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Abstract—Learning word meanings during natural interaction
with a human faces noise and ambiguity that can be solved by
analysing regularities across different situations. We propose a
model of this cross-situational learning capacity and apply it
to learning nouns and adjectives from noisy and ambiguous
speeches and continuous visual input. This model uses two
different strategy: a statistical filtering to remove noise in the
speech part and the Non Negative Matrix Factorization algorithm
to discover word-meaning in the visual domain. We present
experiments on learning object names and color names showing
the performance of the model in real interactions with humans,
dealing in particular with strong noise in the speech recognition.

I. INTRODUCTION

Future robots that will act at home will need a high degree
of adaptability to cope with the very complex environment
represented by the common household settings. Among many
capabilities, they will require an efficient object recognition
capacity and the ability to interact with humans about these
objects through natural dialogue. This will require learning
not only the names of objects, but also some of their features
such as size or color. These capabilities can be implemented in
order to cope with a variety of situations, but it is impossible
to implement in advance the recognition capabilities for all
possible objects. Therefore these robots will need to be able
to learn new objects, and possibly new words.

The problem faced is the problem of symbol grounding [1],
i.e. learning the association of a word to its meaning. It is
possible to resort to specific training scenarios for teaching
objects names, for example by placing the objects in specific
situations and associating them with a label. In such settings,
the problem would be cast as a supervised learning problem.
However, it would be better to be able to learn in less
constrained scenarios during natural human-robot interactions.
In such a setup, the problem is more complex as there could
be ambiguities both on the object of interest, when several
objects are present in the field of view of the robot, and on the
labels to be associated with it as the human could pronounce
complex sentences where several words could correspond to
the label to learn. This setup will cast the problem as a weakly
supervised or un-supervised problem.

An additional difficulty in the case of language, compared to
simple label associations, is that words have different functions
and relations to the objects. Lets take a simple example : “Look

at this red ball”. This sentence contains words and a verb
which are not related to the object identity. It also contains
a noun and an adjective that are related to the object type (a
ball) and to a feature of this object (its color, red). In this
situation, it should therefore be learned that “ball” is labelling
the object identity, while “red” refers to its color and that all
the other words are irrelevant.

Humans are naturally facing these situations every day.
It has been demonstrated that as young as 12 months old,
we rely on cross-situational learning [2] in order to solve
these ambiguities. The general idea is that by analysing the
common points between several situations displaying vari-
ous objects and various associated words, it is possible to
solve the ambiguities and to recover the correct object-noun
or feature-adjective associations. Several models of cross-
situational learning have been proposed, working on symbolic
or sub-symbolic representation, with or without noise.

In this paper, we propose an implementation of cross-
situational learning which is a first step towards a system
for learning objects and words on a robot during natural
interaction with humans. The model we propose is able to
use symbolic and continuous data that are both ambiguous
and noisy in order to learn simple word-meanings in the
visual domain. It is implemented and evaluated during real
interactions with humans.

II. RELATED WORK

Learning the association between words and their meanings
is fundamentally ambiguous as illustrated by Quine with the
“Gavagai” problem [3]. In this problem, the word “Gavagai” is
pronounced while pointing to a rabbit in a field, and therefore
its meaning can be “rabbit”, “field”, or even the color of the
rabbit. These ambiguities in communication can be reduced
by several method, for example by relying on joint attention
[4] or on the syntactic constraints of the language itself [5].
However, human infants and adults are able to learn word
meanings even in controlled ambiguous situations by using
the regularities across exposure to the words and their referents
[6], [7], [8].

An early rule-based model of this capacity has been pro-
posed by [6]. This model is working on symbolic representa-
tion and is only evaluated in simulation. More recently, two
general approaches have been proposed to model the human



performance [9]. One approach is based on hypothesis testing
and assumes that human retains only one association hypoth-
esis when a word appear, which is subsequently confirmed or
not [10]. The other approach is based on associative learning
and memorizes an association table between all words and
referents that is updated after each observation [9]. Empirical
evaluation supports the idea that associative models better
match human behaviour [9], [11]. An approach based on
a Bayesian framework has been proposed by [12] which
is moreover able to integrate social cues in learning and
was shown to outperform a simple associative model on a
dataset of parent-children interactions. This problem has also
been studied using the so-called Neural Modeling Fields [13]
showing the capacity of this generic and more biologically
plausible approach to solve the problem.

