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Chapter 1

Coalescing complex planar stationary points

Loïc Teyssier

Among all bifurcation behaviors of parametric families of real planar vector fields Z• =
(Zλ)λ∈Λ, those that stand out most prominently are confluences of distinct stationary
points. The qualitative change is so drastic that in some classes of families (e.g. fold-
like bifurcations) the stationary points generically annihilate each others in the process
(Sotomayor’s theorem).

The simplest example of such a behavior, an instance of saddle-node bifurcation, is the
polynomial family (X∞

λ )λ∈R
given in the canonical basis of R2 by

X∞
λ (x, y) :=

[
x2 + λ
y

]
. (1.1)

The bifurcation value occurs at λ = 0: for negative λ the system has two stationary
points located at

(
±
√
−λ, 0

)
which collide as λ reaches 0, while none remain for λ > 0.

The stationary points have left the real plane, true enough, but only to slip into the
complex domain. Let us elaborate a bit on this observation in order to motivate the need
for complexifying the whole setting, even in the context of real dynamics.

The trajectories t 7→ (x (t) , y (t)) of X∞
λ appear naturally as solutions of the au-

tonomous flow-system of X∞
λ :

{
ẋ (t) = x (t)

2
+ λ

ẏ (t) = y (t)

and can be implicitly expressed by solving the associated non-autonomous differential
equation. This equation is obtained by eliminating the time in the flow-system using the
rule ẏ

ẋ = dy
dx :

(
x2 + λ

)
y′ (x) = y (x) .

Separation of variables yields multivalued complex solutions

Institut de Recherche Mathématique Avancée
Université de Strasbourg

1



2 L. Teyssier

yλ : z 7−→c

(
z − i

√
λ

z + i
√
λ

)1/2i
√

λ

, c ∈ C . (1.2)

On the one hand, if λ < 0 real solutions are given on appropriate intervals by

yλ : x 7−→c

∣∣∣∣
x−

√
−λ

x+
√
−λ

∣∣∣∣
1/2

√−λ

, c ∈ R , (1.3)

from which we deduce that
(
−
√
−λ, 0

)
is a saddle-point and

(√
−λ, 0

)
a node-point. On

the other hand for λ > 0 we have

yλ : x 7−→c exp

(
1√
λ
arctan

x√
λ

)
, c ∈ R . (1.4)

The latter is a perfectly honest real-analytic function on R. One might wonder why,
despite the fact of being so regular a function, its Taylor expansion at 0 does not have
infinite convergence radius instead of

√
λ. One can explain the discrepancy by, say, direct

use of Cauchy-Hadamard formula, although one cannot understand its source without
noticing the imaginary singularities ±i

√
λ quietly sitting on the boundary of the disk

of convergence. Also it is hard to understand why, when playing the movie backwards
starting form positive values of λ and reaching negative ones, a stationary point somehow
pops out of nowhere. One can see the singularity coming only when looking along the
imaginary axis.

At a less commonplace level, when λ < 0 both stationary points organize the dynamics
of X∞

λ and there is no reason why they should stop to when λ > 0, or even when λ is not
real, and we will present how.

We begin this text by performing the detailed study of affine families perturbing X∞
•

in Section (1.1)

X• : Xλ (x, y) :=

[
x2 + λ

y −
(
x2 + λ

)
aλ (x)

]
, (1.5)

where (λ, x) 7−→ aλ (x) is a given analytic function near the origin of C2. Let us denote
Affine (1) the collection of all such vector fields. Although for elements of Affine (1) all
computations can be performed explicitly (variation of constant), some natural questions
and non-trivial answers arise already in this case-study. Generalizing the constructions and
objects introduced in that simple situation to arbitrary bifurcation-preserving analytic
perturbations of the model family X∞

• is the main concern of the rest of the chapter.
Reducing the setting to analytic parametric families may seem rather restrictive. Yet

the geometric approach we present here could be inherited by less regular situations, or
could give insights as to where sources of peculiar behaviors may lie. On the other end
of the argument, the obvious added benefit stemming from this restriction is the rigidity
of holomorphic functions and diffeomorphisms of complex (compact) manifolds. Also the
analytic class encompasses polynomial vector fields, of special interest for planar vector

fields e.g. regarding Hilbert’s 16th problem on the number / position of limit cycles, or
Poincaré’s problem on the existence of rational first integrals.
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In the sequel we investigate the links between local dynamics on the one hand, local
analytic classification on the other hand, while at the same time hinting at how they can
help measuring divergence of some class of «summable» power series. We particularly
explain the role of complex geometry and analysis in understanding saddle-node bifur-
cations. We wish to underline that the two objects Z0 and (Zλ)λ6=0 are intertwined, as
dynamical properties for one can be deduced from studying objects attached to the other
and vice versa.

We do not wish to emphasize too much the link between orbital classification of Z• and
classification of its strong holonomy h•, the family of holomorphic first-return map of Zλ

on a fixed horizontal disc which crosses
{
x2 + λ = 0

}
for |λ| small enough. The connection

is very clearly explained by C. Rousseau for instance in [15] for saddle-node bifurcations,
or again in [16] for deformations of a resonant saddle stationary point. Although both
objects encode the same dynamics, and are classified by the same invariant under local
analytic equivalence and change of parameters, we take advantage of the extra dimension
the complex plane C2 offers to deploy more geometrical constructions à la Martinet-
Ramis [12, 22]. Instead of simply deducing the classification of vector fields from that of
holonomies, which would frankly spoil the fun, the present text is focused on building
objects specifically from the continuous nature of the dynamics of Zλ. Although both
moduli spaces end up with the same presentation, some formulations for vector fields
yield different characterizations of e.g. the orbital «compatibility condition» as compared
to holonomies [18]. A by-product of this approach is an explicit family of normal forms
for bifurcations Z• having persisting heteroclinic connections, generalizing [20] to the case
λ 6= 0. There is as yet no such known explicit universal family for holonomies h• (not
even for h0).

The choice has been made to focus mainly on precise constructions and sketches of proof
whenever doing so helps the exposition, while detailing the proofs of original material.
The missing technical details are to be found mostly in [19].

All notations and basic notions pertaining to the theory of holomorphic vector fields
and foliations shall be recalled in Section 1.2.

Section 1.3 is devoted to an introductory text, giving a brief historical overview and
explaining the main relationships between the former themes.

In that respect we present a more detailed account of the formal and local classifi-
cations in Section 1.4, where the main theorems are stated, and subsequent sections.
We particularly address in Section 1.9 the dynamical interpretation of the modulus of
classification.

1.1 Affine saddle-node bifurcations

The study of affine saddle-node vector fields was initiated in the second half of the nine-
teenth century by C. Bouquet and C. Briot [2] as a family of examples of invariant
manifolds existing at a formal level but not at an analytic one, generalizing the famous
Euler’s differential equation x2y′ = y − x. Their first significant result is the existence
of a formal weak separatrix for X0, that is an invariant formal curve {y = ŝ (x)} with
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ŝ ∈ C [[x]]. They obtained an explicit criterion for convergence of ŝ in terms of the Taylor
coefficients of a0, which we recover in Proposition 3 after a study aimed at understanding
how the trajectories of Xλ, λ 6= 0, evolve into those of X0.

We begin by explaining the easiest instance a• = 0. Standard results describing the
regularity of parametric solutions state that solutions yλ in (1.3) and (1.4) converge to
corresponding solutions for λ = 0

x2y′ (x) = y (x) (1.6)

y0 : x 7−→ c exp

(
− 1

x

)
, c ∈ C

uniformly on compact subsets of R6=0 as λ → 0 (it suffices to wait until the stationary
points have left the compact set). Now, can we say something about the convergence near
0 ? Obviously the question only makes sense for families of solutions bounded near 0 as
λ→ 0. For λ = 0 the limiting objects are center manifolds of the saddle-node stationary
point (0, 0) of X∞

0 . As a real vector field X∞
0 has infinitely many center manifolds passing

through (0, 0), each one given by the graph {y = s (x)} of the smooth (meaning C∞)
function

s : R −→ R

x ≤ 0 7−→ 0

x > 0 7−→ c exp

(
− 1

x

)

for arbitrary c ∈ R. Those are the only bounded solutions of (1.6) at 0. Only one of them
is analytic there, namely S0 := {y = 0}, all others being non-zero flat functions. This
property identifies uniquely a distinguished center manifold, called the weak separatrix
of X∞

0 , with the most regular dynamics. The weak separatrix is the limiting curve of the
family (Sλ)λ collecting the only smooth integral curve connecting both stationary points(
±
√
−λ, 0

)
for λ < 0. In this simple situation the only such heteroclinic integral curve

is Sλ = {y = 0}, since yλ in 1.3 is not of class Cr+1 at the node, r :=
⌈

1
2
√
−λ

⌉
, save for

c = 0.

Consider next a quadratic perturbation of X∞
• , the Euler family

Eλ (x, y) :=

[
x2 + λ

y −
(
x2 + λ

)
]

(1.7)

whose stationary points are again located at (±s, 0) where, for the sake of simplicity, we
set:

s :=
√
−λ .
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This is a special member of Affine (1) (see (1.5)) obtained by setting a• := 1, yet we are
to prove that together with X∞

• they somehow span all possible behaviors for members
of Affine (1).

For λ = 0 infinitely many smooth center manifolds persist through (0, 0), given by the
graphs of

s0 : R −→ R (1.8)

x < 0 7−→ exp

(
− 1

x

)
ˆ 0

x

exp

(
1

u

)
du

0 7−→ 0

x > 0 7−→ exp

(
− 1

x

)(
c+

ˆ 1

x

exp

(
1

u

)
du

)
.

A standard calculus exercise consists in checking for the smoothness of s0. Yet none of
these functions can be analytic, as if one were it would possess a convergent Taylor series
ŝ at 0 solving

x2ŝ′ (x) = ŝ (x)− x2 . (1.9)

A straightforward computation yields the unique formal power series

ŝ (x) = x
∑

n≥0

n!xn+1 ,

which has null radius of convergence. We say in that case that we encounter a divergent
weak separatrix. It is worth mentioning that the Taylor expansion of each s0 at 0 is ŝ.

Here we cannot distinguish a preferred center manifold in the class of analytic objects
at (0, 0). Although the divergence of the weak separatrix can be explained computation-
ally for the Euler family, the generic perturbation X• ∈ Affine (1) is impossible to deal
with this way since no reasonable closed-form formulas for the coefficients of ŝ exist in
general. Even so the basic formal approach, computing coefficients of ŝ one after the
other, cannot prove nor disprove the power series convergence in finite time. We propose
a dynamical approach instead to trace back the source of the divergence (Theorem 1),
which leads to the semi-decidability of the convergence of ŝ: there exists an algorithm
taking a «computable» a• as input and stopping in finite time if, and only if, ŝ diverges.
The key is to check whether the complex contour integral

ϕn
0 :=

1

2iπ

˛

rS1

a0 (z)

(
z + s

z − s

)1/2s

dz ∈ C

vanishes (meaning convergence), for r > 0 small enough. This viewpoint also allows us to
find a complete collection of normal formals (Theorem 2).

When λ < 0 write S−
λ the (analytic) stable manifold of the saddle-point located at

(−s, 0) and, when it exists, S+
λ the (analytic) unstable manifold of the node-point at (s, 0).

What happens in the Euler family is that no heteroclinic connection between stationary
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points takes place: S−
λ does not coincide with S+

λ . We aim to establish that this property
has a predominant bearing on the convergence of the weak separatrix.

Theorem 1. Consider a family X• ∈ Affine (1) as in (1.5). The implications (1)⇒(2)⇒(3)
hold, and if moreover ∂aλ

∂λ = 0 then (3)⇒(1).

1. The vector field Xλ has a heteroclinic connection for all λ < 0 sufficiently close to 0.
2. The vector field Xλ has a heteroclinic connection for values of λ < 0 accumulating on

0.
3. The vector field X0 admits a convergent weak separatrix (that is, an analytic center

manifold).

Remark 1.

1. In each item of the theorem the corresponding property is equivalent to the existence
of an open interval I ∋ 0 such that the differential equation

(
x2 + λ

)
y′ (x) = y (x)−

(
x2 + λ

)
aλ (x) (1.10)

admits a solution analytic on I, for every corresponding values of λ. The solution is
necessarily unique.

2. The practical usefulness of the theorem is by contraposition: if we happen to know that
X0 has a divergent weak separatrix then any unfolding X• ∈ Affine (1) of X0 eventually
sheds all heteroclinic connections as λ goes to 0.

We prove this theorem for the Euler family E• in the next Section 1.1.1 for (2)⇒(3) and
Section 1.1.2 for (3)⇒(1). After that step there are two ways to process the general case.
On the one hand the proof performed in Euler’s case could be adapted straightforwardly to
fit the more general setting. On the other hand we can provide a collection of normal forms
Xκ

• for Affine (1) on which the validity of the equivalences are easily read. This approach
brings also the benefit of characterizing completely situations for which (3)⇒(1) holds.

Theorem 2. Consider a family X• ∈ Affine (1) as in (1.5).

1. There exists a unique

κ ∈ N := Z≥0 ∪ {∞}

such that X• is conjugate to one of the models Xκ
•

Xκ
λ (x, y) :=

[
x2 + λ

y − λκ
(
x2 + λ

)
]

where we conventionally identify λ∞ and 0. This conjugacy can be chosen fibred in
the variables x and λ. Moreover families Xκ

• are mutually orbitally non-equivalent for
different values of κ.

2. The implication (3)⇒(1) in Theorem 1 holds if, and only if, κ ∈ {0,∞}. Notice that
the condition ∂aλ

∂λ = 0 implies κ ∈ {0,∞}.

This theorem, proved in Section 1.1.3 below, discriminates all three possible qualitative
dynamical behaviors occurring in Affine (1).
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κ = 0 Pure divergence. For every λ 6= 0 sufficiently close to 0 the vector field Xλ

has no heteroclinic connection while X0 has a divergent weak separatrix.
κ ∈ N>0 Sly convergence. For every λ 6= 0 sufficiently close to 0 the vector field Xλ

has no heteroclinic connection although X0 has a convergent weak separatrix.
κ = ∞ Pure convergence. For every λ 6= 0 sufficiently close to 0 the vector field Xλ

has a heteroclinic connection so that X0 has a convergent weak separatrix.

Here the modulus space N for analytical orbital classification is discrete. The property no
longer persists for families unfolding a more degenerate saddle-node, i.e. the coalescence
of k + 1 stationary points with k > 1. We refer to [19] for this more involved situation.

1.1.1 From heteroclinic connections to convergence

We must exclude values of the parameter λ for which there are no analytic unstable
manifold through the node of the Euler vector field Eλ. Although this phenomenon is not
generic, it still turns up for an infinite discrete set of parameters. The stable manifold is
always unique, given by the graph of

s−λ : ]− s, s[ −→ R

x 7−→
(
s− x

s+ x

)1/2s ˆ −s

x

(
s+ u

s− u

)1/2s

du . (1.11)

Proposition 1.

1. Eλ admits a (unique) analytic unstable manifold S+
λ if, and only if,

λ ∈ Λ̂ := R<0\
−1

4N2
.

2. There exists a unique function c :
√
−Λ̂→ R such that for all λ ∈ Λ̂ the manifold S+

λ

coincides with the graph of

s+λ : ]− s, s[ −→ R

x 7−→
(
s− x

s+ x

)1/2s
(
c (s) +

ˆ 0

x

(
s+ u

s− u

)1/2s

du

)
.

3. c is analytic.

Proof. First notice that whatever the value of c (s) may be, the graph of s+λ is an integral

curve of Eλ even when λ /∈ Λ̂. Swapping the order of summation and integration operations
in the expansion

(u+ s)
1/2s

=:

∞∑

n=0

α+
n (s) (u− s)

n
,
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which converges uniformly on compact subsets of ] − s, 3s[, we isolate the candidate
singular term of s+λ at s:

s+λ (x) =

(
s− x

s+ x

)1/2s

c (s)−

∑

n+16= 1
2s

α+
n (s) (−1)

n sn+1−1/2s

n+ 1− 1
2s

− α∗ (s) ln
s− x

s




+ (analytic at s)

where

α∗ (s) :=

{
0 if 1

2s /∈ N

1 otherwise
.

If 1
2s ∈ N no choice of c (s) ∈ C may yield an analytic s+λ . On the contrary for λ ∈ Λ̂ we

can only have

c (s) =

∞∑

n=0

α+
n (s) (−1)

n sn+1−1/2s

n+ 1− 1
2s

,

which is an analytic function of s. ⊓⊔
A consequence of the proposition is the following: if 1

2s ∈ N there are no heteroclinic

connection, while a heteroclinic connection for λ ∈ Λ̂ occurs exactly if

s−λ (0) = s+λ (0) ,

that is if

ϕ (s) := c (s) +

ˆ 0

−s

(
s+ u

s− u

)1/2s

du

vanishes.

Corollary 1. If ϕ vanishes on a set accumulating on 0 then ŝ converges.

The proof requires our switching to complex analysis in order to use compactness of
normal families of holomorphic functions. The main ingredient is therefore to show that(
s−λ
)
−1<λ<0

extends to a uniformly bounded family of analytic functions on the slit unit
disc

{z ∈ C\[s,∞[ : |z| < 1} .

We need to slit the disc because the complex (multivalued) extension of s−λ is given by
taking path integrals in the variation of constant method

s−λ (z) =

(
s− z

s+ z

)1/2s ˆ

γ(z)

(
s+ u

s− u

)1/2s

du (1.12)

where γ is a piecewise smooth path linking z 6= s to −s. We choose the determination of
the logarithm in such a way that s−λ (z) coincides with (1.11) on ]− s, s[.
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Remark 2. We will discuss the relevance of the multivaluedness of s−λ regarding the ques-
tion of convergence of ŝ in the next section, when proving the converse of the corollary.

Lemma 1. There exists C > 0 such that for every (λ, z) ∈]− 1, 0[×
(
S1\ {1}

)
we have

∣∣s−λ (z)
∣∣ ≤ C .

Proof. Let us build an adequate integration path γ (z) for which bounds are easily ob-
tained.

⊛ When ℑ (z) < 0 we first follow the shortest anticlockwise arc γ− (z) of S1 joining z to
−1, then the interval

Iλ : = [−1,−s] .

⊛ Otherwise we follow the shortest clockwise arc γ+ (z) of S1 joining z to −1 before Iλ.

For u ∈ Iλ we have 0 < u+s
u−s < 1 so that

ˆ −s

−1

(
u+ s

u− s

)1/2s

du ≤ (1− s) .

Moreover there exists C1 ≥ 0 for which

∣∣s−λ (z)
∣∣ ≤

∣∣∣∣
s− z

s+ z

∣∣∣∣
1/2s
(
(1− s) +

ˆ

γ±(z)

∣∣∣∣
s+ u

s− u

∣∣∣∣
1/2s

du

)
≤ C1 (1− s) + π

because on the one hand
∣∣∣ s+u
s−u

∣∣∣ ≤
∣∣∣ s+z
s−z

∣∣∣ when z ∈ S1 and u ∈ γ± (z), while on the other

hand
∣∣∣ s+z
s−z

∣∣∣ ≤ 1+s
1−s and lims→0

(
1+s
1−s

)1/2s

= e.

⊓⊔

We get on now with proving Corollary 1.

Proof. Each function s−λ , holomorphic on the slit unit disc, can be analytically extended
to the whole D precisely when it is analytic near s or, in other words, ϕ (s) = 0. Let Ω ⊂
ϕ−1 (0) be a set accumulating on 0. Because of Lemma (1) and of the maximum principle
we know that s−λ is bounded on D uniformly in −1 < λ < 0, i.e. the family

(
s−λ
)
λ∈Ω

is normal. Thus by Montel’s theorem we can consider an adherence value (for uniform
convergence on compacts sets of D) which must be a solution to Euler’s equation (1.9)
with analytic Taylor expansion at 0. But there is only one such formal power series solving
Euler’s equation, namely ŝ. ⊓⊔

Remark 3. We can give a series representation for ϕ using the expansions

(s± u)
±1/2s

=:

∞∑

n=0

α±
n (s) (u∓ s)

n

where the determination of the logarithm on the left hand side is chosen in such a way
that the function is real on ]− s, s[. In particular
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α+
n (−s) = (−1)

1/2s α−
n (s) = α−

n (s) exp
iπ

2s
.

