
HAL Id: hal-01170597
https://hal.science/hal-01170597v1

Submitted on 1 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effective and Efficient Similarity Search in Scientific
Workflow Repositories

Johannes Starlinger, Sarah Cohen-Boulakia, Sanjeev Khanna, Susan
Davidson, Ulf Leser

To cite this version:
Johannes Starlinger, Sarah Cohen-Boulakia, Sanjeev Khanna, Susan Davidson, Ulf Leser. Effective
and Efficient Similarity Search in Scientific Workflow Repositories . Future Generation Computer
Systems, 2016, 56, pp.584-594. �10.1016/j.future.2015.06.012�. �hal-01170597�

https://hal.science/hal-01170597v1
https://hal.archives-ouvertes.fr

Effective and Efficient Similarity Search in

Scientific Workflow Repositories

Johannes Starlingera,∗, Sarah Cohen-Boulakiab, Sanjeev Khannac,
Susan B. Davidsonc, Ulf Lesera

aHumboldt-Universität zu Berlin, Institut für Informatik,

Unter den Linden 6, 10099 Berlin, Germany
bUniversité Paris-Sud, Laboratoire de Recherche en Informatique,

CNRS UMR 8623, INRIA, LIRMM, France
cUniversity of Pennsylvania, Department of Computer and Information Science,

3330 Walnut Street, Philadelphia, PA 19104-6389, USA

Abstract

Scientific workflows have become a valuable tool for large-scale data processing
and analysis. This has led to the creation of specialized online repositories to
facilitate workflow sharing and reuse. Over time, these repositories have grown
to sizes that call for advanced methods to support workflow discovery, in partic-
ular for similarity search. Effective similarity search requires both high quality
algorithms for the comparison of scientific workflows and efficient strategies for
indexing, searching, and ranking of search results. Yet, the graph structure
of scientific workflows poses severe challenges to each of these steps. Here, we
present a complete system for effective and efficient similarity search in scientific
workflow repositories, based on the Layer Decompositon approach to scientific
workflow comparison. Layer Decompositon specifically accounts for the directed
dataflow underlying scientific workflows and, compared to other state-of-the-art
methods, delivers best results for similarity search at comparably low runtimes.
Stacking Layer Decomposition with even faster, structure-agnostic approaches
allows us to use proven, off-the-shelf tools for workflow indexing to further re-
duce runtimes and scale similarity search to sizes of current repositories.

Keywords: scientific workflows, similarity search

1. Introduction

Scientific workflow systems have become an established tool for creating
and running reproducible in-silico experiments. With their increasing popu-
larity, online repositories of scientific workflows have emerged as a means of

∗Corresponding author
Email addresses: starling@informatik.hu-berlin.de (Johannes Starlinger),

cohen@lri.fr (Sarah Cohen-Boulakia), sanjeev@cis.penn.edu (Sanjeev Khanna),
susan@cis.penn.edu (Susan B. Davidson), leser@informatik.hu-berlin.de (Ulf Leser)

Preprint submitted to Future Generation Computer Systems June 15, 2015

facilitating sharing, reuse, and repurposing. Examples of such repositories in-
clude CrowdLabs [18], SHIWA [2], and the Galaxy repository [14]. Probably
the largest workflow collection is myExperiment [19], which currently contains
more than 2500 workflows from various disciplines, including bioinformatics, as-
trophysics, and earth sciences. To make the best use of these repositories, users
need support to find workflows that match their specific needs [5]. However,
currently these repositories only support keyword queries which are matched
against textual descriptions, tags, and titles given to the workflows upon up-
load [2, 14, 18, 19]. Obviously, the quality of such a search critically depends
on the quality of the annotations associated with workflows.

Another source of information that can be exploited for search is the defi-
nition of a workflow itself [13]: Scientific workflows typically resemble directed
acyclic graphs (DAGs) consisting of global input and output ports, data pro-
cessing modules, and datalinks which define the flow of data from one module
to the next. Each module has a set of attributes associated with it, such as a
descriptive label, the type of operation to be carried out, or, for instance, the uri
of a web-service to be invoked. Two sample workflows from myExperiment are
shown in Figure 1. This structure or topology of the workflow, together with
the attributes defined on the workflow’s modules, is used by structure-based
methods of workflow comparison. An obvious advantage of structure-based ap-
proaches to workflow similarity search is that they do not require any additional
information to be provided by the workflow designer apart from the workflow
itself. Structure-based approaches are typically used in a second search phase:
First, users identify workflows which roughly match their needs using keyword
search. In the second phase, users select one candidate workflow and let the sys-
tem retrieve functionally similar workflows, i.e., the system performs a workflow
similarity search.

Several studies have investigated different techniques for assessing workflow
similarity using this attribute-enriched structure [3, 11, 13, 20, 21, 25, 27], but
initial results indicate that they perform no better, and sometimes even worse,
than annotation-based methods in terms of retrieval quality [6, 11, 25]. How-
ever, these comparisons were performed on very small and well-documented
workflow sets, and thus the results should not be extrapolated to the large,
but shallowly annotated repositories that exist today. To verify this hypothesis,
in prior work we performed a large-scale comparative evaluation of workflow
similarity search algorithms [22]. Our results indicated that a) structure-based
methods are indispensable for some current repositories which lack rich an-
notations, b) structure-based methods, once properly configured, outperform
annotation-based methods even when such rich annotations are available, and
c) any such standalone approach is further beaten by ensembles of annotation-
based and structure-based methods. We also discovered that both the amount
of configuration required and runtime considerations were drawbacks to such
methods: Fast workflow comparison using annotations on the workflows’ mod-
ules provides best results only when ubiquitous, functionally unspecific modules
are removed from the workflows in a preprocessing step. The configuration of
which modules are to be removed is specific to a given dataset, and is non-trivial.

4

Figure 1: Sample scientific workflows from the myExperiment repository: (a) ID: 1189, Title:
KEGG pathway analysis, (b) ID: 2805, Title: Get Pathway-Genes by Entrez gene id.

Methods based on workflow substructures, on the other hand, provide rather
stable results across different configurations, but have prohibitive runtimes.