All these models take symbolic data as input, both for the
words and for the referents and focus on learning their correct
associations. Other models rely on non-symbolic perception,
both for the referents and/or for the words, and thus are closer
to implementation on robots with real sensors. For example,
the talking heads experiment [14] uses a camera to observe
coloured shapes and shows how to create a grounded meaning
of symbols shared between robots. Though not originally
designed for cross-situational learning, it has been shown
that it can be extended to this case [15] and is able to
learn word meanings, both for objects and their features
(size, position, color). The CELL model [16] is also able to
learn word-meaning association through multimodal learning.
Working on two continuous modalities, it first segments each
modality independently and then learns associations between
these segments by analysing their co-occurences and mutual
information on a short-term memory in order to produce word-
meaning clusters. The model of Yu and Ballard [17] learns
word-meaning in a multi-modal setup using continuous speech
and observation of actions performed by humans. Although
the spoken language is constrained and several social cues are
used, the model is able to learn objects’ names, but also verb
meanings. Mangin and Oudeyer [18] also proposed a multi-
modal learning approach that is able to discover elementary
gestures performed by a human and their names in continuous
audio and motion streams.

Several algorithmic approaches have been proposed for
the problem. These approaches may be either very specific
to the problem [6], [10], or take advantage of standard ap-
proaches such as the Bayesian approach [12], the Expectation-
Maximisation algorithm [17] or the Neural Modelling Fields
[13]. Topic discovery algorithm is also an interesting approach
for this problem as it can discover the underlying element (the
object or feature) that will generate the perception and the
associated word. Among the existing algorithms, Non Negative
Matrix Factorization has been used in [18] and Latent Dirichlet
Allocation in [19].

III. PROPOSED APPROACH

Our approach for word-meaning learning uses symbolic
information for the language and continuous data for the visual

Fig. 1. Data representation used in our experiments

perception. These channels are both noisy and the language
part is ambiguous as it contains many words not related to
the object identities or features. We use two complementary
algorithms: one based on statistical analysis of word-object
occurrences to filter noise in the symbolic channel and the
other based on Non Negative Matrix factorization [20] to
discover the word-meaning associations from the multi-modal
data gathered across different situations.

A. Data representation

We have two modalities as input to our model (Figure 1).
The first one is a noisy continuous modality that typically
represents different features of the object of interest obtained
through computer vision. These features are currently con-
structed to represent color and shape of the object (see section
IV-A), but they could also be the results of a more generic
feature computation algorithm, for example learned through
deep-learning. The features are encoded as vectors of constant
size, and they do not present ambiguity in the sense that they
only represent one object of interest that is designated by
the human partner. However, the noise in the features could
sometimes prevent the correct recognition of an object.

The second channel is a noisy symbolic channel and repre-
sents the word occurrences in a sentence. It is typically taken
from a real speech recognition system and therefore often
contains erroneous word recognitions, besides the real words
in the sentence that are not related to the object of interest
(such as verbs and articles). The word occurrences are coded
as a binary vector of the size of the dictionary of all known
words. The dictionary is created incrementally, starting from
an empty dictionary and adding each new word encountered
in sentences at the end.

The system is presented with a set of observations of objects
and sentences pronounced by a human partner. Each situation
is encoded as a vector concatenating the two modalities.

B. Symbolic channel filtering

The first part of our model is in charge of filtering noise
in the symbolic channel. It relies on statistics on the word
occurrences processed through the Term Frequency-Inverse
Document Frequency (TF-IDF) approach [21] popular in text
processing.