In that setting

c (s) :=

∞∑

n=0

α+
n (s)

n+ 1− 1/2s
(−1)

n
sn+1−1/2s

and it is easy to compute

ˆ 0

−s

(
s+ u

s− u

)1/2s

du =

∞∑

n=0

α−
n (s)

n+ 1 + 1/2s
(−1)

n
sn+1+1/2s = −c (−s) ,

therefore

ϕ (s) = c (s)− c (−s) . (1.13)

1.1.2 From convergence to heteroclinic connections

We just observed that if s−λ is uniform (that is, not multivalued) then ŝ converges. We
want to establish the converse statement in the following way. When ŝ converges it defines
a real, entire holomorphic function, in particular for given x∗ > s

(x∗, y∗) := (x∗, ŝ (x∗))

is a well-defined point in R2. Consider the solution yλ of (1.10) with initial value (x∗, y∗)
and its local analytic continuation over

Dλ :=D\ {±s} .

We are more particularly interested in the analytic continuation of yλ along the unit
circle, which can be performed in the universal cover of D\ [−s, s] as we explain below. We
identify the action of the desk transform of this covering with the symbolic multiplication
of z by exp 2iπ, so that the analytic continuation of yλ along S1 can be conveniently
written yλ (x∗ exp 2iπ). Because (yλ)λ converges uniformly on compact subsets of ρ−1

(
S1
)

as λ→
<

0, if ŝ converges then we must have

lim
λ→

<
0
yλ (x∗ exp 2iπ) = y∗ .

Let us see how this observation relates to the presence of heteroclinic connections.

Proposition 2. For every λ ∈ Λ̂ and (x∗, y) ∈ R>s × R write z 7→ yλ (z, y) the solution
of (1.10) with initial value (x∗, y). The local analytic continuation of yλ (•, y) over S1

follows the rule
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yλ (x∗ exp 2iπ, y) = y − 2i

(
x∗ − s

x∗ + s

)1/2s

ϕ (s) sin
π

2s
ϕ .

In particular

lim
λ→

<
0
yλ (x∗ exp 2iπ) = y∗

if, and only if,

lim
s→0

ϕ (s) sin
π

2s
= 0 .

Remark 4. Notice that when y ∈ R and λ ∈ Λ̂ the continued value yλ (x∗ exp 2iπ, y) is

never real since
(

x∗−s
x∗+s

)1/2s

ϕ (s) sin π
2s ∈ R.

In order to establish the proposition we need to understand the monodromy of

ĝs : z 6= ±s 7−→
(
s+ z

s− z

)1/2s

.

We fix a determination ĝ∗s of ĝs on
(
D\R

)
∪]− s, s[ in such a way that ĝ∗s|]−s,s[ coincides

with the canonical real determination used previously. For any path γ, starting from 0
with image included in Dλ, we define

ĝs (γ) := ĝ∗s (0) exp

ˆ

γ

du

u2 + λ
.

Fix a system γ± of generators of π1
(
Dλ, 0

)
whose index around ±s is 1 and 0 around the

other point. The monodromy of ĝs is multiplicative and given by

ĝs
(
γ± ∧ γ

)
= ĝs (γ) exp

˛

γ±

du

u2 + λ
= ĝs (γ) exp

±iπ

s
,

according to the residue formula and the identity

−1

z2 + λ
=

1

2s

(
1

s+ z
+

1

s− z

)
.

In particular

ĝs
(
γ− ∧ γ+ ∧ γ

)
= gs (γ)

so that ĝ∗s is actually holomorphically extendable to D\ [−s, s], as claimed. We prove now
the proposition.

Proof. The difference

yλ (x∗ exp 2iπ, y)− y = − 1

ĝ∗s (x∗)

˛

S1

ĝ∗s (u) du
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can be computed by deforming S1 into the concatenation γ− ∧ γ+ of generators of
π1
(
Dλ, 0

)
given by

γ− : t ∈ [0, 1] 7−→ −s+ s exp (2iπt)

γ+ : t ∈ [0, 1] 7−→ s− s exp (2iπ (t− 1))

using the relation

˛

S1

ĝ∗s (u) du =

ˆ

γ−
ĝs (u) du+

ˆ

γ+

ĝs (u) du

(notice that we do not use the symbol
¸

for the paths γ± because this integration really
happens in the universal cover of Dλ and the lift of γ± is not a loop). Using the notations
and formulas presented in Remark 3 we compute

ˆ

γ−
ĝs (u) du =

∞∑

n=0

α−
n (s)

n+ 1 + 1/2s

[
zn+1+1/2s

]s exp 2iπ

s

=

(
1− exp

iπ

s

)
c (−s)

with z := u+ s, then

ˆ

γ+

ĝs (u) du =
∞∑

n=0

α+
n (s) (−1)

n+1

n+ 1− 1/2s

[
zn+1−1/2s

]s
s exp(−2iπ)

=

(
exp

iπ

s
− 1

)
c (s)

with z := s− u. The conclusion follows from

1

ĝ∗s (x∗)
=

(
x∗ − s

x∗ + s

)1/2s

exp
−iπ

2s

and from (1.13). ⊓⊔

We end the story by an explicit computation which settles the question of the diver-
gence of ŝ.

Lemma 2. For every λ ∈ Λ̂ we have

ϕ (s) sin
π

2s
= π .

Proof. We just proved

ϕ (s) sin
π

2s
= π × exp

−iπ

2s
× 1

2iπ

˛

S1

ĝ∗s (u) du

= π × 1

2iπ

˛

S1

(
u+ s

u− s

)1/2s

du .
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The latter integral can be evaluated using the residue formula at ∞ since z 7→
(

z+s
z−s

)1/2s

is holomorphic at this point. Setting w := 1
u we compute

(
z + s

z − s

)1/2s

=

(
1 + ws

1− ws

)1/2s

= exp (w + o (w))

and

1

2iπ

˛

S1

(
u+ s

u− s

)1/2s

du =
1

2iπ

˛

S1

exp (w + o (w))
dw

w2
= 1 .

1.1.3 Normal forms

We just established the equivalence in the Euler family between

⊛ divergence of ŝ,
⊛ absence of heteroclinic connections (non-vanishing of ϕ),
⊛ non-vanishing of the integral

ϕn
s :=

1

2iπ

˛

S1

(
u+ s

u− s

)1/2s

du =
1

π
ϕ (s) sin

π

2s
= 1 .

In order to establish the classification Theorem 2 we need to find an (almost) invariant
quantity under changes of coordinates. This invariant turns out to be ϕn

• . One can argue
that it suffices to consider ϕ instead, which is somehow nicer because of its dynamical
flavor. Yet ϕ is afflicted of serious drawbacks:

⊛ ϕ presents an accumulation of poles as s −→
>

0, and there is no hope of extending it

analytically at 0,
⊛ ϕ is odd, and there is no hope of extending it holomorphically on an annulus surround-

ing 0 as a function of λ.

None of these shortcomings hinder ϕn
• , even in the more general setting of affine unfoldings.

Proposition 3. For X• ∈ Affine (1) as in (1.5) we may find ρ > 0 such that (λ, x) 7→
aλ (x) is holomorphic on ρ2D × ρD. For s ∈ ρD\ {0} define

ϕn
s :=

1

2iπ

˛

ρS1

a−s2 (u)

(
u+ s

u− s

)1/2s

du . (1.14)

1. The holomorphic mapping s 7→ ϕn
s can be continued to an even germ of a holomorphic

function at 0 satisfying

ϕn
0 =

1

2iπ

˛

S1

a0 (u) exp
1

u
du .
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2. Write aλ (x) =
∑∞

n=0 φn (λ) x
n. Then for s ∈ ρD\ {0}

ϕn
s =

∞∑

n=0

φn
(
−s2

)

(n+ 1)!
× 1

2n

∑

p+q=n

(
n

p

) p∏

j=1

(1 + 2sj)

q∏

j=1

(1− 2sj) ,

with limit

ϕn
0 =

∞∑

n=0

φn (0)

(n+ 1)!
.

3. The formal solution ŝ with ŝ (0) = 0 of

x2y′ (x) = y (x) − x2a0 (x)

converges if, and only if, ϕn
0 = 0.

Remark 5. We deduce the determination of gs :=
(

•+s
•−s

)1/2s

from that of the function ĝs

built in Section 1.1.2 by setting

gs := ĝs exp
−iπ

2s
.

The multiplicative monodromy of gs is the same as that of ĝs.

Proof.

1. Although it is a consequence of 2. we can prove directly the property. First notice
that ϕn

−s = ϕn
s . Also z 7→ a−s2 (z) gs (z) converges uniformly to z 7→ a0 (z) exp

1
z on

ρS1 as s → 0, so that s 7→ ϕn
s is bounded on a pointed neighborhood of 0. Riemann’s

removable singularity theorem yields the conclusion. This is a trick used broadly in
this text.

2. For n ∈ Z≥0 let us evaluate

ts (n) :=
1

2iπ

˛

S1

ungs (u) du .

The residue formula used in Lemma 2 to compute ts (0) sure works here, yet one
would have to formally derive a closed-form for the Taylor coefficients of z 7→ gs (z)
at ∞, which is no trivial task. We relate instead the computation at hands to the
Beta function, more precisely its integral representation along a Pochhammer contour
around 0 and 1. Introduce first the contour around −s and s

P := γ+ ∧ γ− ∧
(
−γ+

)
∧
(
−γ−

)
(1.15)

where γ± are generators of π1
(
D\ {±s} , 0

)
as described in Section 1.1.2. The identity

˛

P
ungs (u) du =

(
exp

−iπ

s
− 1

)
˛

S1

ungs (u) du
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holds because the value of gs above γ+ ∧ γ− is multiplied by exp −iπ
s as compared to

that above (−γ+) ∧ (−γ−).
We invoke now the standard formula

(1− exp 2iaπ) (1− exp 2ibπ)B (a, b) =

˛

P̂
za−1 (1− z)b−1 dz , (1.16)

where P̂ is a Pochhammer contour around 0 and 1. We can take for P̂ the image of P
under the change of variable

z :=
1

2s
(s− u)

which transforms u− s into −2sz (maps s on 0) and u+ s into 2s (1− z) (maps −s on
1). It is therefore relevant to work with the expansion

un =
1

2n

∑

p+q=n

(
n

p

)
(u+ s)p (u− s)q .

From (1.16) we compute, for p+ q = n non-negative integers,

tp,q :=

˛

S1

(u+ s)
p+1/2s

(u− s)
q−1/2s

du

=
1

exp −iπ
s − 1

˛

P
(u+ s)

p+1/2s
(u− s)

q−1/2s
du

=
(2s)

n+1

1− exp −iπ
s

exp
−iπ

2s

˛

P̂
(1− z)

p+1/2s
zq−

1/2sdz

=
(2s)

n+1

1− exp −iπ
s

exp
−iπ

2s

(
1− exp

−iπ

s

)(
1− exp

iπ

s

)
B

(
1 + q − 1

2s
, 1 + p+

1

2s

)

= 2i (2s)
n+1

sin
π

2s
B

(
1 + q − 1

2s
, 1 + p+

1

2s

)

=
2i

(n+ 1)!
(2s)

n+1
sin

π

2s
Γ

(
1 + q − 1

2s

)
Γ

(
1 + p+

1

2s

)
.

Since Γ (z + 1) = zΓ (z) and Γ (1− z)Γ (z) = π
sinπz we deduce finally

tp,q =
2iπ

(n+ 1)!

p∏

j=1

(1 + 2sj)

q∏

j=1

(1− 2sj)

and

ts (n) =
1

2n (n+ 1)!

∑

p+q=n

(
n

p

) p∏

j=1

(1 + 2sj)

q∏

j=1

(1− 2sj) .

Because ϕn
s is obtained by integrating a holomorphic 1-form on a compact loop we can

swap the order of summation operators:



16 L. Teyssier

˛

S1

a−s2 (u) gs (u) du =

∞∑

n=0

φn
(
−s2

)
ts (n) .

3. After applying a convenient linear scaling of the x-coordinate we can assume that a0
is holomorphic on D. For z ∈ D\ [0, 1] consider a path γ (z) joining 0 directly to −1,
then reaching z within the domain. The function

s−0 : z ∈ D\ [0, 1] 7−→ exp
−1

z

ˆ

γ(z)

a0 (u) exp
1

u
du

is well-defined and holomorphic on D\ [0, 1]. It is the only solution to the equation
which tends to 0 at 0 over R<0. It must therefore coincide with ŝ when one of the two
objects represents a holomorphic function on D. The conclusion follows from the fact
that ϕn

0 embodies the monodromy of the multivalued continuation of s−0 on D\ {0}.
⊓⊔

Let us present now the classification theorem.

Theorem 3. Take two families X• and X̃• of Affine (1). The following properties are
equivalent.

1. There exists a germ of a holomorphic function λ 7→ c (λ) with c (0) 6= 0 such that for
all s sufficiently close to 0

ϕ̃n
s = c

(
−s2

)
ϕn
s .

2. X• and X̃• are conjugate.

Any conjugacy between the two families must fix λ, and in that case a change of coor-
dinates Ψ• such that Ψ∗

•X• = X̃• exists in the form

(λ, x, y) 7−→ (λ , x , yc (λ) + φλ (x)) .

Proof.

1. ⇒ 2. We find a germ of a holomorphic function (s, x) 7→ ψs (x) such that

Ψ−s2 (x, y) :=
(
x, yc

(
−s2

)
+ ψs (x)

)

satisfies Ψ∗
−s2X−s2 = X̃−s2 . We prove next that s 7→ ψs is even, so that there exists a

holomorphic function (λ, x) 7→ φλ (x) with φ−s2 = ψs. By definition we need to solve
the equation

DΨλ (Xλ) = X̃λ ◦ Ψλ

where λ := −s2, that is

z2ψ′
s (z) = ψs (z)− δλ (z)

(
z2 + λ

)

where
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δλ (z) := ãλ (z)− c (λ) aλ (z) .

Without loss of generality we can assume that c is holomorphic on D. Suppose first
that 0 < s < 1. The method of variation of the constant yields

ψs (z) =
1

gs (z)

ˆ −s

z

δλ (u) gs (u) du ,

which is holomorphic on D\ [s, 1]. Because ϕ̃n
s = c

(
−s2

)
ϕn
s the function ψs extends

to a uniform (holomorphic) function on D\ {s}. As in Lemma 1 it is easy to prove
that ψs is bounded on S1 (uniformly in s). Using the maximum modulus principle and
Riemann’s removable singularity theorem we deduce that ψs extends holomorphically
to D. Montel’s theorem ensures that (ψs)s converges uniformly on D to some function

ψ0 for which Ψ∗
0X0 = X̃λ.

The above construction can be holomorphically continued for all s ∈ D\R , in that case
the graph of ψs coincides with the invariant manifold of the collection ∆• ∈ Affine (1),

∆λ (x, y) :=

[
x2 + λ

y − δλ (x)
(
x2 + λ

)
]
,

passing through the hyperbolic point (−s, 0) and transverse to the line {z = −s}.
This manifold is unique, as other non-vertical trajectories of ∆λ are multivalued. This
property guarantees that a heteroclinic connection occurs in ∆λ, otherwise ψs would
not be uniform near (s, 0). Therefore the local graph of ψs near (s, 0) = (− (−s) , 0)
coincides with that of ψ−s. From the analytic continuation principle we derive ψ−s = ψs

for s ∈ D\R, which allows to extend holomorphically (s, x) 7→ ψs (x) to D × D to an
even function of s, as expected.

2. ⇒ 1. Take an orbital equivalence

Ψ : (λ, x, y) 7−→ (φ (λ) , Ψλ (x, y)) ∈ Diff
(
C3, 0

)

between X• and X̃•. Assuming that Ψ is holomorphic on D×D×D does not lessen the
generality of our argument. We prove that φ = Id. The key ingredient is the following
classical fact.

Lemma 3. Take p ∈ C2 a stationary point of a holomorphic vector field X, and con-
sider the linear part of X at p, i.e. the linear mapping DX (p). Let Lp (X) denote the
equivalence class of its spectrum under the equivalence

{λ1, λ2} !

{
λ̃1, λ̃2

}
⇐⇒ (∃c ∈ C6=0) : {λ1, λ2} = c

{
λ̃1, λ̃2

}
.

Then Lp (X) is invariant under orbital equivalence.

In our situation for given λ the diffeomorphism Ψλ maps p± :=
(
±
√
−λ, 0

)
to p̃± =(

± (−1)
ℓ√−φ (λ), 0

)
for some integer ℓ. Because the spectrum of the linearization of

Xλ at p± is
{
±2

√
−λ, 1

}
we must have
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



√
−λ =

√
−φ (λ) (−1)

ℓ

or

1 =
√
−λ
√
−φ (λ) (−1)

ℓ

.

The former identity yields λ = φ (λ) while the latter λφ (λ) = 1 cannot hold on a
neighborhood of 0. Also Ψλ must fix each stationary point (±s, 0). We will not prove
that Ψλ can be taken to act identically on the x-variable, although it is the case (see
e.g. [19, 20]). The other claims can be recovered by a formal computation.

⊓⊔

Corollary 2. For X• ∈ Affine (1) there exists a unique

κ ∈ N := Z≥0 ∪ {∞}

such that X• is conjugate to one of the models Xκ
•

Xκ
λ (x, y) :=

[
x2 + λ

y − λκ
(
x2 + λ

)
]

where we conventionally identify λ∞ and 0. Moreover families Xκ
• are mutually orbitally

non-equivalent for different values of κ.

Proof. There exists a unique κ such that

ϕn
s =

s2κ

c (−s2)

for a germ c of a holomorphic function at 0 satisfying c (0) 6= 0. Observe that the invariant
ϕ̃n
s associated to Xκ

λ equals s2κ. Using Theorem 3 we obtain the first claim. The theorem
also implies that if Xκ

• is orbitally equivalent to Xκ̃
• then λκ̃ = λκc (λ) for some holomor-

phic function c with c (0) 6= 0 and every λ close enough to 0. Therefore κ = κ̃. ⊓⊔

1.2 Basic objects and notations

We chose to frame our study in a geometric setting, with its own standard terminology.
We present below basic objects attached to singular holomorphic vector fields: directional
derivative, flow, change of coordinates, and most importantly singular foliations, first
integrals and normal forms. We recall related basic results of differential geometry. Read-
ers familiar with these concepts should skim briefly through this section mainly to fix
notations. The core of the exposition starts in Section 1.3.

1.2.1 Standard notations

In this paragraph n is a positive integer. All rings are commutative and unital.
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⊛ We use the convention N = {1, 2, . . .}. By putting expressions as index of N, Z, Q, R

or C we build subsets of the space satisfying said expressions, e.g. R<−1 =]∞,−1[ or
Z≥0 = {0} ∪ N.

⊛ The open unit disc of C is written

D := {z ∈ C : |z| < 1}

and we denote by D := adh (D) the closed unit disc. Also

S1 : = D\D = ∂D = {z ∈ C : |z| = 1}

stands for the unit circle of the complex line.
⊛ A complex number z ∈ C has real part ℜ (z) and imaginary part ℑ (z).
⊛ The multiplicative group of invertible elements of a ring R is written R×.
⊛ The ring of polynomials in the variables (zj)1≤j≤n over a ring R is written

R [z1, . . . , zn] ,

while for ⋆ ∈ {<,≤,=,≥, >} and d ∈ N the notation R [z1, . . . , zn]⋆d stands for the set
of such polynomials of homogeneous degree δ satisfying δ ⋆ d.

⊛ The ring of all formal power series in the variables (zj)1≤j≤n over R is written

R [[z1, . . . , zn]] .

⊛ For p ∈ Cn the notation

(Cn, p)

should stand for the set of domains of Cn containing p, but by a standard and convenient
abuse of notations we actually write (Cn, p) to mean some small enough such domain,
much like the usage for Landau’s o (•) and O(•) notations.

⊛ The algebra of holomorphic functions on an open set U ⊂ Cn is written Holo (U). We
say that a function is holomorphic on A ⊂ Cn if it belongs to some Holo (U) for A ⊂ U .
The algebra of all such germs of a function is denoted by Holo (A).

⊛ In the special case A = {p} we more conventionally refer to Holo ({p}) as

Holo (Cn, p) ,

the algebra of germs at p of a holomorphic functions. The group Holo (Cn, p)
×

consists
of all germs U ∈ Holo (Cn, p) such that U (p) 6= 0.

