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Optimal Transport for Domain Adaptation
Nicolas Courty, Remi Flamary, Devis Tuia, Member, IEEE , Alain Rakotomamonjy

Abstract—Domain adaptation from one data space (or domain) to another is one of the most challenging tasks of modern data
analytics. If the adaptation is done correctly, models built on a specific data space become more robust when confronted to
data depicting the same semantic concepts (the classes), but observed by another observation system with its own specificities.
Among the many strategies proposed to adapt a domain to another, finding a common representation has shown excellent
properties: by finding a common representation for both domains, a single classifier can be effective in both and use labelled
samples from the source domain to predict the unlabelled samples of the target domain. In this paper, we propose a regularized
unsupervised optimal transportation model to perform the alignment of the representations in the source and target domains.
We learn a transportation plan matching both PDFs, which constrains labelled samples in the source domain to remain close
during transport. This way, we exploit at the same time the few labeled information in the source and the unlabelled distributions
observed in both domains. Experiments in toy and challenging real visual adaptation examples show the interest of the method,
that consistently outperforms state of the art approaches.

Index Terms—Unsupervised Domain Adaptation, Optimal Transport, Transfer Learning, Visual Adaptation, Classification.

F

1 INTRODUCTION

THE multiplication of data sources and acquisition
devices allow to consider tremendous quantities

of data. In practical applications, the wealth of data
available is however often counterbalanced by the
lack of annotated information, which is generally used
to run classification algorithms aiming at generaliz-
ing over new unseen examples. Moreover, classical
learning methods are challenged by the plurality of
sources, mostly because subtle or pronounced dis-
crepancies are observed in the different data distri-
butions, or drifts. In computer vision, this problem
is known as the visual adaptation problem, where
domain to domain drifts may occur when changing
lighting conditions, acquisition devices, or by con-
sidering the presence or absence of backgrounds. In
speech processing, learning from one speaker and
trying to deploy an application targeted to a wide
public may also be hindered by the differences in
background noise, style, tone or gender of the speaker.
Another example is found in remote sensing image
analysis, where one would like to reuse the labels
defined over one city to classify the land occupation
of another city. The drifts observed in the probability
density function (PDF) of remote sensing images are
due to a variety of factors: different corrections from
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atmosphere scattering compensation, daylight condi-
tions at the hour of acquisition or even slight changes
in the chemical composition of the materials. As a
matter of fact, the causes of drift are numerous and
specific to the application.

For those reasons, several works study the general-
ization capabilities of a classifier allowing to transfer
knowledge from a labeled source domain to an unla-
beled target domain: in our work, we assume that the
source and target domains are by essence different,
which is usually referred to as the domain adaptation
problem [33]. We address the most difficult variant of
this problem, where data labels are only available in
the source domain. This is the unsupervised domain
adaptation problem, and we tackle it by assuming
that the effects of the drifts can be reduced if data
undergo a phase of adaptation toward a common
representation, where both domains look more alike.

Several theoretical works [1], [32], [19] have empha-
sized the role played by the divergence of the two
domains probability distribution functions, leading to
a principled way of solving the domain adaptation
problem: moving closer both distributions, while us-
ing the label information available in the source do-
main to learn a classifier. This work follows the same
intuition and tries to search for a transformation of
the input data that fits a least effort principle, i.e. an
effect that is minimal with respect to a transformation
cost or metric. In this sense, the adaptation problem
boils down to: i) finding a possible transformation of
the input data to match the source and target distri-
butions or transportation plan, and then ii) learning a
new classifier from the transformed source samples.
This process is depicted in Figure 1. The question is
how to find the best transportation plan possible. In
this paper, we propose a solution based on optimal
transport.
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Fig. 1: Illustration of the proposed approach for domain adaptation. (left) dataset for learning, i.e. source
domain, and testing, i.e. target domain. Note that a classifier estimated on the training examples clearly does
not fit the target data. (middle) an optimal transportation plan is estimated and used to transport the training
samples onto the target domain. Note that this transformation is usually not linear (right) the transported
labeled samples are used for estimating a classifier in the target domain.

Optimal Transport (OT) problems have received
recently a lot of interests in several fields, and among
the potential applications of its theory, one resides in
its use for computing distances between probability
distributions. Those distances have received several
appellations in the literature: Wasserstein, Monge-
Kantorovich or Earth Mover distances, and have very
strong and important properties: i) they can be eval-
uated when only empirical measures of those distri-
butions are observed and without the estimation of
parametrical or semi-parametrical distributions as a
pre-process; ii) there are no particular constraints on
the overlap of the support of the distributions to pro-
vide meaningful results, which is clearly not the case
with most classical information theoretic divergences,
such as the Kullback-Leibler divergence. By directly
exploiting this property, we introduce a novel frame-
work for unsupervised domain adaptation which con-
sists in learning an optimal transportation based on
empirical observations. In addition, we propose a se-
ries of regularizers for the optimal transport learning
problem, building either upon the knowledge of class
memberships in the source domain or upon Laplacian
regularization. Finally, an efficient algorithm has been
used for solving the resulting optimization problem.

The reminder of this Section presents the related
works, while Section 2 formalizes the problem of
unsupervised domain adaptation and the use of op-
timal transport for its resolution. Algorithms based
on a variant of the conditional gradient optimization
framework are proposed in Section 3 for regularized
optimal transport. The originality of our approach
resides in the inclusion of additional regularization
terms tailored to fit the domain adaptation con-
straints. Their pertinence is thoroughly examined in
the experimental Section 4, where we demonstrate
the efficiency of the new proposed framework in both
synthetic and real-world examples.

1.1 Related works

Domain adaptation. Domain adaptation strategies
can be roughly divided in two families, depending
on whether they assume the presence of few labels
in the target domains (semi-supervised DA) or not
(unsupervised DA).

In the first family, we find methods searching for
projections discriminative in both domains, either by
using dot products between the source samples and
the transformed target samples [38], [28], [25], or by
learning projections, for which labeled samples of the
target domain fall on the correct side a large margin
classifier trained on the source data [24] or by extract-
ing common features under pairwise constraints [23],
[44].

The second family tackles the domain adaptation
problem assuming, as in this paper, that no labels are
available in the target domain. Besides works deal-
ing with sample reweighing [41], many works have
considered finding a common feature representation
for the two (or more) domains. This representation, or
latent space, allows to project samples from all domains
in a space where a classifier using only the labeled
samples from the source domain generalize well on
the target domains [16], [34]. The representation trans-
fer can be performed by matching the means of the
domains in the feature space [34], aligning the do-
mains by their correlations [29] or by using pairwise
constraints [43]. In most of these works, the common
latent space is found via feature extraction, where
the resulting projection summarizes the information
common to the domains.