Based on these findings we presented a novel technique for measuring work-
flow similarity that accounts for the directed dataflow underlying scientific work-
flows [23]. The central idea is the derivation of a Layer Decomposition for each
workflow, which is a compact, ordered representation of its modules, suitable
for effective and efficient workflow comparison. Comparatively evaluating this
novel technique against previous approaches, we showed that the algorithm a)
delivers the best results in terms of retrieval quality when used stand-alone,
b) is essentially configuration free which makes it applicable to any workflow
repository, regardless of how well its workflows are annotated, c) is faster than
other algorithms that account for the workflows’ structure, and d) can be stacked
and combined with other measures to yield better retrieval at even higher speed.

Extending on these encouraging results we here investigate their transferabil-
ity into a system for fast similarity search for scientific workflows at repository-
scale. While runtime has been a concern in developing the Layer Decomposition
approach, scaling its quality of scientific workflow comparison to large collections
of workflows requires additional considerations as of how to best index workflows
for fast retrieval. Especially our previous findings regarding the stackability of
Layer Decomposition with other algorithms of even lower structural complexity
gives rise to a two-phase architectural design of combining a fast candidate re-

5

Figure 2: Workflow comparison process, see also [22]

trieval strategy that disregards workflow structure with our best-of-breed Layer
Decomposition approach for result ranking: In this paper, we show how our
previous findings can be leveraged to a) efficiently index scientific workflows for
fast similarity search using off-the-shelf technology, b) improve retrieval preci-
sion within the top-ranked results by reranking the initial structure-agnostic
search results with the structure-aware Layer Decomposition algorithm, and c)
further speed up the overall retrieval process by tweaking specific subtasks of
the reranking algorithm.

The remainder of this paper is structured as follows. We first briefly intro-
duce the process of scientific workflow comparison in Section 2 and review the
Layer Decomposition algorithm in Section 3. Section 4 describes our similar-
ity search system architecture. In Section 6 we review related work regarding
similarity search in scientific workflow repositories. We evaluate our system in
Section 5. Section 7 concludes the paper.

2. Scientific Workflow Comparison

In [22], we report on a comprehensive evaluation of previous approaches to
workflow similarity search. In addition to comparing retrieval quality quanti-
tatively, we also introduce a framework (shown in Figure 2) for qualitatively
comparing different systems. This is an important tool, as the process of work-
flow comparison entails many steps: First, the similarity of each pair of modules
from two workflows is determined using pairwise module comparison. Second,
using these pairwise module similarities, a mapping of modules onto each other
is established. This mapping may be influenced by the topological decomposi-
tion of the workflows imposed by the third step of topological comparison, which
in turn uses the established mapping to assess the similarity of the two work-
flows. Finally, normalization of the derived similarity value wrt the sizes of the
compared workflows is done. This process of scientific workflow comparison is
preceded by an (optional) preprocessing step to, for instance, include externally
supplied knowledge about the elements the workflow contains (see Section 2.4).

6

Each of these steps has a notable impact on the concrete similarity values
computed. We describe the necessary details in the following. Note that our
novel Layer Decomposition method (described in the next section) is a contri-
bution dedicated to the step of topological decomposition and comparison.

2.1. Module Comparison

Structure-based approaches to workflow similarity must first measure the
similarity of two modules in the to-be-compared workflows using the modules’
available attributes. These range from identifiers for the type of operation to
be carried out, to the descriptive label of the module given to it by the work-
flow’s author, to rather specific attributes such as the url of a web-service to be
invoked. In [22] we compared several combinations of attributes with different
weightings and showed that choosing a suitable configuration is most crucial
for result quality of structural workflow comparison. Using all of a module’s
attributes for comparison only yields satisfying results when the weights used
on the attributes are set appropriately. Conversely, using only the module’s
labels for comparison provides equally good results when these are compared
by Levenshtein edit distance to cope with minor differences in different authors’
naming schemes. While this may seem surprising at first, it does show that the
labels provided to the modules by the (heterogeneous) authors of the workflows
contained in a repository are often telling of their functionality.

2.2. Module Mapping

Based on the pairwise module similarities determined by module compari-
son, the module mapping defines the optimal set of allowed node associations
for further topological comparison. Based on our previous findings [22], we
here use two strategies: maximum weight matching (mw) chooses the set of
one-to-one mappings that maximizes the sum of similarity values for unorderes
sets of modules, whereas maximum weight non-crossing matching (mwnc) [17]
requires an order on each of the two sets to to be given by the workflows’ topo-
logical decompositions. Given two ordered lists of modules (m1, ..mi, ..mk) and
(m′

1, ..m
′
j , ..m

′
l), a mapping of maximum weight between the sets is computed

where no pair of mappings (mi,m
′
j) and (mi+x,m

′
j−y) may exist with x, y ≥ 1.

2.3. Normalization

A difficult problem in topological comparison of workflows is how to deal
with differences in workflow size. In particular, given a pair V , W of work-
flows where V ⊂ W and |W | >> |V |, what is their similarity? This decision
typically is encoded in a normalization of similarity values wrt the sizes of the
two workflows [22]. In this work, we use a variation of the Jaccard similarity
coefficient, which measures the similarity of two sets A and B by their relative

overlap: |A∩B|
|A|+|B|−|A∩B| . We modify this formula because the methods for com-

paring modules do not create binary decisions but instead return a similarity
score; details can be found in [22].

7

2.4. External Knowledge

When comparing two workflows, knowledge derived from the entire work-
flow repository or even from external sources may be taken into account. Our
results in [22] showed that the following two simple and efficiently computable
options are already quite effective: Importance Projection Preprocessing removes
those modules from a workflow prior to its comparison, which provide unspe-
cific functionality such as parameter settings or simple format conversions [24].
The connectivity of the workflow graph is retained by transitive reduction of
removed paths between the remaining modules. This method requires external
knowledge in the form of a method to assess the contribution of a given mod-
ule to the workflow’s function. The implementation provided here uses manual
assignments of importance based on the module’s type of operation.

Module Pair Preselection, first classifies modules by their type and then com-
pares modules within the same class, instead of computing all pairwise module
similarities for two workflows. This reduces the number of (costly) module
comparisons and may even improve mapping quality due to the removal of false
mappings across types. Here, external knowledge must assign a predefined class
to each module.