⊛ If moreover p = 0 we identify Holo (Cn, 0) with the sub-algebra

C {z1, . . . , zn}

of C [[z1, . . . , zn]] consisting in formal power series which are absolutely convergent on
a neighborhood of 0.

⊛ The Holo (U)-module of all holomorphic vector fields on U is written X (U). The
Holo (Cn, p)-module of all germs at p of a holomorphic vector field is written
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X (Cn, p) .

⊛ The set of biholomorphic mappings U → Ũ from an open set U ⊂ Cn onto another

one Ũ is written Diff
(
U → Ũ

)
. As before this construction can be germified near

any A, Ã ⊂ Cn, yielding the set Diff
(
A→ Ã

)
whose elements Ψ belong to some

Diff
(
U → Ũ

)
with A ⊂ U , Ã ⊂ Ũ and Ψ (A) = Ã.

⊛ In the special caseA = {p} and Ã = {p̃} we conventionally write Diff ((Cn, p) → (Cn, p̃))
instead. If moreover p = p̃ we name

Diff (Cn, p)

the (pseudo)group of germs of a diffeomorphism fixing p.
⊛ A tuple of power series Ψ = (Ψj)1≤j≤n ∈ C [[z1, . . . , zn]]

n
is a formal diffeomorphism

when Ψ (0) = 0 and Ψ is invertible for the composition of formal power series (that is,
DΨ (0) ∈ GLn (C)). The group of all such formal diffeomorphisms is written

D̂iff (Cn, 0) .

1.2.2 Lie derivative

Till the end of Section 1.2 we are given a vector field Z 6= 0 holomorphic on a domain
U ⊂ C2, which we understand as a section

U −→ TU = U × C2

p 7−→ (p , Z (p))

of the tangent bundle of U . We write vector fields as derivations expressed in the canonical

basis
(

∂
∂x ,

∂
∂y

)
, say

Z = A
∂

∂x
+B

∂

∂y

for two unique functions A, B ∈ Holo (U) not both identically zero.

Example 1. The simplest saddle-node encountered in (1.1) can be written

X∞
0 (x, y) = x2

∂

∂x
+ y

∂

∂y
.

The associated Lie (directional) derivative on functions f (or formal power series) is
defined by

Z · f := A
∂f

∂x
+B

∂f

∂y
.
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Considering Z (p) as an element of the tangent space of U at p we have

Z · f = Df (Z) .

The Lie bracket of two vector fieldsX and Y is the vector field whose action by derivation
is

[X,Y ] · f := X · Y · f − Y ·X · f .

We write for short [X,Y ] = X ·Y −Y ·X , which makes sense component-wise and endows
the space of vector fields with a Lie algebra structure. When [X,Y ] = 0 we say that X
and Y commute.

We define inductively for m ∈ Z≥0

Z ·0 f := f

Z·m+1 := Z · (Z ·m f) .

The action is extended component-wise to vectors or matrices of functions.
Any holomorphic function H ∈ Holo (U) such that

Z ·H = 0

is called a first integral of Z.

Example 2. The function H : (x, y) 7→ y exp 1
x is a first integral of the saddle-node X∞

0

on C× × C.

1.2.3 Flow, integral curves and singularities

The local flow of Z at p ∈ U is the germ of a mapping

Φ• :
(
C2, p

)
× (C, 0) −→ C2

(x, y, t) 7−→ Φ (x, y)

defined as the unique local solution to the flow-system of Z

dΦt
Z (x, y)

dt
= Z ◦ Φt

Z (x, y)

Φ0
Z (x, y) = (x, y) .

The Lie formula gives a series expansion, normally convergent near p× {0}, in the form

Φt
Z =

∞∑

m=0

tm

m!
Z ·m Id , (1.17)

where Id : (x, y) 7→ (x, y) is the identity of the complex plane. More generally for any
G ∈ Holo (U) we have (locally for all t ∈ (C, 0))
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G ◦ Φt
Z =

∞∑

m=0

tm

m!
Z ·m G . (1.18)

(In particular G is a first integral of Z if, and only if, G is constant along every integral
curves of Z.) If 0 ∈ U the formula also holds for any formal power series G ∈ C [[x, y]],
the right-hand side belonging to C [[x, y, t]].

Example 3. We compute easily

Φt
X∞

0
(x, y) =

∞∑

n=0

tn

n!

(
n!xn+1 , y

)
=

(
x

1− tx
, y exp t

)

For fixed p we perform the maximal analytic continuation of t 7→ Φt
Z (p) by patching

in the appropriate fashion well-chosen solutions to nearby flow systems. The result is a
curve parameterization Φ•

Z (p) : Sp → U from a connected Riemann surface Sp onto
the integral curve of Z passing through p. One encounters also the terminology «orbit
of p under (the flow of) Z», which is not use as such here but helps explaining some
terminology we employ below for changes of coordinates. The parameterization itself may
be referred to as the trajectory of Z passing through p. It is the natural parameterization
of the integral curve by the time of Z. Two vector fields Z and X on U have same integral
curves if, and only if,

Z = UX

for some U ∈ Holo (U)×.
Notice that according to (1.18) the following identity holds (locally for all t ∈ (C, 0))

Z · Φt
Z = Z ◦ Φt

Z .

A singularity (or stationary point) of Z is a point p ∈ U such that Z (p) = 0. The set
of singular points of Z is written Sing (Z). Outside Sing (Z) we say that Z is regular.
Singularities of Z are the only constant trajectories.

Example 4. The only singularity of X∞
0 is located at (0, 0). It is therefore isolated. Any

other integral curve, distinct from {x = 0 , y 6= 0}, coincides with a level curve of the first
integral H (x, y) = y exp 1

x . For arbitrary p = (x, y) ∈ C2, the trajectory of the integral
curve passing through p is defined on Sp = C\

{
1
x

}
.

1.2.4 Holomorphic foliations

We wish to describe the holomorphic singular foliation F = FZ associated to Z on
U . Roughly speaking it is the partition of U into singular points and leaves, the latter
corresponding to non-constant integral curves (without referring to a particular parame-
terization). There is a small catch, though, when Z is singular at p but the singularity is
not isolated. In that case we can factor out a greatest common divisor in the components
of Z, yielding a (local) decomposition Z = UX , where U ∈ Holo

(
C2, p

)
vanishes at p
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and X ∈ X
(
C2, p

)
either is regular or has an isolated singularity at p. All such eventually

isolated singularities p ∈ Sing (X) form the singular set Sing (F) of F. By each point
p /∈ Sing (F) passes a unique leaf Lp of the foliation, which is the maximal connected
smooth complex curve tangent to Z and containing p. It is obtained by gluing integral
curves of corresponding local vector fields X .

Two foliations FZ and FX are identical if, and only if, there exists V, W ∈ Holo (U) \ {0}
such that V Z = WX . If Z has only isolated singularities in U then the conditions boils
down to Z = UX for some U ∈ Holo (U)×.

The restriction of F to a subdomain V ⊂ U is the foliation

F|V

of V , with singularities located at points of V∩Sing (F) and whose leaves are the connected
components of V ∩ Lp for each p ∈ V .

Example 5. Take U := C2 and Z : (x, y) 7→ yX∞
0 (x, y). the vector field Z has the

line {y = 0} for singular set. Yet FZ = FX∞
0

has only one singularity at (0, 0), all

other leaf is either of the form
{
y = c exp −1

x , x 6= 0
}

for some c ∈ C, or coincides with
{x = 0 , y 6= 0}.

1.2.5 Changes of coordinates

We define the action of Diff
(
Ũ → U

)
by change of coordinates on vector fields. On

the source space U of the vector field, Ψ ∈ Diff
(
Ũ → U

)
acts as a usual mapping by

composition. The action on the range space TŨ is induced by the direct product Ψ ⊕DΨ ,
sending (p,v) ∈ Ũ ×C2 to (Ψ (p) ,DΨ (p) (v)). We write Ψ∗Z the element of X (U) defined
in such a way that the following diagram commute

Ũ Ψ
//

Ψ∗Z
��

U

Z

��

TŨ
Ψ⊕DΨ

// TU

that is

Ψ∗Z = (DΨ)
−1

(Z ◦ Ψ) . (1.19)

The vector field Ψ∗Z is called the pullback of Z by Ψ . In that situation trajectories of
Ψ∗Z are mapped to trajectories of Z, leaving the natural time unchanged (locally for all
t ∈ (C, 0)):

Ψ ◦ Φt
Ψ∗Z = Φt

Z ◦ Ψ . (1.20)
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We say that Z ∈ X (U) and Z̃ ∈ X
(
Ũ
)

are analytically conjugate if there exists

Ψ ∈ Diff
(
Ũ → U

)
such that Z̃ = Ψ∗Z. This is equivalent to the conjugacy equation

Z̃ · Ψ = Z ◦ Ψ (1.21)

being satisfied.

We say that Z and Z̃ are analytically orbitally equivalent when there exists Ũ ∈
Holo

(
Ũ
)×

such that Z is conjugate to Ũ Z̃. This means that Z is conjugate to a vector

field with same integral curves as Z̃, in other words that integral curves of Z̃ are mapped
under Ψ onto integral curves of Z, yet the natural time changes in general.

Naturally all these notions can be germified. We then speak of local conjugacy and

local orbital equivalence. If (1.21) holds at a formal level for some Ψ ∈ D̂iff
(
C2, 0

)
then

Z is formally conjugate to Z̃. If Z is formally conjugate to some Ũ Z̃ with Ũ ∈ C [[x, y]]
×

then Z is formally orbitally equivalent to Z̃.

In case Z is (analytically, locally) orbitally equivalent to Z̃, a bijection Ψ realizing the
equivalence maps Sing (FZ̃) onto Sing (FZ) and sends each leaf of FZ̃ onto a leaf of FZ .
We say the foliations FZ and FZ̃ are (analytically, locally) conjugate and define

Ψ∗FZ := FΨ∗Z .

We extend the terminology in the obvious way for formal diffeomorphisms, speaking of
formal conjugacy between foliations.

Example 6. If one lets Ψ̂ be (x, y) 7→ (x, y − ŝ (x)), where ŝ is the formal solution to (1.9),

then E0 = Ψ̂∗X∞
0 since

X∞
0 ◦ Ψ̂ (x, y) = x2

∂

∂x
+ (y − ŝ (x))

∂

∂y

E0 · Ψ̂ (x, y) = x2
∂

∂x
+
(
y − x2ŝ′ (x)− x2

) ∂
∂y

.

1.2.6 Flow-boxes and first integrals

Around a regular point p /∈ Sing (F) we can apply the rectification theorem to some regular
X ∈ X

(
C2, p

)
defining the foliation: there exists a local diffeomorphism Ψ :

(
C2, p

)
→(

C2, p
)

such that Ψ∗X = ∂
∂x . Hence the leaves of F|(C2,p) are images of small «horizontal»

discs included in {y = cst}. A pair (D, Ψ) of a domain D =
(
C2, p

)
and a map Ψ ∈

Diff (D → (Cn, p)) sending X to ∂
∂x is called a rectifying chart (or flow-box) for F.

Level sets of

H : Ψ (D) −→ C

Ψ (x, y) 7−→ y
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coincide with leaves of F|Ψ(D). Because H is constant on integral curves of X it is a
first integral of X . Analogically any holomorphic function H ∈ Holo (V) on a subdomain
V ⊂ U , which is a first integral of Z|V , is called a first integral of F on V . Level sets
of H are saturated by F|V . When a connected level set of a non-constant first integral H
does not contain a singularity of F then it coincides with a single leaf of F|V . We say that
H has connected fibers when it is non-constant and every level set is connected. When
there exists a first integral with connected fibers H then the algebra of all first integrals
FirstIntegral (V) on V is functionally generated by H :

Holo (H (V)) −→ FirstIntegral (V)
f 7−→ f ◦H

is bijective: any first integral factors uniquely holomorphically through H .

Example 7. The function H (x, y) := xy is a first integral of X (x, y) := x ∂
∂x − y ∂

∂y . Its

fibers are the connected Riemann surfaces {xy = c}. Notice that the two branches of
{xy = 0} are disconnected when the singularity (0, 0) is removed from them.

The equation X · F = 0 has formal solutions F (x, y) =
∑

n,m≥0 fn,mx
nym satisfy-

ing fn,m = 0 if n 6= m, while each fn,n is free to chose in C. Therefore F (x, y) =∑
n≥0 hn,n (xy)

n
= f (xy) where f (t) :=

∑
n≥0 fn,nt

n.

1.2.7 Moduli spaces, normal forms

The local rectification theorem says that there is a single equivalence class for local con-
jugacy near a regular point. One important goal in the theory of vector fields is therefore
to understand qualitative behaviors near singular points up to diverse conjugacy notions
(and their orbital counterparts for foliations). This means to describe the quotients, called

moduli spaces, of X
(
C2, 0

)
under the action by conjugacy of Diff

(
C2, 0

)
or D̂iff

(
C2, 0

)

respectively, i.e. to perform the (local, formal) classification by identifying a complete set
of objects invariant under conjugacy. We call such objects (local, formal) invariants.

An important invariant is the following. Take p ∈ Sing (Z) and consider the linear part
of Z at p, i.e. the linear mapping DZ (p). Then its spectrum, written Spec (Z, p) for the
sake of simplicity, is invariant under formal conjugacy:

∀Ψ ∈ Diff ((Cn, p̃) → (Cn, p)) Spec (Ψ∗Z, p̃) = Spec (Z, p) .

Besides, let Λ (Z, p) be the equivalence class of Spec (Z, P ) under

{l1, l2} !

{
l̃1, l̃2

}
⇐⇒

(
∃c ∈ C×) : {l1, l2} = c

{
l̃1, l̃2

}
.

Then Λ (Z, p) is invariant under formal orbital equivalences. The quotient space is nat-
urally isomorphic to the double cover of P1 (C) ramified over [1 : 1] and [−1 : 1], ob-
tained under the obvious Z/2Z-action [l1 : l2] 7→ [l2 : l1] in homogeneous coordinates.
The quotient is a smooth, compact Riemann surface of genus 0 parameterized by
[l1 : l2] 7→

[
l21 + l22 : l1l2

]
, therefore itself a conformal projective line P1 (C).
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Generically this is the only invariant, as if l1l2 6= 0 and l1/l2 /∈ R then the vector field
is hyperbolic and Poincaré’s theorem guarantees that Z is locally linearizable: there
exists Ψ ∈ Diff

(
C2, 0

)
such that Ψ∗Z = l1x

∂
∂x + l2y

∂
∂y .

To be altogether correct, we need to mention that the group D̂iff
(
C2, 0

)
does not really

act on X
(
C2, 0

)
. If Ψ ∈ D̂iff

(
C2, 0

)
there is no reason why Ψ∗Z should be a holomorphic

vector field, even though (1.19) defines a perfectly valid vector field with formal power
series components. Yet being formally conjugate defines an equivalence relation, and we
write resulting quotients as if they were quotients of a group action, for convenience sake.

The complete invariants we seek should differ in nature from simply stating «the equiv-
alence class in the quotient». We particularly wish to build non-trivial bijective mappings
between the various flavors of moduli spaces and some functional spaces. Classifying vec-
tor fields is out of reach in such a general form, although it can be carried out for smaller
classes of vector fields. We take F ⊂ X

(
C2, 0

)
and write respectively

Modloc (F) :=
F/Diff

(
C2, 0

)

Modfor (F) :=
F/D̂iff

(
C2, 0

)

the corresponding moduli spaces. Since formal conjugacy is weaker than local conjugacy
there is a canonical map Modloc (F) ։ Modfor (F), and this is why in practice we fix a
formal equivalence class and perform the local classification within. The notation

[Z]⋆ ∈ Mod⋆ (F) , ⋆ ∈ {for, loc}

stands for the equivalence class of Z ∈ F with respect to corresponding class of conjugacy.

Let Mod⋆ (F) =
F/G stand for one of the above quotients and let Ω be a set. We call

⊛ an injective mapping C : Mod⋆ (F) → Ω a classification of Mod⋆ (F) (it is complete
when surjective),

⊛ a surjective mapping R : Ω → Mod⋆ (F) a realization of Mod⋆ (F) .

The best way to realize a moduli space Mod⋆ (F) in a concrete form is to find a collection of
(local, formal) normal forms NF⋆ (F) ⊂ F satisfying the first two following properties:

Versality The natural map NF⋆ (F)/G→ F/G is bijective
Uniqueness There exists ν ∈ N and a smooth Cν-action on NF⋆ (F) such that for any

Z ∈ NF⋆ (F) the whole equivalence class [Z] ∈ Mod⋆ (F) is included in a
single orbit.

Simplicity Although being primarily opinion-based, it is generally expected that elements
of NF⋆ (F) have «simple» expressions in some «natural» basis of the tangent
bundle.

Remark 6. The clause of uniqueness states that a normal form Z ∈ NF⋆ (F) is unique «up
to a finite-dimensional space». A notion of smoothness on spaces of germs (endowed with
a convenient locally convex topology) adapted to this context can be found for instance
in [21]. Once these normal forms are given it is in general straightforward to refine the
study and pinpoint unique representatives for a given equivalence class. This work can
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be messy, though in practice seldom reaching further than linear algebra. In this text we
stick to finite-dimensional uniqueness.

Example 8. Let H :=
{
Z ∈ X

(
C2, 0

)
: Z is hyperbolic at (0, 0)

}
. Then

Cloc : Modloc (H) −→ (C×)
2
/Z/2Z

[Z]loc 7−→ Spec (Z, 0)

is a classification for local conjugacy, which is not complete. Injective realizations are
given by

Rloc : (C\R)× C× −→ Modloc (H)

(ρ, l2) 7−→
[
l2ρx

∂

∂x
+ l2y

∂

∂y

]

loc

.

Normal forms are given by

NFloc (H) :=

{
l1x

∂

∂x
+ l2y

∂

∂y
: (l1, l2) ∈

(
C×)2 , l1/l2 /∈ R

}
.

Example 9. Theorem 2 asserts

Modloc (Affine (1)) ≃ N

with normal forms

NFloc (Affine (1)) :=
{
Xκ

• : κ ∈ N
}
.

1.3 General saddle-node bifurcations

From now on we deal with the general case of a holomorphic germ of a planar saddle-
node bifurcation. For the bifurcation value of the parameter λ ∈ Λ, which we conveniently
locate at the origin of a complex affine space of which Λ is a (sufficiently small) domain,
the vector field Z0 is of saddle-node type near, say, the origin of C2, that is:

⊛ 0 is an isolated singularity of Z0,
⊛ the differential at 0 of the vector field has exactly one non-zero eigenvalue or, with

notations introduced earlier, Spec (Z, 0) = {0, l2} for some l2 ∈ C× (the singularity is
elementary degenerate).

To stick to general terminology, a (holomorphic germ of a) parametric family of (germs at
0 ∈ C2 of) vector fields Z• = (Zλ)λ∈Λ is called a holomorphic germ of an unfolding of Z0.
We study in details only «generic» unfoldings, those which possess the «right number»
of parameters to encode the bifurcation structure. Let us be more specific.

Definition 1. Let k ∈ N be given. A generic unfolding of multiplicity k is a germ of
an unfolding Z• for which the following conditions hold.
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⊛ There exists Λ =
(
Ck, 0

)
and U =

(
C2, 0

)
such that (λ, x, y) 7→ Zλ (x, y) is holomorphic

on Λ× U , and the vector field Z0 has only one singularity in U .
⊛ For a dense open set Λ̂ ⊂ Λ and all λ ∈ Λ̂ the vector field Zλ has exactly k+1 (distinct)

singularities in U , which are all hyperbolic and merge to 0 as λ→ 0.
⊛ λ ∈ Λ̂ 7→ Sing (Zλ) is injective.

The limiting saddle-node Z0 has multiplicity (codimension) k.

Families with k̃ > k parameters can be dealt with by changing the parameters (say, using
the implicit function theorem, after desingularization if need be) in such a way that the
first k components govern the location of the singularities, while the rest (seen as extra
parameters) do not move them around. To be more specific, we mean that each fiber

of λ ∈ Λ̂ 7→ Sing (Zλ) is included in a single fiber of the natural projection on the first
k components. All results presented here hold also for these extra-parametric generic
unfoldings, as it will appear clearly that the constructions depend holomorphically on
extra parameters.