Recently, the unsupervised domain adaptation
problem has been revisited by considering strategies
based on a gradual alignment of a feature representa-
tion: in [21], authors start from the hypothesis that do-
main adaptation can be better approached if compar-
ing gradual distortions and therefore use intermediary
projections of both domains along the Grassmannian
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geodesic connecting the source and target observed
eigenvectors. In [20], [46], authors propose to obtain
all sets of transformed intermediary domains by using
a geodesic-flow kernel, instead of sampling a fixed
number of projections along the geodesic path. While
these methods have the advantage of providing easily
computable out-of-sample extensions (by projecting
unseen samples onto the latent space eigenvectors),
the transformation defined remains global and is ap-
plied the same way to the whole target domain.

An approach combining the sample reweighing
logic with the representation transfer one is found
in [45], where authors extend the sample re-weighing
in a reproducing kernel Hilbert space by the use of
surrogate kernels. By doing so, a linear transforma-
tion of the domains is found, but, as for the feature
representation approaches above, it stays equal for all
transferred samples.

Our proposition strongly differs from those re-
viewed above, as it defines a local transportation plan
for each sample in the source domain. In this sense,
the domain adaptation problem can be seen as a graph
matching problem [31], [9], [10] for all samples to be
transported, where their final coordinates are found
by mapping the source samples to target samples
while respecting the marginal distribution of the tar-
get domain.
Optimal Transport and Machine Learning. The opti-
mal transport (OT) problem has first been introduced
by the french mathematician Gaspard Monge in the
middle of the 19th century as the way to find a
minimal effort solution to the transport of a given
mass of dirt into a given hole. The problem reap-
peared in the middle of the 20th century in the work
of Kantorovitch [26], and found recently surprising
new developments as a polyvalent tool for several
fundamental problems [42]. It was applied in a wide
panels of fields, including computational fluid me-
chanics [5], color transfer between multiple images or
morphing in the context of image processing [36], [17],
[6], interpolation schemes in computer graphics [7],
and economics, via matching and equilibriums prob-
lems [11].

Despite the appealing properties and application
success stories, the machine learning community has
considered optimal transport only recently (see, for in-
stance, computing distances between histograms [14]
or label propagation in graphs [40]); the main reason
being the high computational cost induced by the
computation of the optimal transportation plan. How-
ever, new computing strategies have emerged [14],
[15], [6] and made possible the application of OT
distances in operational settings.

2 OPTIMAL TRANSPORT AND APPLICATION
TO DOMAIN ADAPTATION

In this section, we present the general unsupervised

domain adaptation problem and show how it can be
addressed from an optimal transport perspective.

2.1 Problem summary and theoretical motiva-
tions

Let Ω ∈ Rd be an input measurable space of di-
mension d and C the set of possible labels. P(Ω)
denotes the set of all probability measures over Ω. The
standard learning paradigm assumes the existence of
a set of data Xs = {xsi}

Ns
i=1 associated with a set of

class label information Ys = {ysi }
Ns
i=1, with ysi ∈ C (the

training set) , and a data set with unknown labels
Xt = {xti}

Nt
i=1 (the testing set). In order to determine

the set of labels Yt associated with Xt, one usually
relies on an empirical estimate of the joint probability
distribution P(x, y) ∈ P(Ω×C) from (Xs,Ys), and on
the assumption that Xs and Xt are drawn from the
same distribution P(x) ∈ P(Ω).

2.2 Domain adaptation as a transportation prob-
lem

In the considered adaptation problem, one assumes
the existence of two distinct joint probability dis-
tributions Ps(x

s, y) and Pt(x
t, y) which correspond

respectively to two different source and target domains,
noted respectively Ωs and Ωt. In the following, µs and
µt are their respective marginal distributions over X.
When µs and µt are only accessible through discrete
samples, the corresponding empirical distributions
can be written as

µs =

ns∑
i=1

psi δxs
i
, µt =

nt∑
i=1

ptiδxt
i

(1)

where δxi
is the Dirac function at location xi ∈ Rd.

psi and pti are probability masses associated to the
i-th sample, and belong to the probability simplex,
i.e.

∑ns

i=1 p
s
i =

∑nt

i=1 p
t
i = 1. We also denote fs and

ft the true labeling functions, i.e. the Bayes decision
functions in each domain.

One of the following two assumptions is generally
taken by most of the methods tackling the domain
adaptation problem:
• Class imbalance: the label distributions are dif-

ferent in the two domains (Ps(y) 6= Pt(y)), but
the conditional distributions of the samples with
respect to the labels are the same (Ps(x

s|y) =
Pt(x

t|y));
• Covariate shift: the conditional distributions of

the labels with respect to the data are the same
(Ps(y|xs) = Pt(y|xt), or equivalently fs = ft =
f ), but the distributions of the data in the two
domains are different (Ps(x

s) 6= Pt(x
t)). In the

practical cases they can be different, but this
difference needs to be small [1] for the adaptation
to work.
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Those two views of the problem lead to different
reweighting schemes that can be appropriately incor-
porated in the learning strategies (such as SVM [8]).
Yet in real world applications, the drift occurring
between the source and the target domains generally
implies a change in both marginal and conditional
distributions.

In our work, we propose the following modelling:
the domain drift is due to an unknown transformation
of the input space T : Ωs → Ωt. This transformation
may have a physical interpretation (e.g. change in the
acquisition conditions, sensor drifts, thermal noise,
etc.) or be linked with the unknown process that
generates the data. In any case, this transformation
has no particular reason for being linear. Then we
make the following assumption: the transformation
preserves the conditional distribution, i.e.

Pt(y|xs) = Ps(y|T(xs)).

In other words, the label information is preserved
by the transformation, and ft(x) = fs(T(x)). From a
probabilistic point of view, T transforms the probabil-
ity measure µ in its image measure, noted T#µ, which
is a probability measure over Ωt, for which

T#µ(x) = µ(T−1(x)), ∀x ∈ Ωt (2)

T is said to be a transport from µs to µt if T#µs = µt
(as illustrated in Figure 2.a). Under this assumption,
Xt are drawn from T#µs. This provides a principled
way to solve the adaptation problem:

1) Estimate µs and µt from Xs and Xt (Eq. (1))
2) Find a transportation plan T from µs to µt
3) Use T to transport samples Xs, and use the

transported samples with a classical approach
in machine learning, i.e. directly estimating a
decision function with a classifier, or use the
posterior probability

Pt(x
t, y) = Ps(y|T(xs))Ps(T(xs)).

Searching the space of all possible transformations
T is not possible, and other assumptions need to be
taken. In order to be sufficiently general, we propose
a simple restriction to the class of possible transforma-
tion: T should be chosen such that it is a minimum
energy or transformation cost.