3. Layer Decomposition Workflow Similarity

In this section, we describe the Layer Decomposition (LD) approach for
structurally comparing two workflows, initially presented in [23]. In a compar-
ative evaluation against a number of other approaches to topological workflow
comparison under various settings for the different steps of the workflow com-
parison process described in the previous section, this algorithm provides results
of highest quality in similarity search, and of highest stability across different
such settings. The fundamental idea behind LD is to focus on the dependency-
constrained order in which modules are executed in both workflows by only
permitting mappings of modules to be used for similarity assessment which re-
spect this order (in a sense to be explained below). Two observations led us
to consider execution order as a fundamental ingredient to workflow similarity.
Firstly, it is intuitive: The function of a workflow obviously critically depends
on the execution order of its tasks as determined by the direction of data links;
even two workflows consisting of exactly the same modules might compute very
different things if these modules are executed in a different order. Nevertheless,
most structural comparison methods downplay execution order. For instance,
a few graph edits can already lead to workflows with very different execution
orders (like swapping the first and last of a long sequence of modules). Sec-
ondly, we observed in our previous evaluation [22] that approaches to topologi-
cal workflow comparison which consider execution order are much more stable
across different configurations of the remaining steps of the workflow compari-
son process. In particular, comparing two graphs using their path sets, i.e., the
set of all paths from a source to a sink, produced remarkably stable results both
with and without the use of external knowledge. Inclusion of such knowledge

8

Figure 3: Sample layer decompositions and layer mapping of scientific workflows (a) 1189 and
(b) 2805 from Figure 1.

in workflow comparison had among the largest impact on the overall perfor-
mance of methods, but requires corpus-specific expert intervention. Based on
these findings, developing methods that achieve retrieval results of high quality
without requiring external knowledge seemed like a promising next step.

In the following, we first explain how LD extracts an ordering of workflow
modules from the workflow DAG. We then show in Section 3.2 how two work-
flows can be effectively compared using this partial ordering. Finally, we explain
in Section 3.3 how normalization is performed.

3.1. Topological Decomposition

The linearization (or topological sort) of a DAG is an ordering of its nodes
V such that node u precedes node v in the ordering, if an edge (u, v) exists. Ob-
viously, a DAGs linearization can be computed in linear time using topological
sorting; however, it is generally not unique. As the quality of the subsequent
mapping (see below) depends on the concrete linearizations chosen for the two
workflows under consideration, it is important to find a good pair of lineariza-
tions, i.e., linearizations such that highly similar modules will later get mapped
onto each other. Since the number of possible linearizations is Ω(n!) (where n

is the number of modules in a workflow), assessing all possible pairs is theoreti-
cally infeasible; it is also infeasible in practice, as many real life workflows have
many different linearizations (for instance, 23.5% of the 1485 Taverna workflows
in our evaluation set have more than 100 different linearizations).

We tackle this problem by representing all possible linearizations of a given
workflow in a single, concise data structure. Observe that a DAG has more than
one linearization iff between two consecutive nodes in one of its linearizations
no direct datalink exists, because in this case swapping the two nodes creates
another linearization. In all such cases, we tie the two nodes in question into a
single position in the ordering. We call such a tie at position i a layer Li. Com-
pacting all sequences of two or more swappable nodes of a linearization in this

9

Figure 4: Overview of workflow comparison applied by LD. See text for description of overall
process. Bold blue lines indicate pairwise comparison of layers Ln and L’2 by maximum
weight matching (mw). The resulting similarity value is passed to maximum weight non-
crossing matching (mwnc) to determine best layer mapping and subsequently used to compute
non-normalized overall similarity score (nnsim).

way yields a layered ordering of the DAG which we call its layer decomposition
LD = (L1, .., Li, .., Lk). Note that the layer decomposition of a DAG is unique,
as a) layers themselves are orderless sets of modules, and b) following from the
definition of the underlying linearization, for any Li and Lj such that i < j,
for every v ∈ Lj , there is some u ∈ Li which precedes v in every linearization,
which c) uniquely defines the positions of Li and Lj within the decomposition.
To compute a workflow’s layer decomposition, we use a simple iterative algo-
rithm. First, all modules with in-degree 0 (the DAGs source nodes) form the
top layer L1. These modules and all their outbound data links are removed from
the workflow; this process is repeated until no more modules remain. Figure 3
shows the layer decompositions of the sample workflows introduced in Figure 1.
In Figure 3, the different layers are visually aligned to reflect their mapping as
derived in the following step.

3.2. Topological Comparison

The layer decomposition of a workflow partitions its module set by execution
order creating an ordered list of module subsets. To compare the layer decom-
positions LD and LD′ of two workflows wf and wf ′, respectively, we take a

10

two-phase approach, sketched in Figure 4. First, pairwise similarity scores for
each pair of layers (L,L′) ∈ LD × LD′ are computed from the modules they
contain using the maximum weight matching (mw), based on the similarity val-
ues p(m,m′) derived by a given module comparison scheme as introduced in
Section 2.2:

layersim(L,L′) =
∑

p(m,m′) | (m,m′) ∈ mw(L,L′)

In the second phase, the ordering of the layers - and thus of the modules
they are comprised of - is exploited to compute the decompositions’ maximum
weight non-crossing matching (mwnc) with the pairwise similarities of layers
from phase one. The resulting layer-mapping serves as the basis for the overall
(yet non-normalized) similarity score of the compared workflows using LD:

nnsimLD(wf,wf ′) =

∑
layersim(L,L′) | (L,L′) ∈ mwnc(LD,LD′)

3.3. Normalization

As done for all other methods we shall compare to, we normalize the similar-
ity values computed by LD using the Jaccard variation described in Section 2.3.
Thus, the final, normalized LD-similarity is computed as:

simLD(wf,wf ′) =
nnsimLD

|LD|+ |LD′| − nnsimLD

.

We analogously normalize layersim(L,L′) by |L| and |L′|. This way, if two
workflows are identical, each layer has a mapping with a similarity value of 1.
Then nnsimLD = |mwnc(LD,LD′)| = |LD| = |LD′|, and simLD = 1.

4. Similarity Search Architecture

Thorough evaluation [23] of the Layer Decomposition showed that it pro-
vides best results in the task of similarity search, and that it is considerably
faster at comparing workflows than its structure-aware competitors. Yet, for
similarity search at repository scale, its average runtime is still prohibitive due
to the complexity of the involved graph algorithms. An appropriate method
for achieving faster retrieval is indexing of the repository. Such indexing of
workflows is straightforward when considering only their modules, but requires
more sophisticated methods when also topology should be indexed. Encour-
agingly, our evaluation showed that stacking the Layer Decomposition (LD)
algorithm as a reranking step on top of initial candidate preselection by a
structure-agnostic similarity measure (that only compares the workflows’ mod-
ules), provides equally good results as the standalone application of LD.