Families
(
Z̃λ̃

)
λ̃∈Λ̃

having singularities either generically elementary degenerate (e.g.

coalescing saddle-nodes) or non-degenerate but reached multiple times, can be studied

through (extra-parametric) generic unfoldings (Zλ)λ∈Λ by specializing values λ = φ
(
λ̃
)
.

We postpone a formal definition of conjugacy / orbital equivalence between unfoldings
till the end of this section. Just keep in mind that we do not allow parameter changes
involving the spatial coordinates (x, y) .

Affine unfoldings, as detailed in Section 1.1, suggest that dynamical questions regard-
ing saddle-node bifurcations can be understood from the local classification of generic
unfoldings. This point is made in Section 1.9. More generally the classification of unfold-
ings contains the classification of Z0 by specialization. For this reason we deliberately
elude presenting this degenerate situation in details. Yet as the strategies adopted to ad-
dress saddle-nodes will serve us well, we present them briefly as a stepping stone to the
unfolded case. We refer the reader to the works cited below for a comprehensive study of
the subject.

The analytic unstable manifold of Z0, tangent at 0 to the eigenspace associated to l2, is
called the strong separatrix. The other eigenspace corresponds to a «formal separatrix»
called the weak separatrix (generically divergent [14], always summable in the sens of
Borel [9]). We say that a saddle-node is convergent or divergent according to the nature
of its weak separatrix.

The formal orbital classification was performed by H. Poincaré & H. Dulac [5, 6],
yielding polynomial normal forms. It was known from the very beginning that the formal
conjugacy cannot always converge, and as a matter of fact divergence is the rule. After
some inspiring works by D. Birkhoff [1] on local classification of resonant diffeomorphisms,
a complete local orbital classification was achieved in the early 1980’s by J. Martinet &
J.-P. Ramis [12]. At about the same time A. Bruno [3] presented formal normal forms
for saddle-node vector fields. These works were complemented with a complete local
classification in the early 2000’s simultaneously by Y. Meshcheryakova & S. Voronin [25]
(k = 1) and by L. Teyssier [22] for the general case. These studies make apparent that
classifying vector fields can be dissociated into two independent process:

1. classify the orbital part (the foliation),
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2. classify the «time» (the vector field for fixed foliation).

Item 2. is a linear problem, simpler to deal with. Hence in the current introduction we
only present how orbital classification is achieved.

The foundational viewpoint introduced in [12] bridges the gaps between classification
on the one hand, dynamical and analytical properties on the other hand. It consists in
interpreting the orbital invariants as transition maps defining an analytic atlas of (roughly
speaking) the space of leavesΩ0 of FZ0

. The conformal class ofΩ0 is reasonably a complete
orbital invariant of Z0. As illustrated in Figure ##, this space is obtained by

⊛ cutting
(
C2, 0

)
up into 2k fibred sectors,

⊛ taking 2k copies of the Riemann sphere C (sectorial spaces of leaves), sectorial weak
separatrices of Z0 attached to points 0 and the strong separatrix to ∞,

⊛ gluing them sequentially near 0 (resp. ∞) by germs of a diffeomorphism (resp. trans-
lations) like beads on a necklace (Martinet-Ramis’s chapelet de sphères), the identifi-
cation coming from the inclusions of the sectors in

(
C2, 0

)
.

The key is the conformal rigidity of C: its automorphism group is PGL2 (C) (acting by
homography). With the choice of leaves for 0 and ∞, and yet another canonical normal-
ization, the only remaining degree of freedom for analytic atlases of Ω0 is the linear action
of C× (simultaneously on all spheres). Notice that Ω0 is not exactly the space of leaves Ω̂0

of FZ0
. Firstly the strong separatrix should be in the adherence of each point of Ω̂0, since

there exist 2k directions over which each sectorial leaf of FZ0
accumulates on the strong

separatrix. The general attitude toward this is to identify only 0 and ∞, since these are
the only two points in Ω0 that can be reached over the intersection of two neighboring
sectors while tending to the strong separatrix (see Figure ##). Secondly Ω̂ is obtained
from Ω0 by modding out the action of the global monodromy of the necklace. This fact
is explained in details later on for unfoldings (Section 1.9).

The first technique based on a deformation of a saddle-node vector field in order to
recover Martinet-Ramis invariants was presented in the early 2000’s, after an analogous
work by J. Martinet [11] for unfoldings of parabolic diffeomorphisms. A. Glutsyuk [8]

embedded Z0 in a generic unfolding of multiplicity k. Restricting λ to Λ̂, he let the
k + 1 hyperbolic singularities merge as λ → 0. He proved that the domains (Dλ,j)j of

linearization of Zλ (near each singular point) overlap and their union Dλ contains a
domain

(
C2, 0

)
independent on λ. The space of leaves Ωλ of FZλ

|Dλ
is therefore built by

gluing the 2k spaces of leaves of FZλ
|Dλ,j

, which are (rigid) conformal tori C×
/Z (plus

one point, corresponding to local separatrices, in the adherence of every other point). The
gluing mappings come from the inclusions Dλ,j →֒ Dλ. As λ→ 0 each torus gets pinched
more and more sharply along a meridian, so that the limiting surface is a sphere C with
the points 0 and ∞ identified. We refer to Figure ##.

The natural continuation of A. Glutsyuk’s use of the saddle-node bifurcation would
be to classify all generic unfoldings. Yet this approach is doomed to fail, because Λ̂ is not
connected. Glutsyuk’s construction critically depends on the local behavior of hyperbolic
singularities, and as such cannot be extended to Λ\Λ̂. Indeed most (resonant) saddle
points are not linearizable and, even if they were, their local leaves space would be a
conformal disc, which is not rigid: the automorphism group of germs at 0 of conformal
discs coincides with the infinite dimensional group Diff (C, 0). Roughly speaking, one
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cannot turn a saddle or node singularity into a hyperbolic singularity. But one can the
converse, as done by C. Rousseau and L. Teyssier in [19]. By cutting «sectors» attached
to hyperbolic points with a special, asymptotically spiraling shape, the restricted foliation
can be forced to behave locally very much like a node or a saddle. The process yields a
necklace Ωλ obtained exactly in the same way as for λ = 0, with an additional linear
identification. This approach allows to cover the whole parameter space. The conformal
structure of the necklace Ωλ depends locally analytically on λ and is continuous as λ→ 0
(in particular sectors for Zλ converge toward standard sectors for Z0 in the Hausdorff
distance). Therefore unfoldings of foliations are locally classified by families of gluing
mappings unfolding the local orbital invariants of Z0.

The problem of giving a complete local classification of generic unfoldings (identifying
the total image of the classification) is still open, except for the case k = 1 if one compiles
the results of [15] and [18]. The realization problem is double:

1. realize, for fixed λ, a given necklace as the leaves space of some Zλ,
2. glue all Zλ for λ ∈ Λ to form an unfolding of Z0.

Item 1. poses no specific problem and can be dealt with in the usual manner using tools
borrowed from complex geometry, by building an abstract almost-complex realization,
then invoking Newlander-Nirenberg theorem to incarnate it as a germ of a foliated an-
alytic manifold. On the contrary Item 2. is linked with the combinatorial structure of
the covering of the parameter space by (contractible) open cells on which the invariants
λ 7→ Cλ of the unfoldings are holomorphic. This decomposition is not trivial: it is in-
deed impossible to perform the previous sectorial decomposition uniformly for all values
of λ. The reason is the following: the transfiguration of a saddle point into a sectorial
saddle-like hyperbolic point cannot be pursued after a certain point, corresponding to
parameter values for which a saddle-like singularity tends to a genuine node. A node
cannot be tricked into believing it behaves like a saddle. One must therefore deal with
finite families

(
(Cλ)λ∈Λℓ

)
ℓ

of unfoldings of invariants of Z0, where Λ =
⋃

ℓ adh
(
Λℓ
)
. On

neighboring intersections Λℓ ∩ Λℓ̃ all singularities are hyperbolic and the configuration

is that of a Glutsyuk deformation. The invariants Cℓ
λ and C ℓ̃

λ must relate to Glutsyuk
tori decomposition, since all three objects encode the same leaves space Ωλ and the same
underlying dynamics. Expressing this identity yields necessary compatibility condi-

tions (Section 1.9.3) that Cℓ
λ and C ℓ̃

λ must obey, as explained clearly in [17]. Save for
the case k = 1, where Λ = Λ+ ∪ Λ− ∪ {0} and the compatibility conditions guarantee
that Newlander-Nirenberg theorem applies in parameter space, those conditions have not
been written down and proved sufficient (there is little doubt, though, that they are).
We do not present the details of this approach. Another way of achieving a complete
classification would be to describe a collection of normal forms for generic unfoldings.
Normal forms have been devised recently by R. Schäfke & L. Teyssier [20] for convergent
saddle-nodes. These families can be unfolded to families of normal forms, in the case of
pure convergence: every member Zλ of the unfolding has as a heteroclinic connection
or, equivalently, sectorial weak separatrices patch continuously for all λ ∈ (C, 0). We refer
to Section 1.10.2. This method leaves open the generic case where there are no homoclinic
connection in the unfolding, although general normal forms are expected to be worked
out soon.
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To conclude this introduction we give a precise definition of what changes of variables
we allow between unfoldings. Section 1.2 recalled the diverse notions of (formal, local)
conjugacy and orbital equivalence between vector fields in X

(
C2, 0

)
. We need to precise

the corresponding notions for unfoldings in order to perform their classification.

Definition 2. We say that two unfoldings (Zλ)λ∈Λ and
(
Z̃λ̃

)
λ̃∈Λ̃

are (formally, locally)

conjugate (resp. orbitally equivalent) if there exists an association

Ψ : (λ, x, y) 7−→ (φ (λ) , Ψλ (x, y))

in the corresponding regularity class, such that:

1. λ ∈
(
Ck, 0

)
7→ λ̃ = φ (λ) has invertible derivative at 0,

2. for each λ ∈
(
Ck, 0

)
the component Ψλ is a conjugacy (resp. orbital equivalence)

between Zλ and Z̃φ(λ).

If the above conditions are fulfilled we write

Ψ∗ (Zλ)λ =
(
Z̃λ̃

)
λ̃
.

We wish to describe the (formal, local) classification in the set

SNU (k) := {(Zλ)λ : (Zλ)λ generic unfolding of multiplicity k} .

Definition 3. We use the notations Modfor (k), Modloc (k) and Modtop (k) to stand for
the moduli spaces of SNU (k) under corresponding conjugacy. The orbital moduli
spaces under orbital equivalence is written Modorbfor (k) and Modorbloc (k) respectively. The
same notational convention is used for the class of an unfolding:

[(Zλ)λ]
♯
⋆
∈ Mod♯⋆ (k) .

We need to slacken a little the close of uniqueness for normal forms: we require that
there exist ν ∈ N such that, for every fixed value of the parameter λ, the equivalence class
of [Zλ]

♯
⋆ is contained in the orbit of a Cν -action.

1.4 Every step of the way

For the sake of clarity we present only the case k = 1. Unlike saddle-node singularities,
where a general complete classification is not harder to obtain than for k = 1, unfoldings
are more difficult to deal with this way, due to the need of splitting the parameter space
into many cells. The specific problems and corresponding results are detailed in [19].

Let us summarize the different steps leading to the classification of generic saddle-
node unfoldings Z• of multiplicity 1. The section ends by the statement of the main
theorems. Most important items in the list below are developed later on in the course of
the chapter. There we will outline the precise setting of and problems occurring in the
upcoming constructions, while referring to [19] for all details concerning actual proofs.
The exceptions to this regard the complete local temporal classification (Section 1.10.1)
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and a collection of normal form for purely convergent unfoldings (Section 1.10.2), new
results to which we give detailed proofs.

Preparation of the family (Section 1.5.1)

We can choose local conformal coordinates (λ, x, y) in which Z• can be put under pre-
pared form

Zλ = Uλ

(
X∞

λ + (· · · ) ∂

∂y

)

where X∞
• , called the orbital model, is formally orbitally equivalent to Z•, the notation

(· · · ) ∂
∂y denotes a transverse holomorphic perturbation and U• ∈ C {λ, x, y}×. Moreover

the singularities of Zλ are located at points in {y = 0} corresponding to the roots of the
polynomial

Pλ (x) := x2 + λ . (1.22)

The parameter λ is then a formal invariant. In the sequel we only consider prepared
unfoldings, which allows us to work for fixed λ. To lighten notations we omit to mention
the subscript «λ» in all the following items.

Sectorial decomposition (Section 1.7)
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Fig. 1.1: A sectorial decomposition of the x-variable when k = 1 for three values of the
parameter

s
n

s
s

The local invariants of Z• are built by comparing tran-
sition maps between two neighboring normalizing charts.
By this we mean to cut

(
C2, 0

)
\P−1 (0) up into two over-

lapping open canonical sectors Vns and Vsn on every
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one of which Z is orbitally equivalent to the model X∞.
The canonical sectors are fibred over squid sectors V ♯

in the x-variable, displayed in Figure 1.1. The intersection
V ns ∩ V sn has three components:

⊛ a saddle-part V s having only ss in its adherence,
⊛ a node-part V n having only sn in its adherence,
⊛ a gate-part V g having both points in its adherence.

We write

V♯ := V ♯ × (C, 0) , ♯ ∈ {n , ns , s , sn , g}

the corresponding fibred sectors. There are two transi-
tions to consider for orbital equivalence (happening in the
saddle- and node-part), and one more to account for con-
jugacy (over the saddle-part).

We denote by F the (germ of a) singular foliation in-
duced by Z. Each canonical sector is attached to both

singular points sn and ss. The boundary of a sector is carved in such a way that the
leaves of F|V♯ near sn behave like those of a node: every leaf accumulates on the singular
point. Near ss the foliation is similar to a saddle: every leaf but one (the local invariant
manifold) stays far away from the singular point (Figure 1.2). This topological configu-
ration allows us to mimic constructions performed in Section 1.1 for affine unfoldings. In
particular the sectorial space of leaves is a conformal line

Ω♯ = H♯
(
V♯
)
= C ,

where H♯ ∈ Holo
(
V♯
)

is the canonical first integral of F|V♯ , having connected fibers.

Straightening of the weak separatrices

If a singularity p of X is not a node, there exists only one integral curve with smooth
analytic closure passing through p (a separatrix, or invariant manifold) and transverse
to the vertical lines {x = cst}. It is given by the graph of a holomorphic function x 7→
s (x), with holomorphic continuation over every canonical sector. We call such an analytic
continuation a sectorial weak separatrix. It corresponds to the level 0 of the canonical
first integral H♯. In particular both sectorial weak separatrices coincides in the saddle-
and gate-part.

Applying the change of coordinates ψ : (x, y) 7→ (x, y + s (x)) to Z straightens the
sectorial weak separatrix into {y = 0}. Notice that s cannot (in general) be analytically
continued on a whole neighborhood of the other singularity, as a given sectorial weak
separatrix may not coincide with the other one when continued (the typical s is multival-
ued). When s does extend holomorphically on a neighborhood of all singular points we
say that a heteroclinic connection occurs between ss and sn.
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Normalization strategy (Section 1.5.2)

After straightening, we can write:

Z = UX

X = X∞ + yR
∂

∂y

for some (sectorial) holomorphic functions U and R. It turns out the conjugacy equation
O∗X∞ = X is equivalent to the following orbital cohomological equation

X ·O = −R (1.23)

if one seeks a conjugacy in the form

O (x, y) = (x, y expO (x, y)) .

Also the conjugacy equation T ∗X = UX takes the form of a temporal cohomological
equation

X · T =
1

U
− 1 (1.24)

for changes of coordinates

T (x, y) = Φ
T (x,y)
X (x, y)

obtained by taking a dependant time in the flow Φt
X (x, y) of X . Therefore the normal-

ization process has been reduced to solving two cohomological equations.

Formal classification (Section 1.5.3)

The straightening step can be realized at a formal level. The orbital cohomological equa-
tion (1.23) can be solved formally, more or less by construction of the model X∞ and of
the prepared form. The temporal cohomological equation (1.24) needs some adjustment
since 1

U − 1 may not belong to the image of the Lie derivative associated to X . We can
find an affine function u ∈ C [x]≤1, relatively prime with P , such that 1

U − 1
u

belongs to
that image. Hence uX∞ is formally conjugate to Z, finally yielding a polynomial formal
model

Zu := uX∞ .

This complete formal classification of generic unfoldings ranges in the space of germs
C {λ}3.
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Local classification (Section 1.8)

The normalizing cohomological equations (1.23) and (1.24) admit a bounded solution on
each canonical sector. They are obtained by integrating the right-hand side against dx

P
along asymptotic paths tangent to F, ending at the point (x, y) and accumulating on
sn in backward time. The node-like nature of sn guarantees that every point in the sector
can be reached by asymptotic paths, and that both solutions coincide in the node- and
gate-part.

Therefore Z is conjugate to the formal model Zu on each canonical sectors. The local
class of Z• is thus completely determined by the following data.

⊛ Its orbital class ϕ := (ϕn, ϕs), obtained by comparing:

⊚ the sectorial weak separatrices in the node-part, measuring how far the vector field
is from having a heteroclinic connection and encoded in a translation h 7→ h+ ϕn,

⊚ the sectorial solutions to (1.23) in the saddle-part, measuring how far the continued
sectorial solution of the orbital cohomological equation is from uniformity (that is,
continuity).

⊛ Its temporal class f , encoded by comparing the sectorial solutions to (1.24) in the
saddle-part.

sn

ss

V nsn

γ(p)

p

Fig. 1.3: An asymptotic cycle and its projection on the x-variable. (Modulus of the y-
coordinate of the leaf as a height-map)

In both cases where cohomological equations are involved, comparing sectorial solutions
means to compute the period
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g (p) :=
1

2iπ

ˆ

γ(p)

G
dx

P

of the right-hand side G along an asymptotic cycle γ (p) circling around ss and tending
asymptotically to sn both in forward and backward time, while passing through p ∈ Vs,
as displayed in Figure 1.3. This gives an integral representation of the invariants over the
saddle-part (Section 1.8.5.2). The value of the integral does not depend on the choice of
p in a fixed leaf of the restriction of F to the sector

Vnsn :=
(
C2, 0

)
\ (Vn ∪ Vg)

because the leaf is simply connected. Hence g is a first integral of X and for that mat-
ter factors as a (germ of a) holomorphic function of the canonical first integral Hns,
holomorphic on Vns:

g = TX
• (G) ◦Hns , TX

• (G) ∈ hC {h} .

Remark 7. For the period TX
• (G) to be well-defined, we need to mod it out by the degree

of freedom in the choice of the sectorial first integrals Hns. This freedom results from
a faithful action of C× by linear changes of variables h 7→ ch. We leave such essentially
irrelevant technicalities out till subsequent sections.

For a fixed formal model we finally obtain a local classification ranging in a functional
space

[(Zλ)λ]loc 7−→ (λ 7→ Cλ) , Cλ = (ϕn
λ, ϕ

s
λ, fλ) ∈ C × hC {h} × hC {h} .

Notice how cowardly we shy away from discussing the dependence in the parameter λ.
The result to come, proved in Sections 1.8 and 1.10.1, gives a precise formulation.

Theorem 4. There exists a cover of (C, 0) by the adherence of two germs of sectorsΛ+, Λ−

attached to 0 (called cells), for which we can find a complete local classification of generic
unfoldings of multiplicity 1 with fixed formal class, ranging in the space of those collections
(C−

• , C
+
• ) satisfying:

⊛ (λ, h) ∈ Λ±× (C, 0) 7→ C±
λ (h) is holomorphic with continuous extension to adh (Λ±)×

(C, 0), and C±
λ is holomorphic for every λ ∈ ∂Λ±,

⊛ C±
λ ∈ C × hC {h} × hC {h},

⊛ the compatibility condition, given explicitly in Definitions 16 and 17.

By construction the model u•X∞
• has local class C±

• = 0.

Normal forms for pure convergence (Section 1.10.2)

When ϕn
• = 0 (we say the unfolding is purely convergent) we provide normal forms

for Z•. Remark both sectorial separatrices glue to form a holomorphic weak separatrix
(heteroclinic connection) and therefore purely convergent unfoldings are locally conjugate
to prepared unfoldings for which {y = 0} is a leaf, and vice versa.
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Theorem 5. Let Convergent (1) be the space of all purely convergent, generic unfoldings
of multiplicity 1. Define

τ :=

{
0 if µ0 /∈ R≤0

1 + ⌊−µ0⌋ otherwise

Section (1) := xτ+1yC {λ, xτy} .