We first group the observations according to their sim-
ilarities in the non symbolic channel. Intuitively, the goal
is for the system to put together all the observations that
share a common feature in order to be able to analyse the
associated word statistics. The clustering is performed by a
simple incremental clustering that puts each observation in
the same cluster as a previous observation if its distance is
smaller than a threshold (we used 0.8 in our experiments), or
creates a new cluster otherwise. We use the χ2 distance which
is well adapted for histogram features :

χ2(x, y) =

d∑
k=1

(xk − yk)2/(xk + yk)

The term-frequency of the word i associated with each
cluster j is then computed :

tfij = nij/nj

where nj is the total number of words observed in samples
from cluster j, and nij is the number of occurrence of word
i observed in samples from cluster j. This value is high for
words that occur often with a given object. The words with tf
below or equal a threshold (we chose the second highest tf
value for each cluster) are considered as noise and removed
from the observations (their entry is put to 0).

The inverse document frequency of the remaining words i
is then computed:

idfi = log[N/(1 +Ni)]

where N is the number of clusters, and Ni is the number of
clusters where word i appears at least once. This measure is
high for words that appear in very few clusters and low when
they appear in many clusters. The words with idf above a
threshold are common words (such as articles) and removed
from the observations. The words with idf below a threshold
are also removed, making the assumption that each word will
eventually be associated to several different objects (e.g. two
objects will have the same color). Assuming a mean repartition
of 2 keywords for each object, the mean idf value should be
log[N/(1+

√
N)]. We therefore use log[N/(1+

√
N ± ε)] for

the high and low threshold (ε = 2 in our experiments).
The remaining words after these two steps should contain

little noise and represent the words for which we have enough
cross-situational data to learn their meaning.

C. Learning meaning through Non Negative Matrix Factor-
ization

Using the samples filtered in the previous step, we use Non-
negative Matrix Factorization(NMF) [20] in order to discover
reference vectors that explain data efficiently as sum of these
reference vectors with positive weights. This method has been
shown to be able to discover part-based object representation
[22], which is close to our problem as we want to discover
part of the feature vector (meaning) associated with part of

the dictionary (word). More precisely, NMF will find matrices
W and H so that :

Vm×n =Wm×kHk×n Vshape
Vcolor
Vword


m×n

=

 Wshape

Wcolor

Wword


m×k

[H1, H2, ...,Hn]k×n

(1)

where V is the matrix containing all the observations in
columns, W and H are the matrices computed by NMF, W
containing k reference elements and H being the weights
that make it possible to reconstruct the observations from
the reference elements. As we have symbolic labels in the
language modality (words), and we want to have a meaning
for each of these words, we set the parameter k to the number
of words that remain after the first filtering step.

The W and H matrices are then computed using the
algorithm based on multiplicative update proposed by Lee and
Seung [22] and used in [18] for similar problems. This method
converges to a local minima, so the initialisation is important.
In our case, we want to discover word-meaning association,
so we initialise the Wword matrix to the identity so that it
favours solutions with one word for each reference element.
We initialise Wshape and Wcolor to random values.

The result of this algorithm is a set of k vectors associating
word activations and their meanings in the feature representa-
tion part. Our approach therefore provides an explicit meaning
for all the words retained after the TF-IDF filtering.

D. Incremental learning

In order to perform incremental learning after each new
observation, we add the new observation to the matrix V ,
adjusting the size of the matrix if new words appeared or
were removed by the TF-IDF filtering. We initialize matrices
W and H with the results of the previous time step, augmented
with a random column if a new word has passed the filtering
process. We perform NMF updates until the magnitude of
the update falls below a threshold (10−6mn, where m,n are
from Equation 1) or a maximum number of iteration (200) is
reached.

IV. EXPERIMENTAL RESULTS

We now present the experimental setup, a particular speech
and image processing used to create learning samples and the
results on word-meaning association learning.

A. Experimental setup

The experiment is conducted with a camera installed over
a table, facing down to capture the image of objects and
a microphone is used for acquisition of participants’ vocal
sentences, which will be converted into text format. 24 objects
(Figure2) can be put on the table, one at a time, while a human
teacher is describing them. All 24 objects can be grouped
by color as “blue (bleu in French)”, “green (vert)”, “red
(rouge)”, “yellow (jaune)”, and categorized by shape as “cup



Fig. 2. The 24 objects used for the experiments.