Here we present and evaluate a two-phased approach consisting of an initial,
structure-agnostic retrieval step using indexing, and a subsequent step of result

11

Figure 5: Schematic overview of scientific workflow similarity search using structure-based
reranking.

reranking using more complex structure-based workflow comparison. When im-
plementing this method, we tried to use off-the-shelf components as much as
possible to reduce maintenance cost in concrete installations - and facilitate ap-
plicability to such installations in the first place. In particular, we were eager to
build on existing indexing technology currently employed by scientific workflow
repositories to provide their search capabilities (based on workflow annotations).
A popular such indexing tool is Lucene [15], which is, for instance, used by the
myExperiment repository [12]. Directly integrating with this technology re-
duces maintenance cost to only one (proven) index and provides an inherent
benefit to our overall purpose of serving similarity search over scientific work-
flow repositories: Such a search often starts with (1) an initial keyword query
that roughly specifies the user’s needs in terms of workflow functionality. Users
then select one candidate workflow and (2) let the system retrieve functionally
similar workflows, i.e., the system performs a workflow similarity search.

An overview of our system as a whole, reflecting these user-driven steps of
the retrieval process, is given in Figure 5. In the following, we describe the
index, and the phases of candidate retrieval and reranking (employed by the
similarity search of step (2)) in detail.

4.1. Workflow Indexing and Retrieval

The first step is to index workflow properties and modules for fast initial
retrieval. As we have shown that module-based retrieval provides a very good
preselection of search results, it is a natural target for indexing. Thus, we
hypothesize that it is not necessary to apply more complex graph indexing
databases and datastructures such as neo4j [1], or the subgraph indexing system
used in [13], but sufficient to use fast and simple approaches that capture the
necessary details of the workflows we want to index: their modules. A search
over such an index would specify a number of modules the query workflow
contains, which would then be matched onto the sets of modules stored with
each workflow in the index. The fundamental operation required from such an
index is the ability to compare modules. Comparison can be effectively done

12

Figure 6: Document representation of myExperiment workflow 2805 (see Fig. 1) in Lucene.
The tabular view of fields and values is taken from the index analysis tool Luke1.

based on the edit-distance of the modules’ labels [22]. Both operations are
supported by the open source system Apache Lucene [15].

4.1.1. Indexing Workflows in Lucene

Lucene is a Java-based document indexing and search engine that includes
options for analyzing the documents prior to indexing (e.g., stop word removal),
and for ranking of search results by their (document-centric) relevance to the
respective query [15]. In Lucene, documents fed to the index are composed of
fields, where each field contains a sequence of terms. For full text documents,
the words in the text naturally represent these terms; the text as a whole makes
up one field; and the document as a whole may, next to the field representing
its full text body, contain additional fields to hold, for instance, its title or the
date of publication. From the terms stored, Lucene creates an inverted index
linking each term to the documents and fields it is contained in. For searching,
a given query (i.e., one or more search terms) is matched in the index to find the
corresponding documents. Lucene then ranks the matching documents by their
relevance to the query using various relevance metrics. Next to strict matching
of terms in the index, fuzzy searching is also supported. When performing a
fuzzy search, Lucene uses the edit distance between terms in the query and
terms in the index to find matching documents.

Following Lucene’s document structure, we represent a workflow as a set
of fields. One field holds the set of modules the workflow contains, with the
modules’ labels being the respective terms. This approach is the most straight-
forward setting for both indexing and search and, as we will see, provides sur-
prisingly satisfying results (see Section 5.1). We discuss other options for rep-
resenting workflows in Lucene in Section 7.

Figure 6 shows how a workflow is stored in the index using these fields. We
use fields for the workflow’s modules, the workflow’s id and url in the original
repository (here myExperiment), the filename of the workflow definition file in
our system, and the number of modules the workflow contains. For the practi-
cal reasons of integrating with exising repositories’ search capabilities outlined

1http://code.google.com/p/luke/

13

Listing 1: Example fuzzy query to the Lucene index constructed from the modules of myEx-
periment workflow 1189 (see also Fig. 1).

(m o d u l e s : F i l t e r l i s t o f s t r i n g s b y r e g e x ˜0 . 7)
(modules :Get image f rom ur l ˜0 . 7)
(m o d u l e s : S p l i t s t r i n g i n t o s t r i n g l i s t b y r e g u l a r e x p r e s s i o n ˜0 . 7)
(modules :bconv 2 ˜0 . 7)
(modules :get pathways by genes ˜0 . 7)
(modules :mark pathway by objects ˜0 . 7)
(modu le s : r egex va lue ˜0 . 7)
(modu l e s : r egex va lue 1 ˜0 . 7)

above, we also index the workflow’s title, description, and associated tags - in
which a user’s initial keyword queries would be (additionally) matched. Creat-
ing the index for our repository of 1483 Taverna workflows takes approximately
4 minutes on a desktop machine. The index uses 1.7MB on disk.

4.1.2. Searching the Index

Lucene provides its own query syntax for searching the index. Most impor-
tant to us is the ability to specify over which fields a search is to be carried out,
and what the maximum edit distance is at which Lucene will consider terms to
match. In Lucene’s terminology this distance is given by the minimum similar-
ity at which its fuzzy query processing may consider a pair of terms to match.
It takes values between 0 and 1, and corresponds to the number of allowed edit
operations wrt terms’ length. In the following, we refer to this minimum simi-
larity as fuzzyness.

To perform a workflow similarity search by modules, we construct a query
from the labels of the modules of a given query workflow. An example query is
shown in Listing 1. For each module the modules field is specified to be searched
in, and the desired fuzzyness is appended to the module’s label (separated by
a ˜). This example query for workflows with similar sets of modules to workflow
1189 from Figure 1 returns a total of 289 results.

4.2. Structure-based Result Reranking

After fast structure-agnostic retrieval of candidate results, we rerank these
results by the structure-aware Layer Decomposition algorithm. In our previous
evaluation [23], this algorithm has not only shown to provide best results in the
task of workflow ranking, but to also be comparatively fast.