Then the collection
{

u•
1 + u•G•

(
X∞

• + yR•
∂

∂y

)
: G•, R• ∈ Section (1)

}

is a family of normal forms for Convergent (1).

1.5 Preparation and formal classification

1.5.1 Preparation

Theorem 6. There exists local conformal coordinates (λ, x, y) in which Z• has the fol-
lowing prepared form

Zλ = UλXλ

Xλ (x, y) = Pλ (x)
∂

∂x
+ (y (1 + µλx) + Pλ (x)Rλ (x, y))

∂

∂y
(1.25)

where





λ ∈ (C, 0)

µ• ∈ C {λ}
R• ∈ C {λ, x, y}
U• ∈ C {λ, x, y}×

are arbitrary.

Notice that every prepared form is a generic unfolding of multiplicity 1, for Sing (Xλ) =
{y = 0} ∩ P−1

λ (0). A formal changes of coordinates fixing the general form of the fam-
ily (1.25) must leave the parameter λ invariant. It suffices to work with fixed λ in order
to perform the local classification.

1.5.2 From normalization to cohomological equations

The whole procedure relies on writing the conjugacy equation Ψ∗Z = Z̃ as cohomolog-
ical equations
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Z · F = G (1.26)

for well-chosen right-hand sides. The key computation is the following proposition.

Proposition 4. Let X and Y be two germs of a holomorphic vector field on a domain
U such that [X,Y ] = 0. If f is holomorphic on U ( resp. a formal power series at some
point p ∈ U) then

Ψ (x, y) := Φ
f(x,y)
Y (x, y)

has same regularity as f , and satisfies

Ψ∗X = X − X · f
1 + Y · f Y .

In particular, the following properties hold.

1. (Temporal conjugacy) UZ is conjugate to V Z by ΦT
UZ if, and only if,

Z · T =
1

U
− 1

V
.

2. (Orbital conjugacy) Assume X ⋔ Y . Then X is conjugate to X +RY by ΦO
Y if, and

only if,

X ·O = R .

Proof. It is sufficient to perform computations at a formal level. We use Lie formula (1.18)
so that, because X · Y = Y ·X ,

X ◦ Ψ =
∑

n≥0

fn

n!
Y ·n (X · Id)

=
∑

n≥0

fn

n!
X · (Y ·n Id) .

Besides

DΨ (X −RY ) = (X −RY ) · Ψ

=
∑

n≥0

(X −RY ) ·
(
fn

n!
Y ·n Id

)

= (X −RY ) · f ×
∑

n≥0

fn

n!
Y ·n+1 Id +

∑

n≥0

fn

n!
(X −RY ) · Y ·n Id

= X ◦ Ψ + (X · f −R (1 + Y · f))× Y ◦ Ψ .

Therefore

R =
X · f

1 + Y · f .
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To prove 1. it suffices to take X := UZ and Y := UZ. ⊓⊔

By taking (Zs)s in prepared form (1.25) we can write

Zλ = UλXλ

Xλ =

(
X∞

λ + PλRλ
∂

∂y

)

X∞
λ := Pλ

∂

∂x
+ y (1 + µλx)

∂

∂y
.

Notice that
[
X∞

λ , y
∂

∂y

]
= 0

so we can apply Proposition 4 Item 2. as soon as Rs can be factored by y, that is once
the weak separatrix is straightened into {y = 0}.

1.5.3 Formal classification

The strategy is the following.

⊛ There exists a unique weak separatrix family, that is a formal family of curves
{y − sλ (x) = 0} such that

Pλ (x) ŝ
′
λ (x) = ŝλ (x) (1 + µλx) + Pλ (x)Rλ (x, ŝλ (x)) , ŝ• ∈ C [[λ, x, y]] .

⊛ After applying the change of coordinates (x, y) 7→ (x, y − ŝλ (x)) to Xλ we obtain the
formal vector field

X̂λ = X∞
λ + PλR̂λy

∂

∂y

where

R̂λ (x, y) :=
Rλ (x, y + ŝλ (x))−Rλ (x, ŝλ (x))

y
. (1.27)

⊛ The cohomological equation

X̂λ · Ôλ = −PλR̂λ

admits a unique formal family of solutions Ô• ∈ C [[λ, x, y]] such that Ôλ (0) = 0.

Therefore X∞
• is orbitally formally conjugate to X̂• by

Ô• := ΦÔ•
y ∂

∂y

,
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thus formally conjugate to X• by a (λ, x)-fibred formal conjugacy. Remark that the
previous cohomological equation is equivalent to one involving Xλ in the original co-
ordinates:

Xλ ·Oλ = −Pλ
Rλ (x, y)−Rλ (x, ŝλ (x))

y − ŝλ (x)
. (1.28)

⊛ The cohomological equation with u• ∈ C [[λ, x]]
×

Xλ · T̂λ =
1

Uλ
− 1

uλ
(1.29)

admits a formal solution if, and only if,

Uλ (x, y) = uλ (x) + O
(
x2
)
+O(y)

where uλ is relatively prime with Pλ in the factorial ring C [[λ, x, y]]. The holomorphic
germ u• can therefore be taken as the remainder of the Euclidean division of U• (⋆, 0)

by P•. In particular for each value of the parameter uλ is affine. Because Ôλ is x-fibred,
the vector field uλX

∞
λ is formally conjugate to uλXλ, thus to Zλ.

The last two claims derive from the following easy computational lemma.

Lemma 4. Let Ĝ• ∈ C [[λ, x, y]] be given. The cohomological equation

Xλ · F̂λ = Ĝλ

admits a formal solution F̂• ∈ C [[λ, x, y]] if, and only if, Ĝλ = O(Pλ (x)) + O (y). This
family of solution is unique up to the addition with an arbitrary formal power series
belonging to C [[λ]], corresponding to the choice of the value F̂λ (0).

Discounting additional straightforward computations, we just established a formal classi-
fication with normal forms.

Theorem 7. We have complete classifications

Modfor (1) ≃ C {λ} [x]×≤1 ×Modorbfor (1)

Modorbfor (1) ≃ C {λ}

with normal forms

NFfor (1) := C {λ} [x]×≤1 NF
orb
for (1)

NForb
for (1) :=

{
P• (x)

∂

∂x
+ y (1 + µ•x)

∂

∂y
: µ• ∈ C {λ}

}
.

Definition 4. An unfolding Ẑ• in NForb
for (1) is now fixed, corresponding to the choice of

the holomorphic germs µ• : λ 7→ µλ and u• : (λ, x) 7→ uλ (x). It is referred to as the
model.
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The local classification is obtained by repeating the construction on sectors over which
Ôλ and T̂λ have holomorphic «sums». The local invariant measures how far from converge
these power series are.

1.6 Parameter space

s
n

s
s

V
ns

V
sn

V
nV

s

V
g

s
n

s
s

V
ns

V
sn

V
nV

s

V
g

Σ

−s

s

Fig. 1.4: Two non-equivalent partitions by squid sectors with the same value of the pa-
rameter λ = −s2. Notice that the nature of the singular points (node- or saddle-like)
swaps from one configuration to the other.

To carry out the construction of the sectorial decomposition we need to follow sin-
gularities as λ varies. Although the set Sing (Zλ) depends continuously on λ, it is not
possible to mark and follow continuously singularities, as these get exchanged by turning
around the bifurcation value of λ (corresponding to P0 (x) = x2). This phenomenon has
a prominent bearing on the construction of sectors, since for the same value of λ one
obtains dynamically non-equivalent coverings, as illustrated in Figure 1.4. We resolve the
ambiguity in the labeling of the singularities by using the two-fold branched covering

P̂• : s ∈ C 7−→ (x− s) (x+ s)

and take s, which determines completely the position of the roots ±s, as new parameter
for the constructions.

Definition 5. Let us call Param the complex line C viewed as the s-space. The branched
covering

λ : Param −→ C

s 7−→ λ (s) := −s2 ,
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satisfying the identity

Pλ(s) = P̂s ,

is called the canonical re-parameterization. We will actually use only strict subsectors
of Param, given for ρ > 0 by

Σ :=

{
s : 0 < |s| < ρ , |args| < 2π

3

}

(where the principal determination of the argument on C\R≤0 is used). For each s ∈
Param let us define

sn := (s, 0)

ss := (−s, 0) ,

which are the singularities of Xλ.

Remark 8. Notice that λ (Σ ∪ {0}) = (C, 0) so every original parameter is covered this
way. The explanation as to why we cannot take Σ ∪ {0} = (C, 0) will be given in the
course of the upcoming sections (especially Section 1.7.3).

The next properties will be used without explicitly referencing the trivial lemma beneath.

Lemma 5.

1. The automorphism group of the covering λ is isomorphic to Z/2Z.
2. The critical set ∆ of λ is the origin.
3. A (germ of a) holomorphic function f̂ : Param → C factors as f◦λ with f holomorphic

if, and only if, f̂ is even ( i.e. Z/2Z-invariant).

Definition 6. In all the remaining text, we make the following notational conventions:

⊛ when an object Ω is subscripted with «s» we imply s 7→ Ωs depends on s in a (holo-
morphic, continuous) way on Σ,

⊛ when an object Ω̃ is subscripted with «λ» we imply λ 7→ Ω̃λ depends (formally, holo-
morphically, continuously) on λ ∈ (C, 0).

1.7 Canonical sectors

1.7.1 Splitting vector fields

The boundary of a squid sector will be defined by real trajectories of vector fields

Ξs (x) := ϑPλ (x)
∂

∂x
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for some suitable choice of a direction ϑ = ϑ (s) ∈ S1. In order to ensure the upcoming
construction matches our needs, we must ensure that the vector field is sufficiently generic.
Let us explain what we mean by describing some dynamical data attached to the planar
real-analytic foliation F induced by Ξs on C.

⊛ Sing (F) = P−1
λ (0), in particular F is regular near ∞. We call local separatrix of Ξs

any one of the two leaves of F|(C,∞)\{∞} accumulating on ∞. We call separatrix the

corresponding leaf in F|C.
⊛ Because Ξs is holomorphic, F is free from limit (poly)cycles. Therefore the fate of a

non-singular trajectory Γ of Ξs can only be one of the following (Bendixon-Poincaré
theorem).

⊚ Γ is a separatrix and its adherence links ∞ to either a singular point ±s of Ξs,
or ∞. In the former case we say that Γ lands at ±s. In the latter case we say Γ
is a homoclinic connection (happening exactly when both separatrices meet en
route).

⊚ Γ connects (asymptotically) both singular points s and −s.
⊚ Γ is a non-isolated simple loop. In that case both ±s are center points.

Definition 7. Take s ∈ Param. We say that Ξs is splitting if it admits no homoclinic
connection.

Lemma 6. The following conditions are equivalent.

1. Ξs is splitting.
2. There exists a leaf connecting s and −s.
3. ϑP ′

λ (±s) /∈ iR.

Let us briefly explain why this lemma holds. When s 6= 0 the vector field Ξs is locally
linearizable around each root ±s of Pλ, and its linear part is given by ϑP ′

λ (±s) (x∓ s) ∂
∂x .

Therefore ϑP ′
λ (±s) is purely imaginary (non-zero) if, and only if, ±s is a center point of

Ξs.

⊛ When ±s is a center, it lies within an open basin B± of periodic trajectories. In par-
ticular no leaf can connect s and −s. Moreover ∂B± must be a homoclinic connection,
and Ξs is not splitting.

⊛ When ±s is not a center, it is either a focus or a sink. In any case it lies within an open
basin of attraction B± (respectively in forward or backward time) and any integral
curve of Ξs crossing the basin must accumulate on ±s one way or the other. There are
no trajectory accumulating on ±s in both directions.

1.7.2 Transvestite hyperbolic points

Γ

For l ∈ C× we consider the linear vector field

W (x, y) := lx
∂

∂x
+ y

∂

∂y
.
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Save for the separatrix {x = 0}, the leaves of FW are in-
cluded in level sets of the (in general) multivalued first inte-
gral

H (x, y) := yx−
1/l .

The space of leaves of FW is the quotient

ΩW := C×
/Z ∪ {0} ,

where 0 represents the separatrices {xy = 0}. The quotient
corresponds to the multiplicative action of Z on the space of
initial values C×

y 7−→ y exp−2iπn/l , n ∈ Z ,

encoding the monodromy of H .

Lemma 7.

1. If l /∈ R then ΩW \ {0} is a torus. The only neighborhood
of 0 in ΩW is ΩW .

2. If l ∈ Q then ΩW is a complex line.

3. If l ∈ R\Q then ΩW is the quotient S1
/Z by the irrational

rotation y 7→ y exp−2iπ/l (not Hausdorff).

Choose ϑ ∈ S1 and pick a real-time trajectory of ϑlx ∂
∂x , given by

t ∈ R 7−→ x (t) := x∗ exp (ϑlt) , x∗ ∈ C× .

We can lift this path into FW through the projection

Π : (x, y) 7−→ x ,

starting from some (x∗, y∗) ∈ C× × C. We obtain the path tangent to W

t ∈ R 7−→ (x (t) , y (t)) , y (t) = y∗ exp (ϑt)

satisfying the identity H (x (•) , y (•)) = cst.
Notice that

lim
t→±∞

x (t) = 0 ⇐⇒ ±ℜ (ϑl) < 0

lim
t→±∞

y (t) = 0 ⇐⇒ ±ℜ (ϑ) < 0 or y∗ = 0 .

Definition 8. For given l ∈ C× we say that ϑ ∈ S1 is a saddle-direction (resp. node-
direction) for l if:

⊛ ℜ (ϑ) > 0,
⊛ ℜ (ϑl) < 0 (resp. ℜ (ϑl) > 0).

Remark 9. Just pointing out the obvious.
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1. l admits a saddle-direction if, and only if, l /∈ R>0 (i.e. W is not a node).
2. l admits a node-direction if, and only if, l /∈ R<0 (i.e. W is not a saddle).

For such a choice of ϑ, the curve t 7→ x (t) is a spiral (specializing to a straight line when
ϑl ∈ R). Consider the domain

V := C\ exp
(
ϑlR
)

obtained by slitting the complex line along the adherence Γ of a real integral curve of
ϑlx ∂

∂x , and build the fibred domain of the complex plane

V := V × C .

Then FW |V is saddle-like (resp. node-like) in the sense that only one (resp. every)
leaf accumulates on 0. Notice that a saddle-like (resp. node-like) singularity is reached in
positive (resp. negative) time. Also, (any determination of) the first integral H on V is
holomorphic. The following properties are immediate to establish.

Lemma 8.

1. FW |V is saddle-like if, and only if, for every U =
(
C2, 0

)
we have H (U ∩ V) = (C, 0)

and its diameter goes to 0 as that of U does.
2. FW |V is node-like if, and only if, for every U =

(
C2, 0

)
we have H (U ∩ V) = C.

1.7.3 Sectorial decomposition

We work here within a fixed formal class µ•. We find a covering of (C, 0) \ {±s} by two
squid sectors V ns

s and V sn
s attached to ±s, such that near sn = (s, 0) (resp. ss = (−s, 0))

the linear part of Xλ defines a node-like (resp. saddle-like) foliation over both sectors,
except for forbidden values of s we shall describe afterward.

The linear part of Xλ at the singularity (±s, 0) is

±2s (x∓ s)
∂

∂x
+ y (1± µλs)

∂

∂y
,

while its local analytic invariant is given by

l±s :=
±2s

1± µλs
. (1.30)

Both functions s 7→ l±s are holomorphic on (C, 0). Notice that

l+s = l−−s

and, when s 6= 0,

1

l+s
+

1

l−s
= µλ .
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Definition 9. The curves

{
s 6= 0 : ±l±s < 0

}

are called the forbidden curves associated to µ•. Values of the parameter for «+» (resp.
«−») correspond to configurations where Xλ is a saddle at sn (resp. a node at ss).

Till the end of the section we consider the principal determination of the argument on
C\R≤0. For each s ∈ Σ set

ϑ (s) := exp
−i arg s

2
. (1.31)

Since

l±s ∼0 ±2s

the following lemma holds.

s
s

s
n

Fig. 1.6: The typical leaf above a slit disc. (Modulus represented as a height-map, argu-
ment as colors in the base)

Lemma 9. There exists ρ > 0 so that for all s ∈ Σ

∣∣arg
(
ϑ (s) l+s

)∣∣ < 3π

8
(1.32)

∣∣arg
(
ϑ (s) l−s

)∣∣ > 5π

8
.
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In particular ϑ (s) is a node-direction ( resp. a saddle-direction) for l+s ( resp. l−s ), and Σ
meets no forbidden curve.

V
ns

V
sn

V
s

V
n

s
n

s
s V

g

(a) A sectorial covering by squid sectors

ss

sn

V ns

V s
V n

V g

s0
s1

n0

n1

g

C

(b) Structure of a single squid sector. White squares rep-
resent construction points of V ns

s
, while unfilled squares

do those of V sn
s

Fig. 1.7

Definition 10. We refer to Figure 1.7 (b). Let r > 2ρ > 0 and s ∈ Σ ∪ {0}. We recall
the vector field

Ξs = ϑ (s)Pλ
∂

∂x

where ϑ is given by (1.31). The squid sector V ns
s of radius r is the domain bounded by

⊛ the forward trajectory of P0
∂
∂x starting from n0 := r exp −iπ

8 till it reaches 2 |s| at a
point n1, then the complete forward trajectory of Ξs,

⊛ the backward trajectory of P0
∂
∂x starting from s0 := r exp 9iπ

8 till it reaches 2 |s| at a
point s1, then the complete backward trajectory of Ξs,

⊛ the integral curve of Ξs passing through the «outward» point of intersection g between
the perpendicular bisector of [−s, s] and a circle of radius small enough not to meet
the already built paths (of the order of |s| (1 + cos arg s)),

⊛ the circular arc C := r exp i
[
− iπ

8 ,
9iπ
8

]
.

The squid sector V sn
s of radius r is build in much the same way, replacing the circular

arc C by r exp i
[
− 9iπ

8 ,
iπ
8

]
.

We mention without proof the next descriptive lemma.

Lemma 10. (See [19])

1. The intersection V ns
s ∩ V sn

s has three components if s ∈ Σ:
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⊛ a saddle-part V s
s having only ss in its adherence,

⊛ a node-part V n
s having only sn in its adherence,

⊛ and if s 6= 0, a gate-part V g
s having both points in its adherence.

When s = 0 we define the saddle- or node-part as the components crossing R<0 or R>0

respectively.
2. As s → 0 in Σ, the squid sectors V ♯

s tends (for the Hausdorff distance) to the sector

V ♯
0 associated to the saddle-node Z0.

3. The length of ∂V ♯
s is uniformly bounded for s ∈ Σ.

Remark 10. Item 3. above is really important in order to get uniform bounds in s ∈ Σ
for functions obtained by integrating over spirals included in V ♯

s , which includes almost
all the upcoming material.

1.8 Local classification

We work here within a fixed formal class µ•. We take r, r′ > 0 and ρ > 0 sufficiently
small so that

Σ × U :=

{
s : 0 < |s| < ρ , |args| < 2π

3

}
× (rD × r′D)

is a domain on which:

⊛ every data appearing in the preparation Theorem 6 is holomorphic and bounded,

⊛ (s, x) 7→ Pλ(x)
1+µλx

is holomorphic and bounded,
⊛ Lemma 9 holds.

The actual values of ρ, r, r′ may be implicitly decreased finitely many times in the course
of the construction. For any s ∈ Σ we denote V ♯

s the squid sector of radius r associated to s
built in Definition 10. We follow now the strategy introduced for the formal classification,
only on canonical sectors

V♯
s ⊂ V ♯

s × r′D , ♯ ∈ {n , ns , s , sn , g} .

Before building the sectors, let us first introduce the space

Holoc (D) :=
{
f• ∈ C0 (adh (D)) : f• ∈ Holo (D) , (∀s ∈ adh (Σ)) fs ∈ Holo (Vs)

}

(1.33)

where D is a subdomain Σ × Cn of the form

D =
⋃

s∈Σ

{s} × Vs .