(tasse)”, “ring (anneau)”, “lego”, “apple (pomme)”, “compass
(boussole)”, “car (voiture)”, “book (livre)”. Our experiments
aimed at learning these 11 word meanings.

For image processing, we used a simple approach un-
der controlled conditions to perform the first experiments
validating our overall approach. The OpenCV1 library was
used to segment the object from the background using a
simple threshold on pixel intensity (the background being
black). In order to obtain comparable shape information of
objects, reference angular position and size are defined by
fitting objects with their smallest rectangular bounding box,
rotating it to be parallel to axis before resizing it to a size of
30 × 30 pixels. The shape feature vector is constructed from
this gray-scale converted image, taking lines one after another
to form a 900 elements feature vector. The color feature is
constructed from the Hue value in the HSV (Hue Saturation
Value) color space to construct a 80 bins histogram that is
additionally smoothed using a Gaussian Filter. The complete
visual feature vector is therefore of size 980, representing both
visual features and can be easily interpreted visually (see figure
3), which simplifies the qualitative analysis of the results.

Fig. 3. Examples of correct, corrupted and half-correct samples

1http://www.opencv.org

The speech-text conversion relies on Google speech-api2

which is used to return the recognized sentence in text format.
The recognition is applied to whole sentences of a teacher for
the description of an object. From this text, we build a binary
word histogram as described in section III-A.

We recorded from three different teachers a total of 77
samples, manually categorized as correct (i.e. containing both
correct labels of color and shape along with other unrelated
words), half-correct (i.e. containing only one of color or shape
label) and corrupted (i.e. containing no correct label) so as
to analyse our method’s robustness (see Figure 3). These
samples are replayed in random order to get performance
statistics. Figure 3 illustrates these samples. “Une tasse jaune”
correctly describes a yellow cup. When describing a green
lego, the speaker says: “Ha, c’est un lego vert”, however the
word “lego” fails to be recognized and leads to a half-correct
sample on the right. A corrupted sample appears when none
of the correct words are recognized, for example when the
original sentence “c’est un anneau vert” is misunderstood as
“c’est quand halloween”. Among all recorded samples, there
are 70.13% correct samples, 11.69% half-correct samples and
18.18% corrupted samples. Overall, the 11 words to learn
represent only 17.74% of the total number of words present
in the samples.

B. Learning with perfect symbolic labels

In this first experiment we use only perfect symbolic labels
(therefore using no symbolic label filtering) to validate that
NMF can learn label meanings.

The training set include samples of nine of the objects
in Figure 4, covering three color and three shape symbols.
From this simple case, we manually constructed a reference
dictionary of symbols whose feature descriptions, regarding
either shape or color, are averaged values of symbol-related
samples from recorded data (see Figure 4). As the number of
real word to learn is known to be 6 in this setup, we choose
k = 6 for the NMF algorithm.

As shown in Figure 4, the proposed NMF method is able
to extract symbolic labels from samples and the learned
dictionary approximates very closely the reference dictionary,
with only limited noise in the shape description part.

C. Learning with noisy word recognition

We now perform experiments with all 77 samples, using
directly the speech recognition results with our symbolic label
filtering method. We performed 10 experiments by processing
all the samples in random order and report mean and variance
of values computed for these 10 experiments.

Figure 5a plots the evolution of the total number of different
words encountered in the samples (in black), the number of
selected words by our filtering scheme (in red) and the real
number of correct words in these selected words (in blue).
We can see that our approach selects an approximately correct
number of words during the whole experiment, and converge

2https://github.com/gillesdemey/google-speech-v2



(a) Input training samples

(b) Reference dictionary

(c) Dictionary learned with NMF

Fig. 4. Learning with manually created perfect symbolic labels. The learned
dictionary using NMF is very close to the reference dictionary created by
averaging features for the corresponding words.

to the correct total number of keywords after approximately
50 samples.