4.2.1. Layer Decomposition Configurations

In our previous evalutation of the Layer Decomposition algorithm we were
especially interested in the performance those configurations of the workflow
comparison process (see Section 2) that require as little background knowledge
about the repository as possible. When creating a search engine for one spe-
cific repository of scientific workflows, on the other hand, extensive background
information and tuning will be used to deliver a better user experience. To

14

Table 1: Configurations of the Layer Decomposition algorithm used for reranking, and the
impact the corresponding tweaks have on algorithm quality (Q) and speed (S). (+: improved,
o: unchanged)

Comparison step LD np ta pll LDpml25 ip te pll Benefit
Q S

Workflow
Preprocessing

np: no projection ip: importance projection fil-
tering out unspecific modules.

+ +

Module
Comparison

ta: no preselection of pairs for
comparison, all module pairs
are compared.

te: preselection of modules
pairs for detailed comparison
by type equivalence.

o +

pll: only the labels are com-
pared by edit distance

pll: only the labels are com-
pared by edit distance

Module Mapping maximum weight matching maximum weight matching
Topological
Comparison

LD: Layer Decomposition LDpml25: Layer Decompo-
sition, penalizing layer mis-
match exceeding 25% of the
layers in the larger workflow

+ o

Normalization Jaccard variation Jaccard variation

contrast these perspectives of off-the-shelf applicability and customizability, we
will evaluate the Layer Decomposition approach in two settings:

• LD np ta pll does not use any knowledge of the repository and its work-
flows, apart from the assumption that the modules’ labels are telling of
their functionality - a reasonable assumption in our setting given the way
our index is constructed.

• LDpml25 ip te pll uses the maximum amount of knowledge we have, in-
cluding importance projection (ip) to filter out unspecific modules, type
equivalence (te) module pair preselection to reduce the number of detailed
module comparisons made (see Section 2), and penalties for mismatching
layers (pml25) in the Layer Decomposition topological comparison itself.
These penalties measure the amount of layers not matched in LD’s max-
imum weight non crossing matching step, when the number of such mis-
matched layers exceeds a configurable, repository-dependent percentage of
the layers in the larger of the compared workflows (i.e., the maximum num-
ber of layers that could possibly be matched). Setting this allowance to
25% notably improves retrieval performance of Layer Decomposition [23].

Table 1 lists each step of the workflow comparison process and how it is
treated in these two configurations (and decodes the intricate notation). It also
shows how tuning at each step affects quality and speed of the algorithms [22,
23]. We will see how this translates to concrete runtimes of workflow comparison
subtasks in Section 5.2.2.

4.2.2. Ensembles of Structure and Annotation

Next to measuring workflow similarity using single algorithms, multiple al-
gorithms can be combined into ensembles. These ensembles allow to inte-
grate different perspectives on workflow similarity, especially those provided
by structure-based and annotation-based comparison. How applicable such en-
sembles are to any given repository depends on the amount of annotations it

15

provides. Current repositories greatly differ in this respect, and lack of textual
descriptions of workflows greatly affects the applicability of annotation-based
measures. When annotations are available, on the other hand, we have shown
the use of ensembles to greatly benefit result quality in similarity search [22, 23].
We thus also evaluate the ensemble of Bag of Words [6, 22] similarity over the
workflows’ titles and descriptions and Layer Decomposition in either of the con-
figurations listed above. Ensemble similarity values are derived as mean average
of the values computed by its constituting algorithms.

5. Evaluation

We evaluate our system for scientific workflow similarity search on the corpus
of scientific workflows introduced in [22]. The corpus consists of 1483 Taverna
workflows from the myExperiment repository. For 485 pairs of scientific work-
flows from this corpus, a total of 2424 similarity ratings were provided by 15
human experts2. Ratings were given along a four step Likert scale [16] with the
options very similar, similar, related, and dissimilar plus an additional option
unsure. This includes a set of 8 (query) workflows, for which similarity rat-
ings are available covering all workflows returned by a similarity search over the
whole corpus by a selection of similarity algorithms.

In the following, we first comparatively investigate how different settings
and ensembles of algorithms affect the quality of the retrieved results, both
confirming our previous findings [23], and sometimes even improving on them.
In Section 5.1 we measure how runtime of similarity search over the whole
dataset (i.e., a whole repository) is affected by indexing and different settings
discussed in Section 4.

5.1. Retrieval Quality
We measure retrieval quality as the precision at k over the top 10 results

retrieved by a similarity search over the whole repository. Relevance of a search
result is determined by the median expert similarity rating assigned to each
pair of query and result workflow in the corpus (very similar, similar, related,
dissimilar, or unsure). We thus evaluate precision at k with the relevance
thresholds of similar and related. very similar results are found by all presented
algorithms at near equal quality (data not shown).

In our system, retrieval quality is influenced by three factors: (i) the mini-
mum similarity of labels (fuzzyness) set for module label matching in the index,
(ii) the number of candidate results retrieved and forwarded to the reranking
step, and (iii) the algorithm(s) and their configurations used for reranking.

5.1.1. Minimum Similarity of Module Labels

Figure 7 shows precision at k for the top 10 results retrieved by Lucene with
various settings of fuzzyness, in direct comparison to the Module Set algorithm

2myExperiment: http://www.myexperiment.org
Corpus: https://www.informatik.hu-berlin.de/forschung/gebiete/wbi/resources/flowalike

16

(a)

(b)

Figure 7: Mean retrieval precision at k against the median expert rating for Lucene with
various settings for the minimum similarity of module labels, and Module Sets workflow
comparison for relevance threshold (a) related, and (b) similar. Module Sets used with module
similarity by edit distance of labels (pll), without ip and te.

17

Table 2: Numbers of query workflows out of 1483 for which less than 10, 25, and 50 results
could be retrieved using the respective minimum similarity values.