The key point is to provide weak sectorial separatrices s♯• and solutions F ♯
• to cohomolog-

ical equations (1.26) which belong to Holoc
(
D♯
)

and Holoc
(
D♯
)

respectively, with
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D♯ :=
⋃

s∈Σ

{s} × V♯
s , (1.34)

D♯ :=
⋃

s∈Σ

{s} × V ♯
s .

1.8.1 Sectorial weak separatrices

Theorem 8. (See [19]) Up to decrease ρ, r, r′ there exists two unique families of func-

tions s
♯
• ∈ Holoc

(
D♯
)
, called in the following sectorial (weak) separatrices, such that

for any s ∈ Σ ∪ {0}:
1.
{
y = s♯s (x)

}
⊂ V ♯

s × r′D is an integral curve of Xλ,
2. limx→±s s

♯
s (x) = 0,

3. snss (x) = ssns (x) for all x ∈ V g
s ∪ V s

s .

1.8.2 Asymptotic paths and canonical sectors

Definition 11. Let s ∈ Σ∪{0}. An asymptotic path over V ♯
s ending at p ∈ U∩

(
V ♯
s × C

)

is a regular, smooth curve γ : R≤0 → V ♯
s × C meeting the next requirements.

⊛ γ (0) = p.
⊛ γ̇ = cXλ ◦ γ for some smooth function c. In other words, γ is tangent to Xλ or,

equivalently, its image is contained in a single leaf of Fλ.
⊛ limt→−∞ γ (t) = sn.

We abusively write γ : (sn → p) or (sn → p) to stand for such an asymptotic path
ending at p.

Theorem 9. (See [19]) Up to decrease ρ, r, r′ the following properties hold for s ∈
Σ ∪ {0}.
1. The sets (called canonical sectors)

V♯
s :=

{
p ∈ U ∩

(
V ♯
s × C

)
: ∃ (sn → p)

}
, ♯ ∈ {ns , sn}

are domains containing smaller sectors V ♯
s × r̃D with r̃ > 0 independent on s. The

union

Vs := Vns
s ∪ Vsn

s

is a pointed neighborhood of {x = ±s} ∩ U .
2. Each leaf of Fλ|V♯

s
is simply connected, and if γ and γ̃ are two asymptotic paths ending

at p ∈ V♯
s then the asymptotic cycle

−γ ∧ γ̃ :=

{
t ≤ 0 7−→ γ̃ (t)

t ≥ 0 7−→ γ (−t)
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is trivial, in the sense that there exists an asymptotic tangential homotopy
h : [−∞, 0]× R → V♯

s between −γ ∧ γ̃ and sn, a mapping such that:

⊛ h is uniformly continuous,
⊛ h (0, •) = −γ ∧ γ̃,
⊛ h (−∞, •) = sn,
⊛ for every t real h (•, t) : sn → h (0, t),
⊛ for every τ negative real h (τ, •) : sn → p.

3. Take p ∈ Vns
s ∩ Vsn

s and consider an asymptotic cycle γ (p) obtained by concatenating
two asymptotic paths ending at p, one of which is in Vns

s and the other one in Vsn
s .

a. If p ∈ Vg
s ∪ Vn

s then γ (p) is trivial.
b. If p ∈ Vs

s then γ (p) is trivial if, and only if, p belongs to the sectorial weak separatrix.
Two such asymptotic cycles γ (p) and γ̃ (p̃) are tangentially homotopic.

1.8.3 Sectorial solutions to cohomological equations

Theorem 10. (See [19]) For m ∈ Σ define

Vnsn
s := Vs\ (Vg

s ∪ Vn
s )

Dnsn :=
⋃

s∈Σ

{s} × Vnsn
s

and take G• ∈ Holoc (Dnsn) such that (s, x) 7→ Gs(x,0)
Pλ(x)

is bounded. For s ∈ Σ and p ∈ V♯
s

define

F ♯
s (p) :=

ˆ

(sn→p)

Gs
dx

Pλ

where (sn → p) is an asymptotic path of X• ending at p. The following properties hold.

1. F ♯
s (p) is an absolutely convergent integral.

2. F ♯
• is the unique family of solutions of the cohomological equation X• · F• = G• which

belongs to Holoc
(
D♯
)

and vanishes at each sn. Another such solution differs from F•
by the addition of a function f• ∈ Holoc (Σ).

3.

F sn
s (p)− F ns

s (p) =

{
0 if p ∈ Vn

s ∪ Vg
s

´

γ(p)Gs
dx
Pλ

if p ∈ Vs
s

where γ (p) is an asymptotic cycle passing through p.
4. The following properties are equivalent.

a. There exists F• ∈ Holoc (Ds) such that X• · F• = G•.
b. For all s ∈ Σ and p ∈ Vs

s
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ˆ

γ(p)

Gs
dx

Pλ
= 0 .

The fact that F ♯
s is a solution to the cohomological equation can be understood by covering

(sn → p) with flow-boxes. In such a local rectifying chart Ψ : D →
(
C2, γ (t)

)
one has to

solve

∂F ♯
s ◦ Ψ
∂x

= Gλ ◦ Ψ

so that for p∗, q∗ ∈ D in the same leaf of F ∂
∂x
|D we have

F ♯
s ◦ Ψ (q∗)− F ♯

s ◦ Ψ (p∗) =

ˆ

p∗→q∗

Gλ ◦ Ψdx

and vice versa. As a consequence
´

γ(p)Gs
dx
Pλ

encodes the additive monodromy of the

analytic continuation of F ♯
s . Riemann’s removable singularity theorem yields 4.

1.8.4 Sectorial normalization and space of leaves

From Theorem 8 and Proposition 4 we obtain a vector field Xs and a right-hand side
Gs := −PλR

♯
s with

R♯
s : (x, y) ∈ V♯

s 7−→ Rλ (x, y)−Rλ

(
x, s♯s (x)

)

y − s
♯
s (x)

(1.35)

satisfying the hypothesis of Theorem 10. The orbital normalization equation (1.28) there-

fore admits solutions O♯
• ∈ Holoc

(
D♯
)
. The situation is the same for the temporal normal-

ization with X̂s := Xλ and Gλ := 1
Uλ

− 1
uλ

, and (1.29) admits solutions T ♯
• ∈ Holoc

(
D♯
)
.

Corollary 3. Z• is conjugate to its formal model u•X∞
• on D♯. It is orbitally conjugate

to X∞
• by (λ, x)-fibred transformations.

The model X∞
λ has a first integral H∞,♯

λ ∈ Holo
(
V♯
)

with connected fibers

H∞,♯
λ (x, y) := yP

−µλ/2
λ (x)

(
x+ s

x− s

)1/2s

, s 6= 0

H∞,♯
0 (x, y) := yx−µ exp

1

x
,

with limλ→0H
∞,♯
λ = H∞,♯

0 uniformly on compact subsets; for the remaining of the section
we only deal with s 6= 0 to lighten notations, although everything is valid for s = 0 by
continuity. Recalling notations and conventions of Section 1.1.3, we choose determinations
of the multivalued functions involved above:
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⊛

(
•+s
•−s

)1/2s

= gλ coincides with the principal determination on V n
s (the one given in

Remark 5 for real s); note that gλ ∈ Holo (C\V g
s ),

⊛ P
−µλ/2
λ agrees with the principal determination on V n

s .

Invoking Corollary 3 above and the formulas given in Section 1.5.3, we obtain canonical
sectorial first integrals with connected fibers

H♯
s (x, y) := H∞,♯

λ

(
x,
(
y − s♯s (x)

)
expO♯

s (x, y)
)

(1.36)

=
(
y − s♯s

)
P

−µλ/2
λ (x) gλ (x) expO

♯
s (x, y) .

The next result can be proved by studying the linearized system on squid sectors as in
Lemma 8.

Theorem 11. (See [19]) For s ∈ Σ define the sectorial spaces of leaves as

Ω♯
s := H♯

s

(
V♯
s

)
, ♯ ∈ {ns , sn}

Ω♭
s := Hns

s

(
V♭
s

)
, ♭ ∈ {n , g , s} .

1. Ωn
s = Ωns

s = Ωsn
s = Ωg

s = C, the sectorial weak separatrices corresponding to 0.
2. Ωs

s = (C, 0), the sectorial weak separatrices corresponding to 0. The size of Ωs
s goes to

0 as r or r′ does.

1.8.5 Classification

1.8.5.1 Orbital necklace

Take s ∈ Σ ∪ {0}. A given point p ∈ Vns
s ∩ Vsn

s corresponds to a point hns ∈ Ωns
s and a

point hsn ∈ Ωsn
s . These points must be identified in order to encode the local orbital class

of Xλ. Because each H♯
s has connected fibers, the (holomorphic) identifications must be

injective.

⊛ If s 6= 0 and p ∈ Vg
s then every function involved in (1.36) for ♯ = ns and ♯ = sn

coincide at p except gλP
−µλ/2
λ . The monodromy of gλP

−µλ/2
λ around sn acts as

hsn = hns exp iπ

(
1

s
+ µλ

)
=: ψg

s (h
ns) .

⊛ If p ∈ Vn
s then every function involved in (1.36) for ♯ = ns and ♯ = sn coincide at p

except s♯s. Because Ωn
s = C the mapping ψn

s must be affine, and it is not hard to check
it is a translation:

hsn = hns + ϕn
s =: ψn

s (h
ns) . (1.37)

⊛ If p ∈ Vs
s then every function involved in (1.36) for ♯ = ns and ♯ = sn coincide at p

except P
−µλ/2
λ expO♯

s. Because 0 corresponds to both sectorial weak separatrices, and
because those two functions agree on V s

s the mapping ψs
s must fix the point 0:
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hsn = hns exp 2iπµλ + o (hns) =: ψs
s (h

ns) ∈ Diff (C, 0) . (1.38)

Definition 12. Let µ• ∈ C {λ} be given.

1. Take

ϕ• := (ϕn
• , ϕ

s
•) ∈ Holoc (Σ)×Holoc (Σ × (C, 0))

with ϕs
• (0) = 0. We call orbital necklace associated to ϕ• (and µ• implicitly) the

complex manifold Ω (ϕ•) obtained by the analytic atlas consisting in two copies Ωns

and Ωsn of (Σ ∪ {0})× C, with transitions maps

ψn
• : Ωns −→ Ωsn

(s, h) 7−→ (s, h+ ϕn
s )

ψs
• : (Ωns, 0) −→ (Ωsn, 0)

(s, h) 7−→ (s, h exp (2iπµλ + ϕs
s (h))) .

2. A diffeomorphism between two necklaces Ω (ϕ•) and Ω (ϕ̃•) is the data (Ψns
• , Ψ sn

• )
of s-fibred injective, holomorphic mappings inducing a conjugacy between atlases:

Ψns
• ◦ ψ♭

• = ψ̃♭
• ◦ Ψ sn

• , ♭ ∈ {n , s}

and such that for s 6= 0

Ψns
• ◦ ψg

• = ψg
• ◦ Ψ sn

• (1.39)

where

ψg
s (h) := h exp iπ

(
1

s
+ µλ

)
.

We say that the necklaces are analytically conjugate.
3. Let Z• be a generic unfolding of formal orbital class µ• as in Theorem 7. We call orbital

class of Z• the necklace Orb (Z•) := Ω (ϕ•) where ϕ• is built from the mappings (1.37)
and (1.38).

Remark 11. We do not take the gate-part identification in account to build the necklace
because the construction does not make it at the limit. It is not needed anyway to per-
form the local classification, because both sectorial normalizing maps always glue on Vg

s .
However the actual space of leaves Ωs on Vs is the quotient of the corresponding s-fiber
of Orb (Z•) by ψg

s for s 6= 0. This is why we must include the condition (1.39) to capture
all information relating to orbital conjugacy.

Because holomorphic automorphisms of the complex line are rigid there are not many
necklaces diffeomorphisms. Hence the orbital necklace of an unfolding is nearly a local
invariant, and we prove in the section that it suffices to characterize its local class.

Lemma 11. (Ψns
• , Ψ sn

• ) is a diffeomorphism of necklaces if, and only if, there exists c• ∈
Holoc (Σ)

×
such that Ψ ♯

s (h) = csh.
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Proof. One direction is trivial. Assume then that (Ψns
• , Ψ sn

• ) is a diffeomorphism between
necklaces. For each s ∈ Σ∪{0} the mapping Ψ ♯

s is biholomorphic, thus an invertible linear
map h 7→ c♯sh. The conjugacy equation Ψns

s ◦ ψg
s = ψg

s ◦ Ψ sn
s implies cnss = csns for s 6= 0,

thus also for s = 0 by continuity. ⊓⊔

1.8.5.2 Integral representation of the saddle orbital invariant

Thanks to Theorem 8 we know the sectorial separatrices s♯s glue to a holomorphic
function snsns on V nsn

s , therefore so does R♯
s appearing in (1.35), yielding a function

Rnsn
• ∈ Holoc (Dnsn).

Proposition 5. Let G• ∈ Holoc (Dnsn) such that (s, x) 7→ Gs(x,0)
Pλ(x)

is bounded, and let

Orb (X•) be the orbital necklace of X•. The mapping (given in the chart Ωns)

T• (G•) : (Orb (X•) , 0) −→ C

(s, h) 7−→ 1

2iπ

ˆ

γ(p)

Gs
dx

Pλ
,

where γ (p) is an asymptotic cycle defined in Theorem 9 Item 2. such that Hns
s (p) = h,

is well-defined and vanishes along {h = 0}. This mapping defines the (linear) period
operator

T• : G• 7−→ T• (G•) ∈ Holoc (Orb (X•) , 0) .

Proof. Because Xλ ·F ns
s = Xλ ·F sn

s = Gλ the difference F sn
s −F ns

s is a first integral of Xλ,
and therefore factors as a map τs defined on the sectorial space of leaves Ωs

s. This can also
be seen from Theorem 9. Indeed the value of the integral depends only on the asymptotic
tangential homotopy class of γ (p), as an asymptotic tangential homotopy is uniformly
continuous. Hence only asymptotic cycles with p ∈ Vs

s contribute to the period, and the
value of the integral only depends on the sectorial leaf Fλ|Vs

s
, since there is at most one

non-trivial homotopy class of asymptotic cycles per leaf. The same argument shows that
τs (0) = 0, for any asymptotic cycle within the sectorial separatrix is trivial. ⊓⊔

The transition map ψs
• of the orbital necklace of X• obey the identity

Hsn
s (p) = ψs

s (H
ns
s (p))

while at the same time

H♯
s (p) = H∞,♯

s (p) expO♯
s (p) ,

following (1.36). For p ∈ Vs
s we have H∞,sn

s (p) = H∞,ns
s (p) exp 2iπµλ so that

Hsn
s (p) = Hns

s (p) exp (2iπµλ +Osn
s (p)−Ons

s (p)) .

Recalling how we just defined the period operator, we obtain an integral representation
for the saddle-part of the orbital invariant.
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Corollary 4. Let Ω (ϕn
• , ϕ

s
•) be the orbital necklace of X•. Then for all s ∈ Σ × {0}

ϕs
s = −2iπTs (P•R

nsn
• ) .

1.8.5.3 Temporal invariant

Definition 13. Let µ• ∈ C {λ} and u• ∈ C {λ} [x]×≤1 be given.

1. The data of an orbital necklace Ω (ϕ•) and

f• ∈ Holoc (Ω (ϕ•) , 0)

with f• (0) = 0 is called temporal necklace.

2. A diffeomorphism between two temporal necklaces (ϕ•, f•) and
(
ϕ̃•, f̃•

)
is the data

(Ψns
• , Ψ sn

• ) of a diffeomorphism between corresponding orbital necklaces and satisfying:

f• = f̃• ◦ Ψ sn
• .

We say that the necklaces are analytically conjugate.
3. Let Z• = U•X• be a generic unfolding under prepared form (1.25) with formal invari-

ants (µ•, u•) as in Theorem 7. We call local class of Z• the temporal necklace

Class (Z•) :=

(
Orb (X•) ,T•

(
1

U•
− 1

u•

))

where the period operator T• is defined in Proposition 5.

1.8.5.4 Classification theorem

Theorem 12. (See [19]) Two generic unfoldings of multiplicity 1 in the same formal class
(µ•, u•) ∈ C {λ} × C {λ} [x]×≤1 are locally ( resp. orbitally) equivalent if, and only if, their
temporal ( resp. orbital) necklaces are analytically conjugate. In other words we have local
classifications

Orb : Modorbloc (1) −→ Holoc (Σ)×Holoc (Σ × (C, 0))/Holoc (Σ, 0)
×

Class : Modloc (1) −→ Holoc (Σ)×Holoc (Σ × (C, 0))×Holoc (Σ × (C, 0))/Holoc (Σ, 0)
×

where the action of Holoc (Σ, 0)
× is described in Lemma 11.

Proof. Let us present only the orbital part of the proof, the temporal part being easier ac-
cording to Theorem 10 Item 4. and Proposition 4 Item 1. One way is clear: if Z• and Z̃• are
locally orbitally conjugate by Ψ then the conjugacy factors as a diffeomorphism (Ψns

• , Ψ sn
• )

between the orbital necklaces Orb (Z•) and Orb
(
Z̃•
)
. Conversely, assume the existence

of a diffeomorphism (Ψns
• , Ψ sn

• ) conjugating the necklaces Orb (Z•) and Orb
(
Z̃•
)
. Invok-

ing Lemma 11 we can apply the rescaling (s, x, y) 7→ (s, x, csy) to Z̃. Without changing
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notations, in the new coordinates we must have Ψ ♯
s = Id for each s ∈ Σ ∪ {0}. This

particularly implies the identities ϕ♭
s = ϕ̃♭

s for ♭ ∈ {n, s}. But these quantities measure
the obstruction to glue over Vns

s ∩ Vsn
s the transitions between corresponding sectorial

normalization mappings Y♯
s := Õ♯

s ◦
(
O♯

s

)◦−1
. Hence Ψs|Vns

s
:= Yns

s and Ψs|Vsn
s

:= Ysn
s

defines a holomorphic conjugacy between Xλ and X̃λ on Vs = Vns
s ∪Vsn

s . This mapping is
bounded, thus extends biholomorphically to adh (Vs) by Riemann’s removable singularity
theorem.

To conclude the proof we only need to check that Ψs = Ψ−s. Define Ss := Ψ◦−1
s ◦ Ψ−s

which, by construction, is a symmetry of Xλ, that is S∗
sXλ = Xλ. A direct computation

at a formal level on Ss (x, y) =
(
x , y +

∑
n+m>1 Sn,m (s)xnym

)
establishes Ss = Id. ⊓⊔

The classification presented above cannot be complete, as we explain in the upcoming
Section 1.9.4.

1.9 Dynamical interpretation of the orbital necklace

We describe the relationship between the actual dynamics of Xλ (the holonomy of the
underlying foliation Fλ) and what could be called the necklace dynamics. We define in
the first place what we mean by «the dynamics of Xλ» in Section 1.9.1. It encodes the
«monodromy» of the canonical first integralsH♯

s, which really is what the orbital necklace
is all about. As Xλ does not depend on the choice of s or −s, the splitting of U into squid
sectors is artificially superimposed on the dynamics. By rewording this acknowledgment
as a relationship between orbital necklaces Ω (ϕs) and Ω (ϕ−s), we derive the orbital
compatibility condition in Section 1.9.3. The temporal compatibility condition will be
derived while performing the temporal realization in Section 1.10.1.

We finally use the compatibility condition to characterize even necklaces, corresponding
to invariants ϕ• = (ϕn

• , ϕ
s
•) holomorphic as a function of the initial parameter λ. We show

this configuration to be very rare, underlying the lack of completeness of the classification
provided by Theorem (12).

1.9.1 Weak holonomy

Fix once and for all x∗ ∈ V n
s \ρD (by construction of the squid sector in Definition 10 this

domain is independent on s ∈ Σ) and a transverse disc

T := {x = x∗} ∩
⋂

s∈Σ

Vs
s = {x∗} × (C, 0) .

Because Xλ is in the prepared form (1.25) its integral curves are everywhere transverse
to the fibers of the natural projection

Π : (x, y) 7−→ x



1 Coalescing complex planar stationary points 57

outside P−1
λ (0). As a consequence we can lift (smooth) paths in the punctured base

γ : [0, 1] → Dλ,

Dλ := rD\P−1
λ (0) ,

through Π into leaves of Fλ and starting from points in T . More precisely, being given
p∗ := (x∗, y∗) ∈ T there exists a unique (germ at 0 of a) solution

t 7−→ γp∗ (t) = (γ (t) , y (t))

to the constrained flow-system

γ̇p∗ =
γ̇

Ṗλ

Xλ ◦ γp∗ , γp∗ (0) = p∗ .