Such a cost C(T) can be expressed as:

C(T) =

∫
Ωs

c(x,T(x))dµ(x), (3)

where the cost function c : Ωs×Ωt → R+ can be taken
as a distance function over the metric space Ω, and
can be understood as the energy required to move a
probability mass µ(x) from x to T(x). In our domain
adaptation setting, this cost has a penalizing function
for large displacements that would result in violations
of the preservation of conditional distributions.

By adding constraints on those constraints, the
problem of estimating T boils down to an optimal
transportation problem. The optimal transport T0 is
the solution of the following minimization problem:

T0 = argmin
T

∫
Ωs

c(x,T(x))dµ(x), s.t. T#µs = µt

(4)
which is the original Monge transportation prob-
lem. Let Π be the set of all probabilistic couplings
∈ P(Ωs×Ωt) with marginals µs and µt. The equivalent
Kantorovitch formulation of the optimal transport [26]
seeks for a coupling γ ∈ Π between Ωs and Ωt:

γ0 = argmin
γ∈Π

∫
Ωs×Ωt

c(xs,xt)dγ(xs,xt) (5)

In this formulation, γ can be understood as a joint
probability measure with marginals µs and µt (de-
picted in Figure 2.b). γ0 is the unique solution to the
optimal transport problem [42]. Interestingly, γ0 can
be directly estimated from Xs and Xt as shown in the
next Section. By the Kantorovich-Rubinstein theorem,
γ0 is the transportation map that allows to define the
Wasserstein distance of order 1 between µs and µt:

W1(µs, µt)
def
= inf

γ∈Π

∫
Ωs×Ωt

c(xs,xt)dγ(xs,xt)

= inf
γ∈Π
{ E
xs∼µs,xt∼µt

c(xs,xt)} (6)

This distance, also known as the Earth Mover Dis-
tance in computer vision community [37], defines a
metric over the space of integrable squared prob-
ability measures. W1 takes values in [0,diam(Ω)],
with diam(Ω) being the diameter of Ω, i.e.diam(Ω) =
supxs,xt∈Ω c(x

s,xt).

2.3 Theoretical justification of the using an opti-
mal transport strategy
A first result in the theory of domain adaptation is
due to Ben-David and colleagues [4], [3]. It provides
a generalization bound in the target domain for a
classifier trained in the source domain. This bound is
composed of three terms: i) the classification error in
the source domain, ii) a measure of similarity between
the classification problems in source and target, and
iii) an estimate of the divergence between µs and µt,
expressed as the total variation divergence d1(µs, µt):

d1(µs, µt)
def
= 2 sup

B⊂B
|µs(B)− µt(B)| (7)

where B is the set of all measurable sets under µs
and µt, and f : Ω → R satisfies |f(x)| ≤ 1 in both
domains1. As such, if T helps in reducing this diver-
gence, a better performance can be expected for the
adaptation. In order to do so, one can notice that there
exist relations between the Wasserstein metric and the

1. Whenever Ω is a countable space, this definition leads to the
L1-norm between the two distributions
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xs

µt(T(xs))µs(x
s)

T(xs)⌦s ⌦t
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⌦t

⌦s
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Fig. 2: Illustration of the optimal transport problem. (a) T is a transportation plan from Ωs to Ωt (b) γ can be
seen as a joint probability distribution with marginals µs and µt (c) illustration of the transport plan computed
between two ellipsoidal distributions. The grey line between two points indicate a non-zero coupling between
those points.

total variation. In the general case of the Wasserstein
distance, Theorem 6.15 from the monograph of C.
Villani [42] shows the possible control of a Wasser-
stein distance and a weighted total variation. In our
particular case, one way to understand this relation is
to express the total variation in its equivalent coupling
characterization, i.e.

d1(µs, µt)
def
= inf

J
{ E
xs∼µs,xt∼µt

c(xs,xt)1xs 6=xt}. (8)

It is actually a particular case of equation (6) if one
takes the cost function c(xs,xt) = 1xs 6=xt . This allows
to derive some relations between the two metrics:

Theorem 2.1: The Wasserstein metric and the total
variation distance follow the relation:

W1 ≤ diam(Ω)d1. (9)

When Ω is a finite set, and if dmin = minxs 6=xtc(xs,xt),
one can define the reciprocal bound:

d1 ≤
1

dmin
W1 (10)

As such, and since T reduces W1 to zero by con-
struction, we can expect d1(µs,T#µs) to be also min-
imised, and thus the adaptation to succeed.

3 REGULARIZED DISCRETE OPTIMAL
TRANSPORT

The goal of this Section is to present operational algo-
rithms based on optimal transport for unsupervised
domain adaptation. First we express the optimization
problem that aims at computing the optimal transport
plan based on the (discrete) empirical distributions.
We then proceed by adding regularization terms that
preserve label information and local proximity of the
samples during transport.

3.1 Discrete optimal transport

Usually one does not have a direct access to µs or
µt but rather to collections of samples from those
distributions. It is then straightforward to adapt the
optimal transport problem to the discrete case. We will
denote B the set of probabilistic couplings between the
two empirical distributions, and defined as:

B =
{
γ ∈ (R+)ns×nt | γ1nt = µs,γ

T1ns = µt

}
(11)

where 1d is a d-dimensional vector of ones. The
Kantorovitch formulation of the optimal transport [26]
reads:

γ0 = argmin
γ∈B

〈γ,C〉F (12)

where 〈., .〉F is the Frobenius dot product and C ≥ 0
is the cost function matrix, whose term C(i, j) denotes
the energy needed to move a probability mass from
xsi to xtj . In our setting, this cost was chosen as
the Euclidian distance between the two locations, i.e.
C(i, j) = ||xsi − xtj ||2, but other types of metric could
be considered, such as Riemannian distances over a
manifold [42].

Note that when ns = nt = n and ∀i, j psi = ptj =
1/n, γ0 is simply a permutation matrix. the optimal
transport problem boils down to an optimal assign-
ment problem. In the general case, it can be shown
that γ0 is a sparse matrix with at most ns+nt−1 non
zero entries, that is the rank of the constraint matrix.