We also defined two metrics for the evaluation of the quality
of word filtering and word-meaning dictionary. For the word
filtering part, we compare the set of filtered words F with the
set of reference words R using the equation:

sword = 100× Card(F ∩R)2

Card(F )× Card(R)
(2)

where Card(X) is the number of elements of X . This score is
maximal when F = R and decreases when the set of filtered
words lacks some reference elements or when it contains
additional erroneous words.

We compare the learned dictionary with the reference dic-
tionary (see section IV-B) using the following formula:

sdict = 100×

(∑
i∈R

∑
j∈F

δ(i, j) · e−χ2(ri,fj)

)
· Card(F ∩R)

Card(F )× Card(R)
(3)

where δ(i, j) is the Dirac function that equals 1 when the most
activated word of the learned dictionary entry j is the same
as in the reference word i, 0 otherwise. χ2(ri, fj) is the χ2

distance between the visual feature part of learned entry j and
reference entry i. This measure is maximum when the learned
dictionary is equal to the reference dictionary and decreases
when the selected words are different from the reference or
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Fig. 5. Learning results with full sample set, using word filtering and NMF:
a) word filtering successfully detects the 11 keywords. b) NMF produces high
quality dictionaries after 70 samples.

when the definition of the selected words differ from their
reference definition.

Figure 5b shows the mean and variance of these values
with incremental amount of training samples. We can see
that the word filtering improves its performance other time
and reach a maximum score after 70 samples in all cases.
The dictionary quality follows very closely the word filtering
quality, showing that the dictionary learning using NMF is
efficient and that the overall quality mainly depends on the
word filtering. The difference with 100 is mostly due to
remaining noise in the shape description. The resulting learned
word-meaning dictionaries are not shown due to limited space
but are qualitatively very similar to the one in Figure 4c.

V. DISCUSSION AND CONCLUSION

We proposed an algorithmic approach to learn word-
meaning associations in a cross-situational setup with noisy
and ambiguous input taken from vision and speech recogni-
tion. This approach was shown to be robust in preliminary
real interactive experiments, dealing efficiently with the errors



and unrelated words produced by speech-recognition (correct
words represents only 17.74% of total words) and the varia-
tions occurring in visual data.

The proposed approach, while not aiming at modelling hu-
man behaviour, is compatible with the hypothesis that humans
use associative methods for cross-situational learning [9], [11].
Like these models, it uses statistics on word occurrences and
their associations with referents. However, it goes beyond such
models by being able to process non-symbolic referents and
using statistical correlations discovered by NMF to define
the word meaning instead of associating words with pre-
defined symbolic referents. It shares this capability with other
models [16], [17], but relies on a separate speech recognition
technology, benefiting from its performance, while solving
their shortcomings by filtering erroneous recognitions.

Our approach extends [18] (who also used NMF in related
tasks), by being able to learn with very noisy input thanks
to the TF-IDF words filtering. It also shows that NMF can
learn word-meanings that appear in one modality only (e.g.,
red is correlated with color only) while [18] assumed that the
learned concepts always have manifestation in all modalities.
Our model also has the advantage of providing an explicit
representation of each word meaning in the elements learned
by NMF. While this is not compulsory as concept learning can
be implicit and observed from robot or human behaviour (as
in [18]), it makes it possible to define a clear quality measure
as used in section IV. However, for better comparison with
other approaches, we plan to assess the performances of the
learned dictionaries by measuring object and word recognition
rates on separate test databases.

Our model also makes it possible to learn the meaning
of different types of words relating to the object identity
(nouns) or its features (adjectives). While this remains quite
limited with respect to the complexity of natural language, it
is interesting to be able to learn these two different kinds of
words without specific processing. Going further in complexity
could take advantage of the language structure itself [5] to
guide the word-meaning associations.

In future work, we also plan to extend our approach to
ambiguity in the visual modality by using more complex image
processing that would be applicable on autonomous robots in
indoor environments and by having several objects shown at
the same time. This is simple for color, which is an additive
feature when several objects are presented and thus can be
processed directly by NMF, but it will require using other
features for shape as the current one is not additive. We also
plan to extend our approach to deal with homonyms, both for
the language part and for the visual part, where an object
can present different visual appearances depending on the
observation point of view.
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