Notice that the image of γp∗ is included in a single leaf of Fλ. Of course if γ is «too long»
then γp∗ may eventually escape from U . On the contrary if γp∗ is defined on the whole
[0, 1] we call

h
γ
λ (p∗) := γp∗ (1)

the image of p∗ by the holonomy hγ of Fλ along the path γ. The holonomy h
γ
λ is

holomorphic and locally invertible. When γ is a loop the holonomy defines a germ of a
biholomorphic self-map (T, p∗) → (T, hγλ (p∗)) of the transversal.

x∗

s

−s

γs

Γ

Fig. 1.8: Genera-
tors of π1 (Dλ, x∗)
for s ∈ Σ

We are particularly interested in the case where γ is a generator
γs or Γ of the fundamental group π1 (Dλ, x∗) when s 6= 0.

Definition 14. Let s ∈ Σ. Consider a system {Γ, γs} of generators of
π1 (Dλ, x∗) such that Γ = |x∗|S1 and γs winds directly once around
s and do not around −s. The holonomy

hns := h
γs

λ

is called the (weak) nodal holonomy. Similarly we name (weak)
holonomy the mapping hΓλ .

We state a consequence of Theorem 8.

Lemma 12. The nodal holonomy hns is an injective holomorphic map
on subdomain Ts of T containing both points of intersection of T with
the sectorial weak separatrices {y = snss (x)} ∪ {y = ssns (x)}.

1.9.2 Necklace holonomy

While walking along a loop γ : [0, 1] → Dλ and lifting it in the foliation Fλ to build the
holonomy h

γ
λ, one may follow what happens in the orbital necklace. More precisely, since

the image of γ in the (global) leaves space corresponds with just a point, one may wish to
understand the «trajectory» induced by γ in the orbital necklace Ω (ϕ•). We recall that
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x∗γ

Γ

n
g

s

Hns

Hns

ψs

ψg

ψn

h0δ
h1 := ψg(h0)

0 0

δ = (ψn)◦−1
◦ ψg

ψs

ψg

ψn

h0∆
h1 := ψs(h)

0 0

∆ = (ψn)◦−1
◦ ψs

Ωns

Ωns

Ωsn

Ωsn

n−1s

n−1g

h2

h2

s

−s

Fig. 1.9: The dynamics induced by the weak holonomies in the orbital necklace

a basepoint x∗ = γ (0) is fixed once and for all now. The restriction of the canonical first
integral to the transverse disc T induces an invertible mapping

Hs : (x∗, y) ∈ Ts 7−→ Hns
s (x∗, y) ∈ (Ωns, 0)

whose image contains {0, ϕn
s } (Lemma 12). Starting from h0 := Hs (p∗) we build a se-

quence of points (hn)0≤n≤2d such that h2m ∈ Ωns
s and h2m+1 ∈ Ωsn

s , the connection

between hn−1 and hn being given by the action of
(
ψ♭n
)◦±1

for ♭n ∈ {n, g, s} correspond-

ing to the connected component V ♭
s being crossed by γ, the sign being determined by

whether the path leaves V ns
s («+») or enters it («−»), as long as the partial lift of γ in

Fλ is defined. We name ∆γ
s the necklace holonomy

∆γ
s : h0 7−→ h2d .

The maps ∆γ
s and hγ represent the same dynamics since they are conjugate:

H∗
s∆

γ
s = h

γ
λ . (1.40)

We refer to Figure 1.9 for a depiction of this construction in the case of the weak
holonomies hns and hΓλ .

Let us generalize the construction to abstract orbital necklaces Ω (ϕ•). Let W be the
free group on the letters {n, g, s}. For every s ∈ Σ there exists a group morphism
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ws : π1 (Dλ, x∗) −→ W

γ 7−→ ♭ǫ11 ◦ · · · ◦ ♭ǫ2d2d , ♭j ∈ {n, g, s} , ǫj ∈ {±1}

defined in such a way that (♭j , ǫj)j≤2d is the sequence obtained as before: ♭j corresponds

to the connected component V
♭j
s currently crossed by γ, the sign being determined by

whether the path leaves V ns
s or enters it. For instance

ws (γs) = n−1g =: γ̂

ws (Γ ) = n−1s =: Γ̂ .

We omit the proof of the following lemma.

Lemma 13.

1. For every γ ∈ π1 (Dλ, x∗) the word ws (γ) has the form

ws (γ) =

d∏

j=1

♭−1
j,1♭j,0 .

2. The image W of ws is generated by the words n−1g and n−1s:

W =
〈
γ̂ , Γ̂

〉
.

3. The mapping ws : π1 (Dλ, x∗) → W is bijective. For any s ∈ Σ we write

ps : W −→ π1 (Dλ, x∗)

γ̂ 7−→ γs

Γ̂ 7−→ Γ

its inverse.

Definition 15. Being given an orbital necklace Ω (ϕ•) we build a dynamics in the follow-
ing manner. Take s ∈ Σ and w = ♭ǫ11 ◦ · · · ◦ ♭ǫ2d2d ∈ W, then denote γ := ps (w). We define
the necklace holonomy associated to γ (or w) as the following symbolic expression

∆γ
s := ©1≤j≤2d

(
ψ♭j
s

)◦ǫj
.

Depending on γ the expression∆γ
s may not represent an actual germ of a diffeomorphism,

because h
γ
λ may not be geometrically defined. For that reason the map ∆•

s ranges in the
pseudogroup of local diffeomorphisms of Ωns

s . The necklace holonomy representation
is the collection ∆• = (∆s)s∈Σ of (pseudo-)group morphisms

∆s : w ∈ W 7−→ ∆s (w) := ∆ps(w)
s .
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1.9.3 Orbital compatibility condition

x∗

n−s

g−s

s−s

ns

gs

ss

γs

Γ

γ−s

s

Fig. 1.10: Comparing the necklace dynamics

Define

Σ∩ := Σ ∩ (−Σ)

= {s ∈ Σ : −s ∈ Σ}
= Σ+ ∪Σ−

Σ± := Σ∩ ∩ {±ℑ (s) > 0}

the union of two domains on which we can compare the necklace dynamics for s and −s.
According to (1.40) and Figure 1.10 we have for s ∈ Σ∩ the identities between actual
diffeomorphisms
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



H∗
s∆s

(
n−1g

)
= H∗

−s∆−s

(
g−1s

)
if s ∈ Σ+

H∗
s∆s

(
n−1g

)
= H∗

−s∆−s

(
n−1sg−1n

)
if s ∈ Σ−

H∗
s∆s

(
n−1s

)
= H∗

−s∆−s

(
n−1s

) . (1.41)

In order to motivate the definition of compatibility condition, we must explicit the bridge
between relations on Σ+ and onΣ−. We obtain this connection by rewording algebraically
the topological fact that Γ = γ−s ∧ γs if s ∈ Σ+ while Γ = γs ∧ γ−s if s ∈ Σ−. The
monomorphism

σ : W −→ W

γ̂ 7−→ γ̂−1Γ̂

Γ̂ 7−→ Γ̂

with inverse

σ◦−1 : W −→ W

γ̂ 7−→ Γ̂ γ̂−1

Γ̂ 7−→ Γ̂

satisfies

ps = p−s ◦ σ◦±1 for s ∈ Σ± .

The system (1.41) expresses that the necklace holonomy associated to an actual unfolding
is compatible with the latter identity. Yet the system explicitly involves the sectorial first
integrals Hns

• and is therefore not intrinsic to the orbital necklace. The key to resolve this
issue is to observe that for s ∈ Σ+ the mapping

∆−s

(
g−1s

)
∈ Diff (C, 0)

is hyperbolic and therefore locally analytically linearizable near the fixed-point 0. There
exist only one such analytic linearization with prescribed linear part. Because ∆s

(
n−1g

)

is an affine map the invertible function

ηs := Hs ◦H◦−1
−s (1.42)

is a holomorphic linearization of ∆−s

(
g−1s

)
. Hence ηs can be recovered uniquely, up to

its linear part, from the knowledge of the orbital necklace.

Definition 16. For an orbital necklace Ω (ϕ•) recall the symbolic holonomy represen-
tation ∆•. We say that the orbital necklace Ω (ϕ•) is a compatible orbital necklace
when there exists η•Holoc (Σ × (C, 0)) such that for every s ∈ Σ+ (resp. s ∈ Σ−) the
mapping ηs is a local linearization of ∆−s

(
g−1s

)
(resp. ∆−s

(
n−1sg−1n

)
satisfying the

next properties.

⊛ For every s ∈ Σ∩

ηs ◦ η−s = Id .
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⊛ For every s ∈ Σ∩

η∗s∆s

(
n−1s

)
= ∆−s

(
n−1s

)
,

which is equivalent to the conjugacy of the whole dynamics: η∗s∆s = ∆−s ◦σ◦±1 for all
s ∈ Σ±.

1.9.4 Characterization of even purely convergent unfoldings

For the sake of concision we only deal with the case µ• = 0.

Proposition 6. Take a purely convergent generic unfolding of multiplicity 1 with µ• = 0,
i.e. its orbital necklace ϕ• satisfies ϕn

• = 0. There exists p ∈ N and α• ∈ C {λ} such that

ϕs
• (h) = −1

p
log (1 + α•h

p)

if, and only if, ϕs
• = ϕs

−•.

Because the local classification for saddle-node vector fields is complete, and since ϕ•
extends continuously at s = 0, the configuration presented in the proposition is rather
rare. The classification presented in Theorem 12 is not complete.

We also mention that such unfoldings are locally orbitally conjugate to a normal form
(Theorem 5)

X∞
• + λκxyp+1 ∂

∂y
, κ ∈ N .

As in [24] it is indeed possible to show that for the above normal form one has

ϕs
• (h) = −1

p
log (1− 2iπλκT• (xy

p) (h)) ,

where the period operator is the one associated to the model X∞
• . The explicit compu-

tations done in Corollary 6 therefore proves our claim, as well as one direction of the
proposition since the period T• (xy

p) is actually even.
Let us prove the other direction. If ϕs

• is even then the orbital compatibility condition
writes

η∗sψ
s
s = ψs

s .

Therefore 〈ηs, ψs
s〉 < Diff (C, 0) is Abelian. Since ψs

s is tangent-to-identity the subgroup is
rigid, and is conjugate [10, 4] by φs ∈ Diff (C, 0) tangent-to-identity to

Ĝ :=

〈
βh

(1 + ξ•hp)
1/p

,
h

(1 + α•hp)
1/p

〉

=
〈
η̂•, ψ̂

s
•

〉
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for some p ∈ N, α•, ξ• ∈ Holoc (Σ) and βp = 1. Taking into account the fact that ηs
linearizes ∆−s

(
g−1s

)
= ℓsψ

s
s for ℓs := exp iπ

s , we obtain the identity

L∗
sη̂s =

(
ψ̂s
s

)◦−1

◦ η̂s =
βh

(1 + (ξ• − α•)hp)
1/p

where

Ls := φ◦−1
s ◦ (ℓsφs) .

Hence Ls must be of the form

Ls (h) =
ℓ•h

(1 + δshp)
1/p

,

and we deduce

ξ• =
α•

1− ℓp•
. (1.43)

Similarly φs linearizes Ls, and therefore

φs (h) =
h

(1 + χshp)
1/p

for some χs ∈ C. As a conclusion φ∗•ψ
s
• = ψ̂s

• and ψs
• has the expected form.

Remark 12. In this specific configuration we observe explicitly that the transition mapping
ηs cannot be defined for all values of s ∈ Σ, because of (1.43).

1.10 Instances of complete classifications

1.10.1 Complete temporal classification

We first describe the range of the period operator (Proposition 5). The next theorem is
showed in Section 1.10.1.1.

Theorem 13. For a generic unfolding X• of multiplicity 1 we recall its orbital necklace
Orb (X•) = Ω (ϕ•) and associated transition map η• as in (1.42).

1. Let f• ∈ Holoc (Orb (X•) , 0) such that f• (0) = 0. There exists G• ∈ Holoc
(
Σ ×

(
C2, 0

))

with G• = O(P•) + O (y) such that T• (G•) = f•.
2. We can find such a function G• satisfying G• = G−• on Σ∩ if, and only if

(
∀s ∈ Σ+

) ∞∑

n=0

fs ◦∆s

((
g−1s

)n) ◦ ηs =
∞∑

n=0

f−s ◦∆−s

((
s−1g

)n)
. (1.44)
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Notice that because ∆s

(
g−1s

)
and ∆−s

(
s−1g

)
are tangent to exp iπ

(
− 1

s + µλ

)
Id and

exp iπ
(
− 1

s − µλ

)
Id respectively, both sums converge geometrically.

Definition 17. Let (ϕ•, f•) be a temporal necklace (Definition 13). We say that it is a
compatible temporal necklace if Ω (ϕ•) is a compatible orbital necklace and if f•
fulfills the condition (1.44). This is equivalent to the following statement: for s ∈ Σ+ let
φ±s denote the unique solution vanishing at 0 of the discrete cohomological equations

{
φs − φs ◦∆s

(
g−1s

)
= fs

φ−s − φ−s ◦∆−s

(
s−1g

)
= f−s

,

then

η∗sφs = φ−s .

Remark 13. It is sufficient to ensure the relation holds on Σ+ because the orbital necklace
is compatible. We refer to Remark 14 for more details.

Corollary 5. Being given X• define

Fol (X•) :=
{
U•X• : U• ∈ Holo

(
C3, 0

)×}

and

Compat (X•) := {f• ∈ Holoc (Σ × (C, 0)) : f• satisfies (1.44)} .

1. We have a complete classification

Modloc (Fol (X•)) ≃ Compat (X•)/Holoc (Σ, 0)
× .

2. If X• = X∞
• we have normal forms

NFloc (Fol (X
∞
• )) :=

{
u•

1 + u•G•
: u• ∈ C {λ} [x]×≤1 , G• ∈ Section (1)

}
X∞

•

where

τ :=

{
0 if µ0 /∈ R≤0

1 + ⌊−µ0⌋ otherwise

Section (1) := xτ+1yC {λ, xτy} .

Item 1. is a direct restatement of Theorem 13, Theorem 12 and Definition 13 Item 3. We
give the proof of Item 2. in Section 1.10.1.2, based on the explicit computation of the
period operator for the formal model in terms of the Gamma function. The dominant
terms are Γ (1 +m (τ + µ•)) for m ∈ Z≥0: the presence of the monomial xτ helps keeping
far away from poles for small |s|.
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1.10.1.1 Range of the period operator (proof of Theorem 13)

The proof relies on solving two Cousin problems, one in (x, y)-space and the other one in
s-space.

V
ns

V
sn

V
s

V
n

s
n

s
s V

g

Γ
sn

Γ
ns

(a) Spatial contours

−Σ Σ

Σ
+

Γ
−

Γ
+

Σ
−

(b) Parametric contours

Fig. 1.11: The contour used for the Cauchy-Heine transforms

Lemma 14. Recall the total sectorial spaces D♯ as in (1.34). Given δ• ∈ Holoc (Orb (X•) , 0)

such that s 7→ δs
s is bounded, there exist two functions F ♯

• ∈ Holoc
(
D♯
)

such that

F sn
s − F ns

s =

{
δs ◦Hns

s on Vs
s

0 on Vg
s ∪ Vn

s

.

Proof. This is a slight variation on the classical Cauchy-Heine transform. See Fig-
ure 1.11 (a). For (x, y) ∈ V♯

s we set

F ♯
s (x, y) :=

1

2iπ

ˆ

Γ ♯
s

δs ◦Hns
s (z, y)

z − x
dz ,

which by hypothesis defines an element of Holoc
(
D♯
)

if Γ ♯
s is deformed slightly to lie

outside adh
(
V ♯
s

)
. The rest follows from Cauchy’s formula. ⊓⊔

The same construction applies for the parametric Cousin problem, using the corre-
sponding contours given in Figure 1.11 (b).

Lemma 15. Given d• ∈ Holoc (Σ
+ × U) such that s 7→ ds

s is bounded, there exist a
function D• ∈ Holoc (Σ × U) such that for all s ∈ Σ+ we have Ds −D−s = ds.

Proof. For s ∈ Σ simply set
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Ds :=
1

2iπ

ˆ

Γ+

dz
z − s

dz +
1

2iπ

ˆ

Γ−

dz
z + s

dz .

⊓⊔

Let us proceed now with the proof of Theorem 13. Lemma 14, applied to the temporal
invariant δs := fs, yields two sectorial functions F ♯

s with prescribed difference over the
saddle sector. Because F sn

s − F ns
s is a first integral of Xλ the function defined by

Gs :=

{
Xλ · F ns

s on Vns
s

Xλ · F sn
s on Vsn

s

is holomorphic and bounded on Vs, therefore extends holomorphically to U . By con-
struction its period coincides with fs. Because F ♯

s has bounded derivatives [19], G• ∈
Holoc (Σ × U) is of the desired form:

Gs (x, y) = Ps (x)

(
∂F ♯

s

∂x
+Rλ (x, y)

∂F ♯
s

∂y

)
+ y (1 + µλx)

∂F ♯
s

∂y
.

This proves Item 1.
In general there is no reason for Gs = G−s to hold when s ∈ Σ∩. We must therefore

modify G• by adding to it a function of the form X• · D• with D• ∈ Holoc (Σ × U), in

such a way that G̃• := G• +X• ·D• be even. The equation G̃−s = G̃s reads

Gs −G−s = Xλ · (D−s −Ds) .

According to Theorem 10 Item 4. we need the identity

fs = Ts (Gs) = Ts (G−s)

to hold for s ∈ Σ∩. We prove below the hypothesis of Theorem 13 Item 2. guarantees
that very property. Taking this fact for granted, we deduce the existence of d• such that
Gs −G−s = Xλ · ds for all s ∈ Σ+ using Theorem 10 Item 4. again. This function can be
so chosen that lims→0 ds = 0, in which case s 7→ ds

s is bounded. Then Lemma 15 yields
the expected D•, completing the proof of Item 2.

Remark 14. From Theorem 10 Item 4. we know that Ts (Gs −G−s) = 0 for all s ∈ Σ+ if,
and only if, T−s (Gs −G−s) = 0 for all s ∈ Σ+. Therefore fs = Ts (G−s) for all s ∈ Σ∩

if, and only if, the equality holds merely on Σ+.

Proposition 7.

1. For all s ∈ Σ+ we have

η∗s

∞∑

n=0

Ts (G−s) ◦∆s

((
g−1s

)n)
=

∞∑

n=0

f−s ◦∆−s

((
s−1g

)n)
.

2. f• = T• (G−•) if, and only if, condition (1.44) holds.

Proof. Set φs :=
∑∞

n=0 fs ◦∆s

((
g−1s

)n)
, φ−s :=

∑∞
n=0 f−s ◦ ∆−s

((
s−1g

)n)
and φ̃s :=∑∞

n=0 Ts (G−s) ◦∆s

((
g−1s

)n)
.
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1. Take p∗ ∈ T . Any asymptotic cycle γ (p∗), used to compute the period in Proposition 5,
is tangentially asymptotically homotopic to the lift in Fλ of the limit of nested cycles
limm→∞ γm

γm := p−s

((
s−1g

)−m (
n−1s

) (
s−1g

)m)
: [−m,m] −→ Dλ (1.45)

γm+1|[−m,m] = γm .

We let γ̃m be the lift of γm in Fλ with γ̃m (0) = p∗. The quantity F ns
−s (γ̃m (−m)) +

´

γ̃m
G−s

dx
Pλ

represent the analytic continuation of F ns
−s along γ̃m. By construction the

additive monodromy of the continuation of F ns
−s is given by the period f−s when turning

around the saddle-like singularity of Vns
−s. Hence

ˆ

γ̃m

G−s
dx

Pλ
+ F ns

−s (γ̃m (−m))− F ns
−s (γ̃m (m)) =

(
m∑

n=0

f−s ◦∆−s

((
s−1g

)−n
)
−

m∑

n=1

f−s ◦∆−s

((
s−1g

)−n
n−1s

))
◦Hns

−s (p∗) .