This problem can be solved by linear programming,
with combinatorial algorithms such as the simplex
methods and its network variants (transport simplex,
network simplex, etc.). Yet, the computational com-
plexity was shown to be O(n2) in practical situa-
tions [7] for the network simplex (while being O(n3)
in theory), which dampens the utility of the method
when handling big data. However, the regularization
scheme recently proposed by Cuturi [14] allows a
very fast transport computation. We will present this
regularized scheme in Section 3.2.
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Once the transport γ0 has been computed, the
source samples must be transported in the target
domain using their transportation plan. One can seek
the interpolation of the two distributions by following
the geodesics of the Wasserstein metric [42] (param-
eterized by t ∈ [0, 1]). This allows to define a new
distribution µ̂ such that:

µ̂ = argmin
µ

(1− t)W1(µs, µ)2 + tW1(µt, µ)2. (13)

One can show that this distribution is [42]:

µ̂ =
∑
i,j

γ0(i, j)δ(1−t)xs
i+txt

j
. (14)

In our approach, we suggest to compute directly the
image of the source samples as the result of this
transport, i.e. for t = 1. Yet, it is undesirable to split
the source samples into several fraction elements as
required by the transport. Instead, we propose to
compute images of the source samples as barycenters
of the target samples. The corresponding barycentric
coordinates are readily found in γ0. Let Tγ0

: Rd →
Rd be the mapping induced by the optimal transport
coupling. This map transforms the source elements
Xs in a target domain dependent version, X̂s. The
mapped samples can therefore be expressed as:

X̂s = Tγ0
(Xs) = diag((γ01nt)

−1)γ0Xt. (15)

We note that the reverse mapping from the target
to the source domain can also be easily computed
from γT0 . As a matter of fact, one can show [15]
that this transformation is a first order approximation
of the true ns Wasserstein barycenters of the target
distributions. Finally, when the marginal µs and µt
are uniform, one can easily derive the interpolation
as a linear expression:

X̂s = nsγ0Xt and X̂t = ntγ
>
0 Xs (16)

for the source and target samples.

3.2 Regularized optimal transport
Regularization is a classical approach used to prevent
overfitting when only few samples are available, or
even in presence of outliers. While it is always pos-
sible to enforce a posteriori a given regularity in the
transport result, a more theoretically convincing solu-
tion is to regularize the transport by considering and
additional penalty term in the problem formulation of
Eq.(12).

More specifically, in [14] it is proposed to regularize
the expression of the transport by the entropy of
the probabilistic coupling. This information-theoretic
regularized version of the transport γλ0 is the solution
of the following minimization problem:

γλ0 = argmin
γ∈B

〈γ,C〉F + λΩs(γ), (17)

where Ωs(γ) =
∑
i,j γ(i, j) log γ(i, j) computes the

negentropy of γ. The intuition behind this form of

regularization is the following: since most of the
elements of γ0 should be zero with high probability,
one can look for a smoother version of the transport
whiches relaxes the sparsity of γ by increasing its
entropy. As a result, and contrarily to the previous
approach, more couplings with non-null weights are
allowed, leading to a denser coupling between the
distributions. An appealing result of this formulation
is the possibility to derive a computationally very
efficient algorithm, which uses the scaling matrix ap-
proach of Sinkhorn-Knopp [27]. In addition Ωs(·) can
be seen as a Kullback-Leibler divergence KL(γ‖γu)
between the joint probability γ and a uniform joint
probability γu such that γu(i, j) = 1

nsnt
. In this case

we get Ωs(γ) = log nsnt +
∑
i,j γ(i, j) log γ(i, j) where

the first term is a constant w.r.t. γ.
As the parameter λ weighting the entropy-based

regularization increases, the corresponding sparsity
of γλ0 decreases and source points tend to dispatch
their probability masses toward more target points. As
a side effect of strong entropy-based regularization,
the corresponding transport tends to gather every
transported source points toward the center of mass
of the target points.

3.3 Regularizing the transport with class labels
Optimal transport, as presented in the Section above,
aims at minimizing a transport cost related to a metric
between distributions. It does not include any infor-
mation about the particular nature of the elements of
the source domain (e.g. the fact that those samples
belong to different classes). However, this information
is generally available, as labeled samples are used in
the classification step following the adaptation. Our
proposition is to take advantage of label information
and to penalize couplings that match together samples
with different labels.

To this end, we propose to add a new term to the
regularized optimal transport leading to the following
optimization problem

min
γ∈B

〈γ,C〉F + λΩs(γ) + ηΩc(γ), (18)

where η ≥ 0 and Ωc(·) is a class-based regularization
term.

Specifically, in this work we propose and study
two choices for this regularizer Ωc(·). The first one is
based on group sparsity and promotes transportation,
where a target sample has to be represented in γ by
samples from the same class. The second is based on
graph Laplacian regularization and promotes a locally
smooth and class-regular structure in the transported
samples.

3.3.1 Regularization with group-lasso
As introduced above, this first solution for label regu-
larization is based on regularization inducing group-
sparsity. We want to integrate the available label
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information in the optimal transport. In our case, this
information is available for all the source samples. The
main idea is that, even if we do not know the class
of the target distribution, we still can promote group
sparsity in the columns of γ such that a given target
point (i.e., one column of γ) will be transported in
the convex hull of only one class, since the sparsity
support would consist in lines of γ belonging to the
same class. Note that this approach has been proposed
in our preliminary work [13]. We proposed to use
the `p − `1 regularization with p < 1 in [13] mainly
for algorithmic reasons. Indeed, when applying a
Majoration-Minimization on the `p − `1, the problem
can be casted as problem (17) and can be solved
using the efficient Sinkhorn-Knopp solver at each
iteration. But this regularization term is non-convex
and the proposed algorithm only converges to a local
stationary point.

In this work, we propose to maintain the convexity
of the cost function and use the convex group lasso
regularization `1 − `2 instead. This regularizer is de-
fined as

Ωc(γ) =
∑
j

∑
c

||γ(Ic, j)||2, (19)

where Ic contains the indices of the lines related to
samples of the class c in the source domain, γ(Ic, j)
is a vector containing coefficients of the jth column of
γ associated to class c and || · ||2 denotes the `2 norm.
Note that among other benefits, the convexity of the
cost function allows to use a generic optimization
scheme (presented in section 3.4) that can be used in
practice for all the regularization schemes proposed
in this paper.

3.3.2 Laplacian regularization
The second regularization we investigate in this work
is the graph Laplacian regularization. This regular-
ization preserves the structure of the data – ap-
proximated by a graph – during the transport [17],
[12]. Note that the graph regularization is defined by
symmetric similarity matrices Ss and St computed
between the source and target samples in their origi-
nal configurations. Indeed, Ss conveys an interesting
mean to encode the class labels in the regularization
by enforcing an absence of connection between ele-
ments of different classes. To this end, we can set the
connections of Ss to 0 if the corresponding samples
are from different classes.

When regularizing w.r.t. the source samples only,
the regularization term becomes

Ωc(γ) =
1

N2
s

∑
i,j

Ss(i, j)‖x̂si − x̂sj‖2 (20)

where Ss(i, j) ≥ 0 are the coefficients of matrix
Ss ∈ RNs×Ns that encodes the similarity between
the source samples of the same class. Note that the
sample x̂si used in this regularization term is the

transported source sample xsi that linearly depends
on the transportation matrix γ (Eq. (15)). Note that
a similar Laplacian regularization term that controls
the sample displacements has been proposed in [17] to
adapt image histograms through the transportation of
the pixels from one image to another. In [17], authors
proposed a slightly different regularization term than
(20) and no hard class enforcement was proposed.