Lucene Number of query workflows yielding
minimum similarity < 10 results < 25 results < 50 results

0.2 1 12 27
0.3 21 59 114
0.4 90 185 313
0.5 208 356 556
0.6 298 506 687
0.7 382 624 809
0.8 472 683 891
0.9 498 713 908

used in a comparable configuration: all of the workflows’ modules are used for
similarity assessment (no ip or te) and module labels are compared by edit
distance (pll). Retrieval quality of Lucene is clearly on par with Module Sets.
Most obviously, different fuzzyness values greatly influence the results returned.
Observe that for a relevance threshold of similar (Fig. 7b) there is an apparent
trend of higher values to deliver better results: While values of 0.2 and 0.3
are clear outliers for the negative, values of 0.4 and above provide comparable
results over the first 5 positions. For the second half of the top 10, values above
0.7 appear too strict, and are outperformed by more fuzzy matching of lower
minimum similarity values. This observation of strict versus fuzzy matching is
confirmed at a relevance threshold of related (Fig. 7a), where especially values
of 0.3 and 0.4 provide convincing results.

As we are ultimately interested in reranking the results retrieved by Lucene
with any such setting, another aspect to consider is the number of results Lucene
retrieves for each value. We searched our index with each of its 1483 workflows
in turn, using different settings for fuzzyness of label matching. Table 2 reveals
that values above 0.4 result in difficulties in retrieving sufficient numbers of
workflows. As a consequence, we focus further evaluation on minimum similarity
values of 0.2, 0.3 and 0.4.

5.1.2. Limiting reranking candidates

While for some workflows only limited lists of candidates are available, the
majority of query workflows yields large lists of candidate results. For instance,
with a minimum similarity value of 0.3, about half of the workflows in the repos-
itory have more than 300 candidates (one third for 0.4). We are thus interested
in reducing the number of candidates for the reranking phase to only the top-x,
i.e., a specific ranking cutoff. For a fuzzyness of 0.3, Figure 8 shows retrieval
precision at k for reranking at different such cutoffs. We use the reranking al-
gorithm which has, so far, proven to provide best results (to be comparatively
evaluated in the next section). While all cutoffs provide rather similar perfor-
mance, reranking of the 25 topmost candidates seems to deliver slightly higher
result quality. First and foremost, these findings show that quality of reranked
retrieval does not necessarily increase with the number of candidate results used
for reranking. Apparently there is a synergetic effect of the candidate preselec-
tion done by Lucene (i.e., workflow comparison by modules only) and the more

18

Figure 8: Mean retrieval precision at k against the median expert rating for reranking of
different numbers of top-x candidates retried by Lucene with fuzzyness 0.3. Lucene standalone
retrieval included as baseline. Relevance threshold similar.

complex reranking, at least on our data set.
For fuzzyness values of 0.2 and 0.4 results are equivalent, only that their

peaks in performance are not at cutoffs of 25, but 35 and 15, respectively (data
not shown). This shows that the differences in retrieval quality observed for
different fuzzyness values in Lucene-only retrieval in the previous section, are
evened out by the applied reranking. Together with the observations on the
numbers of results returned by Lucene in the first place (see Table 2), it also
indicates a trade-off between result quality, the amount of reranking required to
achieve it, and the overall number of results available to the user: While with
less fuzzy retrieval only the top 15 results have to be reranked to provide best
results amongst the top-10, a significant portion of query workflows will not see
10 results at all. The more fuzzy initial retrieval is, on the other hand, the more
query workflows will yield larger result sets, but the more reranking has to be
applied. Which settings to use depends on the resources available for reranking.

Based on these considerations, all further evaluations use reranking of the
top 24 results retrieved using Lucene with a fuzzyness of 0.3, best matching the
resources used for runtime evaluation in Section 5.2.

5.1.3. Reranking algorithms

Figure 9 shows how result quality is affected by the two contrary configura-
tions of Layer Decomposition introduced in Section 4.2. The figure also includes
the ensembles of these two configurations with the annotation-based measure of
Bag of Words (BW). Results correlate at both relevance thresholds of related

19

Figure 9: Mean retrieval precision at k against the median expert rating for Lucene’s top 24
results reranked by different (ensembles of) algorithms for relevance threshold (a) related, and
(b) similar.

and similar (see Fig. A.14, Appendix A for threshold of related). Clearly, both
the amount of repository knowledge included and the use of ensembles benefit
overall retrieval precision: The best reranking approach is the ensemble of fully
tuned Layer Decomposition and Bag of Words. The ensemble including the
naive configuration of Layer Decomposition is still outperformed by the stan-
dalone, tuned Layer Decomposition when it comes to the very top of the result
list, and performs equally well as the standalone naive version. Most impor-
tantly, all reranking methods deliver better results than non-reranked retrieval
by Lucene only.

5.2. Runtime

We measure the time taken for retrieval of the top 10 most similar workflows
from the whole repository using a given query workflow. For Lucene, we use
the default configuration of single threaded search over its index. For structure-
based workflow comparison, e.g., retrieval by Module Set comparison (see below)
or reranking by Layer Decomposition, a setup of 24 parallel processes is used,
each handling the comparison of one pair of query workflow and workflow from
the repository at a time. While this is a reasonable setup in a server-based
environment, it has to be kept in mind that fully sequential comparison of all
pairs of workflows would take substantially longer.

5.2.1. Search Phase

Figure 10 plots runtimes of similarity search over the whole repository for
the Module Sets similarity algorithm and Lucene against the number of modules

20

Figure 10: Average runtime (left logarithmic y-axis) of similarity search over repository of
1483 workflows using Module Set workflow comparison (MS) or Lucene, by number of mod-
ules in query workflow. Areas (right, linear y-axis): No of workflows in repository with the
corresponding number of modules; No of modules (as per value on x-asis)

in the query workflow (again, note that Module Set comparisons are parallelized
24-fold). For small workflows, Module Sets is respectably fast, given the fact
that it does not make use of any index structures but has to compare each pair
of query workflow and repository workflow separately. With only 5 modules
in the query workflow, search times average at one minute already, and double
once more at 8 modules. Lucene is faster by several orders of magnitude due to
its indexing. Only for very large workflows do retrieval times reach or exceed
one second. Observe that workflow sizes on the x-axis don’t increase linearly -
for a better visual grasp, we also plot the x-values themselves, showing a steep
increase of workflow sizes towards the right end of the plot. Furthermore, for
a better feel of how the retrieval times translate to the repository’s contents,
the darker area graphs the number of workflows contained in the repository
which have the corresponding number of modules. Clearly, most workflows
in this specific repository are rather small, which corresponds to previously
observed [26, 22] average workflow sizes of app. 11 modules.

