, β ∈ {(−2k
m

3
+ml, k

m

3
), k, l ∈ Z} = Z(m, 0) + Z(−2

m

3
,
m

3
) = EQ ⊂ Z2

We then have T/NQ ≃ Z2/EQ ≃ Zm×Zm
3

(by the standard theory of finitely generated abelian

groups), and we conclude as in the previous cases. �
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Laboratoire de Mathématiques, Université Blaise Pascal, Complexe universitaire des Cézeaux,

3 place Vasarely, 63178 Aubière Cedex, France

E-mail address: Julien.Bichon@math.univ-bpclermont.fr

17