When the marginals are uniform, one can express
the regularization with

Ωc(γ) = Tr(X>t γ
>LsγXt) (21)

where Ls = diag(Ss1) − Ss is the Laplacian of the
graph Ss. The regularizer is therefore quadratic w.r.t.
γ. Finally, the regularization term (20) is only applied
on the transported source samples, thus leading to a
non-symmetric regularization. When a structure exists
also in the target samples (defined by matrix St), a
symmetric Laplacian regularization of the form

Ωc(γ) = (1− α)Tr(X>t γ
>LsγXt) + αTr(X>s γLtγ

>Xs)
(22)

can be used instead. In the equation above Lt =
diag(St1) − St is the Laplacian of the graph in the
target domain and 0 ≤ α ≤ 1 is a regularization
parameter that weights the importance of each reg-
ularization term. Note that, since the target domain
does not have labeled pixels, the St similarity matrix
cannot be modified according to the class structure,
as it is done for the source matrix Ss.

3.4 Conditional Gradient Splitting for solving the
regularized OT
In this section we propose an efficient algorithm for
solving the optimization problem (18), when any of
the group-lasso or Laplacian regularization is in play.
But, at first, let us briefly characterize the existence of
a solution to the problem.

For continuous regularizers as those we are consid-
ering in this work, the objective function is contin-
uous. Since the doubly stochastic constraint set is a
convex, closed and bounded, hence compact, subset
of Rd, the objective function reaches its mininum on B.
If, as for the Laplacian regularization, the regularizer
is strictly convex, that minimum is unique.

Now, regarding algorithms for retrieving the op-
timal transport problem (18), we can note that for
the Laplacian regularization, Ferradans et al. [17] pro-
posed to use a conditional gradient (CG) algorithm.
This approach is appealing and could be extended to
our problem. Indeed, a CG approach has several nice
properties that are of high interest. It is an iterative
scheme that guarantees any iterate to belong to B,
which means that any of those iterates is a transport
plan. In addition, at each iteration, for finding a
feasible search direction, it looks for a minimizer of
a linearized approximation of the objective function.
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Hence, at each iteration it solves a Linear Program
(LP) that is easier to handle than the original regu-
larized optimal transport problem. Nevertheless, and
despite the availability of efficient LP solvers such as
CPLEX or MOSEK, the dimensionality of the problem
that can be solved is limited, since it involves a LP
problem of size ns × nt.

In practice, we would like to have a more ef-
ficient algorithm that can handle a larger number
of samples. Since we know how to solve efficiently
problem (17) thanks to the Sinkhorn-Knopp algorithm
proposed by Cuturi [14], we propose an algorithmic
solution exploiting this efficient solver. To this end,
we introduce a novel algorithm dubbed as conditional
gradient splitting (CGS). The framework of the CGS
algorithm addresses the general case of constrained
minimization of composite functions as defined by

min
γ∈B

f(γ) + g(γ), (23)

where both f(·) and g(·) are convex and differentiable
functions and B denotes any convex and compact sub-
set of Rn. Because the full analysis of this algorithm
goes beyond the scope of this paper, we refer the
interested reader to [18] which details its convergence
properties as well as different case studies. In what
follows, we briefly describe the CGS algorithm, along
with its application to problem (18).

The CGS is illustrated in Algorithm 1. Its main dif-
ference with a classical conditional gradient algorithm
relies in the way the search direction is built. The main
idea of CGS is to linearize only a part of the composite
objective function, for instance f(·) in Equation (23),
instead of the full objective. This idea is justified by
the hypothesis that solving the resulting nonlinear
optimization problem can be done with an efficient
solver. The other steps of the algorithm are exactly
the same as those used for conditional gradient. We
have shown in [18] that any limit point of the iterates
{γk} is a minimizer of problem (23).

More specifically, for problem (18) one can set

f(γ) = 〈γ,C〉F + ηΩc(γ) and g(γ) = λΩs(γ)

Supposing now that Ωc(γ) is differentiable, the step 3
of Algorithm 1 boils down to be

γ? = argmin
γ∈B

〈
γ,C + η∇Ωc(γ

k)
〉
F

+ λΩs(γ)

Interestingly, this problem is an entropy-regularized
optimal transport problem similar to the one in Equa-
tion (17) and as such it can be efficiently solved
using the Sinkhorn-Knopp scaling matrix approach.
This shows that our CGS algorithm allows us to
leverage on that efficient algorithm for proposing
another efficient algorithm that solves the class-label
regularization-based optimal transport problem.

Note that for our optimal transport problem, the
Laplacian regularization is differentiable, whereas the

Algorithm 1 Conditional gradient splitting (CGS)

1: Initialize k = 0 and γ0 ∈ P
2: repeat
3: With G ∈ ∇f(γk), solve

γ? = argmin
γ∈B

〈γ,G〉F + g(γ)

4: Find the optimal step with ∆γ = γ∗ − γk

αk = argmin
0≤α≤1

f(γk + α∆γ) + g(γk + α∆γ)

5: γk+1 ← γk + αk∆γ, set k ← k + 1
6: until Convergence

group-lasso one is not when there exists a class c
and an index j for which γ(Ic, j) is a vector of 0.
For dealing with this issue, one can note that if γk

is so that γk(Ic, j) 6= 0 ∀c,∀j then the same property
holds for γk+1. This is due to the exponentiation oc-
curring in the Sinkhorn-Knopp algorithm used for the
entropy-based regularizer optimal transport problem.
This means that if we initialize γ0 so that γ0(Ic, j) 6= 0,
then Ωc(γ

k) is always differentiable at any iteration k.
It also means that γ becomes group-sparse only when
k tends toward∞. Hence, our CGS algorithm can also
be applied to the group-lasso regularization despite its
non-differentiability in 0.

4 NUMERICAL EXPERIMENTS

In this Section, we study the behavior of four differ-
ent versions of optimal transport applied to the DA
problem. In the rest of the section, OT-exact is the
original transport problem (12), OT-IT the Informa-
tion theoretic regularisation (17), and our two novel
classes regularizers are OT-GL (Eq. (19)) and OT-
Laplace (Eq. (20)), corresponding to the Group-Lasso
and Laplacian regularizations, respectively.