5.2.2. Reranking Phase

After retrieval of candidates from the index we rerank the top 24 results.
Figure 11 shows runtimes of both configurations of Layer Decomposition. The
tuned configuration is faster by an order of magnitude. Note that we don’t show
runtimes of ensembles - including Bag of Words in reranking has practically no
effect on runtimes.

The advantage of the tuned algorithm over the naive one is a consequence
of the speedups listed in Table 1. While these speedups already lead to overall

21

Figure 11: Average runtime (left logarithmic y-axis) of similarity search over repository of 1483
workflows using Lucene and reranking of top 24 candidates by either of two configurations
of Layer Decomposition (see text); plotted by number of modules in query workflow. Areas
(right, linear y-axis): No of workflows in repository with the corresponding number of modules;
No of modules (as per value on x-asis)

Figure 12: Runtimes of subtasks of Layer Decomposition workflow comparison in dependence
of workflow size using maximum weight matching of modules for assessing similarity of single
pairs of layers.

22

Figure 13: Average runtime (left logarithmic y-axis) of similarity search over repository of 1483
workflows using Lucene and reranking of top 24 candidates by either of two configurations
of Layer Decomposition (see text); plotted by number of modules in query workflow. Areas
(right, linear y-axis): No of workflows in repository with the corresponding number of modules;
No of modules (as per value on x-axis)

similarity search times of less than 10 seconds for the vast majority of workflows
in the repository (reranking only the top 24 results), our interest is to see ex-
actly which portion of the Layer Decomposition algorithm is taking how long,
and if further speedup is possible that does not include repository knowledge.
Dissecting the workflow comparison of Layer Decomposition, Figure 12 reveals
that the major part of time is spent comparing all pairs of modules (per edit
distance), and comparing all pairs of layers. The times taken for decomposing
a workflow into its layers in the first place, and for computing the maximum
weight non-crossing matching of those layers after their pairwise comparison are
much lower.

Recall from Section 3 that Layer Decomposition uses the maximum weight
matching of the sets of modules two layers are composed of to determine layer-
wise similarity. The algorithmic complexity of computing such a matching of two
layers L1 and L2 is O((L1 ∪ L2))

2L1L2). Most interestingly in this respect, we
have shown in [22] that for workflow comparison by Module Sets, using greedy
mapping of modules instead of maximum weight matching provides equivalent
results. Applying this finding to the layer comparison step of Layer Decompo-
sition yields a significant speedup both of the time taken for this specific step,
leveling it with the time taken for decomposition (see Figure A.15, Appendix
A), and of the time taken for similarity search as a whole: Figure 13 reiter-
ates our previous illustration with additional runtimes plotted for the greedy
versions of the reranking algorithms. Especially for the zero-knowledge config-
uration, the improvement is substantial. And, while less accentuated, the fully

23

tuned version of Layer Decomposition benefits from the shift in complexity as
well, now yielding overall search times under 5 seconds for most workflow sizes
and an average runtime of 1.4 seconds over all 1483 query workflows. Most
importantly, retrieval quality remains unchanged (data not shown).

6. Related Work

Current search capabilities offered by scientific workflow repositories focus
on keyword queries [2, 14, 18, 19]. In the myExperiement scientific workflow
repository [19], for instance, these queries are matched against a Lucene index
on the annotations supplied by the workflows’ authors and the labels of the
workflows’ modules [12]. Matching uses exact string matching and workflow
structure is not considered. While previous work has investigated several op-
tions to determine similarity of scientific workflows based on workflow structure,
e.g, [21, 20, 25, 3, 13, 11, 27], only litte work exists that targets their efficiency
of similarity search over whole repositories. A system using subgraph matching
to search a repository of scientific workflows using a given query workflow is
proposed in [13]. The authors report runtimes of 15 seconds over a repository
of 89 workflows and manually evaluate retrieval quality on an example workflow
(explicitly rejecting to derive generic claims). In [7] workflows are represented
as context free bag grammars. This allows effective matching of keywords spec-
ified in an user’s query against the (possible) executions of a workflow and the
corresponding execution traces of its modules. In [4], a system for similarity
search is proposed that uses manually added semantic anntations on workflows
and their components. The architecture of the proposed system is analogous
to the two-phased approach introduced in the previous section: An initial set
of candidate results is retrieved by a fast search using an index over the se-
mantic annotations the workflows contain. These candidates are then reranked
by a graph-based approach that determines workflow similarity as the maxi-
mum aggregate similarity of the nodes (i.e., modules) contained in a respective
mapping between two workflows. Runtime is shown to clearly benefit from the
two-step approach, but retrieval quality of the compound system is evaluated
against the standalone graph-based approach only. For business workflows, [28]
target a similar, two-step approach, specifically addressing the first step of can-
didate retrieval: A selection of features derived from the graph structure of the
workflows is used to index the workflows in a repository. This index is used
to assess whether a workflow from the repository is ’irrelevant’ to a search or
’potentially relevant’. The candidates from the latter class can then be pro-
cessed by more complex similarity measures, e.g., [10, 8, 9]. In contrast to any
of these approaches, the system proposed here does not rely on graph indexing
but is based on simple indexing and candidate retrieval using only the workflows’
modules. Our evaluation uses the largest collection of real-world workflows and
systematically considers both retrieval speed and quality.

24

7. Conclusion

We introduced a system for structure-aware similarity search in scientific
workflow repositories. Relying on off-the-shelf indexing technology in form of
Lucene and using a two-phase approach of candidate retrieval and reranking,
we were able to apply the high quality structure-based Layer Decomposition
workflow similarity measure at repository-scale with acceptable speed. We dis-
tinguished two cases of application, where knowledge about the repository and
its workflows is available for fine-tuning of structure-based comparison - or not.
For both of these cases we showed that reranking of results clearly improves re-
trieval quality of similarity search, and closely investigated their runtime proper-
ties. The speedup achieved by greedy assessment of layer similarity in workflow
comparison even for the naive version of Layer Decomposition is promising for
the application of this method to repositories where external knowledge such as
for importance projection or layer mismatch penalty are not available.