Because F ns
−s extends continuously to {x = s} and limn→∞ γ̃n (±n) = (s, 0), taking the

limit we obtain in the chart Ωns
−s

Ts (G−s) ◦ ηs = φ−s − φ−s ◦∆−s

(
s−1gn−1s

)
.

According to Definition 16, for s ∈ Σ+ the identity η∗s∆s

(
g−1s

)
= ∆−s

(
s−1gn−1s

)

holds, so that summing over all terms η∗s
(
Ts (G−s) ◦∆s

((
g−1s

)n))
for n ∈ Z≥0 yields

the expected result:

ηsφ̃s = φ−s .

2. The direct implication is trivial. Assume conversely that η∗sφs =
∑∞

n=0 f−s◦∆−s

((
s−1g

)n)
,

i.e. φs = φ̃s. Because φs − φs ◦∆s

(
g−1s

)
= fs and φ̃s − φ̃s ◦∆s

(
g−1s

)
= Ts (G−s) we

recover fs = Ts (G−s).
⊓⊔

1.10.1.2 Computation of the period of the model X∞

•

Proposition 8. Let Gn,m (x, y) := xnym and X• := X∞
• . Then for all s ∈ Σ we have (in

the chart Ωns
s )

Ts (Gn,m) (h) = hm × (−m)
n+mµλ

Γ (n+mµλ)
×
(
−2s

m

)mµλ Γ
(
−m

2s + mµλ

2

)

Γ
(
−m

2s − mµλ

2

) × ts,n,m

ts,n,m :=
1

2n

∑

p+q=n

(
n

p

) p−1∏

j=0

(
1− s

(
µλ +

2j

m

)) q−1∏

j=0

(
1 + s

(
µλ +

2j

m

))
.

Remark 15. Notice that taking the limit s→ 0 in Σ leads to
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lim
s→0

(
−2s

m

)mµλ Γ
(
−m

2s + mµλ

2

)

Γ
(
−m

2s − mµλ

2

) = lim
s→0

ts,n,m = 1

recovering classical computations [7, 23, 24] performed for λ = 0. Also, if µ• = 0 then
T• (Gn,m) is a holomorphic function of λ.

Proof. We perform the computation over V nsn
s = Dλ\ (V g

s ∪ V n
s ). Because

Hs (x, y) := y (x− s)−
1
2s

−µl
2 (x+ s)

1
2s

−µl
2

is constant on the leaves of Fλ we can parameterize an asymptotic path as

x ∈ γ∞ 7−→
(
x, h (x− s)

1
2s

+
µl
2 (x+ s)

− 1
2s

+
µl
2

)

where h = Hns
s (p∗) and γ∞ = limp→∞ γp (as in (1.45)) is the projection on {y = 0} of

the asymptotic cycle γ (p∗). This projection does not depend on the choice of p∗ ∈ T .
Remembering the computations performed in Proposition 3, we introduce the Pochham-

mer countour Ps ∈ π1 (Dλ, x∗) whose encoding in the dynamics necklace is given by

ws (Ps) = n−1gs−1ng−1s .

For h ∈ (Ωns
s , 0) let P̃s (h) be the lift in Fλ of Ps starting from p∗ ∈ T with h = Hs (p∗).

Both necklace holonomies ∆s (γ̂) and ∆s

(
Γ̂
)

are linear in the same coordinate Hs|T ,

and therefore commute. Because the Pochhammer contour is a commutator we have

∆s

(
n−1gs−1ng−1s

)
= Id .

Hence P̃s (h) is a (non-trivial) element of the fundamental group of the corresponding
leaf of Fλ. As a matter of consequence

˛

P̃s(h)

Gn,m
dx

Pλ
= Ts (Gn,m)− Ts (Gn,m) ◦∆s

(
g−1s

)
.

Summing over the forward orbit of ∆s

(
g−1s

)
we obtain

Ts (Gn,m) (h) =
∞∑

ℓ=0

˛

P̃s◦∆s((g−1s)ℓ)(h)
Gn,m

dx

Pλ

=

∞∑

ℓ=0



∆s

((
g−1s

)ℓ)
(h)

h




m
˛

P̃s(h)

Gn,m
dx

Pλ

=
1

1− expmiπ
(
− 1

s + µλ

)
˛

P̃s(h)

Gn,m
dx

Pλ

because
˛

P̃s(h)

Gn,m
dx

Pλ
= hm

˛

Ps

xn (x− s)
m
2s

+
mµλ

2
−1

(x+ s)
−m

2s
+

mµλ
2

−1
dx .
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We recognize the integral representation of the Beta function. Up to the presence of µλ

and m, the remaining computations are done identically to those in Proposition 3. ⊓⊔

Remark 16. The fact that the complete invariant ϕn
• introduced in Section 1.1.3 for affine

unfoldings is obtained from the above proposition for µ• := 0 and m := −1 is not
fortuitous and can be explained very much like in [24]. The best heuristics is the relation

Xλ = X∞
λ − aλPλ

∂

∂y
= X∞

λ − aλPλ

y
× y

∂

∂y

so that locally conjugating X∞
• to X• is somehow equivalent to solving analytically

X∞
λ · Fλ =

aλPλ

y
.

A more precise approach would require to study the generic saddle-node unfolding
near (0, 0,∞) whose node- and saddle-parts corresponds to saddle- and node-parts near
(0, 0, 0).

We deduce from this proposition the following result, concluding the proof of Corollary 5.

Corollary 6. Recall the notations of Corollary 5. The operator

Section (1) −→ {f• ∈ Holoc (Σ × C, 0) : f• (0) = 0}
G• 7−→ T• (G•)

is bijective.

In the next paragraph we generalize this result for all purely convergent unfoldings.

Proof. This is a consequence of the following two facts:

⊛ the period operator sends ymxn to some monomial hmTs,n,m,
⊛ Ts,n,m = 0 for s ∈ (Σ, 0) if, and only if, T0,n,m = 0, that is n+mµλ ∈ Z≤0.

The choice of τ prevents Ts,mτ,m to vanish so that the operator is formally invertible.
The fact that the inverse operator maps convergent power series f• to convergent power
series is a consequence of lims→0 Ts,1+τm,m = T0,1+λm,m 6= 0 and of estimates established
in [24] for T0,1+mλ,m. ⊓⊔

1.10.2 Normal forms for pure convergence

Here we assume that Z• is a generic unfolding of multiplicity 1 whose orbital invariant
has null node-part:

ϕn
• = 0 .

We say that the unfolding is purely convergent, and write Convergent (1) the set of all
such unfoldings.
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Theorem 14. Recall the definition of Section (1) given in Corollary 5 Item 2. The col-
lection

NFloc (Convergent (1)) :=

{
u•

1 + u•G•

(
X∞

• + yR•
∂

∂y

)
: G•, R• ∈ Section (1)

}

is a family of normal forms for Convergent (1). Two vector fields in normal forms are
locally analytically conjugate if, and only if, there exists c• ∈ Holoc (Σ)× such that

{
R̃λ (x, y) = Rλ (x, cλy)

G̃λ (x, y) = Gλ (x, cλy)
.

Remark 17. Notice that the normal forms are not in prepared form (1.25).

We show this result in three steps, following the strategy presented in [20] for λ = 0.
For the sake of clarity we only deal here with the case ℜ (µ0) > 0 , particularly implying
τ = 0.

The initial data is a formal class (µ•, u•) and a compatible temporal necklace (ϕ•, f•),
as in Definition 17, with ϕn

• = 0.

Proposition 9. One can find r′ > 0 and a covering of (C\ {±s})×r′D into two modified,
infinite canonical sectors V♯

s, ♯ ∈ {ns, sn}, such that the following properties hold.

1. There exists a collection of holomorphic vector fields X• ∈ X (Σ × C × r′D) of the form

Xs = X∞
λ + yxRs

∂

∂y
, R• ∈ Holoc (Σ × r′D) , (1.46)

and such that the associated canonical first integrals H♯
• ∈ Holo

(
D♯
)

have connected

fibers and satisfy Hsn
s = ϕ♭

s ◦Hns
s for ♭ ∈ {n, g, s} and s ∈ Σ.

2. The action of holomorphic automorphisms of the orbital necklace Ω (ϕ•) by h 7→ c•h
induces an action

c∗• : R• 7−→ R• ◦ (c•Id) .

In other words, two vector fields as above are locally orbitally conjugate for all s ∈ Σ
if, and only if, R̃• (y) = R• (c•y) for some c• ∈ Holoc (Σ)

×
.

It may happen that R• 6= R−• in Item 1., preventing X• to be a generic unfolding, so we
seek a function c• ∈ Holoc (Σ)

×
such that

c∗•R• = c∗−•R−• .

If this is possible at all then X∞
• + yxc∗•R• is the expected normal form. The following

lemma hence completes orbital realization with normal forms.

Lemma 16. Let X• be a collection of vector fields in the form (1.46), with associated
orbital necklace Ω (ϕ•). There exists a function c• ∈ Holoc (Σ)

×
such that c∗•R• = c∗−•R−•

if, and only if, Ω (ϕ•) is compatible.
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The temporal realization is a straightforward consequence of the next concluding result, as
was done to prove Corollary 5. This is a generalization of Corollary 6 to generic unfoldings
under normal forms.

Proposition 10. Let X• be a generic unfolding of multiplicity 1 in normal form (1.46).
The operator

Section (1) −→ {f• ∈ Holoc (Σ × C, 0) : f• (0) = 0}
G• 7−→ T• (G•)

is bijective.

1.10.2.1 Orbital realization on Σ (proof of Proposition 9)

The proof is achieved by iterating a Cauchy-Heine integral transformation solving a cer-
tain sectorial Cousin problem, like in Lemma 14, to obtain H♯

•. In fact we seek two
functions O♯

• such that

H♯
• := H∞,♯

• exp
(
O♯

•
)

as in (1.36).

Definition 18. Take ρ, r > 0 such that r < 1
|µλ| for every |s| < ρ. We refer to Figure ##.

1. The modified squid sector V ns
s is obtained from the union of a squid sector of radius

r as in Definition 10 and the half-rays exp −iπ
8 R≥0 and exp 9iπ

8 R≥0. The construction
is analogous for V sn

s , as well as their saddle-, gate- and node-parts.
2. Let r′ > 0 be given. We call modified canonical sector V♯

s the product V ♯
s × r′D.

3. We say that a triple (r′,Osn
• ,Ons

• ), with O♯
• ∈ Holoc

(
D♯
)
, is adapted to a domain

Ω = (C, 0) if Hns
s (Vs

s) ⊂ Ω for all s ∈ Σ.

The next result is the basis of the construction. We omit the proof, which is a straight-
forward generalization of its counterpart in [20] for s = 0. Instead we focus on the
constructions involved, stressing the few steps where the case s = 0 does not extend
straightforwardly.

Theorem 15. Consider some (r′,Osn
• ,Ons

• ) adapted to Ω. Take any f• ∈ Holoc (Σ ×Ω)

vanishing along {h = 0} and with bounded derivative f ′
• on Σ ∪ {0}, then define F ♯

• by

F ♯
s (x, y) :=

x

2iπ

ˆ

Γ ♯
s

fs
(
H♯

s (z, y)
)

z − x
× dz

z
, s ∈ Σ , (x, y) ∈ V♯

s , (1.47)

where the paths were described in Definition 18. The following properties hold.

1. F ♯
• ∈ Holoc

(
D♯
)
.

2. F sn
s − F ns

s = fs ◦Hns
s on V♯

s and vanishes elsewhere.

3. F ♯
• (⋆, 0) = 0 and F ♯

• (0, ⋆) = 0.
4. For |s| < ρ one has estimates



72 L. Teyssier

a.

sup
V♯

s

∣∣F ♯
s

∣∣ ≤ r′K sup
Ω

∣∣∣f ′
s

∣∣∣ exp sup
V♯

s

∣∣O♯
s

∣∣

b.

sup
V♯

s

∣∣∣∣y
∂F ♯

s

∂y

∣∣∣∣ ≤ r′K sup
Ω

∣∣∣f ′
s

∣∣∣ exp sup
V♯

s

∣∣O♯
s

∣∣
(
1 + sup

V♯
s

∣∣∣∣y
∂O♯

s

∂y

∣∣∣∣

)

c.

sup
V♯

s

∣∣∣∣x
∂F ♯

s

∂x

∣∣∣∣ ≤ r′K sup
Ω

∣∣∣f ′
s

∣∣∣ exp sup
V♯

s

∣∣O♯
s

∣∣
(
1 + sup

V♯
s

∣∣∣∣x
∂O♯

s

∂x

∣∣∣∣

)

with some constant K > 0 depending only on µ0, ρ and r.

Remark 18. We mention the fact that the assumption ℜ (µλ) > 0 guarantees the conver-
gence of the integrals near ∞, since fs

(
H♯

s (z, y)
)
∼∞ Cz−µλ for fixed y ∈ r′D.

For r′ > 0 and O := (Osn
• ,Ons

• ) adapted to Ω, we write E (O) the pair (F ns
• , F sn

• ) built
in the previous theorem for f• := ϕs

•. Define the recursive sequence (On)n∈∈Z≥0
starting

with O0 := (0, 0) and

On+1 := E (On) , n ≥ 0 . (1.48)

Show it converges in the Banach space H := Holoc (Dns) × Holoc (Dsn) (equipped with
the sup-norm). For the sake of clarity we write Hn the canonical first integral Hns

s built
from Ons

s . We can assume that all ϕs
s are holomorphic and have bounded derivatives on

some disc ηD = (C, 0). Then we choose

ρ ≤ η

M
exp

(
− η

M
K sup

ηD

∣∣∣∣
dϕs

s

dh

∣∣∣∣
)

where

M =M (µ•) := sup
|s|<ρ , z∈V s

s

∣∣∣P−µλ/2
λ gs

∣∣∣ exp 2π |µλ| ,

and K is the constant appearing in Theorem 15. We wish to ensure that

(∀s ∈ Σ) (∀n ∈ N) (∀y ∈ r′D) (∀z ∈ V s
s ) |Hn (z, y)| ≤ η . (1.49)

By construction of Hn we have for (z, y) ∈ Vns
s

|Hn (z, y)| ≤ r′M exp sup
Vns

s

|Ons
s | .

Therefore if for some n ∈ N we have supVns
s
|Ons

n | ≤ 2π
M ηK supηD

∣∣∣dϕ
s
s

dh

∣∣∣ then we first find

that
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|Hn (z, y)| < r′M exp

(
η

M
K sup

ηD

∣∣∣∣
dϕs

s

dh

∣∣∣∣
)

= η,

i.e. (r′,On) is adapted to ηD and then, using Theorem 15 4a., we obtain

sup
Vns

s

∣∣Ons
n+1

∣∣ ≤ r′K sup
ηD

∣∣∣∣
dϕs

s

dh

∣∣∣∣ exp supVns
s

|Ons
n |

≤ η

M
K sup

ηD

∣∣∣∣
dϕs

s

dh

∣∣∣∣ .

These estimates show by induction on n that, with the above choice of r′, the rela-
tion (1.48) defines a bounded sequence (On)n ⊂ H. It so happens that the components
of the sequence (On)n converge for the Krull topology in Holoc

(
D♯
)
[[y]], almost by con-

struction, hence we can ensure it converges in the Banach space Holoc
(
D♯
)

by using the
same argument as [20]. The cited reference likewise provides the remaining claims of the
upcoming proposition.

Proposition 11. Let Ω = (C, 0) be a domain and a collection ϕs
• ∈ Holoc (Σ ×Ω) be

given. Then there exists (r′,Osn
• ,Ons

• ) ∈ R>0 ×H adapted to Ω such that

1.

Hsn
s = Hns

s exp (2iπµλ + ϕs
s (H

ns
s )) ,

2.

sup
V♯

s

∣∣∣∣y
∂O♯

s

∂y

∣∣∣∣ < 1 , sup
V♯

s

∣∣∣∣x
∂O♯

s

∂x

∣∣∣∣ < 1.

We can now complete the proof of the first item of the proposition.

Corollary 7. Let r′ > 0 and O♯
• be given by Proposition 11.

1. For s ∈ Σ the vector field

X♯
s := X∞

s − y
X∞

s · O♯
s

1 + y ∂O♯
s

∂y

∂

∂y
, ♯ ∈ {ns, sn}

is holomorphic on V♯
s and admits H♯

s as first integral.
2. The vector fields X♯

s are restrictions to the sectors V♯
s of a vector field

Xs (x, y) = X∞
s (x, y) + xRs (y) y

∂

∂y

R• ∈ Holoc (Σ × r′D) , R• (0) = 0 .

Proof. Define

R♯
s := − X∞

s · O♯
s

1 + y ∂O♯
s

∂y

. (1.50)



74 L. Teyssier

1. is a straightforward consequence of Proposition 11.
2. On the one hand we have

X♯
s ·Hsn

s = X♯
s · (Hsn

s exp (2iπµλ + ϕs
s (H

sn
s ))) = 0 .

On the other hand a short calculation shows that

X♯
s ·Hsn

s = Hsn
s

(
X∞

s · Osn
s +

(
1 + y

∂Osn
s

∂y

)
Rns

s

)
.

Therefore the functions R♯
s glue other the intersection of canonical sectors to a holo-

morphic function R̂s on (C\ {±s}) × r′D, bounded near {x = ±s}. Hence R̂s is holo-
morphic on C× r′D by Riemann’s removable singularity theorem. From (1.50) follows,
for |x| > 1,

∣∣∣R̂s

∣∣∣ ≤

∣∣∣Pλ

x × x
∂O♯

s

∂x

∣∣∣+ (1 + |µλx|)
∣∣∣y ∂O♯

s

∂y

∣∣∣

1−
∣∣∣y ∂O♯

s

∂y

∣∣∣
≤ C |x|

for some constant C > 0 whose existence is guaranteed by Proposition 11 Item 2.
Therefore for any fixed y ∈ r′D the partial function x 7→ R̂s (x, y) is affine. Taking

Theorem 15 Item 3. into account we derive that R̂s = xRs, so that Rs can only depend
on y, concluding the proof.

⊓⊔

So far we have proven Proposition 9 Item 1. The second item can be shown in exactly
the same way as in [20], so we shall skip additional details.

1.10.2.2 Gluing antipodal realizations (proof of Lemma 16)

Assume the existence of c• ∈ Holoc (Σ)
×

for which R̂λ := c∗sRs is holomorphic with

respect to λ for s ∈ Σ. Let X̂• be the corresponding vector field in normal form. We
put a hat over objects associated to this vector field, to avoid confusing the same objects
attached to X•. The orbital necklace Ω (ϕ̂•) is compatible: η̂• := Ĥ• ◦ Ĥ−• conjugates

the necklace dynamics ∆̂• and ∆̂−•. Because X̂• and X• are conjugate by (s, x, y) 7→
(s, x, csy) their orbital necklaces are diffeomorphic: ∆̂s = c∗s∆s. As a conclusion, setting
ηs := 1

cs
η̂s ◦ (c−sId) we check easily that η• conjugates the necklace dynamics ∆• and

∆−•, while η◦−1
• = η−•.

Conversely, if Ω (ϕ•) is compatible then ψ• := H◦−1
• ◦ η• ◦ H−• is a self-map of T

conjugating the holonomy representation of R• and R−• on T . Because the union of

leaves Lp of Fs for p ∈ T contains a uniform, connected neighborhood Û of {(±s, 0)},
there exists a family of paths γ (x) linking x to x∗ so that h

γ(x)
s (x, y) ∈ T for every

(x, y) ∈ Û . The map built à la Mattei-Moussu [13]

Ψs : (x, y) 7−→
(
x , h−γ(x)

s ◦ ψs ◦ hγ(x)s (x, y)
)
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is therefore well-defined, biholomorphic and locally conjugates X• and X−•. The conclu-
sion follows from Proposition 9 Item 2.

1.10.2.3 A section to the period operator (proof of Proposition 10)

This is really Theorem 15. Being given X• ∈ Holoc (Σ × C × r′D) in normal form, the

functions F ♯
• of (1.47) induces a function G• := X• · F ♯

• ∈ Holoc (Σ × C × r′D) with
prescribed period as in Section 1.10.1.1. Applying again the arguments of Corollary 7
Item 2., we can give a polynomial bound on the growth of x 7→ Gs (x, y), so that it must
be of the expected form. The claim follows from the same reasoning as in Theorem 13 to
perturb G• so that the resulting function is even in s and has same period.
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