4.1 Two moons: simulated problem with control-
lable complexity
In the first experiment, we consider the same toy
example as considered in [19]. The simulated dataset
consists of two domains: for the source, the standard
two entangled moons data, where each moon is as-
sociated to a specific class (See Fig. 3(a)). The target
domain is built by applying a rotation to the two
moons, which allows to consider an adaptation prob-
lem with an increasing difficulty as a function of the
rotation angle. This example is notably interesting be-
cause the corresponding transformation is clearly non-
linear, and because the input dimensionality is small,
2, which leads to poor performances when applying
methods based on subspace alignment (e.g. [20], [30]).

We follow the same experimental protocol as in [19].
This allows for a direct comparison with the state-of-
the-art results presented therein.
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10◦ 20◦ 30◦ 40◦ 50◦ 70◦ 90◦

SVM (no adapt.) 0 0.104 0.24 0.312 0.4 0.764 0.828
DASVM [8] 0 0 0.259 0.284 0.334 0.747 0.82
PBDA [19] 0 0.094 0.103 0.225 0.412 0.626 0.687
OT-exact 0 0.028 0.065 0.109 0.206 0.394 0.507

OT-IT 0 0.007 0.054 0.102 0.221 0.398 0.508
OT-GL 0 0 0 0.013 0.196 0.378 0.508

OT-Laplace 0 0 0.004 0.062 0.201 0.402 0.524

TABLE 1: Mean error rate over 10 realizations of a
2-classes classification problem. The target domain is
given by a rotation of the source domain of angle
given in the first row.

The source domain is composed of two moons of
150 samples each. The target domain is also sampled
from these two shapes, with the same number of
individuals. Then, the generalization power of our
method is tested over a set of 1000 samples that follow
the same distribution as the target domain. The exper-
iments are conducted 10 times, and we consider the
mean classification error as a comparison criterium.
As classifier, we used a SVM with a Gaussian kernel,
whose parameters were set by 5-fold cross-validation.
We compare the adaptation results with two state-
of-the-art methods: the DA-SVM approach [8] and
the more recent PBDA [19], which has proved to
provide competitive results over this dataset. Results
are reported in Table 1.

Our first observation is that all the methods based
on optimal transport behave better than the state-of-
the-art methods, in particular for low rotation angles,
where results indicate that the geometrical structure
is better preserved through the adaptation by optimal
transport. Also, for large angle (e.g. 90◦), the final score
is also significantly better than other state-of-the-art
method, but falls down to a 0.5 error rate, which is
natural since in this configuration a transformation
of −90◦, with an inversion of labels, would have led
to similar empirical distributions. This clearly shows
the capacity of our method to handle large domain
transformations. Adding the class-label information
into the regularization also clearly helps for the mid-
range angle values, where as expected the adaptation
shows nearly optimal results up to angles < 40◦. This
suggests that our optimal transport strategies are able
to handle important non-linear transformations of low
dimensional spaces. For the strongest deformation (>
70◦ rotation), no clear winner among the OT methods
can be found. We think that, regardless of the amount
and type of regularization chosen, the classification
of test samples becomes too much tributary of the
training samples, which mostly come from the denser
part of µs and that, as a consequence, the less dense
parts of this PDF are less satisfactorily transported.
This behavior can be seen in Figure 3d.

4.2 Visual adaptation datasets
We now evaluate our method on three challenging
real world vision adaptation tasks, which have at-

tracted a lot of interest in recent vision literature [35].
They all aim at visual recognition tasks of different
categories of objects: digits, faces and various ob-
jects. We start by presenting the datasets, then the
experimental protocol, and finish by providing and
discussing the obtained results, as well as the compu-
tational cost of the OT-based methods.

4.2.1 Datasets
Three types of image recognition problems are con-
sidered: digits, faces and miscellaneous objects recog-
nition. This choice of datasets was already featured
in [30], and we follow the same preparation proce-
dure. A summary of the properties of each domain
considered in the three problems is provided in Ta-
ble 2. An illustration of some examples of the different
domains for a particular class is shown in Figure 4.
Digit recognition. As source and target domains, we
use the two digits datasets USPS and MNIST, that
share 10 classes of digits (single digits 0 − 9). We
randomly sampled 1, 800 and 2, 000 images from each
original dataset. The MNIST images are resized to the
same resolution as that of USPS (16 × 16). The grey
levels of all images are then normalized to obtain a
final common feature space for both domains.
Face recognition. In the face recognition experiment,
we take the PIE (”Pose, Illumination, Expression”)
dataset, which contains 32 × 32 images of 68 indi-
viduals taken under various pose, illumination and
expressions conditions. The 5 experimental domains
are constructed by selecting 5 distinct poses: PIE05
(C05, left pose), PIE07 (C07, upward pose), PIE09
(C09, downward pose), PIE27 (C27, frontal pose) and
PIE29 (C29, right pose). This allows to define 20 dif-
ferent adaptation problems with increasing difficulty
(the most challenging being the adaptation from right
to left poses). Let us note that each domain has a
strong variability for each class due to illumination
and expression variations.
Object recognition. We used the Caltech-Office
dataset, which has been extensively studied in several
papers [38], [21], [20], [46], [35]. The dataset contains
images coming from four different domains: Ama-
zon (online merchant), the Caltech-256 image collec-
tion [22], Webcam (images taken from a webcam) and
DSLR (images taken from a high resolution digital
SLR camera). A feature extraction method is used to
preprocess those images; it operates by computing
SURF descriptors [38], then used to transform each
image into a 800 bins histogram. The histograms
are then subsequently normalized and reduced to
standard scores. The variability of the different do-
mains come from several factors: presence/absence of
background, lightning conditions, noise, etc.

4.2.2 Experimental setup
Following [20], the classification is conducted using
a 1-Nearest Neighbor (1NN) classifier, which has the
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(a) source domain (b) rotation=20◦ (c) rotation=40◦ (d) rotation=90◦

Fig. 3: Illustration of the classification decision boundary produced by OT-Laplace over the two moons example
for increasing rotation angles. The source domain is represented as coloured points. The target domain is
depicted as points in grey (best viewed with colors).

Problem Domains Dataset # Samples # Features # Classes Abbr.

Digits USPS USPS 1800 256 10 U
MNIST MNIST 2000 256 10 M

Faces

PIE05 PIE 3332 1024 68 P1
PIE07 PIE 1629 1024 68 P2
PIE09 PIE 1632 1024 68 P3
PIE27 PIE 3329 1024 68 P4
PIE29 PIE 1632 1024 68 P5

Objects

Calltech Calltech 1123 800 10 C
Amazon Office 958 800 10 A
Webcam Office 295 800 10 W

DSLR Office 157 800 10 D

TABLE 2: Summary of the domains used in the visual
adaptation experiment

Fig. 4: Illustration of the datasets used in the visual
adaptation experiment. 5 random samples from one
class are given for all the considered domains.

advantage of being parameter free. In all experiments,
1NN is trained with the adapted source data, and
evaluated over the target data to provide a classifi-
cation accuracy score. We compare our optimal trans-
port solutions to the following baseline methods that
are particularly well adapted for image classification:

• 1NN is the original classifier without adaptation
and constitutes a baseline for all experiments;

• PCA, which consists in applying a projection
on the first principal components of the joint
source/target distribution (estimated from a con-
catenation of source and target samples);

• GFK, Geodesic Flow Kernel [20];
• TCA, Transfer Component Analysis [34];
• TSL, Transfer Subspace Learning [39];
• JDA, Joint Distribution Adaptation [30].