On the more conceptual level, regarding the three parameters of fuzzyness
of initial candidate retrieval, top-x cutoff of candidates fed to the reranking
step, and reranking method to set for optimizing retrieval quality, we found
that for the first two, no single best setting exists for best result quality, but
the most appropriate setting depends on available computational resources. In
this respect, another interesting option may be to not select a fixed number of
candidates to rerank, but to use a dynamic cutoff based on the similarity values
found during reranking. For the last parameter, the reranking method to apply,
a clear trend can be observed: The more knowledge about a repository and its
workflows is available, and the more different perspectives on workflow similarity
can be applied, the better. Especially the latter point of different perspectives
puts a hard eye on future research to access other sources of workflow meta-data
for similarity assessment, one such source being provenance.

8. Acknowledgments

This work was partly funded by DFG grant GRK1651, DAAD grants D1240894
and 55988515, the EU FP7 Grant 317871, and PHC Procope grant. Work of
SCB partly done in the context of the Institut de Biologie Computationnelle,
Montpellier, France.

25

Appendix A. Additional Figures

Figure A.14: Mean retrieval precision at k against the median expert rating for Lucene’s top
24 results reranked by different (ensembles of) algorithms for relevance threshold related.

Figure A.15: Runtimes of subtasks of Layer Decomposition workflow comparison in depen-
dence of workflow size using greedy matching of modules for assessing similarity of single pairs
of layers.

26

[1] neo4j graph database. http://neo4j.com/.

[2] SHIWA workflow repository. http://shiwa-repo.cpc.wmin.ac.uk.

[3] R. Bergmann and Y. Gil. Similarity assessment and efficient retrieval of
semantic workflows. Information Systems, 40:115–127, 2012.

[4] R. Bergmann, M. Minor, S. Islam, P. Schumacher, and A. Stromer. Scaling
similarity-based retrieval of semantic workflows. In ICCBR-Workshop on
Process-oriented Case-Based Reasoning, Lyon, pages 15–24. Citeseer, 2012.

[5] S. Cohen-Boulakia and U. Leser. Search, Adapt, and Reuse: The Future
of Scientific Workflow Management Systems. SIGMOD Record, 40(2):6–16,
2011.

[6] F. Costa, D. d. Oliveira, E. Ogasawara, A. Lima, and M. Mattoso. Athena:
Text Mining Based Discovery of Scientific Workflows in Disperse Reposi-
tories. RED, pages 104–121, 2010.

[7] S. B. Davidson, X. Huang, J. Stoyanovich, and X. Yuan. Search and Result
Presentation in Scientific Workflow Repositories. SSDBM, 2013.

[8] R. Dijkman, M. Dumas, B. V. Dongen, R. Käärik, and J. Mendling. Sim-
ilarity of business process models: Metrics and evaluation. Information
Systems, 2010.

[9] R. Dijkman, M. Dumas, and L. Garćıa-Bañuelos. Graph matching al-
gorithms for business process model similarity search. Business Process
Management, 2009.

[10] M. Dumas, L. Garćıa-Bañuelos, and R. Dijkman. Similarity search of busi-
ness process models. Data Engineering Bull., 2009.

[11] N. Friesen and S. Rüping. Workflow Analysis Using Graph Kernels. SoKD,
2010.

[12] A. Goderis, D. De Roure, C. Goble, J. Bhagat, D. Cruickshank, P. Fisher,
D. Michaelides, and F. Tanoh. Discovering scientific workflows: The my-
experiment benchmarks. IEEE Transactions on Automation Science and
Engineering, 2008.

[13] A. Goderis, P. Li, and C. Goble. Workflow discovery: the problem, a case
study from e-Science and a graph-based solution. ICWS, pages 312–319,
2006.

[14] J. Goecks, A. Nekrutenko, and J. Taylor. Galaxy: a comprehensive ap-
proach for supporting accessible, reproducible, and transparent computa-
tional research in the life sciences. Genome Biology, 11(8):R86, 2010.

[15] O. Gospodnetic and E. Hatcher. Lucene. Manning, 2005.

27

[16] R. Likert. A technique for the measurement of attitudes. Archives of
Psychology, 1932.

[17] F. Malucelli, T. Ottmann, and D. Pretolani. Efficient labelling algorithms
for the maximum noncrossing matching problem. Discrete Applied Mathe-
matics, 47(2):175–179, 1993.

[18] P. Mates, E. Santos, J. Freire, and C. Silva. Crowdlabs: Social analysis
and visualization for the sciences. SSDBM, pages 555–564, 2011.

[19] D. Roure, C. Goble, and R. Stevens. The design and realisation of the
myexperiment virtual research environment for social sharing of workflows.
Future Generation Computer Systems, 25(5):561–567, 2009.

[20] E. Santos, L. Lins, J. Ahrens, J. Freire, and C. Silva. A First Study on
Clustering Collections of Workflow Graphs. IPAW, pages 160–173, 2008.

[21] V. Silva, F. Chirigati, K. Maia, E. Ogasawara, D. Oliveira, V. Braganholo,
L. Murta, and M. Mattoso. Similarity-based Workflow Clustering. CCIS,
2(1):23–35, 2010.

[22] J. Starlinger, B. Brancotte, S. Cohen-Boulakia, and U. Leser. Similarity
Search for Scientific Workflows. PVLDB, 7(12), 2014.

[23] J. Starlinger, S. Cohen-Boulakia, S. Khanna, S. B. Davidson, and U. Leser.
Layer decomposition: An effective structure-based approach for scientific
workflow similarity. IEEE 10th International Conference on eScience, 2014.

[24] J. Starlinger, S. Cohen-Boulakia, and U. Leser. (Re)Use in Public Scientific
Workflow Repositories. SSDBM, pages 361–378, 2012.

[25] J. Stoyanovich, B. Taskar, and S. Davidson. Exploring repositories of sci-
entific workflows. WANDS, pages 7:1–7:10, 2010.

[26] I. Wassink, P. Vet, K. Wolstencroft, P. Neerincx, M. Roos, H. Rauwerda,
and B. T.M. Analysing Scientific Workflows: Why Workflows Not Only
Connect Web Services. Services, pages 314–321, 2009.

[27] X. Xiang and G. Madey. Improving the Reuse of Scientific Workflows and
Their By-products. ICWS, pages 792–799, 2007.

[28] Z. Yan, R. Dijkman, and P. Grefen. Fast business process similarity search
with feature-based similarity estimation. In On the Move to Meaningful
Internet Systems: OTM 2010, pages 60–77. Springer, 2010.

28