In the unsupervised version of the DA we consider,
no target labels are available. As a consequence, it is
impossible to consider a cross-validation step for the
hyperparameters of the different methods. However,
and in order to compare the methods at their best, we
selected the best possible parameters for each method
by crossvalidation as proposed in [30]. In the case of
subspace learning methods (PCA,TCA,GFK, TSL and
JDA), we search for reduced k-dimensional spaces
with k ∈ {10, 20, . . . , 200}. For JDA, we follow the
guidelines of [30], since they follow the same exper-
imental protocol. For the transfer learning approach
that have a regularization parameter λ, the best value
was searched in {0.001, 0.01, 0.1, 1, 10, 100, 1000}. The
λ and η parameters of our different regularizers
(Eq. (18)), are validated using the same search in-
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terval. In the case of the Laplacian regularization
(OT-Laplace), St is a binary matrix which encodes
a nearest neighbors graph with a 8-connectivity. For
the source domain, since the labels are available, Ss
is filtered such that connections between elements of
different classes are pruned. Finally, we set the α value
Eq. (22) to 0.5 to both the shape of the source and
target.

4.2.3 Results

Results of the experiment are reported in Table 3
where the best performing method for each domain
adaptation problem is highlighted in bold. First, we
observe that, on average, all the OT-based domain
adaptation methods perform better than the base-
line methods. Even OT-Exact, which is the worst
performing OT-based strategy, is outperformed only
slightly by the best baseline method (JDA). The best
performing strategies are clearly OT-GL and OT-
Laplace with a slight advantage for OT-GL. Interest-
ingly, among the baseline methods, those focusing on
a joint projection of the data (TCA, TSL and JDA)
seem to perform better than the Geodesic Flow Kernel
(GFK). When considering each adaptation dataset on
average, one can see that the OT-based strategies
lead only to a small increment in performance on
the digit recognition problem, while on the faces and
object recognition the gain of the OT-based strategies
is much more important and provide the best results
in 18/20 and 11/12 DA problems, respectively.

Finally, since we have a large number of experi-
ments, we can compare the best performing method,
OT-GL, to all the other approaches using a Wilcoxon
signrank test. This test evaluates the probability that
the difference in performance between two methods
has a 0 median with high probability. A small value of
the p-value means that the median is different from
0. With an α risk of 1%, OT-GL has been tested as
statistically better than all the other approaches except
OT-Laplace.

4.2.4 Computational performances

Let us first show that the CGS algorithm is more
efficient than a classical conditional gradient method
as the one used in [17] . We illustrate this in Fig-
ure 5, showing the convergence (top panel) and the
corresponding computational times (bottom panel).
We take as an example the case of computing the
OT-GL transport plan of digits 1 and 2 in USPS to
those in MNIST. For this example, we have allowed a
maximum of 50 iterations. Regarding convergence of
the cost function along the iterations, we can clearly
see that, while CGS reaches nearly-optimal objective
value in around 10 iterations, the CG approach is still
far from convergence after 50 iterations. In addition,
the per-iteration cost is significantly higher for the
conditional gradient algorithm. For this example, we
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Fig. 5: Example of the evolution of the objective value
along (top) the iterations and (bottom) the running
times for the conditional gradient splitting and the
conditional gradient algorithms.

save an order of magnitude of running time yet CG
has not converged.

We now study the computational performances of
the different optimal transport strategies in the visual
object recognition tasks considered above. We use
Python implementations of the different OT methods.
The test were run on a simple Macbook pro station,
with a 2.4 Ghz processor. The original OT-Exact so-
lution to the optimal transport problem is computed
with the MOSEK [2] linear programming solver2,
whereas the other strategies follow our own imple-
mentation based on the Sinkhorn-Knopp method. For
the regularized optimal transport OT-GL and OT-
Laplace we used the conditional gradient splitting
algorithm presented in Section 3.4 (the source code
will be made available upon the acceptance of the
article).

We report in Table 4 the computational time needed
by the OT methods using the same configuration
leading to the results in Table 3. As expected, OT-IT
is the less computationally intensive of the methods.
The solution of the exact optimal transport (OT-exact)
is longer to compute by a factor 4. Also, as expected,

2. other publicly available solvers were considered, but it turned
out this particular one was an order of magnitude faster than the
others



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY XX 12

TABLE 3: Overall recognition accuracies in % obtained over all possible pairs of domains. Maximum values
for each pair is indicated in bold font.

Methods
Standard Learning Baseline methods Optimal Transport Strategies
1NN PCA GFK TCA TSL JDA OT-exact OT-IT OT-GL OT-Laplace

U→M 44.70 44.95 46.45 51.05 53.75 59.65 45.25 53.30 61.00 58.30
M→U 65.94 66.22 67.22 56.28 66.06 67.28 45.33 69.28 70.28 69.39
P1→P2 26.09 24.80 26.15 40.76 44.08 58.81 61.26 67.71 71.76 70.17
P1→P3 26.59 25.18 27.27 41.79 47.49 54.23 59.99 69.55 69.73 69.85
P1→P4 30.67 29.26 31.15 59.63 62.78 84.50 81.80 84.32 84.68 84.44
P1→P5 16.67 16.30 17.59 29.35 36.15 49.75 45.89 55.88 56.19 55.88
P2→P1 24.49 24.22 25.24 41.81 46.28 57.62 61.25 63.66 64.92 65.46
P2→P3 46.63 45.53 47.37 51.47 57.60 62.93 67.71 72.06 72.06 72.12
P2→P4 54.07 53.35 54.25 64.73 71.43 75.82 75.46 76.84 77.89 77.86
P2→P5 26.53 25.43 27.08 33.70 35.66 39.89 50.80 56.13 56.99 57.72
P3→P1 21.37 20.95 21.82 34.69 36.94 50.96 58.25 60.56 60.98 61.46
P3→P2 41.01 40.45 43.16 47.70 47.02 57.95 67.71 71.21 71.64 72.99
P3→P4 46.53 46.14 46.41 56.23 59.45 68.45 70.77 71.73 72.00 71.73
P3→P5 26.23 25.31 26.78 33.15 36.34 39.95 53.12 57.41 57.78 58.64
P4→P1 32.95 31.96 34.24 55.64 63.66 80.58 81.81 86.31 86.58 86.97
P4→P2 62.68 60.96 62.92 67.83 72.68 82.63 78.51 85.76 87.72 87.97
P4→P3 73.22 72.18 73.35 75.86 83.52 87.25 73.47 81.37 83.52 81.99
P4→P5 37.19 35.11 37.38 40.26 44.79 54.66 54.78 64.95 69.36 65.81
P5→P1 18.49 18.85 20.35 26.98 33.28 46.46 46.94 47.21 47.72 47.84
P5→P2 24.19 23.39 24.62 29.90 34.13 42.05 51.01 53.84 55.37 55.49
P5→P3 28.31 27.21 28.49 29.90 36.58 53.31 53.12 57.11 58.03 58.33
P5→P4 31.24 30.34 31.33 33.64 38.75 57.01 54.49 55.06 55.36 55.54
C→A 23.70 36.95 41.02 38.20 44.47 44.78 31.63 39.14 48.02 43.63
C→W 25.76 32.54 40.68 38.64 34.24 41.69 30.51 35.59 44.75 37.29
C→D 25.48 38.22 38.85 41.40 43.31 45.22 25.48 43.31 45.22 43.31
A→C 26.00 34.73 40.25 37.76 37.58 39.36 31.52 34.64 38.56 36.15
A→W 29.83 35.59 38.98 37.63 33.90 37.97 28.81 34.92 41.36 37.97
A→D 25.48 27.39 36.31 33.12 26.11 39.49 29.30 36.94 44.59 38.22
W→C 19.86 26.36 30.72 29.30 29.83 31.17 25.91 32.59 37.22 33.57
W→A 22.96 31.00 29.75 30.06 30.27 32.78 24.74 39.98 39.98 40.29
W→D 59.24 77.07 80.89 87.26 87.26 89.17 81.53 90.45 92.99 91.72
D→C 26.27 29.65 30.28 31.70 28.50 31.52 26.54 31.79 33.84 32.15
D→A 28.50 32.05 32.05 32.15 27.56 33.09 28.29 32.36 36.74 34.03
D→W 63.39 75.59 75.59 86.10 85.42 89.49 70.17 87.80 90.51 88.47
mean 34.77 37.22 39.30 44.87 47.55 55.51 52.15 58.85 61.33 60.08

p-value 3.7e-07 3.7e-07 4.4e-07 3.7e-07 5.4e-07 9.0e-06 3.7e-07 7.9e-07 - 1.6e-02

the two regularized versions OT-GL and OT-Laplace
are the most demanding methods. We recall here
that the maximum number of inner loop of the CGS
approach was set to 10, meaning that each of those
methods made 10 calls to the Sinkhorn-Knopp solver
used by OT-IT. However, the added computational
cost is mostly due to the line search procedure (line
4 in Algorithm 1), which involves several computa-
tions of the cost function. We explain the difference
between OT-GL and OT-Laplace by the difference of
computation time needed by this procedure. All in
all, one can notice that even for large problems (case
P1→P4 for instance, involving 3332×3329 variables),
the computation time is not prohibitive and remains
tractable.

5 CONCLUSION

In this paper, we proposed a general framework
based on optimal transport to solve the unsupervised
domain adaptation problem. Optimal transport plans
are first estimated to find a matching transformation

between the PDFs of the source and the target do-
mains. Then, they can be used to provide a local
transformation of the labeled source samples (each
sample undergoes its own transport). We proposed
two regularization schemes to encode class-structure
in the source domain during the estimation of the
transportation plan, thus enforcing the intuition that
samples of the same class must undergo similar defor-
mations. We also proposed to use a modified version
of the conditional gradient algorithm, the conditional
gradient splitting, that can benefit from the efficient
Sinkhorn matrix scaling approach. With such a strat-
egy, the method can scale up to process real-world
datasets. Finally, we applied the proposed methods
on both synthetic and real world datasets. Results
show that the optimal transportation domain adapta-
tion schemes always outperform the competing state-
of-the-art methods. Moreover the optimal transport
methods exploiting class-regularization obtained the
best results.

We believe that the framework presented in this
paper will lead to a paradigm shift for the domain
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TABLE 4: Computational time (seconds) for the best
set of regularization parameters

OT-exact OT-IT OT-GL OT-Laplace
U→M 86.0 4.6 92.5 55.6
M→U 85.0 2.3 75.4 20.5
P1→P2 131.0 30.8 432.7 333.2
P1→P3 133.9 27.9 456.6 296.2
P1→P4 319.1 85.4 1303.2 985.3
P1→P5 132.5 21.3 276.5 153.4
P2→P1 130.9 38.3 666.8 413.1
P2→P3 65.1 14.3 418.9 182.8
P2→P4 143.7 67.8 1054.0 730.4
P2→P5 67.8 11.7 270.1 120.0
P3→P1 135.7 36.4 519.0 389.0
P3→P2 67.6 14.3 297.8 156.6
P3→P4 140.8 79.5 1115.3 895.8
P3→P5 62.2 9.8 248.3 108.8
P4→P1 326.1 91.6 1142.6 935.8
P4→P2 145.3 23.8 557.9 451.7
P4→P3 148.0 24.5 844.1 916.5
P4→P5 137.3 27.4 406.5 290.7
P5→P1 134.6 22.9 540.4 272.6
P5→P2 66.7 11.1 262.5 123.0
P5→P3 65.3 12.6 269.6 127.5
P5→P4 134.6 30.2 492.7 329.0
C→A 26.9 1.2 22.5 17.8
C→W 6.8 0.3 6.6 7.4
C→D 3.4 0.2 3.5 2.4
A→C 26.5 1.1 29.4 23.8
A→W 5.6 0.3 6.0 6.0
A→D 2.9 0.2 3.2 4.1
W→C 6.8 0.3 16.2 7.6
W→A 5.7 0.3 4.1 7.4
W→D 0.8 0.1 2.2 1.1
D→C 3.6 0.2 14.7 5.9
D→A 3.0 0.2 12.5 5.1
D→W 0.8 0.1 3.8 1.1
mean 86.8 20.4 349.1 246.4

adaptation problem. Estimating a transport is much
more general than finding a common subspace but
it comes with the problem of finding a proper reg-
ularization. The proposed class-based or Laplacian
regularizations show very good performances, but
we believe that other types of regularization should
be investigated. Indeed, as the transportation should
correspond to the physical process that leads to the
distribution shift, one may want the transport to
enforce physical constraints, which can be included
with dedicated regularization terms. Also, we plan to
extend our optimal transport framework to the multi-
domain adaptation problem, where the problem of
matching several distributions can be cast as a multi-
marginal optimal transport problem.
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